EP2881809B1 - Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement - Google Patents

Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement Download PDF

Info

Publication number
EP2881809B1
EP2881809B1 EP13195524.7A EP13195524A EP2881809B1 EP 2881809 B1 EP2881809 B1 EP 2881809B1 EP 13195524 A EP13195524 A EP 13195524A EP 2881809 B1 EP2881809 B1 EP 2881809B1
Authority
EP
European Patent Office
Prior art keywords
mechanical oscillator
frequency
oscillations
instants
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13195524.7A
Other languages
German (de)
French (fr)
Other versions
EP2881809A1 (en
Inventor
Roman Merz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Witschi Electronic AG
Original Assignee
Witschi Electronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Witschi Electronic AG filed Critical Witschi Electronic AG
Priority to EP13195524.7A priority Critical patent/EP2881809B1/en
Publication of EP2881809A1 publication Critical patent/EP2881809A1/en
Application granted granted Critical
Publication of EP2881809B1 publication Critical patent/EP2881809B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/12Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard
    • G04D7/1207Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard only for measuring
    • G04D7/1235Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard only for measuring for the control mechanism only (found from outside the clockwork)
    • G04D7/1242Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard only for measuring for the control mechanism only (found from outside the clockwork) for measuring amplitude
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/004Optical measuring and testing apparatus
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/08Measuring, counting, calibrating, testing or regulating apparatus for balance wheels
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D7/00Measuring, counting, calibrating, testing or regulating apparatus
    • G04D7/12Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard
    • G04D7/1207Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard only for measuring
    • G04D7/1235Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard only for measuring for the control mechanism only (found from outside the clockwork)
    • G04D7/125Timing devices for clocks or watches for comparing the rate of the oscillating member with a standard only for measuring for the control mechanism only (found from outside the clockwork) for measuring frequency

Definitions

  • the present invention relates to a method for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clockwork movement, as well as to a measuring device for implementing this method.
  • the present invention relates to a measuring method, of the type mentioned above, applied to a watch movement which is not fitted or fitted in a case of a timepiece in such a way that its mechanical oscillator is at least partially visible through the box, in particular through ice or a transparent bottom.
  • the Applicant markets various measuring devices making it possible to determine in particular the rate of a mechanical oscillator of a horological movement, that is to say its deviation in seconds per 24 h from a reference clock, amplitude of the oscillations and the benchmark.
  • the range of devices called Chronoscope includes measuring devices making it possible to determine the above-mentioned parameters by means of acoustic measurements, by recording the noises of the exhaust using a microphone.
  • the use of a device from this range, the Chronoscope S1 is presented in the document available at: http://www.witschi.com/download/Formation%20Witschi.pdf.
  • the Swiss company Qualimatest SA markets a device for measuring the rate and amplitude of the oscillations of a mechanical oscillator of a watch movement under the name " Video Beautysometer ", a description of which is available at the address http://www.qmt.ch/de/videobalisometre.php .
  • This device comprises in particular a fast camera, or a high acquisition frequency, intended to acquire images of the mechanical oscillator, at a high frequency, after definition of time windows of measurements.
  • the images acquired at high frequency around the minima and maxima of the elongation make it possible to plot the elongation curve as a function of time, around the extrema of the elongation, and to determine the value of the amplitude of the oscillations.
  • this device is also equipped with a Chronoscope S1 as described above, to compare the measurements made from the fast camera with acoustic measurements.
  • a main aim of the present invention is to provide a method for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a watch movement offering good measurement precision, while being simple and quick to implement.
  • an additional aim of the method according to the present invention is to allow it to be implemented by an inexpensive measuring device.
  • the present invention relates more particularly to a measurement method as defined in independent claim 1.
  • a standard type camera much less expensive than a high speed camera, can be used for to control the operation of a mechanical oscillator in a reliable and precise manner.
  • the measurements making it possible to determine the value of the frequency of the oscillations can be optical or acoustic measurements.
  • the measurements can in particular be based on the measurement of the light intensity of a light beam reflected by a portion of the mechanical oscillator.
  • the acquisition frequency of the images has a value double of the value measured for the frequency of the oscillator, the images being acquired at instants shifted by a quarter of a period with respect to the instants associated with zero elongation. of the mechanical oscillator.
  • the processing of the images thus obtained makes it possible to directly access the value of the amplitude of the oscillations of the mechanical oscillator, with good precision given that the speed of movement of the mechanical oscillator is the lowest around the corresponding instants. .
  • the measurements making it possible to lead to the determination of a measured value of the frequency are carried out by means of a camera, controlled to carry out, in a loop, the acquisition of images of the frequency.
  • the value of the frequency of acquisition of the images is a multiple of four times the value of the frequency of the oscillations of the mechanical oscillator.
  • the present invention also relates to an apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a watch movement, this apparatus being defined in independent claim 7.
  • the measuring device comprises a microphone arranged to allow identification of the instants associated substantially with zero elongation of the mechanical oscillator by detecting the shocks of an escapement associated with the mechanical oscillator.
  • the measuring device can include a source of light radiation arranged to emit a light beam in the direction of the mechanical oscillator, as well as an optical sensor arranged to receive a beam reflected by the mechanical oscillator as a result of its illumination by the light beam, the electronic processing unit being arranged to allow the identification of the instants associated substantially with zero elongation of the mechanical oscillator from the measurements made by the optical sensor.
  • the camera itself fulfills the function of the optical measuring device arranged to allow the identification of the instants associated substantially with zero elongation of the mechanical oscillator.
  • the present invention also relates to an assembly comprising such a measuring device, when it is associated with an electronic processing unit comprising a microprocessor arranged to process the results of the measurements carried out by the measuring device and to deduce therefrom the frequency and the frequency. amplitude of the oscillations of the mechanical oscillator.
  • the processing unit can in particular include a computer implementing a suitable program.
  • the processing unit comprises a microprocessor arranged to control the camera and carry out, in a loop, the acquisition of images of the mechanical oscillator and, on the one hand, identify the instants associated substantially with zero elongation of the mechanical oscillator and, on the other hand, adjust the acquisition frequency of the images so that its value is a multiple of that of the frequency of the oscillations of the mechanical oscillator.
  • the processing unit advantageously comprises an adjustment loop comprising a P, PI or PID type regulator.
  • the figure 1 is a schematic diagram illustrating the structure of a measuring apparatus according to a preferred embodiment of the present invention.
  • the measuring device 1 comprises a connection member 2 to an electronic processing unit 4, comprising in particular a microprocessor 6 and which can be integrated directly into the measuring device 1 or, alternatively, be a separate computer of the type standard on which an adapted program is implemented.
  • an electronic processing unit 4 comprising in particular a microprocessor 6 and which can be integrated directly into the measuring device 1 or, alternatively, be a separate computer of the type standard on which an adapted program is implemented.
  • the measuring device 1 is intended to perform various measurements to enable the frequency and amplitude of the oscillations of a mechanical oscillator 8 of a watch movement 10 to be determined.
  • the measuring device makes it possible to control the operation of directly visible mechanical oscillators, that is to say when the measurements are applied to non-nested watch movements. or, alternatively, when they are applied to nested watch movements in such a way that their mechanical oscillator remains visible in the through part of the box, in particular through ice or a transparent bottom.
  • the measurement method according to the present invention provides for performing measurements to identify instants associated substantially with zero elongation of the mechanical oscillator, and to deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.
  • the measuring device 1 provision is made for the measuring device 1 to include a measuring device 12, acoustic or optical.
  • This measuring device 12 is arranged to allow the identification of the instants associated substantially with zero elongation of the mechanical oscillator, in relation to the electronic processing unit 4, and to deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.
  • the apparatus 1 further comprises a camera 14, of standard type, arranged to carry out the acquisition of images from the mechanical oscillator and, controlled by a circuit 16 for generating appropriate control signals.
  • the apparatus 1 can also be provided with an appropriate integrated lighting device 18, optional, to guarantee a quality of the images acquired by the camera 14 sufficient to allow subsequent processing by the recording unit. treatment 4.
  • an appropriate integrated lighting device 18 optional, to guarantee a quality of the images acquired by the camera 14 sufficient to allow subsequent processing by the recording unit. treatment 4.
  • LED lighting for example, or any other type of suitable lighting, without departing from the scope of the present invention.
  • the figure 2 represents a schematic diagram illustrating the steps of implementing a measurement method according to a first preferred embodiment of the present invention.
  • the watch movement to be checked is placed on a suitable support, either directly or by being nested in the case of the corresponding timepiece, preferably being kept at rest for a few tens of seconds, at least, to ensure stabilization of the oscillations of its mechanical oscillator before starting the measurements.
  • the optional lighting can also be adjusted to guarantee a good quality of the images which will be acquired subsequently by the camera 14.
  • a first measurement step can then be implemented by means of the measuring device 12.
  • the measuring device 12 comprises a microphone (not shown) for performing acoustic measurements of the operation of the mechanical oscillator in relation to an escapement.
  • the microphone generates electrical pulses based on the sounds of the exhaust and transmits them to the processing unit 4 or to another specific processing circuit (not shown) of the measuring device 12.
  • the measuring device 12 may include an optical measuring cell, of conventional type, comprising in particular a light source, for example one or more LEDs, associated with a photoelectric detector.
  • a measuring device is generally intended to perform measurements of the intensity of a beam reflected by a portion of the mechanical oscillator, this intensity varying with the oscillations of the mechanical oscillator.
  • the processing unit 4 or another specific processing circuit processes the signals generated by the photoelectric detector, on the basis of data relating to the geometric shape and the dimensions of the mechanical oscillator, in order to deduce information therefrom.
  • the measurements made in step 22 make it possible to identify the instants associated substantially with zero elongation of the mechanical oscillator, in relation with the electronic processing unit 4, and deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.
  • the processing unit 4 controls the signal generation circuit 16 so that it itself controls the camera 14, in step 24.
  • the circuit 16 controls the camera 14 so that the image acquisition frequency has a value proportional to that measured for the frequency of the oscillations of the mechanical oscillator 8, in step 26, and so that these images are acquired at instants shifted by a quarter of a period with respect to the instants associated with zero elongation of mechanical oscillator 8.
  • figure 3 representing the evolution of the elongation of the mechanical oscillator 8 as a function of time.
  • the mechanical oscillator 8 oscillates here with a frequency of 4 Hz, by way of non-limiting illustrative example.
  • the crosses illustrated on the sinusoidal curve correspond to the measurements carried out by the measuring device 12, ie substantially to the instants associated with zero elongation of the mechanical oscillator 8.
  • the camera 14 is then controlled to acquire images at the instants marked by circles. on the sinusoidal curve, these instants correspond substantially to amplitude extrema for the mechanical oscillator 8.
  • the figure 3 illustrates a preferred embodiment of the measurement method, according to which the acquisition frequency of the images has a value double of the frequency of the oscillations of the mechanical oscillator 8. With such a value, the two amplitude extrema are recorded for each oscillation.
  • those skilled in the art could use different values to acquire images with the camera 14, preferably even multiples of the value measured for the frequency of the oscillations of the mechanical oscillator 8.
  • the amplitude of the oscillations of the mechanical oscillator 8 can be calculated, in step 28 on the figure 2 , by the processing unit 4.
  • the processing unit 4 can execute a shape recognition algorithm making it possible to define at least one reference point on the surface of the mechanical oscillator 8.
  • a shape recognition algorithm making it possible to define at least one reference point on the surface of the mechanical oscillator 8.
  • the images acquired by the camera can be processed so as to follow the movements of this reference point as a function of time.
  • Such a program can in particular include hypotheses to be verified in order to exclude certain scenarios to which the processing of the images could result, taking into account in particular the order of magnitude expected for the amplitude or even the frequency of the oscillations. This could be the case, for example, to differentiate between several identical arms of a balance.
  • the amplitude can for example be calculated as being the average of the absolute values of the maximum elongations for each oscillation, or even as an average of this value taken over several successive oscillations.
  • the camera 14 can be taken advantage of to carry out the identification of the instants associated substantially with zero elongation of the mechanical oscillator 8, in relation to the electronic processing unit 4 , and deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.
  • the implementation of the measuring device 12 as has been described in relation to the first embodiment is not necessary, while the processing unit is arranged to perform in particular a shape recognition algorithm, as mentioned previously.
  • the figure 4 represents a schematic diagram illustrating the steps for implementing a measurement method according to the second preferred embodiment of the present invention.
  • the watch movement to be checked is placed on a suitable support, preferably being kept at rest for a few tens of seconds, at least, to ensure stabilization of the oscillations of its mechanical oscillator before being start the measurements.
  • the optional lighting can also be adjusted to guarantee a good quality of the images which will be acquired subsequently by the camera 14.
  • a first measurement step can then be implemented by means of the camera 14, shown diagrammatically in step 42 on the figure 4 , consisting in carrying out a synchronization between the instants associated with the acquisition of images by the camera 14 and the frequency of the oscillations of the mechanical oscillator.
  • the aim of this synchronization step is to adapt the timing of the acquisition of images so that it has a predefined fixed relationship with the frequency of the oscillations of the mechanical oscillator 8.
  • This multiplicative ratio may in particular be a multiple of four, or even a rational number, in which case the processing of the measurements will relate to measurements made over several oscillation periods.
  • the figure 5 represents a particular case in which the acquisition of the images lags behind the oscillations of the mechanical oscillator 8, the acquisition frequency of the images being indeed equal to four times that of the oscillations.
  • the images acquired during an n-th oscillation are denoted P n1 , P n2 , P n3 and P n4 .
  • P n1 , P n2 , P n3 and P n4 With each acquired image are associated an instant t n1 , t n2 , t n3 and t n4 and a value of the elongation of the mechanical oscillator, ⁇ n1 , ⁇ n2 , ⁇ n3 and ⁇ n4 .
  • the figure 6 shows another particular case in which the acquisition of the images is ahead of the oscillations of the mechanical oscillator 8, the acquisition frequency of the images always being quite equal to four times that of the oscillations.
  • the figure 7 represents another particular case according to which the frequency of acquisition of the images is not proportional to that of the oscillations of the mechanical oscillator 8.
  • the processing unit 4 is arranged to take into account all these scenarios (delay or advance of the measurements and non-proportionality between the frequencies) and generate signals suitable for the attention of the camera control circuit 16. 14 to correct the times at which images are acquired.
  • the processing unit is preferably provided with a P, PI or PID type regulator (“Proportional”, “Proportional Integral” or “Proportional Integral Derivative”) arranged to allow the processing of the images in a loop and to adjust the value of the frequency and of the instants of acquisition as the images are processed.
  • a P, PI or PID type regulator (“Proportional”, “Proportional Integral” or “Proportional Integral Derivative”) arranged to allow the processing of the images in a loop and to adjust the value of the frequency and of the instants of acquisition as the images are processed.
  • step 42 is a loop processing step of the images acquired during a first phase, of synchronization, so that the quantity ⁇ n3 - ⁇ n1 is zero (this quantity being constant when the acquisition and oscillation frequencies are proportional, and zero when the images are synchronized with passages of the oscillator in its position of zero elongation).
  • step 44 we move on to the acquisition of the images which will make it possible, after processing, to determine the amplitude of the oscillations of the mechanical oscillator 8.
  • the measurement step 44 is schematically illustrated on the figure 8 , while the acquisition of the images is synchronized with the oscillations of the mechanical oscillator 8, that is to say that the acquisition frequency has a value which is a multiple of that of the frequency of the oscillations of the mechanical oscillator.
  • the circuit 16 controls the camera 14 so that the image acquisition frequency has a value - proportional - at least equal to that measured for the frequency of the oscillations of the mechanical oscillator 8 , and so that these images are acquired at least at instants shifted by a quarter of a period with respect to the instants associated with zero elongation of the mechanical oscillator 8.
  • figure 8 representing the evolution of the elongation of the mechanical oscillator 8 as a function of time.
  • the mechanical oscillator oscillates here with a frequency of 4 Hz, by way of non-limiting illustrative example.
  • the camera 14 is controlled to acquire images at the instants marked by circles on the sinusoidal curve, these instants corresponding substantially, either to instants at which the oscillator exhibits substantially zero elongation, or at extremes of amplitude of the oscillations.
  • the figure 8 illustrates a preferred implementation variant of the measurement method, according to which the acquisition frequency of the images has a value equal to four times that of the frequency of the oscillations. With such a value, the two amplitude extrema are recorded for each oscillation, in addition to the two instants at which the oscillator exhibits zero elongation.
  • the camera 14 could use different values to acquire images with the camera 14, preferably multiples of a quadruple of the value measured for the frequency of the oscillations of the mechanical oscillator 8.
  • the speed of movement of the mechanical oscillator 8 is minimum around the points corresponding to the maximum amplitude of the oscillations, which guarantees good precision of the measurements made.
  • the amplitude of the oscillations of the mechanical oscillator 8 can be calculated, in step 46 on the figure 4 , by the processing unit 4, for example by calculating the average of the maximum amplitudes on one side and the other for each oscillation, or even as an average of this value taken over several successive oscillations, as already mentioned above.
  • the measurement method according to the present invention makes it possible simply and quickly to determine the frequency and amplitude of the oscillations of an at least partially visible mechanical oscillator, by implementing a measuring device of relatively simple and inexpensive design.
  • the measuring method according to the present invention can be applied to different types of mechanical oscillators without departing from the scope of the invention, such as in particular sprung balances or tuning fork type oscillators.
  • the frequency of the oscillations of the mechanical oscillator is of little importance for the implementation of the present method, as long as the duration of acquisition of an image by the camera is very low with reference to the period of the measured oscillations.
  • the processing algorithms implemented, in particular for pattern recognition may include hypotheses to be verified in order to resolve ambiguities of interpretation.

Description

Domaine techniqueTechnical area

La présente invention concerne un procédé de mesure de la fréquence et de l'amplitude des oscillations d'un oscillateur mécanique de mouvement horloger, ainsi qu'un appareil de mesure pour la mise en œuvre de ce procédé.The present invention relates to a method for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clockwork movement, as well as to a measuring device for implementing this method.

De manière générale, de tels procédés permettent d'établir un diagnostic relatif au fonctionnement d'un mouvement horloger ou d'une pièce d'horlogerie, en déterminant notamment sa marche à partir de la valeur mesurée pour la fréquence des oscillations de l'oscillateur mécanique.In general, such methods make it possible to establish a diagnosis relating to the operation of a watch movement or of a timepiece, in particular by determining its rate from the value measured for the frequency of the oscillations of the oscillator. mechanical.

Plus précisément, la présente invention concerne un procédé de mesure, du type mentionné plus haut, appliqué à un mouvement horloger non emboîté ou emboîté dans une boîte de pièce d'horlogerie de telle manière que son oscillateur mécanique est au moins partiellement visible au travers de la boîte, notamment au travers de la glace ou d'un fond transparent.More precisely, the present invention relates to a measuring method, of the type mentioned above, applied to a watch movement which is not fitted or fitted in a case of a timepiece in such a way that its mechanical oscillator is at least partially visible through the box, in particular through ice or a transparent bottom.

Etat de la techniqueState of the art

Différents procédés de mesure de ce type sont déjà connus dans l'état de la technique, qui permettent d'accéder à différentes informations relatives au fonctionnement d'un mouvement horloger.Various measurement methods of this type are already known in the state of the art, which provide access to various information relating to the operation of a watch movement.

A titre d'exemple, la Demanderesse commercialise divers appareils de mesure permettant de déterminer notamment la marche d'un oscillateur mécanique de mouvement horloger, c'est-à-dire sa déviation en secondes par 24h par rapport à une horloge de référence, l'amplitude des oscillations et le repère. La gamme d'appareils dénommée Chronoscope comprend des appareils de mesure permettant d'effectuer une détermination des paramètres mentionnés ci-dessus au moyen de mesures acoustiques, par enregistrement des bruits de l'échappement à l'aide d'un microphone. A titre illustratif, la mise en œuvre d'un appareil de cette gamme, le Chronoscope S1, est présentée dans le document disponible à l'adresse: http://www.witschi.com/download/Formation%20Witschi.pdf. By way of example, the Applicant markets various measuring devices making it possible to determine in particular the rate of a mechanical oscillator of a horological movement, that is to say its deviation in seconds per 24 h from a reference clock, amplitude of the oscillations and the benchmark. The range of devices called Chronoscope includes measuring devices making it possible to determine the above-mentioned parameters by means of acoustic measurements, by recording the noises of the exhaust using a microphone. By way of illustration, the use of a device from this range, the Chronoscope S1, is presented in the document available at: http://www.witschi.com/download/Formation%20Witschi.pdf.

On relèvera que de nouveaux types d'échappement ont été développés ces dernières années, dont certains présentent des bruits rendant difficile leur exploitation par des appareils de mesure acoustique conventionnels.It will be noted that new types of exhaust have been developed in recent years, some of which present noises that make them difficult to use by conventional acoustic measuring devices.

D'autres appareils sont connus, qui mettent en œuvre des moyens de mesure optique des oscillations d'un oscillateur mécanique. Ainsi, la demande de brevet FR 2780169 décrit un appareil mettant en œuvre une source de rayonnement lumineux, émettant un faisceau lumineux en direction d'un balancier et, associée à un détecteur photoélectrique pour suivre les oscillations du balancier et mesurer le repère. Toutefois, la mise en œuvre du procédé correspondant est relativement complexe, notamment du fait que les mesures sont très sensibles à toute source de perturbation lumineuse qui ne serait pas masquée.Other devices are known, which implement means for optical measurement of the oscillations of a mechanical oscillator. Thus, the patent application FR 2780169 describes an apparatus implementing a source of light radiation, emitting a light beam in the direction of a balance and, associated with a photoelectric detector for following the oscillations of the balance and measuring the mark. However, the implementation of the corresponding method is relatively complex, in particular because the measurements are very sensitive to any source of light disturbance which is not masked.

Par ailleurs, la société suisse Qualimatest S.A. commercialise un appareil de mesure de la marche et de l'amplitude des oscillations d'un oscillateur mécanique de mouvement horloger sous la dénomination " Vidéo Balisomètre", dont un descriptif est disponible à l'adresse http://www.qmt.ch/de/videobalisometre.php . Une description de cet appareil est également donnée dans le document ayant le numéro de publication XP001551327. Cet appareil comporte notamment une caméra rapide, ou à haute fréquence d'acquisition, destinée à acquérir des images de l'oscillateur mécanique, à une fréquence élevée, après définition de fenêtres temporelles de mesures. Ainsi, les images acquises à haute fréquence autour des minima et maxima de l'élongation permettent de tracer la courbe d'élongation en fonction du temps, autour des extrema de l'élongation, et de déterminer la valeur de l'amplitude des oscillations.In addition, the Swiss company Qualimatest SA markets a device for measuring the rate and amplitude of the oscillations of a mechanical oscillator of a watch movement under the name " Video Balisometer ", a description of which is available at the address http://www.qmt.ch/de/videobalisometre.php . A description of this apparatus is also given in the document having the publication number XP001551327. This device comprises in particular a fast camera, or a high acquisition frequency, intended to acquire images of the mechanical oscillator, at a high frequency, after definition of time windows of measurements. Thus, the images acquired at high frequency around the minima and maxima of the elongation make it possible to plot the elongation curve as a function of time, around the extrema of the elongation, and to determine the value of the amplitude of the oscillations.

En outre, cet appareil est également muni d'un Chronoscope S1 tel que décrit plus haut, pour comparer les mesures réalisées à partir de la caméra rapide à des mesures acoustiques.In addition, this device is also equipped with a Chronoscope S1 as described above, to compare the measurements made from the fast camera with acoustic measurements.

Bien que l'utilisation d'une caméra haute vitesse dans cet appareil le rende précis en termes de mesures, elle implique également des coûts de fabrication et de vente de cet appareil relativement élevés. Un tel appareil est de ce fait davantage réservé à des utilisateurs de laboratoires de tests qu'à des horlogers souhaitant contrôler le bon fonctionnement des mouvements horlogers qu'ils viennent d'assembler. En outre, il est indispensable de définir des fenêtres d'acquisition des images étant donné le flux important de données découlant du fonctionnement à haute fréquence de la caméra. Une unité de traitement suffisamment performante est également requise pour traiter les données ainsi acquises et ne pas retarder l'obtention des résultats de manière inacceptable.Although the use of a high speed camera in this device makes it accurate in terms of measurements, it also involves relatively high manufacturing and selling costs of this device. Such a device is therefore more reserved for users of test laboratories. only to watchmakers wishing to check the proper functioning of the watch movements that they have just assembled. In addition, it is essential to define the image acquisition windows given the large flow of data resulting from the high frequency operation of the camera. A sufficiently powerful processing unit is also required to process the data thus acquired and not to delay obtaining the results in an unacceptable manner.

Divulgation de l'inventionDisclosure of the invention

Un but principal de la présente invention est de proposer un procédé de mesure de la fréquence et de l'amplitude des oscillations d'un oscillateur mécanique de mouvement horloger offrant une bonne précision de mesures, tout en étant simple et rapide à mettre en œuvre. En outre, un but supplémentaire du procédé selon la présente invention est d'en permettre la mise en œuvre par un appareil de mesure peu coûteux.A main aim of the present invention is to provide a method for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a watch movement offering good measurement precision, while being simple and quick to implement. In addition, an additional aim of the method according to the present invention is to allow it to be implemented by an inexpensive measuring device.

A cet effet, la présente invention concerne plus particulièrement un procédé de mesure tel que défini dans la revendication indépendante 1.To this end, the present invention relates more particularly to a measurement method as defined in independent claim 1.

Grâce à ces caractéristiques, une caméra de type standard, beaucoup moins coûteuse qu'une caméra haute vitesse, peut être utilisée pour contrôler le fonctionnement d'un oscillateur mécanique de manière fiable et précise.Due to these characteristics, a standard type camera, much less expensive than a high speed camera, can be used for to control the operation of a mechanical oscillator in a reliable and precise manner.

Suivant l'invention, les mesures permettant de déterminer la valeur de la fréquence des oscillations peuvent être des mesures optiques ou acoustiques. Les mesures peuvent notamment être basées sur la mesure de l'intensité lumineuse d'un faisceau lumineux réfléchi par une portion de l'oscillateur mécanique.According to the invention, the measurements making it possible to determine the value of the frequency of the oscillations can be optical or acoustic measurements. The measurements can in particular be based on the measurement of the light intensity of a light beam reflected by a portion of the mechanical oscillator.

De manière avantageuse, la fréquence d'acquisition des images présente une valeur double de la valeur mesurée pour la fréquence de l'oscillateur, les images étant acquises à des instants décalés d'un quart de période par rapport aux instants associés à une élongation nulle de l'oscillateur mécanique. Le traitement des images ainsi obtenues permet d'accéder directement à la valeur de l'amplitude des oscillations de l'oscillateur mécanique, avec une bonne précision étant donné que la vitesse de déplacement de l'oscillateur mécanique est la plus faible autour des instants correspondants.Advantageously, the acquisition frequency of the images has a value double of the value measured for the frequency of the oscillator, the images being acquired at instants shifted by a quarter of a period with respect to the instants associated with zero elongation. of the mechanical oscillator. The processing of the images thus obtained makes it possible to directly access the value of the amplitude of the oscillations of the mechanical oscillator, with good precision given that the speed of movement of the mechanical oscillator is the lowest around the corresponding instants. .

Suivant un mode de mise en œuvre préféré, les mesures permettant de conduire à la détermination d'une valeur mesurée de la fréquence sont réalisées au moyen d'une caméra, commandée pour effectuer, en boucle, l'acquisition d'images de l'oscillateur mécanique et, d'une part, identifier les instants associés sensiblement à une élongation nulle de l'oscillateur mécanique et, d'autre part, ajuster la fréquence d'acquisition des images de telle manière que sa valeur soit proportionnelle à celle de la fréquence des oscillations de l'oscillateur mécanique, avec un facteur de proportionnalité présentant la forme d'un nombre entier ou rationnel.According to a preferred mode of implementation, the measurements making it possible to lead to the determination of a measured value of the frequency are carried out by means of a camera, controlled to carry out, in a loop, the acquisition of images of the frequency. mechanical oscillator and, on the one hand, identify the instants associated substantially with zero elongation of the mechanical oscillator and, on the other hand, adjust the frequency of acquisition of the images in such a way that its value is proportional to that of the frequency of the oscillations of the mechanical oscillator, with a proportionality factor in the form of an integer or rational number.

De manière préférée, la valeur de la fréquence d'acquisition des images est un multiple de quatre fois la valeur de la fréquence des oscillations de l'oscillateur mécanique.Preferably, the value of the frequency of acquisition of the images is a multiple of four times the value of the frequency of the oscillations of the mechanical oscillator.

De manière générale, on peut prévoir que le procédé comporte une étape supplémentaire de détermination de la marche de l'oscillateur mécanique à partir de la valeur mesurée pour sa fréquence d'oscillations.In general, provision can be made for the method to include an additional step of determining the rate of the mechanical oscillator from the value measured for its frequency of oscillations.

Par ailleurs, comme mentionné précédemment, la présente invention concerne également un appareil de mesure de la fréquence et de l'amplitude des oscillations d'un oscillateur mécanique de mouvement horloger, cet appareil étant défini dans la revendication indépendante 7.Furthermore, as mentioned above, the present invention also relates to an apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a watch movement, this apparatus being defined in independent claim 7.

Suivant un premier mode de réalisation préféré, le dispositif de mesure comporte un microphone agencé pour permettre l'identification des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique par détection des chocs d'un échappement associé à l'oscillateur mécanique.According to a first preferred embodiment, the measuring device comprises a microphone arranged to allow identification of the instants associated substantially with zero elongation of the mechanical oscillator by detecting the shocks of an escapement associated with the mechanical oscillator.

De manière alternative, voire complémentaire, on peut prévoir que le dispositif de mesure comporte une source de rayonnement lumineux agencé pour émettre un faisceau lumineux en direction de l'oscillateur mécanique, ainsi qu'un capteur optique agencé pour recevoir un faisceau réfléchi par l'oscillateur mécanique comme suite à son illumination par le faisceau lumineux, l'unité de traitement électronique étant agencée pour permettre l'identification des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique à partir des mesures réalisées par le capteur optique.Alternatively, or even complementarily, provision can be made for the measuring device to include a source of light radiation arranged to emit a light beam in the direction of the mechanical oscillator, as well as an optical sensor arranged to receive a beam reflected by the mechanical oscillator as a result of its illumination by the light beam, the electronic processing unit being arranged to allow the identification of the instants associated substantially with zero elongation of the mechanical oscillator from the measurements made by the optical sensor.

Suivant un second mode de réalisation préféré, la caméra remplit elle-même la fonction du dispositif de mesure optique agencé pour permettre l'identification des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique.According to a second preferred embodiment, the camera itself fulfills the function of the optical measuring device arranged to allow the identification of the instants associated substantially with zero elongation of the mechanical oscillator.

La présente invention concerne également un ensemble comportant un tel appareil de mesure, lorsqu'il est associé à une unité de traitement électronique comprenant un microprocesseur agencé pour traiter les résultats des mesures réalisées par l'appareil de mesure et en déduire la fréquence et l'amplitude des oscillations de l'oscillateur mécanique.The present invention also relates to an assembly comprising such a measuring device, when it is associated with an electronic processing unit comprising a microprocessor arranged to process the results of the measurements carried out by the measuring device and to deduce therefrom the frequency and the frequency. amplitude of the oscillations of the mechanical oscillator.

L'unité de traitement peut notamment comporter un ordinateur mettant en œuvre un programme adapté.The processing unit can in particular include a computer implementing a suitable program.

Suivant une variante de réalisation préférée, l'unité de traitement comprend un microprocesseur agencé pour commander la caméra et effectuer, en boucle, l'acquisition d'images de l'oscillateur mécanique et, d'une part, identifier les instants associés sensiblement à une élongation nulle de l'oscillateur mécanique et, d'autre part, ajuster la fréquence d'acquisition des images de telle manière que sa valeur soit un multiple de celle de la fréquence des oscillations de l'oscillateur mécanique.According to a preferred variant embodiment, the processing unit comprises a microprocessor arranged to control the camera and carry out, in a loop, the acquisition of images of the mechanical oscillator and, on the one hand, identify the instants associated substantially with zero elongation of the mechanical oscillator and, on the other hand, adjust the acquisition frequency of the images so that its value is a multiple of that of the frequency of the oscillations of the mechanical oscillator.

Dans ce cas, l'unité de traitement comprend avantageusement une boucle de réglage comprenant un régulateur de type P, PI ou PID.In this case, the processing unit advantageously comprises an adjustment loop comprising a P, PI or PID type regulator.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée de modes de réalisation préférés qui suit, faite en référence aux dessins annexés donnés à titre d'exemples non limitatifs et dans lesquels:

  • la figure 1 représente un diagramme schématique illustrant la structure d'un appareil de mesure selon un mode de réalisation préféré de la présente invention;
  • la figure 2 représente un premier diagramme schématique illustrant des étapes de mise en œuvre d'un procédé de mesure selon un premier mode de réalisation préféré de la présente invention;
  • la figure 3 représente un second diagramme schématique illustrant des étapes de mise en œuvre du procédé de mesure de la figure 2;
  • la figure 4 représente un premier diagramme schématique illustrant des étapes de mise en œuvre d'un procédé de mesure selon un second mode de réalisation préféré de la présente invention;
  • la figure 5 représente un deuxième diagramme schématique illustrant des étapes de mise en œuvre du procédé de mesure de la figure 4;
  • la figure 6 représente un troisième diagramme schématique illustrant des étapes de mise en œuvre du procédé de mesure de la figure 4
  • la figure 7 représente un quatrième diagramme schématique illustrant des étapes de mise en œuvre du procédé de mesure de la figure 4, et
  • la figure 8 représente un cinquième diagramme schématique illustrant des étapes de mise en œuvre du procédé de mesure de la figure 4.
Other characteristics and advantages of the present invention will emerge more clearly on reading the detailed description of preferred embodiments which follows, made with reference to the appended drawings given by way of non-limiting examples and in which:
  • the figure 1 is a schematic diagram illustrating the structure of a measuring apparatus according to a preferred embodiment of the present invention;
  • the figure 2 represents a first schematic diagram illustrating the steps of implementing a measurement method according to a first preferred embodiment of the present invention;
  • the figure 3 represents a second schematic diagram illustrating the stages of implementation of the method for measuring the figure 2 ;
  • the figure 4 represents a first schematic diagram illustrating steps for implementing a measurement method according to a second preferred embodiment of the present invention;
  • the figure 5 represents a second schematic diagram illustrating the stages of implementation of the method for measuring figure 4 ;
  • the figure 6 represents a third schematic diagram illustrating the stages of implementation of the method for measuring the figure 4
  • the figure 7 represents a fourth schematic diagram illustrating the stages of implementation of the method for measuring the figure 4 , and
  • the figure 8 represents a fifth schematic diagram illustrating the stages of implementation of the method for measuring the figure 4 .

Mode(s) de réalisation de l'inventionMode (s) for carrying out the invention

La figure 1 représente un diagramme schématique illustrant la structure d'un appareil de mesure selon un mode de réalisation préféré de la présente invention.The figure 1 is a schematic diagram illustrating the structure of a measuring apparatus according to a preferred embodiment of the present invention.

L'appareil de mesure 1 comporte un organe de connexion 2 à une unité de traitement électronique 4, comprenant notamment un microprocesseur 6 et, qui peut être intégrée directement à l'appareil de mesure 1 ou, en alternative, être un ordinateur distinct de type standard sur lequel est mis en œuvre un programme adapté.The measuring device 1 comprises a connection member 2 to an electronic processing unit 4, comprising in particular a microprocessor 6 and which can be integrated directly into the measuring device 1 or, alternatively, be a separate computer of the type standard on which an adapted program is implemented.

L'appareil de mesure 1 est destiné à effectuer diverses mesures pour permettre la détermination de la fréquence et de l'amplitude des oscillations d'un oscillateur mécanique 8 de mouvement horloger 10.The measuring device 1 is intended to perform various measurements to enable the frequency and amplitude of the oscillations of a mechanical oscillator 8 of a watch movement 10 to be determined.

Comme cela ressortira de la suite de la présente description, l'appareil de mesure selon l'invention permet de contrôler le fonctionnement d'oscillateurs mécaniques directement visibles, c'est-à-dire lorsque les mesures sont appliquées à des mouvements horlogers non emboîtés ou, en alternative, lorsqu'elles sont appliquées à des mouvements horlogers emboîtés de telle manière que leur oscillateur mécanique reste visible au travers une partie de la boîte, notamment au travers de la glace ou d'un fond transparent.As will emerge from the remainder of the present description, the measuring device according to the invention makes it possible to control the operation of directly visible mechanical oscillators, that is to say when the measurements are applied to non-nested watch movements. or, alternatively, when they are applied to nested watch movements in such a way that their mechanical oscillator remains visible in the through part of the box, in particular through ice or a transparent bottom.

Le procédé de mesure selon la présente invention prévoit d'effectuer des mesures pour identifier des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique, et en déduire une valeur mesurée de la fréquence des oscillations de l'oscillateur mécanique.The measurement method according to the present invention provides for performing measurements to identify instants associated substantially with zero elongation of the mechanical oscillator, and to deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.

Suivant un premier mode de réalisation de la présente invention, il est prévu que l'appareil de mesure 1 comporte un dispositif de mesure 12, acoustique ou optique. Ce dispositif de mesure 12 est agencé pour permettre l'identification des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique, en relation avec l'unité de traitement électronique 4, et en déduire une valeur mesurée de la fréquence des oscillations de l'oscillateur mécanique.According to a first embodiment of the present invention, provision is made for the measuring device 1 to include a measuring device 12, acoustic or optical. This measuring device 12 is arranged to allow the identification of the instants associated substantially with zero elongation of the mechanical oscillator, in relation to the electronic processing unit 4, and to deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.

L'appareil 1 selon la présente invention comprend en outre une caméra 14, de type standard, agencée pour effectuer l'acquisition d'images de l'oscillateur mécanique et, commandée par un circuit 16 de générations de signaux de commande appropriés.The apparatus 1 according to the present invention further comprises a camera 14, of standard type, arranged to carry out the acquisition of images from the mechanical oscillator and, controlled by a circuit 16 for generating appropriate control signals.

Par ailleurs, on notera que l'appareil 1 peut également être pourvu d'un dispositif d'éclairage 18 intégré approprié, optionnel, pour garantir une qualité des images acquises par la caméra 14 suffisante pour en permettre le traitement ultérieur par l'unité de traitement 4. L'homme du métier ne rencontrera pas de difficulté particulière pour munir l'appareil d'un éclairage à LED par exemple, ou de tout autre type d'éclairage adapté, sans sortir du cadre de la présente invention.Furthermore, it will be noted that the apparatus 1 can also be provided with an appropriate integrated lighting device 18, optional, to guarantee a quality of the images acquired by the camera 14 sufficient to allow subsequent processing by the recording unit. treatment 4. Those skilled in the art will not encounter any particular difficulty in providing the apparatus with LED lighting, for example, or any other type of suitable lighting, without departing from the scope of the present invention.

La figure 2 représente un diagramme schématique illustrant des étapes de mise en œuvre d'un procédé de mesure selon un premier mode de réalisation préféré de la présente invention.The figure 2 represents a schematic diagram illustrating the steps of implementing a measurement method according to a first preferred embodiment of the present invention.

Le mouvement horloger à contrôler est disposé sur un support adéquat, soit directement, soit en étant emboîté dans la boîte de la pièce d'horlogerie correspondante, en étant préférablement maintenu au repos pendant quelques dizaines de secondes, au moins, pour assurer une stabilisation des oscillations de son oscillateur mécanique avant de débuter les mesures.The watch movement to be checked is placed on a suitable support, either directly or by being nested in the case of the corresponding timepiece, preferably being kept at rest for a few tens of seconds, at least, to ensure stabilization of the oscillations of its mechanical oscillator before starting the measurements.

Pendant cette étape préparatoire, illustrée sur la figure 2 par la première case 20, l'éclairage optionnel peut également être ajusté pour garantir une bonne qualité des images qui seront acquises ultérieurement par la caméra 14.During this preparatory stage, illustrated on figure 2 by the first box 20, the optional lighting can also be adjusted to guarantee a good quality of the images which will be acquired subsequently by the camera 14.

Une première étape de mesures peut alors être mise en œuvre par l'intermédiaire du dispositif de mesure 12.A first measurement step can then be implemented by means of the measuring device 12.

De manière préférée, le dispositif de mesure 12 comporte un microphone (non représenté) pour effectuer des mesures acoustiques du fonctionnement de l'oscillateur mécanique en relation avec un échappement. Le microphone génère des impulsions électriques basées sur les bruits de l'échappement et les transmet à l'unité de traitement 4 ou à un autre circuit de traitement spécifique (non illustré) du dispositif de mesure 12.Preferably, the measuring device 12 comprises a microphone (not shown) for performing acoustic measurements of the operation of the mechanical oscillator in relation to an escapement. The microphone generates electrical pulses based on the sounds of the exhaust and transmits them to the processing unit 4 or to another specific processing circuit (not shown) of the measuring device 12.

L'homme du métier ne rencontrera pas de difficulté particulière pour mettre en œuvre un dispositif de mesure 12 adapté sans sortir du cadre de la présente invention. Un dispositif similaire à un appareil de type Chronoscope, commercialisé par la Demanderesse tel que mentionné plus haut, pourra par exemple être utilisé, voire même une version simplifiée d'un tel appareil.Those skilled in the art will not encounter any particular difficulty in implementing a suitable measuring device 12 without departing from the scope of the present invention. A device similar to an apparatus of the Chronoscope type, marketed by the Applicant as mentioned above, could for example be used, or even a simplified version of such an apparatus.

En alternative, le dispositif de mesure 12 peut comporter une cellule de mesure optique, de type conventionnel, comprenant notamment une source lumineuse, par exemple une ou plusieurs LED, associées à un détecteur photoélectrique. Un tel dispositif de mesure est généralement destiné à effectuer des mesures de l'intensité d'un faisceau réfléchi par une portion de l'oscillateur mécanique, cette intensité variant avec les oscillations de l'oscillateur mécanique. L'unité de traitement 4 ou un autre circuit de traitement spécifique traite les signaux générés par le détecteur photoélectrique, sur la base de données relatives à la forme géométrique et aux dimensions de l'oscillateur mécanique, pour en déduire des informations.As an alternative, the measuring device 12 may include an optical measuring cell, of conventional type, comprising in particular a light source, for example one or more LEDs, associated with a photoelectric detector. Such a measuring device is generally intended to perform measurements of the intensity of a beam reflected by a portion of the mechanical oscillator, this intensity varying with the oscillations of the mechanical oscillator. The processing unit 4 or another specific processing circuit processes the signals generated by the photoelectric detector, on the basis of data relating to the geometric shape and the dimensions of the mechanical oscillator, in order to deduce information therefrom.

Dans un cas comme dans l'autre, les mesures effectuées à l'étape 22 permettent de conduire à l'identification des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique, en relation avec l'unité de traitement électronique 4, et d'en déduire une valeur mesurée de la fréquence des oscillations de l'oscillateur mécanique.In either case, the measurements made in step 22 make it possible to identify the instants associated substantially with zero elongation of the mechanical oscillator, in relation with the electronic processing unit 4, and deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator.

Sur la base de ces résultats, l'unité de traitement 4 commande le circuit 16 de générations de signaux pour qu'il commande lui-même la caméra 14, à l'étape 24.On the basis of these results, the processing unit 4 controls the signal generation circuit 16 so that it itself controls the camera 14, in step 24.

Plus précisément, le circuit 16 commande la caméra 14 pour que la fréquence d'acquisition d'images présente une valeur proportionnelle à celle mesurée pour la fréquence des oscillations de l'oscillateur mécanique 8, à l'étape 26, et pour que ces images soient acquises à des instants décalés d'un quart de période par rapport aux instants associés à une élongation nulle de l'oscillateur mécanique 8.More precisely, the circuit 16 controls the camera 14 so that the image acquisition frequency has a value proportional to that measured for the frequency of the oscillations of the mechanical oscillator 8, in step 26, and so that these images are acquired at instants shifted by a quarter of a period with respect to the instants associated with zero elongation of mechanical oscillator 8.

Le principe de ces mesures est illustré sur la figure 3 représentant l'évolution de l'élongation de l'oscillateur mécanique 8 en fonction du temps. L'oscillateur mécanique 8 oscille ici avec une fréquence de 4Hz, à titre d'exemple illustratif non limitatif.The principle of these measures is illustrated on figure 3 representing the evolution of the elongation of the mechanical oscillator 8 as a function of time. The mechanical oscillator 8 oscillates here with a frequency of 4 Hz, by way of non-limiting illustrative example.

Les croix illustrées sur la courbe sinusoïdale correspondent aux mesures effectuées par le dispositif de mesure 12, soit sensiblement aux instants associés à une élongation nulle de l'oscillateur mécanique 8. La caméra 14 est alors commandée pour acquérir des images aux instants marquées par des ronds sur la courbe sinusoïdale, ces instants correspondants sensiblement à des extrema d'amplitude pour l'oscillateur mécanique 8.The crosses illustrated on the sinusoidal curve correspond to the measurements carried out by the measuring device 12, ie substantially to the instants associated with zero elongation of the mechanical oscillator 8. The camera 14 is then controlled to acquire images at the instants marked by circles. on the sinusoidal curve, these instants correspond substantially to amplitude extrema for the mechanical oscillator 8.

La figure 3 illustre une variante de mise en œuvre préférée du procédé de mesure, selon laquelle la fréquence d'acquisition des images présente une valeur double de la fréquence des oscillations de l'oscillateur mécanique 8. Avec une telle valeur, les deux extrema d'amplitude sont enregistrés pour chaque oscillation. Bien entendu, l'homme du métier pourra utiliser des valeurs différentes pour effectuer l'acquisition d'images avec la caméra 14, préférablement des multiples pairs de la valeur mesurée pour la fréquence des oscillations de l'oscillateur mécanique 8.The figure 3 illustrates a preferred embodiment of the measurement method, according to which the acquisition frequency of the images has a value double of the frequency of the oscillations of the mechanical oscillator 8. With such a value, the two amplitude extrema are recorded for each oscillation. Of course, those skilled in the art could use different values to acquire images with the camera 14, preferably even multiples of the value measured for the frequency of the oscillations of the mechanical oscillator 8.

Il ressort à l'évidence de la figure 3 que la vitesse de déplacement de l'oscillateur mécanique 8 est minimale autour des points correspondant à l'amplitude maximale des oscillations, ce qui garantit une bonne précision des mesures réalisées.It is evident from the figure 3 that the speed of movement of the mechanical oscillator 8 is minimum around the points corresponding to the maximum amplitude of the oscillations, which guarantees good precision of the measurements taken.

L'amplitude des oscillations de l'oscillateur mécanique 8 peut être calculée, à l'étape 28 sur la figure 2, par l'unité de traitement 4.The amplitude of the oscillations of the mechanical oscillator 8 can be calculated, in step 28 on the figure 2 , by the processing unit 4.

L'homme du métier ne rencontrera pas de difficulté particulière pour programmer l'unité de traitement 4 et parvenir au résultat souhaité, sans sortir du cadre de la présente invention.Those skilled in the art will not encounter any particular difficulty in programming the processing unit 4 and achieving the desired result, without departing from the scope of the present invention.

On notera par exemple que l'unité de traitement 4 peut exécuter un algorithme de reconnaissance de forme permettant de définir au moins un point de référence sur la surface de l'oscillateur mécanique 8. Ainsi, après une étape transitoire d'assimilation de la forme de l'oscillateur mécanique et de sélection d'un tel point de référence, les images acquises par la caméra peuvent être traitées de manière à suivre les déplacements de ce point de référence en fonction du temps. Un tel programme peut notamment inclure des hypothèses à vérifier pour exclure certains cas de figures auxquels pourrait aboutir le traitement des images, prenant notamment en compte l'ordre de grandeur attendu pour l'amplitude ou encore la fréquence des oscillations. Tel pourrait être le cas, par exemple, pour faire la différence entre plusieurs bras identiques d'un balancier.It will be noted for example that the processing unit 4 can execute a shape recognition algorithm making it possible to define at least one reference point on the surface of the mechanical oscillator 8. Thus, after a transient step of assimilating the shape of the mechanical oscillator and selection of such a reference point, the images acquired by the camera can be processed so as to follow the movements of this reference point as a function of time. Such a program can in particular include hypotheses to be verified in order to exclude certain scenarios to which the processing of the images could result, taking into account in particular the order of magnitude expected for the amplitude or even the frequency of the oscillations. This could be the case, for example, to differentiate between several identical arms of a balance.

L'amplitude peut par exemple être calculée comme étant la moyenne des valeurs absolues des élongations maximales pour chaque oscillation, voire comme une moyenne de cette valeur prise sur plusieurs oscillations successives.The amplitude can for example be calculated as being the average of the absolute values of the maximum elongations for each oscillation, or even as an average of this value taken over several successive oscillations.

L'homme du métier ne rencontrera pas non plus de difficulté particulière pour choisir une méthode de traitement des mesures adaptée à ses propres besoins, sans sortir du cadre de l'invention.Those skilled in the art will not encounter any particular difficulty in choosing a measurement processing method suited to their own needs, without departing from the scope of the invention.

Selon un second mode de réalisation préféré de la présente invention, la caméra 14 peut être mise à profit pour effectuer l'identification des instants associés sensiblement à une élongation nulle de l'oscillateur mécanique 8, en relation avec l'unité de traitement électronique 4, et en déduire une valeur mesurée de la fréquence des oscillations de l'oscillateur mécanique. Dans ce cas, la mise en œuvre du dispositif de mesure 12 tel qu'il a été décrit en relation avec le premier mode de réalisation n'est pas nécessaire, tandis que l'unité de traitement est agencée pour exécuter notamment un algorithme de reconnaissance de forme, comme mentionné précédemment.According to a second preferred embodiment of the present invention, the camera 14 can be taken advantage of to carry out the identification of the instants associated substantially with zero elongation of the mechanical oscillator 8, in relation to the electronic processing unit 4 , and deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator. In this case, the implementation of the measuring device 12 as has been described in relation to the first embodiment is not necessary, while the processing unit is arranged to perform in particular a shape recognition algorithm, as mentioned previously.

La figure 4 représente un diagramme schématique illustrant des étapes de mise en œuvre d'un procédé de mesure selon le second mode de réalisation préféré de la présente invention.The figure 4 represents a schematic diagram illustrating the steps for implementing a measurement method according to the second preferred embodiment of the present invention.

De même que dans le premier mode de réalisation préféré, le mouvement horloger à contrôler est disposé sur un support adéquat, en étant préférablement maintenu au repos pendant quelques dizaines de secondes, au moins, pour assurer une stabilisation des oscillations de son oscillateur mécanique avant de débuter les mesures.As in the first preferred embodiment, the watch movement to be checked is placed on a suitable support, preferably being kept at rest for a few tens of seconds, at least, to ensure stabilization of the oscillations of its mechanical oscillator before being start the measurements.

Pendant cette étape préparatoire, illustrée sur la figure 4 par la première case 40, l'éclairage optionnel peut également être ajusté pour garantir une bonne qualité des images qui seront acquises ultérieurement par la caméra 14.During this preparatory stage, illustrated on figure 4 by the first box 40, the optional lighting can also be adjusted to guarantee a good quality of the images which will be acquired subsequently by the camera 14.

Une première étape de mesures peut alors être mise en œuvre au moyen de la caméra 14, schématisée à l'étape 42 sur la figure 4, consistant à effectuer une synchronisation entre les instants associés à l'acquisition d'images par la caméra 14 et la fréquence des oscillations de l'oscillateur mécanique.A first measurement step can then be implemented by means of the camera 14, shown diagrammatically in step 42 on the figure 4 , consisting in carrying out a synchronization between the instants associated with the acquisition of images by the camera 14 and the frequency of the oscillations of the mechanical oscillator.

Le but de cette étape de synchronisation est d'adapter le cadencement de l'acquisition d'images pour qu'il présente une relation fixe prédéfinie avec la fréquence des oscillations de l'oscillateur mécanique 8.The aim of this synchronization step is to adapt the timing of the acquisition of images so that it has a predefined fixed relationship with the frequency of the oscillations of the mechanical oscillator 8.

La mise en œuvre de cette étape est illustrée de manière schématique sur les figures 5, 6 et 7.The implementation of this step is illustrated schematically on the figures 5 , 6 and 7 .

Sur ces figures, on a représenté une fréquence d'acquisition des images par la caméra 14 qui est sensiblement égale à quatre fois celle des oscillations de l'oscillateur mécanique, à titre illustratif non limitatif.In these figures, there is shown a frequency of acquisition of the images by the camera 14 which is substantially equal to four times that of the oscillations of the mechanical oscillator, by way of non-limiting illustration.

L'homme du métier pourra mettre en œuvre le procédé de mesure en utilisant un rapport multiplicatif différent entre les fréquences de la caméra et des oscillations en fonction de ses besoins et sans sortir du cadre de la présente invention. Ce rapport multiplicatif pourra notamment être un multiple de quatre, voire même un nombre rationnel, auquel cas le traitement des mesures portera sur des mesures effectuées sur plusieurs périodes d'oscillations.Those skilled in the art will be able to implement the measurement method by using a different multiplicative ratio between the frequencies of the camera and of the oscillations according to their needs and without departing from the scope of the present invention. This multiplicative ratio may in particular be a multiple of four, or even a rational number, in which case the processing of the measurements will relate to measurements made over several oscillation periods.

La figure 5 représente un cas particulier selon lequel l'acquisition des images est en retard sur les oscillations de l'oscillateur mécanique 8, la fréquence d'acquisition des images étant bien égale à quatre fois celle des oscillations.The figure 5 represents a particular case in which the acquisition of the images lags behind the oscillations of the mechanical oscillator 8, the acquisition frequency of the images being indeed equal to four times that of the oscillations.

Les images acquises au cours d'une n-ième oscillation sont notées Pn1, Pn2, Pn3 et Pn4. A chaque image acquise sont associés un instant tn1, tn2, tn3 et tn4 et une valeur de l'élongation de l'oscillateur mécanique, ϕn1, ϕn2, ϕn3 et ϕn4.The images acquired during an n-th oscillation are denoted P n1 , P n2 , P n3 and P n4 . With each acquired image are associated an instant t n1 , t n2 , t n3 and t n4 and a value of the elongation of the mechanical oscillator, ϕ n1 , ϕ n2 , ϕ n3 and ϕ n4 .

Dans le cas de la figure 5, on constate que le retard dans l'acquisition des images se traduit par une valeur négative de la grandeur ϕn3n1.In the case of figure 5 , it is noted that the delay in the acquisition of the images results in a negative value of the magnitude ϕ n3n1 .

La figure 6 représente un autre cas particulier selon lequel l'acquisition des images est en avance sur les oscillations de l'oscillateur mécanique 8, la fréquence d'acquisition des images étant toujours bien égale à quatre fois celle des oscillations.The figure 6 shows another particular case in which the acquisition of the images is ahead of the oscillations of the mechanical oscillator 8, the acquisition frequency of the images always being quite equal to four times that of the oscillations.

Dans ce cas, on constate que la grandeur ϕn3n1 est positive.In this case, one notes that the quantity ϕ n3n1 is positive.

La figure 7 représente un autre cas particulier selon lequel la fréquence d'acquisition des images n'est pas proportionnelle à celle des oscillations de l'oscillateur mécanique 8.The figure 7 represents another particular case according to which the frequency of acquisition of the images is not proportional to that of the oscillations of the mechanical oscillator 8.

On constate sur la figure 7 que la fréquence d'acquisition des images est progressivement corrigée, de telle manière qu'au bout d'environ 2 secondes de mesures, la fréquence d'acquisition des images soit effectivement égale à quatre fois la fréquence des oscillations.We see on the figure 7 that the acquisition frequency of the images is progressively corrected, such that after approximately 2 seconds of measurements, the acquisition frequency of the images is effectively equal to four times the frequency of the oscillations.

En effet, l'unité de traitement 4 est agencée pour prendre en compte tous ces cas de figures (retard ou avance des mesures et non proportionnalité entre les fréquences) et générer des signaux adaptés à l'attention du circuit 16 de commande de la caméra 14 pour corriger les instants auxquels des images sont acquises.In fact, the processing unit 4 is arranged to take into account all these scenarios (delay or advance of the measurements and non-proportionality between the frequencies) and generate signals suitable for the attention of the camera control circuit 16. 14 to correct the times at which images are acquired.

L'homme du métier ne rencontrera pas de difficulté particulière pour mettre en œuvre une unité de traitement permettant de remplir une telle fonction. En particulier, l'unité de traitement est préférablement munie d'un régulateur de type P, PI ou PID ("Proportionnel", "Proportionnel Intégral" ou "Proportionnel Intégral Dérivé") agencé pour permettre le traitement des images en boucle et ajuster la valeur de la fréquence et des instants d'acquisition au fur et à mesure du traitement des images. A titre d'exemple non limitatif, partant de la situation illustrée sur la figure 7, il est possible d'effectuer l'ajustement de la fréquence d'acquisition des images, à partir des mesures de la grandeur ϕn3n1 de la manière suivante: en supposant que la durée séparant deux prises d'images de la caméra 14 soit initialement donnée par T[0], il est alors possible d'utiliser un régulateur P pour corriger cette durée, en appliquant par exemple une loi du type T[n+1]=T[0]+α(ϕn3n1), α étant un facteur de proportionnalité défini par le régulateur. Un régulateur P permet d'ajuster rapidement la fréquence d'acquisition des images par la caméra 14. Un régulateur de type PI peut être utilisé, par exemple, pour corriger les instants auxquels les images sont acquises, pour les synchroniser notamment avec les instants auxquels l'élongation de l'oscillateur est nulle.Those skilled in the art will not encounter any particular difficulty in implementing a processing unit making it possible to fulfill such a function. In particular, the processing unit is preferably provided with a P, PI or PID type regulator (“Proportional”, “Proportional Integral” or “Proportional Integral Derivative”) arranged to allow the processing of the images in a loop and to adjust the value of the frequency and of the instants of acquisition as the images are processed. By way of non-limiting example, starting from the situation illustrated on figure 7 , it is possible to carry out the adjustment of the frequency of acquisition of the images, from the measurements of the magnitude ϕ n3n1 in the following way: by supposing that the duration separating two images taken by the camera 14 is initially given by T [0], it is then possible to use a regulator P to correct this duration, for example by applying a law of the type T [n + 1] = T [0] + α (ϕ n3 - ϕ n1 ), α being a proportionality factor defined by the regulator. A regulator P makes it possible to quickly adjust the frequency of acquisition of the images by the camera 14. A regulator of the PI type can be used, for example, to correct the instants at which the images are acquired, to synchronize them in particular with the instants at which the elongation of the oscillator is zero.

Ainsi, l'étape 42 (figure 4) est une étape de traitement en boucle des images acquises pendant une première phase, de synchronisation, de telle manière que la grandeur ϕn3n1 soit nulle (cette grandeur étant constante lorsque les fréquences d'acquisition et d'oscillations sont proportionnelles, et nulle lorsque les images sont synchronisées avec des passages de l'oscillateur dans sa position d'élongation nulle).Thus, step 42 ( figure 4 ) is a loop processing step of the images acquired during a first phase, of synchronization, so that the quantity ϕ n3n1 is zero (this quantity being constant when the acquisition and oscillation frequencies are proportional, and zero when the images are synchronized with passages of the oscillator in its position of zero elongation).

Une fois l'opération de synchronisation finalisée, à l'étape 44, on passe à l'acquisition des images qui vont permettre, après traitement, de déterminer l'amplitude des oscillations de l'oscillateur mécanique 8.Once the synchronization operation is finalized, in step 44, we move on to the acquisition of the images which will make it possible, after processing, to determine the amplitude of the oscillations of the mechanical oscillator 8.

L'étape 44 de mesures est illustrée de manière schématique sur la figure 8, alors que l'acquisition des images est synchronisée avec les oscillations de l'oscillateur mécanique 8, c'est-à-dire que la fréquence d'acquisition présente une valeur qui est un multiple de celle de la fréquence des oscillations de l'oscillateur mécanique.The measurement step 44 is schematically illustrated on the figure 8 , while the acquisition of the images is synchronized with the oscillations of the mechanical oscillator 8, that is to say that the acquisition frequency has a value which is a multiple of that of the frequency of the oscillations of the mechanical oscillator.

De même que pour le premier mode de réalisation, le circuit 16 commande la caméra 14 pour que la fréquence d'acquisition d'images présente une valeur - proportionnelle - au moins égale à celle mesurée pour la fréquence des oscillations de l'oscillateur mécanique 8, et pour que ces images soient acquises au moins à des instants décalés d'un quart de période par rapport aux instants associés à une élongation nulle de l'oscillateur mécanique 8.As for the first embodiment, the circuit 16 controls the camera 14 so that the image acquisition frequency has a value - proportional - at least equal to that measured for the frequency of the oscillations of the mechanical oscillator 8 , and so that these images are acquired at least at instants shifted by a quarter of a period with respect to the instants associated with zero elongation of the mechanical oscillator 8.

Le principe de ces mesures est illustré sur la figure 8 représentant l'évolution de l'élongation de l'oscillateur mécanique 8 en fonction du temps. L'oscillateur mécanique oscille ici avec une fréquence de 4Hz, à titre d'exemple illustratif non limitatif.The principle of these measures is illustrated on figure 8 representing the evolution of the elongation of the mechanical oscillator 8 as a function of time. The mechanical oscillator oscillates here with a frequency of 4 Hz, by way of non-limiting illustrative example.

La caméra 14 est commandée pour acquérir des images aux instants marquées par des ronds sur la courbe sinusoïdale, ces instants correspondants sensiblement, soit à des instants auxquels l'oscillateur présente sensiblement une élongation nulle, soit à des extrema d'amplitude des oscillations.The camera 14 is controlled to acquire images at the instants marked by circles on the sinusoidal curve, these instants corresponding substantially, either to instants at which the oscillator exhibits substantially zero elongation, or at extremes of amplitude of the oscillations.

La figure 8 illustre une variante de mise en œuvre préférée du procédé de mesure, selon laquelle la fréquence d'acquisition des images présente une valeur égale à quatre fois celle de la fréquence des oscillations. Avec une telle valeur, les deux extrema d'amplitude sont enregistrés pour chaque oscillation, en plus des deux instants auxquels l'oscillateur présente une élongation nulle. Bien entendu, l'homme du métier pourra utiliser des valeurs différentes pour effectuer l'acquisition d'images avec la caméra 14, préférablement des multiples du quadruple de la valeur mesurée pour la fréquence des oscillations de l'oscillateur mécanique 8.The figure 8 illustrates a preferred implementation variant of the measurement method, according to which the acquisition frequency of the images has a value equal to four times that of the frequency of the oscillations. With such a value, the two amplitude extrema are recorded for each oscillation, in addition to the two instants at which the oscillator exhibits zero elongation. Of course, those skilled in the art could use different values to acquire images with the camera 14, preferably multiples of a quadruple of the value measured for the frequency of the oscillations of the mechanical oscillator 8.

De même que dans le premier mode de réalisation, la vitesse de déplacement de l'oscillateur mécanique 8 est minimale autour des points correspondants à l'amplitude maximale des oscillations, ce qui garantit une bonne précision des mesures réalisées.As in the first embodiment, the speed of movement of the mechanical oscillator 8 is minimum around the points corresponding to the maximum amplitude of the oscillations, which guarantees good precision of the measurements made.

L'amplitude des oscillations de l'oscillateur mécanique 8 peut être calculée, à l'étape 46 sur la figure 4, par l'unité de traitement 4, par exemple en calculant la moyenne des amplitudes maximales d'un côté et de l'autre pour chaque oscillation, voire comme une moyenne de cette valeur prise sur plusieurs oscillations successives, comme déjà évoqué plus haut.The amplitude of the oscillations of the mechanical oscillator 8 can be calculated, in step 46 on the figure 4 , by the processing unit 4, for example by calculating the average of the maximum amplitudes on one side and the other for each oscillation, or even as an average of this value taken over several successive oscillations, as already mentioned above.

On comprend de la description qui précède que le procédé de mesure selon la présente invention permet simplement et rapidement de déterminer la fréquence et l'amplitude des oscillations d'un oscillateur mécanique au moins partiellement visible, par la mise en œuvre d'un appareil de mesure de conception relativement simple et peu coûteuse.It will be understood from the above description that the measurement method according to the present invention makes it possible simply and quickly to determine the frequency and amplitude of the oscillations of an at least partially visible mechanical oscillator, by implementing a measuring device of relatively simple and inexpensive design.

La description qui précède s'attache à décrire un mode de réalisation particulier à titre d'illustration non limitative et, l'invention n'est pas limitée à la mise en œuvre de certaines caractéristiques particulières qui viennent d'être décrites, comme par exemple le fait que l'unité de traitement est une unité indépendante, comme un ordinateur de type PC notamment. En effet, il est possible de prévoir que l'unité de traitement soit intégrée directement dans l'appareil de mesure sans sortir du cadre de la présente invention, même s'il peut être plus avantageux pour un utilisateur de pouvoir utiliser son propre ordinateur, en y installant simplement un programme de traitement adéquat des mesures effectuées. De manière similaire, il est possible de prévoir que le circuit 16 de commande de la caméra soit intégré dans l'unité de traitement sans sortir du cadre de la présente invention.The foregoing description attempts to describe a particular embodiment by way of non-limiting illustration and the invention is not limited to the implementation of certain particular characteristics which have just been described, such as for example the fact that the processing unit is an independent unit, such as a PC type computer in particular. Indeed, it is possible to provide for the processing unit to be integrated directly into the measuring device without departing from the scope of the present invention, even if it may be more advantageous for a user to be able to use his own computer, by simply installing a program to process the measurements taken. Similarly, it is possible to provide that the camera control circuit 16 is integrated into the processing unit without departing from the scope of the present invention.

On notera que le procédé de mesure selon la présente invention peut être appliqué à différents types d'oscillateurs mécaniques sans sortir du cadre de l'invention, comme notamment des balanciers-spiraux ou des oscillateurs de type diapason. La fréquence des oscillations de l'oscillateur mécanique importe peu pour la mise en œuvre du présent procédé, pour autant que la durée d'acquisition d'une image par la caméra soit très faible en référence à la période des oscillations mesurées. En outre, il n'est pas indispensable que l'intégralité de l'oscillateur mécanique figure sur les images acquises par la caméra pour permettre un traitement efficace des images. Les algorithmes de traitement mis en œuvre, notamment pour la reconnaissance de formes, peuvent comporter des hypothèses à vérifier pour lever des ambiguïtés d'interprétation.It will be noted that the measuring method according to the present invention can be applied to different types of mechanical oscillators without departing from the scope of the invention, such as in particular sprung balances or tuning fork type oscillators. The frequency of the oscillations of the mechanical oscillator is of little importance for the implementation of the present method, as long as the duration of acquisition of an image by the camera is very low with reference to the period of the measured oscillations. In addition, it is not essential that the entire mechanical oscillator appears on the images acquired by the camera to allow efficient processing of the images. The processing algorithms implemented, in particular for pattern recognition, may include hypotheses to be verified in order to resolve ambiguities of interpretation.

L'homme du métier ne rencontrera pas de difficulté particulière pour adapter le contenu de la présente divulgation à ses propres besoins et mettre en œuvre un procédé de mesure de la fréquence et de l'amplitude d'un oscillateur mécanique tirant profit de mesures effectuées par une caméra, de type standard, suite à la détermination d'instants auxquels l'oscillateur présente une élongation nulle conduisant à la valeur de la fréquence des oscillations, sans sortir du cadre de l' invention telle que définie par les revendications.Those skilled in the art will not encounter any particular difficulty in adapting the content of the present disclosure to their own needs and implementing a method for measuring the frequency and the amplitude of a mechanical oscillator taking advantage of measurements made by a camera, of standard type, following the determination of times at which the oscillator has zero elongation leading to the value of the frequency of the oscillations, without departing from the scope of the invention as defined by the claims.

Claims (12)

  1. Method for measuring the frequency and the amplitude of the oscillations of a mechanical oscillator (8) of a horological movement (10), comprising the steps consisting in
    performing optical or acoustic measurements to identify instants sensibly associated with a zero elongation of the mechanical oscillator (8), and deducing therefrom a measured value of the frequency of the oscillations of the mechanical oscillator (8),
    selecting a reference point of the mechanical oscillator (8),
    controlling a camera (14), of standard type, to perform the acquisition of images of the mechanical oscillator (8) including said reference point, at an acquisition frequency whose value is adjusted to be a multiple of said measured value, so that at least some of said images are associated with instants at which said reference point is situated in positions sensibly corresponding to the minimum and/or maximum elongations of the mechanical oscillator (8), and deducing therefrom the value of the amplitude of the oscillations of the mechanical oscillator (8).
  2. Method according to Claim 1, characterized in that said measurements are based on the measurement of the light intensity of a light beam reflected by a portion of the mechanical oscillator (8).
  3. Method according to Claim 1 or 2, characterized in that said image acquisition frequency has a value twice said measured value, said images being acquired at instants offset by a quarter period with respect to said instants associated with a zero elongation of the mechanical oscillator (8).
  4. Method according to Claim 1, characterized in that said measurements, making it possible to lead to the determination of a measured value of the frequency, are performed by means of a camera (14) controlled to perform, in a loop, the acquisition of images of the mechanical oscillator (8) and, on the one hand, identify the instants associated sensibly with a zero elongation of the mechanical oscillator (8) and, on the other hand, adjust the image acquisition frequency so that its value is proportional to that of the frequency of the oscillations of the mechanical oscillator (8), with a proportionality factor in the form of an integer or rational number.
  5. Method according to Claim 4, characterized in that said value of the image acquisition frequency is a multiple of four times the value of the frequency of the oscillations of the mechanical oscillator (8) .
  6. Method according to any one of the preceding claims, characterized in that it comprises an additional step of determination of the working of the mechanical oscillator (8) from the value measured for its frequency of oscillations.
  7. Apparatus (1) for measuring the frequency and the amplitude of the oscillations of a mechanical oscillator (8) of a horological movement (10), comprising a connection member (2) connecting to an electronic processor unit (4) and an acoustic or optical measurement device (12) arranged to allow the identification of the instants sensibly associated with a zero elongation of the mechanical oscillator (8), in connection with the electronic processor unit (4), and deduce therefrom a measured value of the frequency of the oscillations of the mechanical oscillator (8),
    characterized in that it comprises a camera (14), of standard type, arranged to perform the acquisition of images of the mechanical oscillator (8) including a reference point, at an acquisition frequency whose value is adjusted to be a multiple of said measured value, so that at least some of said images are associated with instants at which said reference point is situated in positions sensibly corresponding to the minimum and/or maximum elongations of the mechanical oscillator (8), and make it possible to deduce therefrom the value of the amplitude of the oscillations of the mechanical oscillator (8) in connection with the electronic processor unit (4).
  8. Apparatus (1) according to Claim 7, characterized in that said measurement device (12) comprises a microphone arranged to allow the identification of the instants sensibly associated with a zero elongation of the mechanical oscillator (8) by detection of the impacts of an escapement associated with the mechanical oscillator (8).
  9. Apparatus (1) according to Claim 7, characterized in that said measurement device (12) comprises a light radiation source arranged to emit a light beam towards the mechanical oscillator (8), and an optical sensor arranged to receive a beam reflected by the mechanical oscillator (8) following its illumination by said light beam, to allow the identification of the instants sensibly associated with a zero elongation of the mechanical oscillator (8) from the measurements performed by said optical sensor in connection with the electronic processor unit (4).
  10. Assembly comprising a measurement apparatus (1) according to any one of Claims 7 to 9 associated with an electronic processor unit (4) comprising a microprocessor (6) arranged to process the results of the measurements performed by said measurement apparatus (1) and deduce therefrom the frequency and the amplitude of the oscillations of the mechanical oscillator (8).
  11. Assembly comprising a measurement apparatus (1) according to Claim 7, wherein said camera (14) itself fulfils the function of said optical measurement device (12) arranged to allow the identification of the instants sensibly associated with a zero elongation of the mechanical oscillator (8), said apparatus being associated with an electronic processor unit (4) comprising a microprocessor (6) arranged to control said camera (14) and perform, in a loop, the acquisition of images of the mechanical oscillator (8) and, on the one hand, identify the instants sensibly associated with a zero elongation of the mechanical oscillator (8) and, on the other hand, adjust the image acquisition frequency so that its value is a multiple of that of the frequency of the oscillations of the mechanical oscillator (8).
  12. Assembly according to Claim 11, characterized in that said electronic processor unit (4) comprises a setting loop comprising a regulator of P, PI or PID type.
EP13195524.7A 2013-12-03 2013-12-03 Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement Active EP2881809B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13195524.7A EP2881809B1 (en) 2013-12-03 2013-12-03 Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13195524.7A EP2881809B1 (en) 2013-12-03 2013-12-03 Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement

Publications (2)

Publication Number Publication Date
EP2881809A1 EP2881809A1 (en) 2015-06-10
EP2881809B1 true EP2881809B1 (en) 2021-02-03

Family

ID=49683609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13195524.7A Active EP2881809B1 (en) 2013-12-03 2013-12-03 Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement

Country Status (1)

Country Link
EP (1) EP2881809B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH339886A (en) * 1956-04-16 1959-07-15 Far Fab Assortiments Reunies Method for measuring the amplitude of the vibrations of an oscillating member, in particular of the balance of a clockwork movement, and device for implementing this method
FR1210892A (en) * 1958-09-04 1960-03-11 Etablissements Parrenin Soc D Instrument for measuring the amplitude and rate of movement of a chronometric oscillator
CH40675A4 (en) * 1975-01-14 1977-04-29
FR2767205B1 (en) * 1997-08-07 1999-10-15 Femto METHOD FOR MEASURING PARAMETERS OF A MECHANICAL WATCH AND DEVICE FOR IMPLEMENTING SAME
FR2780169B1 (en) 1998-06-22 2000-09-22 Ecole D Ingenieurs Du Canton D METHOD AND APPARATUS FOR MEASURING THE MARK OF A MECHANICAL WATCH MOVEMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2881809A1 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
EP2458458B1 (en) Method for measuring the precision of a mechanical watch
BE1020078A3 (en) METHOD AND APPARATUS FOR VIEWING FLIGHT TIME TECHNIQUES FOR PROVIDING DISTANCE INFORMATION.
EP2293286A1 (en) Watch with integrated chromatic tuner
EP3379347A1 (en) Method for adjusting the operation frequency of an electronic watch
FR2563337A1 (en) MEASURING THE CONSTRAINTS IN THE FLOAT GLASS
EP0156084B1 (en) Range measuring method using electromagnetic waves adapted to turbulences of the propagating medium, and range findor using the same
EP2881809B1 (en) Method and apparatus for measuring the frequency and amplitude of the oscillations of a mechanical oscillator of a clock movement
EP2864844A1 (en) Method for determining an imbalance characteristic of an oscillator
FR2921733A1 (en) METHOD FOR CONTROLLING A SECURED SYSTEM
WO2020002798A1 (en) Method and system for estimating the drift of a clock for dating seismic data samples
EP4022400A1 (en) Method and system for assisting in the adjustment of a mechanical timepiece
CH706642B1 (en) Optoelectronic instrument for measuring the movement of moving parts of a mechanical watch caliber as well as the measuring method.
EP2828635A1 (en) System for measuring a zone of separation in a substrate
CH712940B1 (en) Methods and system for determining certain parameters related to the regulating organ of a watch.
CH709306A2 (en) Device and method for dynamic measurement of a watch movement.
EP3823277B1 (en) Measuring method for a video latency
FR2958740A1 (en) DEVICE FOR DIGITAL PROCESSING OF INFORMATION FROM A GYROLASER AND ASSOCIATED GYROLASER.
EP3564492B1 (en) Measuring method for testing an aircraft turbine engine component
FR2767205A1 (en) Measuring balance wheel amplitude on mechanical watch
CH704688A2 (en) Chronograph watch certifying method, involves measuring precision of chronograph of watch to be certified to control precision with respect to less reference time for determined time period corresponding to maximum power reserve of watch
EP4118818A1 (en) Method and device for dating camera images
EP3259624B1 (en) Measurement by means of atomic interferometry with multiple species of atoms
CH717549A2 (en) Watch with annual calendar adjustment and related process.
CH713643A2 (en) Method for adjusting the running frequency of an electronic watch
WO1999067686A1 (en) Method and apparatus for measuring a watch action movement index mark

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150720

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

R17P Request for examination filed (corrected)

Effective date: 20131203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190930

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200710

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1359829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013075567

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E-PATENT S.A., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210203

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1359829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013075567

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211203

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230109

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203