EP2890936B1 - Procédé de réglage d'un dispositif de ventilation par couches en fonction des besoins et dispositif de ventilation par couches - Google Patents

Procédé de réglage d'un dispositif de ventilation par couches en fonction des besoins et dispositif de ventilation par couches Download PDF

Info

Publication number
EP2890936B1
EP2890936B1 EP13742031.1A EP13742031A EP2890936B1 EP 2890936 B1 EP2890936 B1 EP 2890936B1 EP 13742031 A EP13742031 A EP 13742031A EP 2890936 B1 EP2890936 B1 EP 2890936B1
Authority
EP
European Patent Office
Prior art keywords
air
room
height
ventilation
ventilated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13742031.1A
Other languages
German (de)
English (en)
Other versions
EP2890936A1 (fr
Inventor
Jens Hesselbach
Mirko Schäfer
Rüdiger DETZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitaet Kassel
Original Assignee
Universitaet Kassel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitaet Kassel filed Critical Universitaet Kassel
Priority to PL13742031T priority Critical patent/PL2890936T3/pl
Publication of EP2890936A1 publication Critical patent/EP2890936A1/fr
Application granted granted Critical
Publication of EP2890936B1 publication Critical patent/EP2890936B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air

Definitions

  • the invention relates to a method for regulating a device for a stratified ventilation in a space to be ventilated, wherein a layer boundary forms between a first geodesic lower air layer and a second geodesic upper air layer, according to the preamble of claim 1, and a device for stratification ventilation according to the method the preamble of claim 10.
  • the supply air is introduced via air outlets near the floor in the room to be ventilated.
  • Thermal convection flows develop above thermal sources in the room, such as production facilities, mechanical equipment or people in the room.
  • the room air heated by the thermal sources rises due to their lower density in the upper spatial area, and so also transports pollutants from the occupied area of the people in the room in an overlying this air layer.
  • a layer boundary thus forms between a geodetically lower first air layer and a geodetically upper second air layer.
  • the height of the layer boundary above the floor level of the space to be ventilated depends essentially on the amount of air introduced into the first lower air layer and the amount of air removed from the upper second air layer. Ideally, the amount of air supplied and discharged, ie the supply air volumes and the Exhaust air volumes, adjusted so that the layer boundary stabilizes at a height of, for example, 2.5 meters above the floor level of the room. This ensures, on the one hand, that the pollutant load in the production area in which people are present is significantly reduced, while at the same time minimizing the energy requirement for the operation of the ventilation systems. Another influence on the ambient air conditions that occur when a device for stratification ventilation operates, in particular the dynamics of the convection flows, is the temperature of the supply air.
  • the amount of air supplied is usually adjusted to a representative stationary operating state of production. Since there is no automatic adaptation to the ongoing production process, for example due to production or staff breaks or shift changes, the height of the shift boundary shifts to energy-unfavorable areas that are not required by man and machine.
  • the height of the layer boundary is also determined by the arrangement of the thermal sources within the space to be ventilated, as well as by the design and arrangement of the ventilation device.
  • a flow optimization is required.
  • the apparatus for stratification must be readjusted by a further elaborate measurement of the prevailing air and flow conditions.
  • An air conditioner which can be combined with one or more conventional low-pulsation layer ventilation passages in space.
  • a plurality of air conditioning units can be combined with each other to allow flexible air conditioning of a larger factory floor. By moving one or more air conditioning units in the room, individual needs can be met.
  • the invention has for its object to provide a method and an apparatus of the type mentioned, which reduces the energy consumption of a device for stratification by a flexible, fully automatic, needs-based control of the height of the bed boundary.
  • a layer boundary is formed between a first geodetically lower air layer and a second geodetically upper air layer, the actual value of the height of the layer boundary at at least one location to be ventilated Room determined, the actual value is compared with a desired value, and is counteracted a deviation of the actual value from the target value by regulating the device for a stratified ventilation.
  • the method according to the invention ensures optimum operation of the device for stratified ventilation, which reacts flexibly to changing ambient air conditions, for example due to changed production conditions. By adjusting, for example, the ventilation performance during breaks in production, the energy requirement can be reduced by lower fan speeds and the associated lower required cooling capacities of the supply air volume flow.
  • the operating parameters of the device for a stratified ventilation in particular the supplied air flow or the supplied air quantity and / or the temperature of the supplied air and / or the discharged air flow or the discharged air quantity are regulated.
  • the temperature of the supplied air according to known comfort criteria for working in the workplace.
  • the volumetric flow rates of the supply and / or exhaust air in addition to the height of the layer boundary, the amount of pollutant discharged per unit of time from the space to be ventilated is determined.
  • the supplied air flow in particular low-pulse introduced into the room to be ventilated.
  • the low-impulse introduction of the supply air prevents air turbulence and cross-flow and promotes stabilization of the bed boundary.
  • the actual value of the height of the layer boundary is determined from one or more of the parameters of the room air measured at the at least one location in the room to be ventilated.
  • the measured parameters are in particular the temperature, the pollutant concentration, the pressure, the flow velocity and the direction of flow of the room air, as well as the humidity.
  • the gradients of the abovementioned parameters measured at the at least one location can also be used to determine the actual value of the height of the layer boundary.
  • the layer boundary can be indicated by a large temperature gradient.
  • any combination of the parameters of the room air measured at the at least one location is suitable for determining the actual value of the height of the layer boundary above the ground level.
  • a combination of several values of a parameter measured at several locations or of a plurality of parameters measured at several locations is also suitable for determining the actual value of the height of the bed boundary, in particular the temperature and / or contaminant concentration measured at different representative heights can be used to determine the actual temperature.
  • Value of the height of the layer boundary can be used.
  • the spatial dependency of the values of one or more parameters measured at several locations and / or in several heights is modeled with a mathematical function or a mathematical function of the local dependency of the plurality of locations and / or in several Height measured values of one or more parameters adjusted.
  • a mathematical function or a mathematical function of the local dependency of the plurality of locations and / or in several Height measured values of one or more parameters adjusted.
  • a mathematical function is adapted to the height-dependent course of the values of one or more parameters measured in several different heights, in particular to the height-dependent temperature profile and / or to the height-dependent course of the pollutant concentration.
  • the actual value of the height of the layer boundary is determined by analytical or iterative determination of the maximum temperature and / or pollutant concentration gradient.
  • polynomial functions and / or sigmoid functions are suitable as an adaptation function to, for example, the height-dependent temperature profile or pollutant concentration profile.
  • any other suitable function may serve as an adjustment function.
  • the extreme values of further parameters in addition to the extreme values of the gradients of the temperature profile or the pollutant concentration, can also be determined.
  • a multi-dimensional analytical or iterative determination of the extreme values of the measured parameters can preferably also be carried out.
  • the method can be determined by determining the flow velocity and / or the direction of flow of the room air occurring in particular on the walls of the space to be ventilated falling flows, and by appropriate control and regulation of the device for a stratification a resulting mixing of the upper and lower air layer can be avoided. Fall flows occur in particular on outer walls of the space to be ventilated by cooling the heated air in the second geodetic upper air layer.
  • the current actual value of the height of the layer boundary can be determined.
  • predetermined values of one or more parameters in particular predetermined values of one or more of the above-mentioned parameters temperature, pollutant concentration, pressure, flow velocity and flow direction and humidity, their gradients, as well as the time used, are used
  • Set value of the height of the layer boundary at the at least one location in the room to be ventilated set are used.
  • an energetically advantageous lower ventilation performance in particular by lowering the desired value of the height of the bed boundary, can be predetermined.
  • the magnitude of the change in the operating parameters of the device for stratified ventilation is determined by means of a prescription, in particular implemented in a computer program.
  • the control signals then serve as input signals for the change of the operating parameters.
  • the amplitude of the control signals depends on the magnitude of the deviation of the actual value of the height of the layer boundary from the desired value. This dependence can be, for example, linear or square.
  • a particularly preferred embodiment of the method is characterized in that the actual value of the height of the layer boundary at a plurality of locations and / or in several heights is determined over in particular a plurality of locations of the ground level in the space to be ventilated.
  • the size of the control signals is determined directly from the deviations of the measured values of the parameters of the room air from the predetermined values of the parameters.
  • a specific pollutant concentration can be predetermined as the setpoint value, and the actual value of the measured pollutant concentration can be regulated to the desired value by regulating the device for stratification according to the method.
  • a combination The measured parameter of the room air can be changed according to a combination of desired values of these parameters by controlling the device for stratification.
  • the actual value of the height of the layer boundary is regulated in particular over several locations of the floor level of the space to be ventilated.
  • the ventilation of partial areas of the room to be ventilated the ventilation performance can be reduced, which advantageously leads to energy savings.
  • by local adaptation of the actual value of the height of the layer boundary undesirable cross flows of the indoor air within the space to be ventilated, in particular within the production hall, can be met.
  • Such cross-flows may arise, for example, from rapidly changing thermal flows, opening and closing of doors, or cooling or heating sidewalls due to changing outside temperatures. More preferably, such transverse flows can be determined by measuring the flow velocity or flow direction at representative locations of the room.
  • a further solution to the problem is to provide a device for stratification of rooms, in particular for carrying out the method according to one of claims 1 to 9, having the features of claim 10.
  • the device according to the invention comprises at least one for feeding air into a geodesically lower first Air-layer-formed device, and at least one for the removal of air from a geodetically upper second air layer formed device, and at least one can be arranged in the room to be ventilated measuring device and at least one trained for controlling the device for stratification control device.
  • the values of the parameters of the room air in particular the values of the temperature, the pollutant concentration, the pressure, the flow velocity, the flow direction, the humidity and / or its gradient, can be determined from the values of the room air determined by the at least one room to be ventilated Value of the height of the layer boundary. Further, by means of the control device, a deviation of the actual value be counteracted by a predetermined target value. As a result, the energy demand of the ventilation system is advantageously brought about by lower fan powers and the associated required cooling capacity of the supply air volume flow.
  • this device is designed to influence a layer boundary formed in operation between the geodetically lower first air layer and the geodetically upper second air layer.
  • the layer boundary is particularly preferably influenced depending on the situation, location-dependent, time-dependent, depending on the operating state and / or predefined, preferably by regulating the stratification by the control device.
  • the device for stratification can thus be regulated depending on the situation, which leads to a particularly advantageous energy saving.
  • the device is designed for location-dependent influencing of the layer boundary.
  • a stabilization of the layer boundary can be achieved, which leads to energy savings with further advantage.
  • a particularly preferred embodiment of the device for stratified ventilation is characterized in that the at least one can be arranged in the room to be ventilated measuring device in particular for measuring the temperature and / or the temperature gradient and / or pressure and / or pressure gradient and / or flow velocity and / or the flow direction and / or the pollutant concentration and / or the gradient of the pollutant concentration and / or the humidity and / or the gradient of the humidity of the room air is formed.
  • the actual value of the height of the layer boundary above the ground level at at least one location in space can be determined by measuring the aforementioned parameters. It is also possible to determine air flows, in particular thermally induced transverse flows or downpours on the walls, and to control these disturbances, in particular these disturbances of the bed boundary, by regulating the device by the control system.
  • At least two measuring devices are provided, which can be arranged at particularly different geodetic heights at preferably different locations in the space to be ventilated, spaced apart.
  • the measured values can be determined at representative layers and locations within the room, which can advantageously be used for a more precise determination of the local course of the layer boundary as well as possible transverse flows and thermal flows.
  • a further solution to the problem is a space according to claim 14 comprising a device for stratification ventilation for demand-based ventilation according to one of claims 10 to 13.
  • Fig. 1 and Fig. 2 illustrate the method (100) for regulating a device (10) for stratified ventilation in a preferred embodiment, and a device (10) for stratification which is designed for carrying out the method (100) and located in a space (11) to be ventilated Fig. 1 the method (100) is shown in the form of a flow chart.
  • the device (10) for stratification (V1) which can be done, for example, at the beginning of the shift, forms during operation by introducing supply air (17) in the bottom region (18) of the space to be ventilated (11) with simultaneous discharge of exhaust air (19) from the ceiling region (20) of the space to be ventilated (11) a layer boundary (12) between a first geodetically lower air layer (13) and a second geodesic upper air layer (14) from (V2).
  • the air to be ventilated (11) in the bottom region (18) supplied air (17) preferably has a low pollutant concentration.
  • the supplied supply air (17) heats up above the production plants (21) located in the room (11) or via the persons (22) located in the room (11), and rises due to the reduced density of heated air in the room (11 ), wherein in the working area (23) of the persons (22) located pollutants are transported by means of the resulting convection currents (24) in the upper region (25) of the space (11).
  • the heated and polluted with a higher concentration of pollutants air is subsequently discharged as exhaust air (19) from the upper region (25) of the space to be ventilated (11).
  • the operating parameters of the device (10) for stratification according to the production conditions, i. for example, according to the distribution of the production facilities (31) within the room (11) and the temporal utilization of the production set.
  • the operating parameters of the apparatus (10) for stratified ventilation are in particular the supplied air flow (17a) or the supplied air quantity (17), the temperature of the supplied air (17) and the discharged air flow (19a) or the discharged air quantity (19).
  • parameters of the room air (15) are measured (V3) at at least one location (16) in the room to be ventilated (11).
  • the measured parameters can be, for example, the temperature T, the temperature gradient dT / dH with respect to the height (H) above the ground plane (26) of the space to be ventilated (11), and the pollutant concentration his (V3).
  • the actual value of the height of the bed boundary (12) above the floor level (26) is determined with a function (V4).
  • a mathematical function can be adapted to the course of the values of a parameter, for example the temperature, measured in several heights (H).
  • the layer boundary (12) may be indicated by a large temperature gradient dT / dh.
  • V4 any combination of the measured parameters of the room air (15) for determining the actual value of the height of the bed boundary (12) above the floor level (26) is suitable (V4).
  • a predetermined value of the height of the bed boundary (12) above the floor level (26) is determined in accordance with the predetermined values of the parameters of the room air (15) at the measurement locations (16a, 16b) for the room to be ventilated. Then the actual value of the height of the layer boundary (12) is compared with the target value of the height of the layer boundary (12) (V5).
  • a regulation for example a regulation implemented in a computer program, now determines the size, ie the amplitude of the control signals (V6), from the determined deviation of the actual value of the height of the layer boundary (12) from the desired value of the height of the layer boundary (12).
  • the control signals are determined so that the deviation of the actual value of the height of the bed boundary (12) from the desired value of the height of the bed boundary (12) is counteracted by changing the operating parameters of the device (10) for stratification.
  • the control signals serve as input signals for the regulation of the device for stratification (V7).
  • the method (100) is continued (V3) and repeated with re-measurement of the room air parameters (15).
  • the predetermined parameters of the room air (15) and thus also the desired value of the height of the bed boundary (12) can also be temporally variable. It is thereby possible, for example, to set the target value of the height of the layer boundary (12) lower during work breaks, which has an advantageous effect on the energy balance of the method (100), since a lower fan power and concomitantly a lower cooling capacity of the supplied air volume flow (17a ) is required.
  • the method (100) can also be configured so that instead of the height of the layer boundary (12), for example, a certain pollutant concentration is predetermined as the target value, and the actual value of the measured pollutant concentration changed by regulating the device (10) for stratification becomes (V7). Also, a combination of the measured parameters of the room air (15) can be changed according to a combination of set values of these parameters by controlling the device (10) for stratification (V7).
  • FIG. 3 illustrates a space (11) comprising a device (10) for stratified ventilation, which is designed for the application of the method (100) for regulating a device (10) for stratified ventilation.
  • a layer boundary (12) has formed between a first geodetically lower air layer (13) and a second geodesic upper air layer (14).
  • the first geodetic lower air layer (13) is fed through layer ventilation passages (27, 28) of the device (10) for stratification a certain air volume flow (17a).
  • a first layer ventilation passage (27) is located on a room wall (29) and is connected to a supply air duct (30).
  • a second layer ventilation passage (28) of a facade air conditioning unit (31), which comprises a device (32) for controlling the supply air temperature, may be provided in an outer wall (33) of the room (11).
  • the layer ventilation passages (27, 28) can be provided with discharge grids (34), which enable a low-impulse supply of supply air (17) into the first air layer (13).
  • thermal sources (21, 22) such as, for example, production plants (21) or persons (22) located in the room to be ventilated (11), rising convention currents (24), which generate pollutants from the floor area (18), are produced by heating the air.
  • rising convention currents (24) which generate pollutants from the floor area (18) are produced by heating the air.
  • in the upper area (25) of the space (11) transport In the ceiling (35) of the room to be ventilated (11) are devices (36) for discharging the in the second geodetic upper air layer (14) located heated and polluted exhaust air (19).
  • the devices (36) for discharging the exhaust air (19) are connected to an exhaust duct (37).
  • air turbulences (38) can form in the second upper air layer (14).
  • cooling of the heated air located in the upper room area (25) can take place at low outside temperatures, leading to downflows (39) along the outside wall (33).
  • transverse flows (40) of the room air (15) can form.
  • the apparatus (10) for stratified ventilation designed for carrying out the method (100) has a plurality of measuring devices (41) arranged at different locations (16a, 16b) and at different heights.
  • the measuring devices (41) can be attached to the walls (29, 33) of the space to be ventilated (11) or to columns (42) located in this space (11).
  • the actual value of the height of the bed boundary (12) is determined by means of a computer program executed in a control device (43) . Due to the large number of measuring devices (41) located at different locations (16a, 16b), the actual value of the height of the layer boundary (12) at a plurality of locations (16a, 16b) can be determined. The actual value is then compared with a predetermined nominal value of the height of the bed boundary (12) and, based on the deviation of the actual value from the nominal value, the amplitude of the control signals for changing the operating parameters of the apparatus (FIG. 10) for stratification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)
  • Building Environments (AREA)

Claims (14)

  1. Procédé (100) de commande en boucle fermée d'un dispositif (10) de ventilation par couches dans un espace à ventiler (11), où une limite de couches (12) se forme entre une première couche d'air géodésiquement inférieure (13) et une seconde couche d'air géodésiquement supérieure (14) (V2), caractérisé en ce que l'on détermine la valeur réelle de la hauteur de la limite de couches (12) en au moins un endroit (16) de l'espace à ventiler (11) (V4), que l'on compare la valeur réelle avec une valeur nominale (V5), et que l'on contre une divergence entre la valeur réelle et la valeur nominale par une commande en boucle fermée du dispositif (10) de ventilation par couches (V7).
  2. Procédé selon la revendication 1, caractérisé en ce que l'on commande en boucle fermée les paramètres de fonctionnement du dispositif (10) de ventilation par couches, en particulier le flux d'air acheminé (17a), respectivement la quantité d'air acheminé (17) et/ou la température de l'air acheminé (17) et/ou le flux d'air évacué (19a), respectivement la quantité d'air évacué (19).
  3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'on détermine la valeur réelle de la hauteur de la limite de couches (12) à partir d'un ou plusieurs paramètres de l'air ambiant (15) mesurés en au moins un endroit (16) de l'espace à ventiler (11), en particulier la température, la concentration en polluants, la pression, la vitesse du flux, la direction du flux, l'humidité de l'air et/ou leurs gradients.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on adapte une fonction mathématique, en particulier un polynôme ou une fonction sigmoïde à la dépendance locale entre les valeurs d'un ou plusieurs paramètres mesurées en plusieurs endroits et/ou à plusieurs hauteurs, en particulier à l'évolution de la température en fonction de la hauteur et/ou à l'évolution de la concentration en polluants en fonction de la hauteur.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on détermine le gradient maximal, en particulier le gradient maximal de l'évolution de la température en fonction de la hauteur et/ou le gradient maximal de l'évolution de la concentration en polluants en fonction de la hauteur, par des procédés analytiques ou itératifs, et que l'on détermine la valeur réelle de la hauteur de la limite de couches au-dessus du niveau du sol de préférence à partir de l'endroit/de la hauteur du gradient maximal, en particulier de l'évolution de la température et/ou de l'évolution de la concentration en polluants.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on définit la valeur nominale à l'au moins un endroit (16) de l'espace à ventiler (11) par des valeurs prédéterminées des paramètres que sont le temps, la température, la concentration en polluants, la pression, la vitesse du flux, la direction du flux, l'humidité de l'air et/ou leurs gradients.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on détermine l'ampleur du changement des paramètres de fonctionnement, en particulier l'amplitude des signaux de réglage (V5), et que l'amplitude des signaux de réglage dépend, par exemple linéairement ou quadratiquement, de préférence de l'ampleur de la divergence entre la valeur réelle et la valeur nominale.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on détermine la valeur réelle de la hauteur de la limite de couches (12) en plusieurs endroits (16a, 16b) et/ou à plusieurs hauteurs au-dessus d'en particulier plusieurs endroits du niveau du sol (26) de l'espace à ventiler (11).
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on commande en boucle fermée la valeur réelle de la hauteur de la limite de couches (12) au-dessus d'en particulier plusieurs endroits du niveau du sol (26) de l'espace à ventiler (11).
  10. Dispositif (10) de ventilation par couches d'espaces (11), en particulier pour la mise en oeuvre du procédé (100) selon l'une des revendications 1 à 9, comprenant au moins un dispositif (27, 28) conçu pour amener de l'air (17) dans une première couche d'air géodésiquement inférieure (13), et au moins un dispositif (36) conçu pour évacuer de l'air (19) de la seconde couche d'air géodésiquement supérieure (14), caractérisé en ce que le dispositif (10) de ventilation par couches comporte au moins un dispositif de mesure (41) pouvant être disposé dans l'espace à ventiler (11) et que le dispositif (10) de ventilation par couches comporte au moins un dispositif de commande en boucle fermée (43) conçu pour commander le dispositif (10) de ventilation par couches en boucle fermée.
  11. Dispositif de ventilation par couches selon la revendication 10, caractérisé en ce que le dispositif (10) de ventilation par couches est conçu pour influer sur une limite de couches (12) se formant, lors du fonctionnement, entre la première couche d'air géodésiquement inférieure (13) et la seconde couche d'air géodésiquement supérieure (14), où la limite de couche (12) est influençable par le dispositif de commande en boucle fermée (43), en particulier en fonction de la situation, de l'endroit, du temps, de l'état de fonctionnement et/ou de manière prédéterminée, de préférence par une commande en boucle fermée du dispositif (10) de ventilation par couches.
  12. Dispositif de ventilation par couches selon l'une des revendications 10 ou 11, caractérisé en ce que l'au moins un dispositif de mesure (41) pouvant être disposé dans l'espace à ventiler (11) est conçu en particulier pour mesurer la température et/ou le gradient de température et/ou la pression et/ou le gradient de pression et/ou la vitesse du flux et/ou la direction du flux et/ou la concentration en polluant et/ou le gradient de la concentration en polluant et/ou l'humidité et/ou le gradient de l'humidité de l'air ambiant (15).
  13. Dispositif de ventilation par couches selon l'une des revendications 10 à 12, caractérisé en ce que le dispositif de ventilation par couches comprend au moins deux dispositifs de mesure (41) qui peuvent être disposés en particulier à différentes hauteurs géodésiques en des endroits (16a, 16b) de préférence différents de l'espace à ventiler (11).
  14. Espace (11) comprenant un dispositif (10) de ventilation par couches pour une ventilation en fonction des besoins selon l'une des revendications 10 à 13.
EP13742031.1A 2012-08-30 2013-07-30 Procédé de réglage d'un dispositif de ventilation par couches en fonction des besoins et dispositif de ventilation par couches Active EP2890936B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13742031T PL2890936T3 (pl) 2012-08-30 2013-07-30 Sposób regulacji urządzenia do wentylacji warstwowej dostosowanej do potrzeb oraz urządzenie do wentylacji warstwowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012108018.6A DE102012108018A1 (de) 2012-08-30 2012-08-30 Verfahren zur bedarfsgerechten Regelung einer Vorrichtung für eine Schichtlüftung und Vorrichtung für eine Schichtlüftung
PCT/EP2013/066026 WO2014032891A1 (fr) 2012-08-30 2013-07-30 Procédé de réglage d'un dispositif de ventilation par couches en fonction des besoins et dispositif de ventilation par couches

Publications (2)

Publication Number Publication Date
EP2890936A1 EP2890936A1 (fr) 2015-07-08
EP2890936B1 true EP2890936B1 (fr) 2016-12-28

Family

ID=48875691

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13742031.1A Active EP2890936B1 (fr) 2012-08-30 2013-07-30 Procédé de réglage d'un dispositif de ventilation par couches en fonction des besoins et dispositif de ventilation par couches

Country Status (9)

Country Link
EP (1) EP2890936B1 (fr)
DE (1) DE102012108018A1 (fr)
DK (1) DK2890936T3 (fr)
ES (1) ES2619103T3 (fr)
HU (1) HUE033436T2 (fr)
MX (1) MX354984B (fr)
PL (1) PL2890936T3 (fr)
PT (1) PT2890936T (fr)
WO (1) WO2014032891A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112977B4 (de) 2015-08-06 2022-05-05 Ivat Gmbh Verfahren und Vorrichtung zum Behandeln der Raumluft insbesondere durch geschichtete Filterung
CN111655216A (zh) * 2018-01-31 2020-09-11 Sys技术有限公司 空调系统和方法
CN110488674B (zh) * 2019-07-04 2024-06-18 青岛海尔洗衣机有限公司 一种电器控制方法及电器
CN112098042A (zh) * 2020-09-10 2020-12-18 天津大学 顶送风方式下地下高大空间建筑通风模型试验台设计方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859522B1 (fr) * 2003-09-10 2006-10-27 Airinspace Ltd Procede et dispositif de ventilation et de decontamination aeroportee par un melange a flux de soufflage et aspiration attaches par effet coanda
JP2006258358A (ja) * 2005-03-17 2006-09-28 Kioi:Kk 空調システム
DE102007045044B4 (de) 2007-09-13 2013-06-27 Hochschule Esslingen Klimagerät und Klimatisierungsanordnung

Also Published As

Publication number Publication date
MX2015002535A (es) 2015-10-14
EP2890936A1 (fr) 2015-07-08
HUE033436T2 (en) 2017-11-28
WO2014032891A1 (fr) 2014-03-06
MX354984B (es) 2018-03-28
ES2619103T3 (es) 2017-06-23
PL2890936T3 (pl) 2017-06-30
DK2890936T3 (en) 2017-03-20
PT2890936T (pt) 2017-03-31
DE102012108018A1 (de) 2014-03-06

Similar Documents

Publication Publication Date Title
DE69824602T2 (de) Integrale luftauslassmodule und dazugehörige heiz- und kühlsysteme
DE69808393T2 (de) Verfahren und Vorrichtung zur Klimaregelung
DE102008057787B3 (de) Regelvorrichtung für raumlufttechnische Anlagen
EP2890936B1 (fr) Procédé de réglage d'un dispositif de ventilation par couches en fonction des besoins et dispositif de ventilation par couches
DE102008053320A1 (de) Verfahren und System zur Steuerung einer Flugzeugklimaanlage mit optimiertem Treibstoffverbrauch
DE102007002538B4 (de) Flexible Luftfahrzeugklimaanlage für eine flexibel unterteilbare Luftfahrzeugkabine
DE202010017833U1 (de) Temperiervorrichtung
DE10361688B4 (de) Vorrichtung zur Steuerung der Versorgungslufttemperatur eines Passagierflugzeugs
EP2876396B1 (fr) Procédé de séchage de matières à sécher
EP3655663B1 (fr) Procédé de réglage d'au moins deux ventilateurs
DE102010005192B4 (de) Regelungsverfahren einer Kühlanlage
DE102011121053A1 (de) Temperaturregelung von beheizten Luftverteilungssystemen in Passagierräumen
DE2416406A1 (de) Verfahren und vorrichtung bei klimaanlaggn
DE112011105708T5 (de) Management der Bereitstellung einer Luftströmung
DE10361381B3 (de) Verfahren zur Regelung der Temperatur in einem Raum in einem Luftfahrzeug
DE102013207449A1 (de) Verfahren zum Konditionieren von Luft und Konditionieranlage
DE102007028607A1 (de) Vorrichtung und Verfahren zum Einstellen eines Sollwerts einer Kraftfahrzeugklimaanlage
DE102008004126A1 (de) Verfahren zur Regelung der Kosten in Wärmeverteilungsanlagen
EP3976404B1 (fr) Procédé de commande de dispositif de climatisation
DE10221254B4 (de) Verfahren und Vorrichtung zum Entfeuchten von Lebensmitteln
DE3407458C2 (fr)
DE202014011129U1 (de) Lüftungsgerät und Regelungseinrichtung für ein Lüftungsgerät
DE19834275A1 (de) Verfahren zum optimierten Steuern und Regeln von Klimaanlagen
AT403790B (de) Verfahren zur steuerung einer klimaanlage eines fahrzeuges, insbesondere eines elektrisch betriebenen schienenfahrzeuges
CH648922A5 (en) Device for air-conditioning a number of rooms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITAET KASSEL

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 857644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005917

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170314

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2890936

Country of ref document: PT

Date of ref document: 20170331

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170324

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2619103

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005917

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E033436

Country of ref document: HU

26N No opposition filed

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210621

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210730

Year of fee payment: 9

Ref country code: IT

Payment date: 20210727

Year of fee payment: 9

Ref country code: FR

Payment date: 20210729

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20210718

Year of fee payment: 9

Ref country code: ES

Payment date: 20210928

Year of fee payment: 9

Ref country code: DK

Payment date: 20210723

Year of fee payment: 9

Ref country code: GB

Payment date: 20210722

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20210722

Year of fee payment: 9

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220730

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230728

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230802

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220730