EP2886873A1 - Axiallüfter - Google Patents

Axiallüfter Download PDF

Info

Publication number
EP2886873A1
EP2886873A1 EP14194113.8A EP14194113A EP2886873A1 EP 2886873 A1 EP2886873 A1 EP 2886873A1 EP 14194113 A EP14194113 A EP 14194113A EP 2886873 A1 EP2886873 A1 EP 2886873A1
Authority
EP
European Patent Office
Prior art keywords
axial fan
inlet nozzle
shroud
annular gap
fan according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14194113.8A
Other languages
English (en)
French (fr)
Other versions
EP2886873B1 (de
Inventor
Andreas Kleber
Uwe Aschermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2886873A1 publication Critical patent/EP2886873A1/de
Application granted granted Critical
Publication of EP2886873B1 publication Critical patent/EP2886873B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/326Rotors specially for elastic fluids for axial flow pumps for axial flow fans comprising a rotating shroud

Definitions

  • the present invention relates to an axial fan for conveying cooling air for a cooling device of a motor vehicle, having the features of the preamble of claim 1.
  • Such an axial fan comprises a fan wheel with a plurality of vanes extending from a hub, as well as a shroud enclosing, encircling, and supported by the vanes. Furthermore, the axial fan comprises a Zargenring coaxial with the shroud ring is arranged so that an annular gap between the shroud ring and frame ring is formed. While the fan wheel rotates about a rotation axis in the operation of the axial fan, the Zargenring is fixed. In particular, with the help of a Zargenring having fan cover a flow channel can be defined, which leads a flow of cooling air from a heat exchanger of the cooling device to the fan. In the known axial fan also an inlet nozzle is formed in the region of the annular gap, which deflects a forming during operation of the axial fan in the region of the jacket ring return flow to an inlet side of the fan.
  • such an axial fan In vehicle applications, such an axial fan is used to generate a cooling air flow when the vehicle is stationary and while driving to support a cooling air flow generated by the airstream.
  • Such axial fans usually have to overcome a comparatively high pressure drop, so that they work heavily throttled. It is conceivable, for example, a throttle digit from 0.05 to 0.20, wherein the throttle digit from a dynamic pressure, based on a Lüfterradring Structure divided by the total pressure increase results.
  • the total pressure increase is in turn composed of the dynamic pressure and the static pressure.
  • the return flow is deflected to the inlet side of the fan wheel and thus fed again to a main flow conveyed by the fan wheel. It has been shown that with the aid of such an inlet nozzle the noise development can be significantly reduced. At the same time, the capacity of the fan can be maintained at high throttling.
  • the inlet nozzle is arranged on the Zargenring so that it is stationary as the Zargenring, ie stationary.
  • the inlet nozzle extends circumferentially closed circumferentially.
  • the Zargenring can be arranged on a fan cover, for example, connects to a heat exchanger of the cooling device and defines a funded using the fan wheel cooling air flow to the fan leading inflow channel.
  • a fan driving the drive is usually stationary on an internal combustion engine, which is arranged on vibration damping bearings movable on the vehicle body.
  • the fan may be driven directly via a belt of the internal combustion engine. Operational of the vehicle vibrations of the engine can thus lead to relative movements between the fan and the Zargenring. Accordingly, the aforementioned annular gap is usually comparatively large in order to avoid collisions between the fan and the Zargenring. If, moreover, an inlet nozzle is provided on the frame ring, relative movements between the fan wheel and the inlet nozzle must also be taken into account here.
  • Another axial fan is from the DE 10 2006 049 076 A1 known.
  • Axial fans are known in which a plurality of flow guide elements are arranged within the stationary inlet nozzle in order to better channel the return flow.
  • the present invention is concerned with the problem of providing for an axial fan of the type mentioned in an improved embodiment, which is characterized in particular by a simplified assembly, while achieving a high efficiency for the promotion of cooling air even with heavy throttling and the lowest possible noise shall be.
  • the invention is based on the general idea of arranging an annular gap seal for sealing and / or throttling an annular gap located between frame ring and shroud ring on the shroud ring for the first time in an axial fan.
  • annular gap seal With the aid of such an annular gap seal, leakage flows can be at least reduced which bypass the respective inlet nozzle through the annular gap. As a result, the function and efficiency of the axial fan can be increased.
  • annular gap seals were arranged on the Zargenring, ie stationary, so that they extended starting from the Zargenring in the direction of the outer ring.
  • the annular gap seal in which the annular gap seal is arranged on the jacket ring, it rotates with the jacket ring during operation of the axial fan.
  • the annular gap seal can be specifically exploit centrifugal forces that occur during operation of the axial fan, so with a rotating fan.
  • the annular gap seal can be shaped and arranged so that it reduces the annular gap with a rotating fan. It is particularly advantageous that all aerodynamic changes / optimizations on a single component, namely the fan, can be made. This means that the frame is fixed and all changes can be made to the fan wheel, without additional installations on the frame ring are required.
  • the annular gap seal with respect to the shroud is a separate component which may be suitably attached thereto.
  • the annular gap seal can be screwed, riveted, clamped, molded, welded, glued or vulcanized to the shroud.
  • the annular gap seal expediently consists of a suitable sealing material, which in particular has a higher elasticity than materials from which the outer ring and the Zargenring are made.
  • the annular gap seal can be molded or clamped in particular on the shroud.
  • the arrangement of the annular gap seal on the shroud also includes an arrangement of the annular gap seal in a region of the shroud, which forms the inlet nozzle.
  • the respective inlet nozzle on the jacket ring.
  • the respective inlet nozzle forms part of the fan, whereby the respective inlet nozzle rotates in the operation of the axial fan together with the shroud, the blades and the hub.
  • the invention thus proposes a rotating inlet nozzle.
  • the arrangement of the inlet nozzle on the shroud ensures that the inlet nozzle always has the desired optimum relative position to the shroud, which considerably simplifies the assembly of the axial fan.
  • the respective inlet nozzle can thereby be optimized in terms of their deflection function for the return flow, which improves the efficiency of the axial fan and reduces the noise emission of the axial fan with high pressure stability.
  • the rotating inlet nozzle can be realized with a comparatively narrow gap, which increases the volume flow through the inlet nozzle and its impulse effect for the fan improved.
  • the inlet nozzle can basically be arranged independently of the shroud, whether the annular gap seal is arranged on the shroud or on the frame, the presented here arrangement of the inlet nozzle on the shroud represents an independent aspect of the present invention, which is equivalent to the aspect of the annular gap seal arranged on the shroud is to be considered and in particular can be claimed independently of it.
  • the respective inlet nozzle may be made integrally, that is, of the same material as the outer ring.
  • the respective inlet nozzle is integrally formed on the shroud.
  • it can also be provided to design the respective inlet nozzle with respect to the shroud ring as a separate component, which is then attached to the shroud ring in a suitable manner.
  • the shroud ring can be made integral with the blades, so that the shroud ring is integrally formed on the blades. Further, optionally, the blades may also be formed integrally on the hub. Particularly advantageous is then a development in which the blades, the shroud and the respective inlet nozzle and in particular also the hub are formed in a single material-uniform component.
  • the annular gap seal can accordingly have in profile a fixing region fixed to the jacket ring and a freestanding, elastic sealing region, wherein the sealing region is arranged so that it is elastically deformed by centrifugal forces during operation of the axial fan and moves in the direction of the frame ring.
  • This construction has the consequence that the sealing effect of the annular gap seal is speed-dependent. If a high flow rate is required, the fan rotates a high speed, which results in that the sealing effect of the annular gap seal is improved. This is accompanied at the same time an increased efficiency of the capacity of the fan. At the same time it is avoided that the annular gap seal rests completely on the Zargenring and it may cause abrasion or heating due to friction.
  • the shroud ring for the respective inlet nozzle may contain at least one inflow opening, which radially penetrates the shroud ring in the region of the inlet nozzle, so that the return flow can enter the inlet nozzle through the respective inflow opening.
  • the respective inflow opening is arranged upstream of the inlet side of the fan wheel with respect to a main flow conveyed by the fan during operation of the axial flow fan.
  • the respective inflow opening can be elongated, in particular as a slot, with a longitudinal direction of the respective elongated inflow opening extending in the circumferential direction of the shroud ring.
  • a plurality of inlet nozzles are arranged on the shroud, which are distributed in the circumferential direction.
  • the return flow can be more selectively introduced and thus the total mass flow required for the return flow can be minimized.
  • the efficiency of the inlet nozzles and the fan wheel can be improved.
  • the shroud ring for each of these individual inlet nozzles have at least one inflow opening of the aforementioned type. This ensures that each inlet nozzle can be acted upon by the jacket ring with the return flow.
  • each blade of the fan wheel can be assigned exactly one such inlet nozzle. In this way, it is possible to supply the flow pulse generated with the aid of the respective inlet nozzle directly to one of the blades on the inlet side. This makes it possible to further increase the efficiency of the inlet nozzles and thus the efficiency of the fan.
  • the respective inlet nozzle can be arranged in the region of a leading edge of the associated blade.
  • the leading edges of the blades are located on the inlet side of the fan.
  • each of these individual inlet nozzles exactly one inflow opening of the above assigned type that extends substantially over the entire measured in the circumferential direction length of the respective inlet nozzle.
  • the pulse generation of the respective inlet nozzle is additionally improved.
  • this provides for the abovementioned leading edge of the respective blade within this inflow opening, that is to say between the circumferential or longitudinal ends of the elongate inflow opening, preferably approximately in the center of the respective inflow opening.
  • At least one flow guide element can be provided, which is arranged in the respective inlet nozzle.
  • the respective flow guide support the deflection of the return flow to the inlet side of the fan.
  • these are flow guide elements, which also co-rotate with the rotating inlet nozzle.
  • rotating flow guide elements are provided.
  • the respective flow-guiding element can preferably be formed integrally on the respective inlet nozzle, so that the respective flow-guiding element with the associated inlet nozzle is made of the same material.
  • Such flow guide elements are preferably used in an embodiment in which only a single, annular inlet nozzle is provided. The flow guide elements are then distributed within this annular inlet nozzle in the circumferential direction.
  • each blade is associated with exactly such a flow guide in order to improve a targeted flow of the respective blade.
  • axial direction refers to a rotation axis of the fan wheel.
  • the axial direction is parallel to the axis of rotation.
  • the radial direction is perpendicular to the axis of rotation.
  • the circumferential direction rotates about the axis of rotation.
  • FIGS. 1 to 5 comprises an axial fan 1, by means of which cooling air for a cooling device, not shown here, of a motor vehicle can be conveyed, a fan wheel 2 and a frame ring 3.
  • the fan wheel 2 has a plurality of blades 5 extending from a hub 4 and a shroud 6, which encloses the blades 5 and rotates closed.
  • the shroud 6 is supported by the blades 5.
  • the shroud 6 is integrally formed on the blades 5.
  • the fan wheel 2 rotates about a rotation axis 7, by which a circumferential direction 8 of the fan wheel 2 or of the axial fan 1 is also defined.
  • the blades 5 are arranged distributed in the circumferential direction 8 on the hub 4. In this case, the blades 5 may expediently be integrally formed on the hub 4.
  • the Zargenring 3 is coaxial with the shroud 6, in such a way that thereby an annular gap 9 is formed between the shroud 6 and the Zargenring 3.
  • the axial fan 1 also has at least one inlet nozzle 10.
  • the rotation of the fan wheel 2 leads to a semi-axial main flow 11, which in FIG. 5 indicated by arrows.
  • a return flow 12 the in Fig. 1 also indicated by an arrow.
  • the return flow 12 begins at an exit side 13 of the fan 2 and leads radially outward on the shroud 6 in the direction of the annular gap 9.
  • the respective inlet nozzle 10 leads to a deflection of this return flow 12 towards an inlet side 14 of the fan wheel 2.
  • the respective inlet nozzle 10 is arranged on the shroud 6.
  • the respective inlet nozzle 10 is integrally formed on the shroud 6
  • the respective inlet nozzle 10 is located at an inlet end of the shroud 6.
  • the shroud 6 according to Fig. 1 have an outwardly projecting circulation 15, which can act as a diffuser and / or improves the formation of the return flow 12.
  • annular gap seal 16 is provided, with the aid of which the annular gap 9 is sealed or at least throttled.
  • the annular gap seal 16 generates the annular gap seal 16 a strong throttling of the annular gap 9, so that only a relatively small leakage flow 17 can flow through the annular gap 9.
  • the annular gap seal 16 is arranged on the shroud 6.
  • the annular gap seal 16 is molded onto the shroud 6.
  • the annular gap seal 16 is arranged in the region of the respective inlet nozzle 10 on the shroud 6, ie on the inlet side.
  • the annular gap seal 16 has a profile in longitudinal section, which has a fixing region 18 fixed on the jacket ring 6 and a freestanding sealing region 19 extending from the fixing region 18.
  • the annular gap seal 16 is elastic at least in the sealing region 19. This refers to elasticities that are greater than the elasticities of the shroud 6, the blades 5 and / or the Zargenrings 3.
  • the sealing region 19 is spatially arranged so that it is in operation of the axial fan 1 due to the centrifugal forces 20 occurring in the FIG. 1 are indicated by an arrow, is driven and thereby deformed elastically and thereby moves in the direction of Zargenring 3.
  • the shroud 6 can have at least one inflow opening 21 for the respective inlet nozzle 10, through which the return flow 12 can pass during the operation of the axial ventilator 1 and can enter the respective inflow nozzle 10.
  • the respective inflow opening 21 penetrates the shroud 6 radially.
  • the respective inflow opening 21 is arranged upstream of the inlet side 14 with respect to the main flow 11.
  • On such inflow openings 21, which pass through the shroud 6 radially, can be dispensed with, for example, when the respective inlet nozzle 10 is fixedly connected via webs with the shroud 6, which are spaced apart in the circumferential direction 8.
  • the fan 2 builds axially comparatively large.
  • the inflow openings 21 penetrate the shroud 6.
  • the at least one inflow opening 21 generates a return flow 12, from which a leakage flow 17 branches off, through which the elastic sealing area 19 is guided without contact on the frame ring 3 during operation of the axial ventilator 1.
  • a minimized leakage flow is accepted which, however, forms an air cushion which prevents the sealing area 19 from being looped along the frame ring 3 and thus an increased wear of the sealing area 19.
  • annular inlet nozzle 10 ' In order to fluidly connect this annular inlet nozzle 10 'as uniformly as possible with the return flow 12 in the circumferential direction 8, a plurality of inflow openings 21 are provided which are distributed in the circumferential direction 8.
  • a plurality of inlet nozzles 10 are provided, which are arranged distributed in the circumferential direction 8 on the shroud 6. These multiple inlet nozzles 10 are referred to below as separate inlet nozzles 10 ".
  • the jacket ring 6 has exactly one inlet opening 21 for each separate inlet nozzle 10" FIGS. 4 and 5 1, each blade 5 is assigned exactly one separate inlet nozzle 10 ", whereby the respective separate inlet nozzle 10" is arranged in the region of a leading edge 22 of the associated blade 5.
  • the leading edge 22 is positioned centrally to the associated inflow opening 21.
  • the inflow openings 21 are configured in each case as elongated holes or as elongated openings, the longitudinal direction of which extends in the circumferential direction 8.
  • Fig. 1 can be provided at least one flow guide 23, which is arranged in at least one inlet nozzle 10.
  • a plurality of such flow guide elements 23 are arranged distributed in the annular inlet nozzle 10 'in the circumferential direction 8.
  • the respective flow guide 23 supports the deflection of the return flow 12 within the inlet nozzle 10 in the direction of the inlet side 14.
  • the respective flow guide element 23 may in particular be integrally formed on the shroud 6.
  • the Zargenring 3 is preferably arranged on a fan cover 24.
  • it may be formed integrally, that is, of the same material, on the fan cover 24.
  • the fan cover 24 defines an inflow channel 25, which leads the cooling air to the fan 2.
  • the Zargenring 3 of the fan cover 24 is free-standing, so he spatially only on the fan cover 24 is positioned.
  • the fan cover 24 can connect directly to a heat exchanger, not shown here. This heat exchanger is a component of the aforementioned cooling device of the vehicle and, for example, flows through an air flow generated and / or assisted by means of the axial fan 1.
  • said heat exchanger is arranged upstream of the fan wheel 2, so that the fan wheel 2 sucks in the air flow through the heat exchanger.
  • the fan cover 24 surrounds the Zargenring 3 and the shroud 6 coaxially and leads to a downstream of the fan 2 arranged heat exchanger.
  • the shroud 6 can be cylindrically shaped between its inlet-side end and its exit-side end.
  • the Zargenring 3 may be cylindrically shaped.

Abstract

Die vorliegende Erfindung betrifft einen Axiallüfter (1) zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeugs, mit einem Lüfterrad (2), das mehrere von einer Nabe (4) ausgehende Schaufeln (5) und einen die Schaufeln (5) einfassenden, geschlossen umlaufenden, von den Schaufeln (5) getragenen Mantelring (6) aufweist, und mit einem Zargenring (3), der koaxial zum Mantelring (6) so angeordnet ist, dass sich ein Ringspalt (9) zwischen Mantelring (6) und Zargenring (3) ausbildet. Eine vereinfachte Herstellbarkeit ergibt sich, wenn wenigstens eine Einlaufdüse (10) zum Umlenken einer Rückströmung (12) und/oder eine Ringspaltdichtung (16) zum Dichten und/oder Drosseln des Ringspalts (9) am Mantelring (6) angeordnet ist/sind.

Description

  • Die vorliegende Erfindung betrifft einen Axiallüfter zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeugs, mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Aus der DE 10 2006 047 236 A1 ist ein derartiger Axiallüfter bekannt. Er umfasst ein Lüfterrad mit mehreren von einer Nabe ausgehenden Schaufeln sowie einen die Schaufeln einfassenden, geschlossen umlaufenden, von den Schaufeln getragenen Mantelring. Ferner umfasst der Axiallüfter einen Zargenring, der koaxial zum Mantelring so angeordnet ist, dass sich ein Ringspalt zwischen Mantelring und Zargenring ausbildet. Während das Lüfterrad im Betrieb des Axiallüfters um eine Rotationsachse rotiert, ist der Zargenring feststehend angeordnet. Insbesondere kann mit Hilfe einer den Zargenring aufweisenden Lüfterhaube ein Strömungskanal definiert werden, der einen Kühlluftstrom von einem Wärmeübertrager der Kühlvorrichtung zum Lüfterrad führt. Beim bekannten Axiallüfter ist im Bereich des Ringspalts außerdem eine Einlaufdüse ausgebildet, die eine sich im Betrieb des Axiallüfters im Bereich des Mantelrings ausbildende Rückströmung zu einer Eintrittsseite des Lüfterrads umlenkt.
  • Bei Fahrzeuganwendungen dient ein derartiger Axiallüfter bei stehendem Fahrzeug zum Erzeugen eines Kühlluftstroms und während der Fahrt zur Unterstützung eines durch den Fahrtwind erzeugten Kühlluftstroms. Derartige Axiallüfter müssen dabei in der Regel einen vergleichsweise hohen Druckverlust überwinden, so dass sie stark gedrosselt arbeiten. Denkbar ist beispielsweise eine Drosselziffer von 0,05 bis 0,20, wobei sich die Drosselziffer aus einem dynamischen Druck, bezogen auf eine Lüfterradringfläche, geteilt durch die Gesamtdruckerhöhung ergibt. Die Gesamtdruckerhöhung setzt sich ihrerseits aus dem dynamischen Druck und dem statischen Druck zusammen. Bei einer starken Drosselung, also bei einem vergleichsweise hohen Gegendruck, stellt sich keine ausschließlich axial verlaufende Strömung im Bereich des Lüfterrads ein, sondern eine sogenannte Halbaxialströmung, bei der die Strömung schräg nach außen orientiert ist. Diese Halbaxialströmung ist zudem durch eine Rückströmung gekennzeichnet, die von einer Austrittseite des Lüfterrads außen am Mantelring in Richtung Ringspalt zurückströmt.
  • Bei sehr starker Drosselung kann es im Bereich der Schaufelspitzen zum Strömungsabriss kommen, was mit einer großen Geräuschentwicklung und einer Beeinträchtigung der Förderleistung des Lüfterrads verbunden sein kann.
  • Mithilfe der vorstehend genannten Einlaufdüse wird die Rückströmung zur Eintrittsseite des Lüfterrads umgelenkt und somit erneut einer vom Lüfterrad geförderten Hauptströmung zugeführt. Es hat sich gezeigt, dass mithilfe einer derartigen Einlaufdüse die Geräuschentwicklung signifikant reduziert werden kann. Gleichzeitig kann die Förderleistung des Lüfterrads bei starker Drosselung aufrechterhalten werden.
  • Beim vorstehend genannten, aus der DE 10 2006 047 236 A1 bekannten Axiallüfter ist die Einlaufdüse am Zargenring angeordnet, sodass sie wie der Zargenring feststehend, also stationär ist. Dabei erstreckt sich die Einlaufdüse in der Umfangsrichtung geschlossen umlaufend. Der Zargenring kann dabei an einer Lüfterhaube angeordnet sein, die beispielsweise an einen Wärmeübertrager der Kühlvorrichtung anschließt und einen den mithilfe des Lüfterrads geförderten Kühlluftstrom zum Lüfterrad führenden Zuströmkanal definiert. Im Einbauzustand des Axiallüfters ist der Zargenring üblicherweise über die Lüfterhaube und den jeweiligen Wärmeübertrager ortsfest mit dem Rahmen des Fahrzeugs verbunden, während ein das Lüfterrad antreibender Antrieb in der Regel ortsfest an einer Brennkraftmaschine angeordnet ist, die über schwingungsdämpfende Lager beweglich am Fahrzeugaufbau angeordnet ist. Beispielsweise kann das Lüfterrad unmittelbar über einen Riemen der Brennkraftmaschine angetrieben sein. Im Betrieb des Fahrzeugs können Schwingungen der Brennkraftmaschine somit zu Relativbewegungen zwischen dem Lüfterrad und dem Zargenring führen. Dementsprechend ist der zuvor genannte Ringspalt in der Regel vergleichsweise groß, um Kollisionen zwischen dem Lüfterrad und dem Zargenring zu vermeiden. Ist außerdem am Zargenring eine Einlaufdüse vorgesehen, sind auch hier Relativbewegungen zwischen Lüfterrad und Einlaufdüse zu berücksichtigen.
  • Aus der DE 33 04 297 C2 ist ein anderer Axiallüfter bekannt, bei dem mithilfe einer elastischen, in der Umfangsrichtung umlaufenden und mit dem Zargenring verbunden Lippe die Einlaufdüse gegenüber dem Zargenring abgedichtet ist. Durch die Fixierung der Einlaufdüse relativ zur Brennkraftmaschine lässt sich der Ringspalt innerhalb der Einlaufdüse verkleinern, was die Effizienz der Einlaufdüse verbessert. Allerdings ist der Aufwand zur Abstützung der Einlaufdüse an der Brennkraftmaschine in Verbindung mit der Abdichtung der Innenzarge gegenüber der Einlaufdüse vergleichsweise hoch.
  • Ein weiterer Axiallüfter ist aus der DE 10 2006 049 076 A1 bekannt.
  • Aus der DE 10 2012 207 552 A1 ist ein Axiallüfter bekannt, bei dem am Zargenring ein Außenring und ein Innenring ausgebildet sind, um eine ringförmige Rückströmleiteinrichtung zu bilden, mit deren Hilfe eine drallfreie Rückströmung realisiert werden soll.
  • Aus der WO 1995/06822 A1 und aus der WO 2008/124656 A1 sind Axiallüfter bekannt, bei denen innerhalb der stationären Einlaufdüse mehrere Strömungsleitelemente angeordnet sind, um die Rückströmung besser zu kanalisieren.
  • Zur Vermeidung einer Spaltströmung ist es aus der DE 35 38 671 C2 bekannt, am Zargenring eine feststehende, umlaufende Gummidichtung anzuordnen.
  • Bei allen vorstehend genannten Axiallüftern besteht grundsätzlich das Problem von Herstellungs- und Montagetoleranzen, die eine genau zentrierte Ausrichtung von Mantelring, Zargenring und Einlaufdüse erschweren.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen Axiallüfter der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die sich insbesondere durch eine vereinfachte Montage auszeichnet, wobei gleichzeitig eine hohe Effizienz für die Förderung der Kühlluft auch bei starker Drosselung und bei möglichst geringer Geräuschentwicklung erreicht werden soll.
  • Dieses Problem wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, bei einem Axiallüfter erstmals eine Ringspaltdichtung zum Dichten und/oder Drosseln eines zwischen Zargenring und Mantelring gelegenen Ringspalts am Mantelring selbst anzuordnen. Mithilfe einer derartigen Ringspaltdichtung können Leckageströme zumindest reduziert werden, welche die jeweilige Einlaufdüse durch den Ringspalt umgehen. Hierdurch kann die Funktion und Effizienz des Axiallüfters gesteigert werden. Bisher wurden derartige Ringspaltdichtungen am Zargenring angeordnet, also stationär, so dass sie sich ausgehend vom Zargenring in Richtung Mantelring erstreckten. Bei der erfindungsgemäßen Ausführungsform, bei welcher die Ringspaltdichtung am Mantelring angeordnet ist, rotiert sie im Betrieb des Axiallüfters mit dem Mantelring mit. Bei einer solchen rotierenden Ringspaltdichtung lassen sich gezielt Zentrifugalkräfte ausnutzen, die während des Betriebs des Axiallüfters, also bei rotierendem Lüfterrad auftreten. Somit kann beispielsweise die Ringspaltdichtung so geformt und angeordnet sein, dass sie bei rotierendem Lüfterrad den Ringspalt reduziert. Besonders vorteilhaft ist dabei, dass alle aerodynamischen Änderungen/Optimierungen an einem einzigen Bauteil, nämlich dem Lüfterrad, vorgenommen werden können. Das heißt die Zarge ist fix und alle Änderungen können am Lüfterrad vorgenommen werden, ohne dass zusätzliche Installationen am Zargenring erforderlich sind.
  • Die Ringspaltdichtung ist bezüglich des Mantelrings ein separates Bauteil, das auf geeignete Weise daran angebracht sein kann. Beispielsweise kann die Ringspaltdichtung an den Mantelring angeschraubt, angenietet, angeklemmt, angespritzt, angeschweißt, angeklebt oder anvulkanisiert sein. Außerdem besteht die Ringspaltdichtung zweckmäßig aus einem geeigneten Dichtungsmaterial, das insbesondere eine höhere Elastizität als Werkstoffe aufweist, aus denen der Mantelring und der Zargenring hergestellt sind. Die Ringspaltdichtung kann insbesondere an den Mantelring angespritzt oder geklemmt werden. Die Anordnung der Ringspaltdichtung am Mantelring schließt dabei auch eine Anordnung der Ringspaltdichtung in einem Bereich des Mantelrings ein, der die Einlaufdüse bildet.
  • Zusätzlich oder alternativ ist vorgesehen, die jeweilige Einlaufdüse am Mantelring anzuordnen. Somit bildet die jeweilige Einlaufdüse einen Bestandteil des Lüfterrads, wodurch die jeweilige Einlaufdüse im Betrieb des Axiallüfters gemeinsam mit dem Mantelring, den Schaufeln und der Nabe rotiert. Insoweit schlägt die Erfindung somit eine rotierende Einlaufdüse vor. Durch die Anordnung der Einlaufdüse am Mantelring ist sichergestellt, dass die Einlaufdüse stets die gewünschte optimale Relativlage zum Mantelring besitzt, wodurch sich die Montage des Axiallüfters erheblich vereinfacht. Darüber hinaus kann die jeweilige Einlaufdüse dadurch auch hinsichtlich ihrer Umlenkfunktion für die Rückströmung optimiert werden, was die Effizienz des Axiallüfters verbessert und die Geräuschemission des Axiallüfters bei hoher Druckstabilität reduziert. Insbesondere lässt sich die rotierende Einlaufdüse mit einem vergleichsweise engen Spalt realisieren, was den Volumenstrom durch die Einlaufdüse erhöht und deren Impulswirkung für das Lüfterrad verbessert. Da die Einlaufdüse grundsätzlich unabhängig davon am Mantelring angeordnet werden kann, ob die Ringspaltdichtung am Mantelring oder an der Zarge angeordnet ist, repräsentiert die hier vorgestellte Anordnung der Einlaufdüse am Mantelring einen selbständigen Aspekt der vorliegenden Erfindung, der gleichwertig zu dem Aspekt der am Mantelring angeordneten Ringspaltdichtung zu betrachten ist und insbesondere auch unabhängig davon beansprucht werden kann.
  • Entsprechend einer besonders vorteilhaften Ausführungsform kann die jeweilige Einlaufdüse integral, also materialeinheitlich mit dem Mantelring hergestellt sein. Mit anderen Worten, die jeweilige Einlaufdüse ist integral am Mantelring ausgeformt. Grundsätzlich kann jedoch auch vorgesehen sein, die jeweilige Einlaufdüse bezüglich des Mantelrings als separates Bauteil auszugestalten, das dann auf geeignete Weise an den Mantelring angebaut ist.
  • Zusätzlich oder alternativ kann der Mantelring integral, also materialeinheitlich mit den Schaufeln aus einem Stück hergestellt sein, sodass dann der Mantelring integral an den Schaufeln ausgeformt ist. Ferner können optional auch die Schaufeln integral an der Nabe ausgeformt sein. Besonders vorteilhaft ist dann eine Weiterbildung, bei welcher in einem einzigen, materialeinheitlichen Bauteil die Schaufeln, der Mantelring und die jeweilige Einlaufdüse sowie insbesondere auch die Nabe ausgeformt sind.
  • Entsprechend einer besonders vorteilhaften Weiterbildung kann die Ringspaltdichtung dementsprechend im Profil einen am Mantelring fixierten Fixierbereich und einen freistehenden, elastischen Dichtbereich aufweisen, wobei der Dichtbereich so angeordnet ist, dass er sich im Betrieb des Axiallüfters durch Zentrifugalkräfte angetrieben elastisch verformt und in Richtung Zargenring bewegt. Diese Bauweise hat zur Folge, dass die Dichtungswirkung der Ringspaltdichtung Drehzahlabhängig ist. Wird eine hohe Förderleistung benötigt, rotiert das Lüfterrad mit einer hohen Drehzahl, was dazu führt, dass die Dichtungswirkung der Ringspaltdichtung verbessert ist. Damit geht gleichzeitig eine erhöhte Effizienz der Förderleistung des Lüfterrads einher. Gleichzeitig wird vermieden, dass die Ringspaltdichtung komplett am Zargenring anliegt und es dadurch zu Abrieb oder Erhitzung durch Reibungseinflüsse kommen kann.
  • Bei einer anderen Ausführungsform kann der Mantelring für die jeweilige Einlaufdüse wenigstens eine Zuströmöffnung enthalten, die den Mantelring im Bereich der Einlaufdüse radial durchsetzt, sodass die Rückströmung durch die jeweilige Zuströmöffnung in die Einlaufdüse eintreten kann. Zweckmäßig ist dabei die jeweilige Zuströmöffnung bezüglich einer vom Lüfterrad im Betrieb des Axiallüfters geförderten Hauptströmung stromauf der Eintrittsseite des Lüfterrads angeordnet. Durch diese Bauweise ist es insbesondere möglich, die jeweilige Einlaufdüse radial innen am Mantelring anzuordnen, wodurch es möglich ist, das Lüfterrad trotz der jeweiligen daran angeordneten Einlaufdüse radial kompakt zu bauen.
  • Die jeweilige Zuströmöffnung kann dabei länglich ausgestaltet sein, insbesondere als Langloch, wobei sich eine Längsrichtung der jeweiligen länglichen Zuströmöffnung in der Umfangsrichtung des Mantelrings erstreckt.
  • Bei einer anderen vorteilhaften Ausführungsform kann vorgesehen sein, dass am Mantelring nur eine einzige Einlaufdüse angeordnet ist, die sich in der Umfangsrichtung ringförmig geschlossen erstreckt. Mithilfe einer derartigen ringförmigen Einlaufdüse kann über dem gesamten Umfang des Mantelrings die Rückströmung auf die Schaufeln umgelenkt werden.
  • Entsprechend einer vorteilhaften Weiterbildung kann der Mantelring für diese ringförmige Einlaufdüse mehrere Zuströmöffnungen der vorstehend genannten Art aufweisen, die in der Umfangsrichtung verteilt angeordnet sind. Somit kann quasi über dem gesamten Umfang des Mantelrings die Rückströmung durch die Zuströmöffnungen in die ringförmige Einlaufdüse eintreten.
  • Bei einer anderen Ausführungsform kann vorgesehen sein, dass am Mantelring mehrere Einlaufdüsen angeordnet sind, die in der Umfangsrichtung verteilt sind. Mithilfe derartiger, diskreter oder separater Einlaufdüsen kann die Rückströmung gezielter eingebracht werden und somit der für die Rückströmung erforderliche Gesamtmassenstrom minimiert werden. Somit lässt sich die Effizienz der Einlaufdüsen und des Lüfterrades verbessern.
  • Gemäß einer anderen Weiterbildung kann der Mantelring für jede dieser einzelnen Einlaufdüsen wenigstens eine Zuströmöffnung der vorstehend genannten Art aufweisen. Somit ist sichergestellt, dass jede Einlaufdüse durch den Mantelring hindurch mit der Rückströmung beaufschlagbar ist.
  • Gemäß einer anderen vorteilhaften Weiterbildung kann jeder Schaufel des Lüfterrads genau eine solche Einlaufdüse zugeordnet sein, Hierdurch ist es möglich, den mithilfe der jeweiligen Einlaufdüse erzeugten Strömungsimpuls direkt einer der Schaufeln eintrittsseitig zuzuführen. Hierdurch lässt sich die Effizienz der Einlaufdüsen und somit die Effizienz des Lüfterrads nochmals steigern.
  • Bei einer anderen vorteilhaften Weiterbildung kann die jeweilige Einlaufdüse im Bereich einer Anströmkante der zugehörigen Schaufel angeordnet sein. Die Anströmkanten der Schaufeln befinden sich dabei an der Eintrittsseite des Lüfterrads. Durch die Positionierung der jeweiligen Einlaufdüse im Bereich der Anströmkante lässt sich die Wirkung der Einlaufdüsen hinsichtlich der Impulsübertragung auf die Schaufeln nochmals verbessern.
  • Des Weiteren kann gemäß einer vorteilhaften Ausführungsform vorgesehen sein, jeder dieser einzelnen Einlaufdüsen genau eine Zuströmöffnung der vorstehend beschriebenen Art zuzuordnen, die sich im Wesentlichen über die gesamte in der Umfangsrichtung gemessene Länge der jeweiligen Einlaufdüse erstreckt. Hierdurch wird die Impulserzeugung der jeweiligen Einlaufdüse zusätzlich verbessert. Beispielweise befindet sich dadurch die zuvor genannte Anströmkante der jeweiligen Schaufel innerhalb dieser Zuströmöffnung, also zwischen den Umfangs- oder Längsenden der länglichen Zuströmöffnung, vorzugsweise etwa mittig der jeweiligen Zuströmöffnung.
  • Bei einer anderen Ausführungsform kann wenigstens ein Strömungsleitelement vorgesehen sein, dass in der jeweiligen Einlaufdüse angeordnet ist. Im Betrieb des Axiallüfters bewirkt das jeweilige Strömungsleitelement eine Unterstützung der Umlenkung der Rückströmung zur Eintrittsseite des Lüfterrads. Somit kann mithilfe des jeweiligen Strömungsleitelements die Effizienz der jeweiligen Einlaufdüse verbessert werden.
  • Somit handelt es sich hierbei um Strömungsleitelemente, die mit der rotierenden Einlaufdüse ebenfalls mitrotieren. Mit anderen Worten, beim hier vorgestellten Axiallüfter sind rotierende Strömungsleitelemente vorgesehen.
  • Das jeweilige Strömungsleitelement kann dabei vorzugsweise integral an der jeweiligen Einlaufdüse ausgeformt werden, sodass auch das jeweilige Strömungsleitelement mit der zugehörigen Einlaufdüse materialeinheitlich hergestellt ist. Bevorzugt kommen derartige Strömungsleitelemente bei einer Ausführungsform zur Anwendung, bei der nur eine einzige, ringförmige Einlaufdüse vorgesehen ist. Die Strömungsleitelemente sind dann innerhalb dieser ringförmigen Einlaufdüse in der Umfangsrichtung verteilt angeordnet. Insbesondere kann dabei vorgesehen sein, dass jeder Schaufel genau ein solches Strömungsleitelement zugeordnet ist, um eine gezielte Anströmung der jeweiligen Schaufel zu verbessern.
  • Die relativen Angaben "Axialrichtung", "Radialrichtung" und "Umfangsrichtung" beziehen sich auf eine Rotationsachse des Lüfterrads. Die Axialrichtung verläuft dabei parallel zur Rotationsachse. Die Radialrichtung steht senkrecht auf der Rotationsachse. Die Umfangsrichtung rotiert um die Rotationsachse.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch,
  • Fig. 1
    einen stark vereinfachten Axialschnitt eines Axiallüfters im Bereich eines Mantelrings,
    Fig. 2
    eine geschnittene isometrische Ansicht auf einen Teil des Axiallüfters,
    Fig. 3
    eine isometrische Ansicht eines Lüfterrads des Axiallüfters,
    Fig. 4
    eine teilweise geschnittene isometrische Ansicht des Axiallüfters, jedoch bei einer anderen Ausführungsform,
    Fig. 5
    eine Axialansicht des Lüfterrads, jedoch bei der in Fig. 4 gezeigten anderen Ausführungsform.
  • Entsprechend den Figuren 1 bis 5 umfasst ein Axiallüfter 1, mit dessen Hilfe Kühlluft für eine hier nicht gezeigte Kühlvorrichtung eines Kraftfahrzeugs gefördert werden kann, ein Lüfterrad 2 und einen Zargenring 3. Das Lüfterrad 2 weist mehrere, von einer Nabe 4 ausgehende Schaufeln 5 auf, sowie einen Mantelring 6 auf, der die Schaufeln 5 einfasst und geschlossen umläuft. Dabei ist der Mantelring 6 von den Schaufeln 5 getragen. Insbesondere ist der Mantelring 6 integral an den Schaufeln 5 ausgeformt. Mithilfe des Axiallüfters 1 lässt sich somit eine Kühlluftströmung erzeugen, die insbesondere dazu dient, einen Wärmeübertrager der Kühlvorrichtung zu durchströmen, so dass dieser Wärme auf die Kühlluftströmung abgeben kann.
  • Im Betrieb des Axiallüfters 1 rotiert das Lüfterrad 2 um eine Rotationsachse 7, durch die auch eine Umfangsrichtung 8 des Lüfterrads 2 bzw. des Axiallüfters 1 definiert ist. Die Schaufeln 5 sind in der Umfangsrichtung 8 verteilt an der Nabe 4 angeordnet. Dabei können die Schaufeln 5 zweckmäßig integral an der Nabe 4 ausgeformt sein.
  • Der Zargenring 3 ist koaxial zum Mantelring 6 angeordnet, und zwar derart, dass dadurch ein Ringspalt 9 zwischen dem Mantelring 6 und dem Zargenring 3 ausgebildet ist. Im Bereich dieses Ringspalts 9 weist der Axiallüfter 1 außerdem zumindest eine Einlaufdüse 10 auf. Im Betrieb des Axiallüfters 1 führt die Rotation des Lüfterrads 2 zu einer halbaxial verlaufenden Hauptströmung 11, die in Figur 5 durch Pfeile angedeutet ist. Im Bereich des Mantelrings 6 kommt es dabei außerdem zur Ausbildung einer Rückströmung 12, die in Fig. 1 ebenfalls durch einen Pfeil angedeutet ist. Die Rückströmung 12 beginnt dabei an einer Austrittsseite 13 des Lüfterrads 2 und führt radial außen am Mantelring 6 vorbei in Richtung Ringspalt 9. Die jeweilige Einlaufdüse 10 führt im Betrieb des Axiallüfters 1 zu einer Umlenkung dieser Rückströmung 12 hin zu einer Eintrittsseite 14 des Lüfterrads 2. Bei den hier vorgestellten Ausführungsformen des Axiallüfters 1 ist die jeweilige Einlaufdüse 10 am Mantelring 6 angeordnet. Insbesondere ist die jeweilige Einlaufdüse 10 dabei integral am Mantelring 6 ausgeformt
  • Die jeweilige Einlaufdüse 10 befindet sich dabei an einem eintrittsseitigen Ende des Mantelrings 6. An einem austrittsseitigen Ende kann der Mantelring 6 gemäß Fig. 1 einen nach außen abstehenden Umlauf 15 aufweisen, der als Diffusor wirken kann und/oder die Ausbildung der Rückströmung 12 verbessert.
  • Des Weiteren ist bei dem hier gezeigten Beispiel eine Ringspaltdichtung 16 vorgesehen, mit deren Hilfe der Ringspalt 9 abgedichtet ist oder zumindest gedrosselt ist. Im Beispiel der Fig. 1 erzeugt die Ringspaltdichtung 16 eine starke Drosselung des Ringspalts 9, sodass nur noch eine vergleichsweise geringe Leckageströmung 17 durch den Ringspalt 9 strömen kann. Ferner ist bei der hier gezeigten erfindungsgemäßen Ausführungsform die Ringspaltdichtung 16 am Mantelring 6 angeordnet. Zweckmäßig ist die Ringspaltdichtung 16 an den Mantelring 6 angespritzt. Im Beispiel ist die Ringspaltdichtung 16 im Bereich der jeweiligen Einlaufdüse 10 am Mantelring 6 angeordnet, also eintrittsseitig.
  • Die Ringspaltdichtung 16 besitzt im Längsschnitt ein Profil, das einen am Mantelring 6 fixierten Fixierbereich 18 und einen vom Fixierbereich 18 ausgehenden, freistehenden Dichtungsbereich 19 besitzt. Die Ringspaltdichtung 16 ist zumindest im Dichtungsbereich 19 elastisch. Gemeint sind dabei Elastizitäten, die größer sind als die Elastizitäten des Mantelrings 6, der Schaufeln 5 und/oder des Zargenrings 3. Jedenfalls ist der Dichtungsbereich 19 räumlich so angeordnet, dass er sich im Betrieb des Axiallüfters 1 aufgrund der auftretenden Zentrifugalkräfte 20, die in Figur 1 durch einen Pfeil angedeutet sind, angetrieben ist und sich dadurch elastisch verformt und dabei in Richtung Zargenring 3 bewegt. Das bedeutet, dass die Ringspaltdichtung 16 den Ringspalt 9 umso besser verschließt, je höher die Drehzahl des Lüfterrads 2 ist.
  • Der Mantelring 6 kann für die jeweilige Einlaufdüse 10 zumindest eine Zuströmöffnung 21 aufweisen, durch die im Betrieb des Axiallüfters 1 die Rückströmung 12 hindurchtreten und in die jeweilige Einlaufdüse 10 eintreten kann. Hierzu durchdringt die jeweilige Zuströmöffnung 21 den Mantelring 6 radial. Ferner ist die jeweilige Zuströmöffnung 21 bezüglich der Hauptströmung 11 stromauf der Eintrittsseite 14 angeordnet. Auf derartige Zuströmöffnungen 21, die den Mantelring 6 radial durchsetzen, kann beispielsweise dann verzichtet werden, wenn die jeweilige Einlaufdüse 10 über Stege fest mit dem Mantelring 6 verbunden ist, die in der Umfangsrichtung 8 voneinander beabstandet sind. Hierdurch baut das Lüfterrad 2 axial vergleichsweise groß. Bevorzugt ist daher die hier gezeigte, axial kompakt bauende Ausführungsform, bei welche die Zuströmöffnungen 21 den Mantelring 6 durchdringen. Die wenigstens eine Zuströmöffnung 21 erzeugt eine Rückströmung 12, aus der eine Leckageströmung 17 abzweigt, durch die im Betrieb des Axiallüfters 1 der elastische Dichtbereich 19 berührungsfrei am Zargenring 3 geführt ist. Es wird somit eine minimierte Leckageströmung in Kauf genommen, die jedoch ein Luftpolster bildet, das ein Entlangschleifen des Dichtbereichs 19 am Zargenring 3 und damit einen erhöhten Verschleiß des Dichtbereichs 19 verhindert.
  • Bei der in den Figuren 2 und 3 gezeigten Ausführungsform ist am Mantelring 6 nur eine einzige Einlaufdüse 10 ausgebildet, die in der Umfangsrichtung 8 ringförmig geschlossen umläuft. Diese einzige Einlaufdüse 10 wird im Folgenden daher auch als ringförmige Einlaufdüse 10' bezeichnet. Um diese ringförmige Einlaufdüse 10' in der Umfangsrichtung 8 möglichst gleichmäßig mit der Rückströmung 12 fluidisch zu verbinden, sind mehrere Zuströmöffnungen 21 vorgesehen, die in der Umfangsrichtung 8 verteilt angeordnet sind.
  • Bei der in den Figuren 4 und 5 gezeigten Ausführungsform sind mehrere Einlaufdüsen 10 vorgesehen, die in der Umfangsrichtung 8 verteilt am Mantelring 6 angeordnet sind. Diese mehreren Einlaufdüsen 10 werden im Folgenden als separate Einlaufdüsen 10" bezeichnet. Der Mantelring 6 besitzt für jede separate Einlaufdüse 10" genau eine Zuströmöffnung 21. Bei der in den Figuren 4 und 5 gezeigten Ausführungsform ist jeder Schaufel 5 jeweils genau eine separate Einlaufdüse 10" zugeordnet. Dabei ist die jeweilige separate Einlaufdüse 10" im Bereich einer Anströmkante 22 der zugehörigen Schaufel 5 angeordnet. Die Anströmkante 22 ist dabei mittig zur zugehörigen Zuströmöffnung 21 positioniert.
  • Die Zuströmöffnungen 21 sind bei den hier gezeigten Ausführungsformen jeweils als Langlöcher bzw. als längliche Öffnungen ausgestaltet, deren Längsrichtung sich in der Umfangsrichtung 8 erstreckt.
  • Gemäß Fig. 1 kann zumindest ein Strömungsleitelement 23 vorgesehen sein, das in wenigstens einer Einlaufdüse 10 angeordnet ist. Bevorzugt sind mehrere derartige Strömungsleitelemente 23 in der ringförmigen Einlaufdüse 10' in der Umfangsrichtung 8 verteilt angeordnet. Das jeweilige Strömungsleitelement 23 unterstützt die Umlenkung der Rückströmung 12 innerhalb der Einlaufdüse 10 in Richtung Eintrittsseite 14. Zweckmäßig kann vorgesehen sein, dass innerhalb der ringförmigen Einlaufdüse 10' jeder Schaufel 5 genau ein solches Strömungsleitelement 23 zugeordnet ist. Das jeweilige Strömungsleitelement 23 kann insbesondere integral am Mantelring 6 ausgeformt sein.
  • Gemäß Fig. 1 ist der Zargenring 3 bevorzugt an einer Lüfterhaube 24 angeordnet. Insbesondere kann er integral, also materialeinheitlich, an der Lüfterhaube 24 ausgeformt sein. Die Lüfterhaube 24 definiert einen Zuströmkanal 25, der die Kühlluft zum Lüfterrad 2 führt. Zweckmäßig steht der Zargenring 3 von der Lüfterhaube 24 freistehend ab, sodass er ausschließlich über die Lüfterhaube 24 räumlich positioniert ist. Die Lüfterhaube 24 kann dabei unmittelbar an einen hier nicht gezeigten Wärmeübertrager anschließen. Dieser Wärmeübertrager ist dabei ein Bestandteil der zuvor genannten Kühlvorrichtung des Fahrzeugs und beispielsweise von einer mithilfe des Axiallüfters 1 erzeugten und/oder unterstützten Luftströmung durchströmt. In diesem Fall ist besagter Wärmeübertrager stromauf des Lüfterrads 2 angeordnet, sodass das Lüfterrad 2 den Luftstrom durch den Wärmeübertrager hindurch ansaugt. Grundsätzlich ist jedoch auch eine Ausführungsform möglich, bei welcher die Lüfterhaube 24 den Zargenring 3 und den Mantelring 6 koaxial umschließt und zu einem stromab des Lüfterrads 2 angeordneten Wärmeübertrager führt.
  • Wie sich insbesondere Fig. 1 entnehmen lässt, kann der Mantelring 6 zwischen seinem eintrittsseitigen Ende und seinem austrittsseitigem Ende zylindrisch geformt sein. Auch kann der Zargenring 3 zylindrisch geformt sein.

Claims (14)

  1. Axiallüfter zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeugs,
    - mit einem Lüfterrad (2), das mehrere von einer Nabe (4) ausgehende Schaufeln (5) und einen die Schaufeln (5) einfassenden, geschlossen umlaufenden, von den Schaufeln (5) getragenen Mantelring (6) aufweist,
    - mit einem Zargenring (3), der koaxial zum Mantelring (6) so angeordnet ist, dass sich ein Ringspalt (9) zwischen Mantelring (6) und Zargenring (3) ausbildet,
    dadurch gekennzeichnet,
    dass eine am Mantelring (6) angeordnete Ringspaltdichtung (16) zum Dichten und/oder Drosseln des Ringspalts (9) vorgesehen ist.
  2. Axiallüfter nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Ringspaltdichtung (16) aus einem anderen Werkstoff besteht als der Mantelring (6).
  3. Axiallüfter nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Ringspaltdichtung (16) bezüglich des Mantelrings (6) ein separates Bauteil ist, das an den Mantelring (6) angebaut ist, z.B. daran angespritzt, angeklebt, angeschweißt, anvulkanisiert, angeschraubt, angenietet oder angeklemmt ist.
  4. Axiallüfter nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Ringspaltdichtung (16) im Profil einen am Mantelring (6) fixierten Fixierbereich (18) und einen freistehenden, elastischen Dichtbereich (19) aufweist, der so angeordnet ist, dass er sich im Betrieb des Axiallüfters (1) durch Zentrifugalkräfte angetrieben, elastisch verformt und in Richtung des Zargenrings (3) bewegt.
  5. Axiallüfter nach dem Oberbegriff des Anspruchs 1, insbesondere nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass im Bereich des Ringspalts (9) wenigstens eine Einlaufdüse (10) ausgebildet ist, die eine sich im Betrieb des Axiallüfters (1) im Bereich des Mantelrings (6) ausbildende Rückströmung (12) zu einer Eintrittsseite (14) des Lüfterrads (2) umlenkt, wobei die wenigstens eine Einlaufdüse (10) am Mantelring (6) angeordnet ist.
  6. Axiallüfter nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der Mantelring (6) für die jeweilige Einlaufdüse (10) wenigstens eine Zuströmöffnung (21) enthält, die den Mantelring (6) bezüglich einer vom Lüfterrad (2) im Betrieb des Axiallüfters (1) geförderten Hauptströmung (11) stromauf der Eintrittsseite (14) radial durchsetzt.
  7. Axiallüfter nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die wenigstens eine Zuströmöffnung (21) eine Rückströmung (12) erzeugt, aus der eine Leckageströmung (17) abzweigt, durch die im Betrieb des Axiallüfters (1) der elastische Dichtbereich (19) berührungsfrei am Zargenring (3) geführt ist.
  8. Axiallüfter nach einem der Ansprüche 5 bis 7,
    dadurch gekennzeichnet,
    dass eine einzige solche Einlaufdüse (10), (10') vorgesehen ist, die sich in der Umfangsrichtung (8) ringförmig geschlossen erstreckt.
  9. Axiallüfter nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet,
    dass der Mantelring (6) für diese Einlaufdüse (10, 10') mehrere derartige, in der Umfangsrichtung (8) verteilt angeordnete Zuströmöffnungen (21) aufweist.
  10. Axiallüfter nach einem der Ansprüche 4 bis 7,
    dadurch gekennzeichnet,
    dass mehrere solcher Einlaufdüsen (10, 10") vorgesehen sind, die in der Umfangsrichtung (8) verteilt angeordnet sind.
  11. Axiallüfter nach den Ansprüchen 6 und 10,
    dadurch gekennzeichnet,
    dass der Mantelring (6) für jede Einlaufdüse (10, 10") wenigstens eine derartige Zuströmöffnung (21) ausweist.
  12. Axiallüfter nach Anspruch 10 oder 11,
    dadurch gekennzeichnet,
    dass jeder Schaufel (5) genau eine solche Einlaufdüse (10, 10") zugeordnet ist.
  13. Axiallüfter nach Anspruch 12,
    dadurch gekennzeichnet,
    dass die jeweilige Einlaufdüse (10, 10") im Bereich einer Anströmkante (22) der zugehörigen Schaufel (5) angeordnet ist.
  14. Axiallüfter nach einem der Ansprüche 1 bis 13,
    gekennzeichnet durch wenigstens ein Strömungsleitelement (23), das in der wenigstens einen Einlaufdüse (10) angeordnet ist.
EP14194113.8A 2013-12-20 2014-11-20 Axiallüfter Not-in-force EP2886873B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013227025.9A DE102013227025A1 (de) 2013-12-20 2013-12-20 Axiallüfter

Publications (2)

Publication Number Publication Date
EP2886873A1 true EP2886873A1 (de) 2015-06-24
EP2886873B1 EP2886873B1 (de) 2017-05-24

Family

ID=52016393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14194113.8A Not-in-force EP2886873B1 (de) 2013-12-20 2014-11-20 Axiallüfter

Country Status (2)

Country Link
EP (1) EP2886873B1 (de)
DE (1) DE102013227025A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017264A1 (de) * 2015-07-29 2017-02-02 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Lüfterrad und kühlerlüftermodul
USD860427S1 (en) 2017-09-18 2019-09-17 Horton, Inc. Ring fan
US11767761B2 (en) 2018-08-02 2023-09-26 Horton, Inc. Low solidity vehicle cooling fan

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209577A1 (de) * 2017-06-07 2018-12-13 Hanon Systems Gebläselaufrad und Heiz-, Lüftungs- und/oder Klimatisierungssystem mit einem Gebläselaufrad
DE102019202116A1 (de) * 2019-02-18 2020-08-20 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Kühlerlüfter eines Kraftfahrzeugs

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3304297C2 (de) 1982-03-15 1988-05-26 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co Kg, 7000 Stuttgart, De
DE3538671C2 (de) 1985-10-31 1993-04-08 Kloeckner-Humboldt-Deutz Ag, 5000 Koeln, De
WO1995006822A1 (en) 1993-08-30 1995-03-09 Airflow Research Manufacturing Corporation Housing with recirculation control for use with banded axial-flow fans
DE19803502A1 (de) * 1998-01-30 1999-08-12 Behr Gmbh & Co Lüfteranordnung
JP2002106489A (ja) * 2000-09-28 2002-04-10 Toyo Radiator Co Ltd ファンのシール構造
WO2006063830A2 (fr) * 2004-12-17 2006-06-22 Valeo Systemes D'essuyage Ventilateur comportant une nervure externe a la jupe annulaire peripherique
DE102006047236A1 (de) 2006-10-04 2008-04-10 Behr Gmbh & Co. Kg Axiallüfter zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeuges
DE102006049076A1 (de) 2006-10-13 2008-04-17 Behr Gmbh & Co. Kg Axiallüfter zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeuges
WO2008124656A1 (en) 2007-04-05 2008-10-16 Borgwarner Inc. Ring fan and shroud air guide system
DE102010039219A1 (de) * 2010-08-11 2012-02-16 Behr Gmbh & Co. Kg Lüfter, insbesondere für ein Motorkühlungsgebläse in einem Kraftfahrzeug
DE102012207552A1 (de) 2011-05-13 2012-11-15 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Kühlerlüftermodul

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498613B1 (de) * 2003-07-15 2010-05-19 EMB-Papst St. Georgen GmbH & Co. KG Lüfteranordnung, und Verfahren zur Herstellung einer solchen
DE112007003353A5 (de) * 2006-12-18 2009-12-03 Temic Automotive Electric Motors Gmbh Axiallüfter für einen Fahrzeugkühler

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3304297C2 (de) 1982-03-15 1988-05-26 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co Kg, 7000 Stuttgart, De
DE3538671C2 (de) 1985-10-31 1993-04-08 Kloeckner-Humboldt-Deutz Ag, 5000 Koeln, De
WO1995006822A1 (en) 1993-08-30 1995-03-09 Airflow Research Manufacturing Corporation Housing with recirculation control for use with banded axial-flow fans
DE19803502A1 (de) * 1998-01-30 1999-08-12 Behr Gmbh & Co Lüfteranordnung
JP2002106489A (ja) * 2000-09-28 2002-04-10 Toyo Radiator Co Ltd ファンのシール構造
WO2006063830A2 (fr) * 2004-12-17 2006-06-22 Valeo Systemes D'essuyage Ventilateur comportant une nervure externe a la jupe annulaire peripherique
DE102006047236A1 (de) 2006-10-04 2008-04-10 Behr Gmbh & Co. Kg Axiallüfter zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeuges
DE102006049076A1 (de) 2006-10-13 2008-04-17 Behr Gmbh & Co. Kg Axiallüfter zur Förderung von Kühlluft für eine Kühlvorrichtung eines Kraftfahrzeuges
WO2008124656A1 (en) 2007-04-05 2008-10-16 Borgwarner Inc. Ring fan and shroud air guide system
DE102010039219A1 (de) * 2010-08-11 2012-02-16 Behr Gmbh & Co. Kg Lüfter, insbesondere für ein Motorkühlungsgebläse in einem Kraftfahrzeug
DE102012207552A1 (de) 2011-05-13 2012-11-15 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Kühlerlüftermodul

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017264A1 (de) * 2015-07-29 2017-02-02 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Lüfterrad und kühlerlüftermodul
US10563664B2 (en) 2015-07-29 2020-02-18 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Fan impeller and radiator fan module
USD860427S1 (en) 2017-09-18 2019-09-17 Horton, Inc. Ring fan
US11767761B2 (en) 2018-08-02 2023-09-26 Horton, Inc. Low solidity vehicle cooling fan

Also Published As

Publication number Publication date
DE102013227025A1 (de) 2015-06-25
EP2886873B1 (de) 2017-05-24

Similar Documents

Publication Publication Date Title
EP2886873B1 (de) Axiallüfter
EP2236837B1 (de) Axiallüfter, insbesondere für ein Kraftfahrzeug
EP1736635B1 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
EP1778953B1 (de) Reinigungsvorrichtung einer abgasturbine
DE2657840A1 (de) Geraeuscharme kuehlanlage fuer brennkraftmaschinen
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
DE202010016820U1 (de) Diffusor für einen Ventilator sowie Ventilatoranordnung mit einem derartigen Diffusor
DE112014005032T5 (de) Kompressor-Luftrückführung mit verringerter Geräuschbildung
DE102013101133A1 (de) Gebläsebaugruppe
EP2126321A1 (de) Gasturbine mit einem nachleitkranz und mit einem mischer
WO2017093245A1 (de) Lüfterrad für einen axiallüfter
DE112016002636T5 (de) Elektrische Maschine für ein Fahrzeug
EP2557315A2 (de) Wälzlager und Vakuumpumpe mit Wälzlager
EP3405679A1 (de) Diagonalventilator
EP3124742B1 (de) Gasturbine
DE202016106538U1 (de) Diagonalventilator
DE102015102188A1 (de) Gebläseanordnung
EP1887195B1 (de) Kühlvorrichtung für ein Kraftfahrzeug
DE112016003287B4 (de) Ölabdichtungsaufbau und Turbolader
EP2314882B1 (de) Luftleitelement für einen Axialventilator
DE102015012225A1 (de) Leiteinrichtung für einen Verdichter eines Abgasturboladers
EP2020489A1 (de) Vorrichtung zur Kühlung eines Motors
EP3029329B1 (de) Seitenkanalgebläse, insbesondere für ein fahrzeugheizgerät
DE102014204043A1 (de) Lüfterrad eines Axiallüfters
EP3935283B1 (de) Seitenkanalgebläse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160609

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 896158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003933

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170524

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170924

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003933

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190131

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191127

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014003933

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 896158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130