EP2893049A1 - Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines - Google Patents
Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust linesInfo
- Publication number
- EP2893049A1 EP2893049A1 EP12766456.3A EP12766456A EP2893049A1 EP 2893049 A1 EP2893049 A1 EP 2893049A1 EP 12766456 A EP12766456 A EP 12766456A EP 2893049 A1 EP2893049 A1 EP 2893049A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- traces
- temperature
- hot
- rolled
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000004202 carbamide Substances 0.000 claims abstract description 33
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 20
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 20
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 20
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 8
- 238000003466 welding Methods 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 238000007493 shaping process Methods 0.000 claims abstract description 4
- 230000000737 periodic effect Effects 0.000 claims abstract description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 26
- 239000010959 steel Substances 0.000 claims description 26
- 238000000137 annealing Methods 0.000 claims description 23
- 238000005266 casting Methods 0.000 claims description 12
- 239000000047 product Substances 0.000 claims description 10
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 9
- 239000011265 semifinished product Substances 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 7
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- 238000005260 corrosion Methods 0.000 description 31
- 230000007797 corrosion Effects 0.000 description 31
- 239000010955 niobium Substances 0.000 description 29
- 239000010936 titanium Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- 239000000523 sample Substances 0.000 description 11
- 239000011651 chromium Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 206010070834 Sensitisation Diseases 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- -1 chromium carbides Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229940105847 calamine Drugs 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 229910052864 hemimorphite Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- CPYIZQLXMGRKSW-UHFFFAOYSA-N zinc;iron(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Zn+2] CPYIZQLXMGRKSW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
Definitions
- the invention relates to a ferritic stainless steel, its method of manufacture, and its use for the manufacture of mechanically welded parts subjected to high temperatures, such as elements of exhaust lines of internal combustion engines.
- ferritic stainless steels such as parts located in the hot parts of engine exhaust systems equipped with a urea or ammonia decontamination system (passenger cars, trucks, construction site, agricultural machinery, or maritime transport machinery) ensuring the reduction of nitrogen oxides, one simultaneously seeks:
- these parts are subjected to temperatures between 150 and 700 ° C, and a projection of a mixture of urea and water (typically 32.5% urea - 67.5% water ), or a mixture of ammonia and water, or pure ammonia.
- a mixture of urea and water typically 32.5% urea - 67.5% water
- ammonia and water typically pure ammonia.
- the decomposition products of urea and ammonia are also likely to degrade parts of the exhaust line.
- the high temperature mechanical strength must also be adapted to the thermal cycles associated with the engine acceleration and deceleration phases.
- the metal must have good cold formability to be shaped by bending or hydroforming, as well as good weldability.
- Ferritic stainless steels containing 17% Cr stabilized with 0.14% titanium and 0.5% niobium are thus known, allowing use up to 950 ° C.
- Ferritic stainless steels with a lower chromium content are also known, for example steels containing 12% Cr stabilized with 0.2% titanium (type EN 1 455 AISI 409) for maximum temperatures below 850 ° C. steels at 14% Cr stabilized with 0.5% niobium without titanium (type EN 1 .4595) for maximum temperatures below 900 ⁇ . These have a high temperature behavior equivalent to that of previous grades, but a better fitness.
- the present invention aims to solve the corrosion problems mentioned above. It aims in particular to make available to the users of engines equipped with a system for the removal of exhaust gases with urea or ammonia a ferritic stainless steel which has, compared to the known grades for this purpose, improved resistance to corrosion by a mixture of water, urea and ammonia.
- This steel must also maintain a good heat resistance, that is to say a high resistance to creep, thermal fatigue and oxidation at periodically varying operating temperatures of up to several hundred ', as well as a cold forming and welding ability equivalent to that of the EN 1 .4509 AISI 441 grade, ie guaranteeing a minimum elongation at break of 28% in tension, for mechanical characteristics in tension typically of 300 MPa for the yield strength Re and 490 MPa for the tensile strength Rm.
- the subject of the invention is a ferritic stainless steel sheet of composition, expressed in percentages by weight:
- the invention also relates to two methods of manufacturing a ferritic stainless steel sheet of the above type.
- the semi-finished product is brought to a temperature greater than ⁇ ⁇ ' ⁇ and lower than 1250 ° C., and the semi-finished product is hot-rolled to obtain a hot-rolled sheet with a thickness of between 2.5 and 6 mm; said cold-rolled sheet is cold-rolled at a temperature below
- a final annealing of the cold-rolled sheet is carried out at a temperature of between 1000 and 1100 ° C. and for a duration of between 10 seconds and 3 minutes to obtain a completely recrystallized structure with an average grain size of between 25 and 65 ⁇ .
- the semi-finished product is brought to a temperature above ⁇ ⁇ ' ⁇ and lower than 1250 ° C., preferably between 1180 and 1200,, and the semi-finished product is hot-rolled to obtain a hot-rolled sheet of thickness between 2.5 and 6mm;
- the hot-rolled sheet is annealed at a temperature of between 1000 and 1100 ° C. and for a period of between 30 seconds and 6 minutes;
- said hot-rolled sheet is cold rolled at a temperature below 300 ° C. in a single step or in several steps separated by intermediate anneals;
- a final annealing of the cold-rolled sheet at a temperature of between 1000 and 1100 ° C. and for a duration of between 10 seconds and 3 minutes is carried out in order to obtain a completely recrystallized structure with an average grain size of between 25 and 100.degree. and 65 micrometers.
- the hot rolling temperature is between 1180 and 1200 ° C.
- the final annealing temperature is between 1050 and 1090 ⁇ €.
- the invention also relates to the use of such a steel sheet for the manufacture of parts involving shaping and welding and intended to be subjected to a periodic operating temperature of between ⁇ ⁇ ' ⁇ and 700 ⁇ and a projection of a mixture of water, urea and ammonia or a projection of urea or ammonia.
- This may include engine exhaust system parts equipped with a catalytic system for reducing nitrogen oxides by injection of urea or ammonia.
- the invention is based on the use of ferritic stainless steel sheets having the specified composition and structure, which the inventors have discovered are particularly well suited to solving the aforementioned technical problems.
- the average grain size between 25 and 65 ⁇ is an important feature of the invention, and it is controlled both by the presence of nitrides and carbonitrides of titanium and niobium and by the final annealing performance temperature. .
- Too small grain size hardens the metal, thus limiting its ability to shape, accelerates the diffusion of nitrogen from the decomposition of urea (since the density of grain boundary is greater than in the case of the invention), and reduces the creep resistance.
- a too large grain size decreases the resilience of the metal, especially in the welded zones (in particular Heat Affected Zones) and degrades the appearance of the parts after shaping (orange peel).
- FIG. 1 shows the thermal cycle to which the samples were subjected during the tests which will be described
- FIG. 2 which shows the sectional micrograph according to its thickness of the first 0.150 mm of a sample of a reference steel after a urea corrosion test
- FIG. 3 which shows the sectional micrograph according to its thickness of the first 0.150 mm of a sample of a steel according to the invention after a urea corrosion test carried out under the same conditions as for the steel of the figure 2.
- Manganese improves the adhesion of the oxide layer protecting the metal against corrosion when its content is greater than 0.2%. However, beyond 1%, the kinetics of hot oxidation becomes too fast and a less compact oxide layer develops, formed of spinel and chromine. The manganese content must therefore be contained between these two limits.
- silicon is a very effective element for increasing the resistance to oxidation during thermal cycling. To fulfill this role, a minimum content of 0.2% is necessary. However, in order not to reduce the hot rolling and cold forming ability, the silicon content must be limited to 1%. Sulfur and phosphorus are important undesirable impurities because they decrease hot ductility and formability. In addition, phosphorus easily segregates at grain boundaries and decreases cohesion. In this respect, the sulfur and phosphorus contents must be less than or equal to 0.01% and 0.04%, respectively. These maximum levels are obtained by a careful choice of raw materials and / or by metallurgical treatments carried out on the liquid metal under development.
- Chromium is an essential element for the stabilization of the ferritic phase and for the increase of the resistance to oxidation.
- its minimum content must be greater than or equal to 15% in order to obtain a ferritic structure at all operating temperatures and to obtain good resistance to corrosion. 'oxidation.
- Its maximum content must not, however, exceed 22%, otherwise the mechanical strength at room temperature may be excessively increased, which reduces the ability to shape, or promote embrittlement by demixing the ferrite around 475 ° C.
- Nickel is a gamma element that increases the ductility of steel. But in order to maintain a ferritic single-phase structure under all circumstances, its content must be less than or equal to 0.5%. Molybdenum improves resistance to pitting but reduces ductility and formability. This element is therefore not mandatory, and its content is limited to 2%.
- Copper has a hot-curing effect that could be favorable. Present in excessive quantity, it nevertheless decreases ductility during hot rolling and weldability. As such, the copper content must be less than or equal to 0.5%.
- Aluminum is an important element of the invention. Indeed, with or without rare earth elements (REE), it improves the resistance to corrosion by urea if one respects the formula Al + 30 x REE ⁇ 0,15%, and if also one realizes a stabilization of metal by titanium and niobium.
- REE rare earth elements
- Niobium and titanium are also important elements of the invention. Usually, these elements can be used as stabilizing elements in ferritic stainless steels. Indeed, the phenomenon of sensitization to intergranular corrosion by chromium carbide formation, which has been mentioned above, can be avoided by the addition of elements forming carbonitrides very thermally stable.
- titanium and nitrogen combine before the solidification of the liquid metal to form TiN; and in the solid state at 1100 ° C titanium carbides and carbonitrides are formed.
- the carbon and the nitrogen present in solid solution in the metal are reduced as much as possible during its use.
- Such presence at too high levels would reduce the corrosion resistance of the metal and harden it.
- a minimum Ti content of 0.16% is required.
- usually the precipitation of TiN in the liquid metal is considered by steelmakers as a disadvantage in that it can lead to an accumulation of these precipitates on the walls of the nozzles of the casting vessels (pocket, continuous tundish) which may clog these nozzles.
- TiN improves the structure that develops during solidification by helping to obtain an equiaxed rather than dendritic structure, and thus improve the final grain size homogeneity.
- the advantages of this precipitation outweigh its disadvantages, which can be minimized by choosing casting conditions reducing the risk of plugging the nozzles.
- Niobium combines with nitrogen and carbon in the solid state, and stabilizes the metal, just like titanium. Niobium thus stably fixes carbon and nitrogen. But niobium also combines with iron to form intermetallic compounds at the grain boundaries in the range 550 ° C-950 °, ie, Laves Fe 2 Nb phases, which improves the creep resistance in this range. temperature. A minimum of 0.2% niobium content is required to obtain this property. The conditions for obtaining this improvement in creep resistance are also strongly related to the manufacturing method of the invention, in particular the annealing temperatures, and to an average grain size controlled and maintained within the limits of 25 to 65 ⁇ .
- niobium and titanium it is also necessary to limit the additions of niobium and titanium.
- the contents of niobium and titanium is greater than 1% by weight, the hardening obtained is too important, the steel is less easily deformable and recrystallization after cold rolling is more difficult.
- Zirconium would have a stabilizing role close to that of titanium, but is not used deliberately in the invention. Its content is less than 0.01%, and therefore must remain of the order of a residual impurity. An addition of Zr would be expensive, and especially harmful, because the zirconium carbonitrides, by their shape and their large size, strongly reduce the resilience of the metal. Vanadium is a very poor stabilizer in the context of the invention given the low stability of vanadium carbonitrides at high temperature. On the other hand, it improves the ductility of the welds. However, at medium temperatures in a nitrogen atmosphere it promotes the nitriding of the metal surface by diffusion of nitrogen. The content is limited to 0.2%, given the intended application.
- nitrogen increases the mechanical characteristics. However, nitrogen tends to precipitate at grain boundaries as nitrides, thus reducing corrosion resistance. In order to limit problems of sensitization to intergranular corrosion, the nitrogen content must be less than or equal to 0.03%. In addition the nitrogen content must satisfy the previous relationship binding Ti, Nb, C and N. A minimum of 0.009% nitrogen, however, is necessary for the invention, because it ensures the presence of TiN precipitates, and also the good recrystallization of the cold rolled strip during the final annealing operation to obtain a grain of average size less than 65 microns. A content between 0.010% and 0.020%, for example 0.013%, may be recommended.
- Cobalt is a hot-curing element that degrades formability.
- its content must be limited to 0.2% by weight.
- the tin content must be less than or equal to 0.05%.
- REE rare earths include a combination of elements such as cerium and lanthanum, among others, and are known to improve the adhesion of oxide layers that make the steel resistant to corrosion. It has also been shown that the rare earths improve the resistance to intergranular corrosion by urea between 150 ° C. and 700 ° C., as in the case of the aluminum already described, and while respecting the relation Al + 30 ⁇ REE ⁇ 0, 15%. In synergy with aluminum and stabilizers, REEs help to limit the diffusion of nitrogen. However, the rare earth content must not exceed 0.1%.
- the sheet according to the invention can in particular be obtained by the following method: a steel having the above composition is produced;
- the semi-finished product is carried at a temperature above 1000 ° C. and below 1250 ° C., preferably between 1180 and 1200 ° C., and the semi-finished product is hot-rolled to obtain a hot-rolled sheet of thickness between 2.5 and 6mm;
- step denotes here a cold rolling comprising either a single pass or a succession of several passes (for example five passes) which are not separated by any intermediate annealing; one can consider, for example, a cold rolling sequence comprising a first series of five passes, then an intermediate annealing, then a second sequence of five passes; typically (these data, which are customary for conventional methods of manufacturing ferritic stainless steel sheets, are not limiting for the definition of the invention), the intermediate anneals separating the steps are carried out between 950 and 1100 * 0 for 30 sec to 6 min;
- a final annealing of the cold-rolled sheet is carried out at a temperature of between 1000 and 1100 ° C., preferably between 1050 ° and 1090 ° C., and for a period of between 10 seconds and 3 minutes, in order to obtain a completely recrystallized structure with average grain size between 25 and 65 ⁇ .
- an annealing step can be added between hot rolling and cold rolling. This annealing takes place between 1000 and 1100 ° C for a period of 30 s to 6 min.
- the cast samples were processed according to the following method.
- the metal which is initially in the form of a 20 mm thick sheet, is brought to a temperature of 1200 ° C. and is hot rolled in 6 passes to a thickness of 2. , 5 mm.
- a first annealing of the hot-rolled strip can then be carried out at ⁇ ⁇ ' ⁇ with keeping 1 min 30 sec of the sample at this temperature.
- Nos. 1 to 11 and some reference examples Nos. 12 and 19 were treated with and without this first annealing, and it was possible to verify that they had, in both cases, very similar final properties.
- the metal After blasting and pickling, the metal is cold rolled at room temperature, about 20 ° C, in five passes, to a thickness of 1 mm.
- the metal is annealed at ⁇ ⁇ ' ⁇ with a hold of 1 min 30 sec at this temperature, then stripped.
- Metal coupons from each casting are subjected to the test procedure A and are then analyzed according to the analysis procedure B which will be described.
- the urea corrosion phenomenon is revealed by the following test procedure A.
- the sample is sprayed with a mixture containing 32.5% urea, and 67.5% water (flow rate: 0.17 ml / min), and simultaneously undergoes a thermal cycle between 200 and 800 O, with a triangular signal 120 sec period as shown in Figure 1 by the curve 1.
- the rise in temperature from 200 to 600 ' ⁇ lasts 40 sec, then the cooling starts as soon as the temperature of 600 ° C is reached and continues until 200 ⁇ for 80 sec.
- the analysis procedure B after 300 hours of testing, a section of the sample is made by the micro-chainsaw.
- Electrolytic copper plating of the sample is carried out before coating in a solution of CuSO 4 at 210 g / l and H 2 SO 4 at 30 ml / l; the imposed current density is 0.07 A / cm 2 for 5 minutes, then 0.14 A / cm 2 for 1 minute. This procedure is considered optimal for obtaining good coppering. Electrolytic etching is carried out in a solution of 5% oxalic acid for 15s to 20%. The imposed current density is 60 mA / cm 2 . This procedure B reveals two areas corroded by urea observed under the microscope at magnification x 1000.
- a homogeneous zone 3 intended to be in contact with the atmosphere, and which consists of a mixture of oxides and nitrides with a maximum thickness of 30 ⁇ obtained after procedures A and B.
- an intergranular corrosion zone 4 located under the previous layer 3 in the metal, and containing chromium nitride precipitates; the thickness of the intergranular corrosion zone is measured over the entire length of the section (3 cm); the average of the maximum values is carried out and gives the value retained as the thickness of the intergranular corrosion zone of the sample; this can reach 90 ⁇ when the process according to the invention is not used, and is reduced to a few ⁇ in the case of the invention, as will be seen; the objective of the invention is to achieve a thickness of the intergranular corrosion zone of less than 7 ⁇ under the test conditions mentioned, to be assured of not suffering unacceptable damage to the surface of the metal due to fatigue or acid corrosion by the condensates, when used in an exhaust line. Below this zone of intergranular corrosion, the metal is not affected. l f r ana r enc y y ana i
- the mechanical strength of the welds was evaluated by a tensile test at 300 ' ⁇ .
- Two samples of the same casting are welded by the MIG / MAG process with a 430LNb wire under the following conditions: 98.5% argon, 1.5% oxygen, voltage: 26 V wire speed: 10m / min, amperage: 250 A, welding speed: 160 5 cm / min, energy: 2.5 kJ / cm (welding procedure C). The result is judged all the more satisfactory as the ratio between the mechanical strength for the welded specimen and the unwelded specimen is close to 100%.
- welds made on the castings according to the invention have mechanical strengths very comparable to those of the base metal, that is always greater than 80%.
- the mechanical strength of the welds present in the components of the exhaust line, in particular when they are obtained by the MIG / MAG process, is therefore improved by the invention.
- a minimum content of 0.2% Nb is a condition to improve the creep resistance and limit the deformation of the parts during their use at high temperature.
- Table 3 Depth of intergranular corrosion by urea and mechanical strength of welds according to the average grain size of a sample
- the grain size obtained on the product after the final annealing is a fundamental characteristic for the simultaneous obtaining of all the properties concerned.
- a grain size too small (5 ⁇ in the example cited) leads to intergranular corrosion by urea which extends over too great a depth.
- Too large a grain size (200 ⁇ in the example cited) makes it possible to maintain a sufficiently low sensitivity to intergranular corrosion, but it is then the mechanical strength of the welds that becomes unsatisfactory.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HUE12766456A HUE052513T2 (en) | 2012-09-03 | 2012-09-03 | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
SI201231867T SI2893049T1 (en) | 2012-09-03 | 2012-09-03 | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2012/051969 WO2014033372A1 (en) | 2012-09-03 | 2012-09-03 | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2893049A1 true EP2893049A1 (en) | 2015-07-15 |
EP2893049B1 EP2893049B1 (en) | 2020-10-07 |
Family
ID=46940548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12766456.3A Active EP2893049B1 (en) | 2012-09-03 | 2012-09-03 | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines |
Country Status (14)
Country | Link |
---|---|
US (1) | US9873924B2 (en) |
EP (1) | EP2893049B1 (en) |
JP (1) | JP2015532681A (en) |
KR (1) | KR20150099706A (en) |
CN (1) | CN104903482B (en) |
BR (1) | BR112015004633A2 (en) |
CA (1) | CA2883538C (en) |
ES (1) | ES2831163T3 (en) |
HU (1) | HUE052513T2 (en) |
IN (1) | IN2015DN01710A (en) |
MX (1) | MX2015002716A (en) |
RU (1) | RU2603519C2 (en) |
SI (1) | SI2893049T1 (en) |
WO (1) | WO2014033372A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022106145A1 (en) * | 2020-11-23 | 2022-05-27 | Robert Bosch Gmbh | Hydrogen-resistant ferritic steel having laves phase |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2901964T3 (en) * | 2014-08-29 | 2022-03-24 | Jfe Steel Corp | Ferritic stainless steel sheet and production method thereof |
JP6425959B2 (en) * | 2014-10-14 | 2018-11-21 | 山陽特殊製鋼株式会社 | Ferritic stainless steel excellent in high temperature oxidation resistance, high temperature creep strength and high temperature tensile strength |
US20180016655A1 (en) * | 2015-01-19 | 2018-01-18 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating |
JP6354772B2 (en) * | 2015-04-10 | 2018-07-11 | Jfeスチール株式会社 | Ferritic stainless steel |
KR102067482B1 (en) * | 2015-09-29 | 2020-02-11 | 제이에프이 스틸 가부시키가이샤 | Ferritic Stainless Steel |
WO2017073094A1 (en) * | 2015-10-29 | 2017-05-04 | 新日鐵住金ステンレス株式会社 | Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER |
CN105506510A (en) * | 2015-12-03 | 2016-04-20 | 浙江腾龙精线有限公司 | Process for producing stainless steel wires |
CN105673173B (en) * | 2015-12-31 | 2019-09-03 | 台州三元车辆净化器有限公司 | A kind of exhaust pipe and its processing preparation process of novel high-performance material |
US20190316236A1 (en) * | 2016-12-21 | 2019-10-17 | Jfe Steel Corporation | Ferritic stainless steel |
DE112016006874T5 (en) * | 2016-12-27 | 2019-02-14 | Honda Motor Co., Ltd. | Stainless steel |
CN107632388B (en) | 2017-10-24 | 2024-04-02 | 歌尔光学科技有限公司 | Eyepiece and head-mounted display device |
KR102020514B1 (en) * | 2017-12-20 | 2019-09-10 | 주식회사 포스코 | Ferritic stainless steel with improved expanability and method of manufacturing the same |
RU2699480C1 (en) * | 2018-12-14 | 2019-09-05 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Method of producing cold-rolled products |
US11560605B2 (en) | 2019-02-13 | 2023-01-24 | United States Steel Corporation | High yield strength steel with mechanical properties maintained or enhanced via thermal treatment optionally provided during galvanization coating operations |
CA3145519A1 (en) * | 2019-07-05 | 2021-01-14 | Stamicarbon B.V. | Ferritic steel parts in urea plants |
KR102259806B1 (en) * | 2019-08-05 | 2021-06-03 | 주식회사 포스코 | Ferritic stainless steel with improved creep resistance at high temperature and method for manufacturing the ferritic stainless steel |
JP7570243B2 (en) | 2021-01-28 | 2024-10-21 | 日鉄ステンレス株式会社 | Stainless steel welded components for urea SCR systems |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2739531B2 (en) | 1991-09-17 | 1998-04-15 | 日新製鋼株式会社 | Ferritic stainless steel with excellent weld corrosion resistance |
RU2033465C1 (en) * | 1991-12-04 | 1995-04-20 | Маркелова Татьяна Александровна | Ferrite steel |
JPH06279951A (en) | 1993-03-26 | 1994-10-04 | Nisshin Steel Co Ltd | Ferritic stainless steel for water heater |
DE60200326T2 (en) | 2001-01-18 | 2005-03-17 | Jfe Steel Corp. | Ferritic stainless steel sheet with excellent ductility and process for its production |
JP2003073782A (en) * | 2001-08-31 | 2003-03-12 | Kawasaki Steel Corp | Ferritic stainless steel sheet superior in deep drawability |
ITRM20010584A1 (en) * | 2001-09-26 | 2003-03-26 | Acciai Speciali Terni Spa | FERRITIC STAINLESS STEEL AND ITS USE IN THE MANUFACTURE OF ITEMS FOR USE AT HIGH TEMPERATURES. |
RU2222633C2 (en) * | 2002-04-29 | 2004-01-27 | Закрытое акционерное общество "Институт биметаллических сплавов" | Corrosion-resistant ferrite steel |
JP4312653B2 (en) * | 2004-04-28 | 2009-08-12 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel excellent in heat resistance and workability and method for producing the same |
JP2007009290A (en) * | 2005-07-01 | 2007-01-18 | Nisshin Steel Co Ltd | Hot water container |
EP1818421A1 (en) | 2006-02-08 | 2007-08-15 | UGINE & ALZ FRANCE | Ferritic, niobium-stabilised 19% chromium stainless steel |
JP5010323B2 (en) | 2006-04-10 | 2012-08-29 | 日新製鋼株式会社 | Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof |
KR20090122941A (en) * | 2007-03-29 | 2009-12-01 | 닛신 세이코 가부시키가이샤 | Ferritic stainless steel for warm-water vessel with welded structure, and warm-water vessel |
JP4949122B2 (en) * | 2007-05-15 | 2012-06-06 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet for automobile exhaust system with excellent heat fatigue resistance |
JP5387057B2 (en) * | 2008-03-07 | 2014-01-15 | Jfeスチール株式会社 | Ferritic stainless steel with excellent heat resistance and toughness |
JP4386144B2 (en) * | 2008-03-07 | 2009-12-16 | Jfeスチール株式会社 | Ferritic stainless steel with excellent heat resistance |
JP2010202916A (en) | 2009-03-02 | 2010-09-16 | Nisshin Steel Co Ltd | Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel |
US20120111529A1 (en) | 2009-07-27 | 2012-05-10 | Nisshin Steel Co., Ltd. | Ferritic stainless steel for egr cooler and egr cooler |
RU2458175C1 (en) * | 2009-08-31 | 2012-08-10 | ДжФЕ СТИЛ КОРПОРЕЙШН | Ferrite stainless steel with high hot-resistance |
JP2011105976A (en) * | 2009-11-13 | 2011-06-02 | Nisshin Steel Co Ltd | Drain pipe |
JP5600012B2 (en) | 2010-02-09 | 2014-10-01 | 日新製鋼株式会社 | Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products |
JP5768641B2 (en) | 2010-10-08 | 2015-08-26 | Jfeスチール株式会社 | Ferritic stainless steel having excellent corrosion resistance and electrical conductivity, method for producing the same, polymer electrolyte fuel cell separator, and polymer electrolyte fuel cell |
WO2012111391A1 (en) | 2011-02-17 | 2012-08-23 | 新日鐵住金ステンレス株式会社 | High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same |
EP2692891B1 (en) * | 2011-03-29 | 2021-05-05 | NIPPON STEEL Stainless Steel Corporation | Welded structure obtained by tig welding ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones |
US9487849B2 (en) * | 2011-11-30 | 2016-11-08 | Jfe Steel Corporation | Ferritic stainless steel |
-
2012
- 2012-09-03 US US14/425,313 patent/US9873924B2/en active Active
- 2012-09-03 KR KR1020157006981A patent/KR20150099706A/en not_active Application Discontinuation
- 2012-09-03 CA CA2883538A patent/CA2883538C/en not_active Expired - Fee Related
- 2012-09-03 IN IN1710DEN2015 patent/IN2015DN01710A/en unknown
- 2012-09-03 BR BR112015004633A patent/BR112015004633A2/en not_active IP Right Cessation
- 2012-09-03 WO PCT/FR2012/051969 patent/WO2014033372A1/en active Application Filing
- 2012-09-03 MX MX2015002716A patent/MX2015002716A/en active IP Right Grant
- 2012-09-03 ES ES12766456T patent/ES2831163T3/en active Active
- 2012-09-03 EP EP12766456.3A patent/EP2893049B1/en active Active
- 2012-09-03 SI SI201231867T patent/SI2893049T1/en unknown
- 2012-09-03 HU HUE12766456A patent/HUE052513T2/en unknown
- 2012-09-03 RU RU2015107432/02A patent/RU2603519C2/en active
- 2012-09-03 CN CN201280076210.8A patent/CN104903482B/en active Active
- 2012-09-03 JP JP2015529088A patent/JP2015532681A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2014033372A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022106145A1 (en) * | 2020-11-23 | 2022-05-27 | Robert Bosch Gmbh | Hydrogen-resistant ferritic steel having laves phase |
Also Published As
Publication number | Publication date |
---|---|
KR20150099706A (en) | 2015-09-01 |
RU2015107432A (en) | 2016-09-27 |
BR112015004633A2 (en) | 2017-07-04 |
IN2015DN01710A (en) | 2015-05-22 |
RU2603519C2 (en) | 2016-11-27 |
CA2883538C (en) | 2019-11-26 |
HUE052513T2 (en) | 2021-05-28 |
SI2893049T1 (en) | 2021-03-31 |
ES2831163T3 (en) | 2021-06-07 |
CN104903482A (en) | 2015-09-09 |
US9873924B2 (en) | 2018-01-23 |
CA2883538A1 (en) | 2014-03-06 |
JP2015532681A (en) | 2015-11-12 |
MX2015002716A (en) | 2015-08-14 |
US20160115562A1 (en) | 2016-04-28 |
EP2893049B1 (en) | 2020-10-07 |
CN104903482B (en) | 2017-03-08 |
WO2014033372A1 (en) | 2014-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2893049B1 (en) | Ferritic stainless steel sheet, method for the production thereof, and use of same, especially in exhaust lines | |
EP1929053B1 (en) | Method for making a steel part of multiphase microstructure | |
EP2718469B1 (en) | Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate | |
CA2239478C (en) | Austenoferritic very low nickel stainless steel with high tensile elongation | |
EP1819461B1 (en) | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
EP1805333A1 (en) | Method for production of sheets of austenitic iron/carbon/manganese steel and sheets produced thus | |
JP4329883B1 (en) | Carburization-resistant metal material | |
EP1805341A1 (en) | Hot-dip coating method in a zinc bath for strips of iron/carbon/manganese steel | |
EP1749895A1 (en) | Manufacture of steel sheets having high resistance and excellent ductility, products thereof | |
EP2855725B1 (en) | Low-density hot- or cold-rolled steel, method for implementing same and use thereof | |
CA3071136A1 (en) | Process for manufacturing steel sheets for press hardening, and parts obtained by means of this process | |
WO2002040722A1 (en) | Method for making a strip or a workpiece cut out from a cold rolled maraging steel strip | |
CA2502079C (en) | Method for making hardenable steel plates by firing, resulting steel plates | |
FR2833617A1 (en) | PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS | |
EP1587963A2 (en) | Ultrahigh strength hot-rolled steel and method of producing bands | |
WO2006125899A1 (en) | Steel for submarine hulls with improved weldability | |
EP1354070A2 (en) | High-strength isotropic steel, method for making steel plates and resulting plates | |
FR2495189A1 (en) | High strength three-phase steel sheet - contg. polygonal ferrite, bainite and martensite, formed by hot rolling and controlled cooling | |
EP3411509B1 (en) | Elemental composition for steel with improved anti-coking properties | |
EP3914738A1 (en) | Iron-manganese alloy having improved weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150223 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171004 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200514 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1321230 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012072686 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1321230 Country of ref document: AT Kind code of ref document: T Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210208 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E052513 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2831163 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602012072686 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MDE Opponent name: OUTOKUMPU OYJ |
|
26 | Opposition filed |
Opponent name: OUTOKUMPU OYJ Effective date: 20210705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210903 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230822 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230922 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231006 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240822 Year of fee payment: 13 Ref country code: DE Payment date: 20240912 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240923 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240916 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240809 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240829 Year of fee payment: 13 Ref country code: SI Payment date: 20240821 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240909 Year of fee payment: 13 |