EP2880264A1 - Rotor für eine axial durchströmbare turbomaschine und doppelmutter zum verbinden zweier zugankerelemente - Google Patents

Rotor für eine axial durchströmbare turbomaschine und doppelmutter zum verbinden zweier zugankerelemente

Info

Publication number
EP2880264A1
EP2880264A1 EP13762773.3A EP13762773A EP2880264A1 EP 2880264 A1 EP2880264 A1 EP 2880264A1 EP 13762773 A EP13762773 A EP 13762773A EP 2880264 A1 EP2880264 A1 EP 2880264A1
Authority
EP
European Patent Office
Prior art keywords
rotor
connecting means
tie rod
components
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13762773.3A
Other languages
English (en)
French (fr)
Inventor
Karin COSTAMAGNA
Sascha Dungs
Harald Hoell
Henrik Hull
Karsten Kolk
Ulf LAUDAGE
Harald Nimptsch
Peter Schröder
Vyacheslav Veitsman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2880264A1 publication Critical patent/EP2880264A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Definitions

  • the invention relates to a rotor for an axially flow-through turbomachine, comprising a number of a plurality of disc-shaped or drum-shaped rotor components and at least one extending through the rotor components through tie rods, on whose protruding ends in each case an abutment for axially clamping the rotor components arranged therebetween is screwed.
  • a rotor for an axially flow-through turbomachine comprising a number of a plurality of disc-shaped or drum-shaped rotor components and at least one extending through the rotor components through tie rods, on whose protruding ends in each case an abutment for axially clamping the rotor components arranged therebetween is screwed.
  • Such rotors are from the extensive existing
  • the object of the invention is to provide an alternative design of rotors for an axially permeable turbomachine. Another object of the invention is to provide the necessary components.
  • the rotor-related object is achieved with a rotor according to the features of claim 1.
  • the object directed to the components is achieved with a double nut according to the features of claim 11.
  • Tie rod is axially divided in at least two tie rod elements and are, wherein the immediately adjacent tie rod elements are each releasably connected to each other via a connecting means.
  • the rotor comprises along its longitudinal extent a first rotor end section, at least one further rotor section and a second rotor end section, wherein the connecting means is arranged axially in one of the further rotor sections.
  • the connecting means and one of the rotor components are configured such that after releasing the arranged on the second rotor end portion abutment adjacent to the second rotor end portionffensstoff- with the disposed on the first rotor end portion abutment clamps the rotor components arranged therebetween.
  • a particular advantage of this embodiment is that, in a first assembly step, that on the first Ankerelement adoptedfädelten rotor components of one of the two abutment and the connecting means can already be clamped, although the rotor is not yet fully equipped with rotor components. Only after fastening the second or further tie rod element, the further disc-shaped or drum-shaped rotor components are threaded onto this, after which the second counter bearing can then be screwed at the end of the second or further Buchankerelements, whereby all disk-shaped or drum-shaped Ro- torbaumaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschinemaschine
  • the tension which in the meantime acts on one part of the disk-shaped or drum-shaped rotor components from one of the two counter bearings and the connecting element, is thereby released again.
  • the elastic expansions of the two tie rod elements are matched to one another in such a way that the bracing of the rotor components between the two counter bearings at least partially, but preferably completely, completely releases the initial tensioning of counter bearing and connecting element.
  • the connecting means is designed as a nut in which the opposite ends of axially adjacent tie rod elements are screwed.
  • the connecting element is monolithically connected to one of the tie rod elements.
  • a tie rod element can also have an internal thread as connection means for screwing on another tie rod element at one end.
  • the connecting means has a plurality of openings for the passage of a fluid from one of the rotor (end) sections to another of the rotor (end) sections.
  • the respective connecting means has a circumferentially arranged circumferential collar, in that the openings are arranged as passage openings for cooling fluid.
  • the connecting means can also be used to realize a support of the tie rod to reduce vibrations during operation of the turbomachine. For this purpose, only a radial support of at least one of the rotor components on the respective connection means is required.
  • the embodiment in which the rotor is designed as a gas turbine rotor, the first rotor end portion as a compressor rotor, the further rotor portion as a central rotor portion and the second rotor end portion as a turbine rotor.
  • the central rotor section may be formed solely by a hollow shaft or by a plurality of blade-less rotor disks and the rotor end sections by rotor disks.
  • the double nut for connecting two tie rod elements centrally between the two screw holes has an inwardly directed rim or a separating web, which prevents the tie rod elements are screwed too deep in the double nut.
  • FIG. 1 shows a partial longitudinal section through a rotor according to the invention for a stationary axial flow turbine engine
  • Figure 2 shows a detail of the longitudinal section of FIG
  • FIG. 4 shows a connection element for connecting two tension anchor elements with one arranged on the circumference
  • FIG. 5 is a perspective view of the connecting element according to FIG. 4 and FIG.
  • FIG. 6 shows a connecting element radially supported on the rotor component in a longitudinal section according to FIG. 2.
  • the rotor 10 is designed as a gas turbine rotor, the remaining components of the gas turbine not being shown here.
  • the design of the rotor 10 is fundamentally modular and can be used as a disk construction. to draw.
  • the rotor 10 comprises a number of rotor disks 12, which are also referred to here as disc-shaped rotor components 14.
  • the rotor 10 also comprises a drum-shaped rotor component 16, which in the exemplary embodiment is designated as the middle hollow shaft 18.
  • the middle hollow shaft 18 In addition to the central hollow shaft 18, there is also a front hollow shaft 22 screwed onto a tie rod 20 and a rear hollow shaft 24 screwed on the opposite end.
  • the front hollow shaft 22 is also referred to here as first counter bearing 26 and the rear hollow shaft 24 as second counter bearing 28.
  • the two abutments 26, 28 clamp with the help of the tie rod 20, the rotor components 14, 16 with each other and press them firmly together. To achieve this, the entire tie rod 20 is elastically stretched by the two abutments 26, 28.
  • the tie rod 20 comprises two separately produced tie rod elements 30, 32.
  • the tie rod 20 also includes a connecting means 34 which connects the two monolithic tie rod elements 30, 32 releasably to each other.
  • the connecting means 34 is designed as a nut or as a double nut, which has an inwardly directed collar 36 between its two screw-in openings 37 (FIG. 5).
  • the rotor 10 can theoretically be axially divided into a first rotor end section 38, into a further rotor section 40 and into a second rotor end section 42, wherein the connecting means 34 is arranged axially in the further rotor section 40.
  • the first rotor end section 38 is designed as a compressor rotor 44
  • the second rotor end section 42 as a turbine rotor 48.
  • a combustion chamber of the gas turbine is arranged radially outside the rotor 10.
  • FIGS. 2 to 4 show a section from the transition region between the further rotor section 40 and the second rotor end section 42 in a longitudinal section. Shown are the two tie rod elements 30 and 32 as well as a double nut 35 which connects them to each other as connecting means 34.
  • the central hollow shaft 18 is arranged radially adjacent to the double nut 35.
  • the double nut 35 has a conical surface 50, whose pitch corresponds to an inwardly facing surface 52 of the central hollow shaft 18.
  • a smaller shaft collar 54 is provided centrally between the two screw-in openings 37 of the double nut 35, the side surface 56 of which bears against a side surface 58 of the central hollow shaft 18 parallel thereto.
  • the second abutment 28 is screwed onto the still free end of the tie rod element 32.
  • the entire tie rod 20 is stretched so elastically that the bracing tion of the double nut 35 and the connecting means 34 and the first abutment 26 dissolves again.
  • axially extending holes 60 may be provided both in the central hollow shaft 18 and in the double nut 35, with which a coolant from a rotor (end) section to another rotor (end) section can be passed.
  • FIG. 3 shows the same section as FIG. 2, but with the construction for axial clamping in the region of the double nut 35 and the middle hollow shaft 18 being slightly modified compared with the construction according to FIG.
  • the radial overlap of double nut and middle hollow shaft 18 required for establishing the axial clamping is effected here using a sleeve 62 provided with a collar therebetween.
  • FIG 4 shows another embodiment for clamping the rotor components 14, 16 between a first counter bearing (not shown in FIG 4) and the connecting means 34.
  • the connecting means 34 is again designed as a double nut 35 with two opposing Einschraubö réelleen 37.
  • a larger shaft collar 54 is provided on the outer circumference, in which openings 64 distributed uniformly over the circumference are provided for the passage of a cooling fluid.
  • the two parallel side surfaces 56 of the shaft collar 54 go over a radius in curved sloping flanks 57, which terminate at the screw-37 openings.
  • This double nut 35 with the screw-in opening 37 and four uniformly distributed passage openings 64 is shown in FIG 5 in perspective view.
  • a circumferential groove 66 with a support wire 68 lying therein can be provided on the shell-side surface of the shaft collar 54, with the aid of which the tie rod 20 extends radially on one of the rotor components, according to FIG 6 on the central hollow shaft 18, is supported.
  • FIGS. 2 to 6 mean that they show gas turbine rotors 10 in which the second counter bearing 28 has not yet been screwed onto the second tie rod element 32, so that only those in FIGS. 2 to 6 to the left of the double nut 35 Rotor components shown 14, 16 are braced with the first abutment 26 and the rotor components 14, 16 shown to the right thereof not.
  • the invention thus relates to a rotor 10 for an axially flow-through turbomachine, comprising a number of several disc-shaped or drum-shaped Rotorbau- parts 14, 16 and at least one extending through the rotor components 14, 16 extending pin-shaped tie rods 20, at its protruding ends in each case one Counter bearing 26, 28 is screwed for axial clamping of the rotor components 14, 16 arranged therebetween.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Rotor für eine axial durchströmbare Turbomaschine und Doppelmutter zum Verbinden zweier Zugankerelemente. Die Erfindung betrifft einen Rotor (10) für eine axial durchströmbare Turbomaschine, umfassend eine Anzahl von mehreren scheibenförmigen (12) oder trommelförmigen (16) Rotorbauteilen und zumindest einen sich durch die Rotorbauteile (14) hindurch erstreckenden stiftförmigen Zuganker (20), an dessen überstehenden Enden jeweils ein Gegenlager (26, 28) zum axialen Verspannen der dazwischen angeordneten Rotorbauteile (14) aufgeschraubt ist. Um einen Rotor (10) bereitzustellen, mit dem sich kürzere Serviceintervallzeiten erreichen lassen, ist vorgesehen, dass der Zuganker (20) zumindest zwei axial benachbarte Zugankerelemente (30, 32) umfasst, die jeweils über ein Verbindungsmittel (34) lösbar miteinander verbunden sind. Doppelmutter (35) zum Verbinden zweier Zugankerelemente (30, 32).

Description

Beschreibung
Rotor für eine axial durchströmbare Turbomaschine und Doppel - mutter zum Verbinden zweier Zugankerelemente
Die Erfindung betrifft einen Rotor für eine axial durchströmbare Turbomaschine, umfassend eine Anzahl von mehreren scheibenförmigen oder trommeiförmigen Rotorbauteilen und zumindest einen sich durch die Rotorbauteile hindurch erstreckenden Zuganker, an dessen überstehenden Enden jeweils ein Gegenlager zum axialen Verspannen der dazwischen angeordneten Rotorbauteile aufgeschraubt ist. Derartige Rotoren sind aus dem umfangreichen vorhandenen
Stand der Technik zu stationären Gasturbinen bestens bekannt. Beispielsweise ist im Buch „Stationäre Gasturbinen" der Herausgeber Christoph Lechner und Jörg Seume ein eingangs genannter Rotor auf Seite 629 gezeigt. Der Rotor ist in soge- nannter Scheibenbauweise ausgeführt, wobei die Rotorscheiben an ihrem äußeren Umfang Schaufeln, entweder für den Verdichter oder für die Turbineneinheit der Gasturbine, tragen. Zwischen den Verdichterscheiben und Turbinenscheiben ist eine mittlere Hohlwelle als trommeiförmiges Bauteil angeordnet. Durch alle Rotorbauteile durchstreckt sich ein zentraler Zuganker, der mit Hilfe zweier Gegenlager, der vorderen Hohlwelle und der hinteren Hohlwelle, die zwischen diesen beiden Hohlwellen angeordneten Rotorbauteile miteinander verspannt. Dabei wird der Zuganker bis an seine Streckgrenze elastisch gedehnt, wodurch die einzelnen Rotorbauteile miteinander verspannt werden.
Eine ähnliche Konstruktion ist auch mit dezentralen Zugankern möglich, wobei auf einem gleichen Radius liegend beispiels- weise zwölf Zuganker gleich verteilt angeordnet sind.
Ebenso ist es bekannt, die scheibenförmigen oder auch trommeiförmigen Rotorbauteile miteinander zu verschweißen. Selbst Kombinationen der vorgenannten Ausführungen, bei dem beispielsweise der Verdichterrotor verschweißt ist und die Rotorbauteile der Turbineneinheit über eine Verschraubung mit Bolzen am Umfang verspannt sind, sind auch bekannt.
Aufgabe der Erfindung ist es, eine dazu alternative Bauform von Rotoren für eine axial durchströmbare Turbomaschine anzugeben. Weitere Aufgabe der Erfindung ist es, die dazu erforderlichen Bauteile bereitzustellen.
Die auf den Rotor bezogene Aufgabe wird mit einem Rotor gemäß den Merkmalen des Anspruchs 1 gelöst. Die auf die Bauteile gerichtete Aufgabe wird mit einer Doppelmutter gemäß den Merkmalen des Anspruchs 11 gelöst. Vorteilhafte Ausgestaltun- gen und Weiterbildungen sind in den abhängigen Ansprüchen angegeben .
Die Erfindung wendet sich von der bisherigen Ausführungsform von Zugankern ab, bei denen diese monolithisch ausgebildet sind. Erfindungsgemäß ist nun vorgesehen, dass der bzw. die
Zuganker in zumindest zwei Zugankerelemente axial geteilt ist bzw. sind, wobei die unmittelbar benachbarten Zugankerelemente jeweils über einem Verbindungsmittel lösbar miteinander verbunden sind .
Vorzugsweise umfasst der Rotor entlang seiner Längserstreckung einen ersten Rotorendabschnitt, zumindest einen weiteren Rotorabschnitt und einen zweiten Rotorendabschnitt, wobei das Verbindungsmittel axial gesehen in einem der weiteren Ro- torabschnitte angeordnet ist. Besonders bevorzugt ist die Ausgestaltung, bei dem das Verbindungsmittel und eines der Rotorbauteile derart ausgestaltet sind, dass nach dem Lösen des am zweiten Rotorendabschnitts angeordneten Gegenlagers das zum zweiten Rotorendabschnitt benachbarte Verbindungsmit- tel mit dem am ersten Rotorendabschnitt angeordneten Gegenlager die dazwischen angeordneten Rotorbauteile miteinander verspannt. Besonderer Vorteil dieser Ausgestaltung ist es, das in einem ersten Montageschritt die auf dem ersten Zug- ankerelement aufgefädelten Rotorbauteile von einem der beiden Gegenlager und dem Verbindungsmittel bereits verspannt werden können, obwohl der Rotor noch nicht vollends mit Rotorbauteilen bestückt ist. Erst nach dem Befestigen des zweiten oder weiteren Zugankerelements sind die weiteren scheibenförmigen oder trommeiförmigen Rotorbauteile auf dieses aufzufädeln, wonach anschließend am Ende des zweiten bzw. weiteren Zugankerelements das zweite Gegenlager aufgeschraubt werden kann, wodurch alle scheibenförmigen oder trommeiförmigen Ro- torbauteile des Rotors schlussendlich miteinander verspannt werden können. Erfindungsgemäß ist dabei vorgesehen, dass die Verspannung, welche von einem der beiden Gegenlager und dem Verbindungselement auf einen Teil der scheibenförmigen oder trommeiförmigen Rotorbauteile zwischenzeitlich einwirkt, da- bei wieder gelöst wird. Insofern sind die elastischen Dehnungen der beiden Zugankerelemente derart aufeinander abgestimmt, dass mit dem Verspannen der Rotorbauteile zwischen den beiden Gegenlagern die Erstverspannung von Gegenlager und Verbindungselement zumindest teilweise, vorzugsweise jedoch vollständig gelöst wird. Dies ist insbesondere für Gasturbinenanlagen von Interesse, bei denen anstelle eines geschweißten Verdichterrotors ein modularer Rotor in Scheibenbauweise zum Einsatz gelangen soll, der weiterhin mit dem Turbinenrotor und mit Hilfe von Zugankern ebenso verspannt werden soll. Dies verbessert die Handhabbarkeit des Rotors während Wartungsarbeiten einer betriebsbeanspruchten Gasturbine und verkürzt die Zeitdauer zur Durchführung der Wartungsarbeiten, da nicht der gesamte Rotor entstapelt werden muss, sondern nur der turbinenseitige Rotorabschnitt. Besonders bevorzugt ist das Verbindungsmittel als Schraubenmutter ausgebildet, in welche die einander gegenüberliegende Enden von axial benachbarten Zugankerelementen eingeschraubt sind. Anstelle dessen ist es selbstverständlich auch denkbar, dass das Verbindungselement monolithisch mit einem der Zugankerelemente verbunden ist. Mit anderen Worten: Ein Zugankerelement kann an einem Ende auch ein Innengewinde als Verbindungsmittel zum Anschrauben eines anderen Zugankerelements aufweisen. Gemäß einer ersten vorteilhaften Weiterbildung weist das Verbindungsmittel mehrere Öffnungen zur Durchleitung eines Fluids von einem der Rotor (end) abschnitte zu einem anderen der Rotor (end) abschnitte auf. Besonders bevorzugt ist die Ausge- staltung, bei der das jeweilige Verbindungsmittel einen am Umfang angeordneten umlaufenden Wellenbund aufweist, indem die Öffnungen als Durchtrittsöffnungen für Kühlfluid angeordnet sind. Bei Verwendung des Rotors in einer Gasturbine ist es dann beispielsweise möglich, im Verdichter abgezapfte Ver- dichterluft in das Innere des Rotors zu leiten und diese Luft durch das Verbindungsmittel hindurch in einen Turbinenrotor zu führen, wo die Kühlluft zu Kühlzwecken eingesetzt werden kann. Durch die Verwendung eines Wellenbunds am Umfang des Verbindungsmittels ist es möglich, die zur Durchleitung des Fluids benötigten Durchtrittsöffnungen auf einem größeren Radius anzuordnen. Hiermit lassen sich größere Durchströmungsquerschnitte realisieren und damit einhergehend einen größeren Kühlluftmassenstrom druckverlustarm durchleiten. Weiter bevorzugt kann das Verbindungsmittel auch dazu eingesetzt werden, eine Stützung des Zugankers zur Reduktion von Schwingungen während des Betriebs der Turbomaschine zu realisieren. Dazu ist lediglich eine radiale AbStützung zumindest eines der Rotorbauteile am betreffenden Verbindungsmittel er- forderlich.
Besonders bevorzugt ist die Ausgestaltung, bei der der Rotor als ein Gasturbinenrotor ausgebildet ist, der erste Rotorendabschnitt als ein Verdichterrotor, der weitere Rotorabschnitt als ein mittlerer Rotorabschnitt und der zweite Rotorendabschnitt als ein Turbinenrotor. Dabei kann der mittlere Rotorabschnitt allein von einer Hohlwelle oder von mehreren schaufellosen Rotorscheiben gebildet sein und die Rotorendabschnitte von Rotorscheiben. Weiter ist vorgesehen, dass die Doppelmutter zum Verbinden zweier Zugankerelemente mittig zwischen den beiden Einschrauböffnungen einen nach innen gerichteten Kranz oder einen Trennsteg aufweist, welcher ver- hindert, dass die Zugankerelemente zu tief in die Doppelmutter eingeschraubt werden.
Die Erfindung wird anhand von Ausführungsbeispielen in den Figuren näher erläutert. Dabei sind weitere Merkmale und Vorteile in der Figurenbeschreibung angegeben. Es zeigen:
Figur 1 einen Teillängsschnitt durch einen erfindungsgemäßen Rotor für eine stationäre axial durch- strömte Turbomaschine;
Figur 2 einen Ausschnitt aus dem Längsschnitt nach Figur
1 im Bereich zweier miteinander verbundenen Zugankerelemente ;
Figur 3 den gleichen Ausschnitt nach Figur 2, gemäß eines alternativen Ausführungsbeispiels ;
Figur 4 ein Verbindungselement zum Verbinden zweier Zug- ankerelemente mit einen am Umfang angeordneten
Wellenbund;
Figur 5 in perspektivischer Darstellung das Verbindungselement nach Figur 4 und
Figur 6 ein sich am Rotorbauteil radial abstützendes Verbindungselement im Längsschnitt nach Figur 2.
In allen Figuren sind identische Merkmale mit gleichen Be- zugszeichen versehen.
FIG 1 zeigt einen Längsteilschnitt durch den Rotor 10 einer axial durchströmbaren Turbomaschine. Im gezeigten Ausfüh- rungsbeispiel ist der Rotor 10 als Gasturbinenrotor ausgestaltet, wobei die restlichen Bestandteile der Gasturbine hier nicht weiter dargestellt sind. Die Bauweise des Rotors 10 ist grundlegend modular und als Scheibenbauweise zu be- zeichnen. Mithin umfasst der Rotor 10 eine Anzahl von Rotorscheiben 12, die hier auch als scheibenförmige Rotorbauteile 14 bezeichnet sind. Weiter umfasst der Rotor 10 auch ein trommeiförmiges Rotorbauteil 16, welches im Ausführungsbei - spiel als mittlere Hohlwelle 18 bezeichnet ist. Neben der mittleren Hohlwelle 18 existiert auch eine endseitig auf einen Zuganker 20 aufgeschraubte vordere Hohlwelle 22 sowie eine am gegenüberliegenden Ende aufgeschraubte hintere Hohlwelle 24. Die vordere Hohlwelle 22 ist hier auch als erstes Gegenlager 26 und die hintere Hohlwelle 24 als zweites Gegenlager 28 bezeichnet. Die beiden Gegenlager 26, 28 verspannen mit Hilfe des Zugankers 20 die Rotorbauteile 14, 16 miteinander und pressen diese fest aneinander. Um dies zu erreichen, ist der gesamte Zuganker 20 von den beiden Gegenlagern 26, 28 elastisch gedehnt.
Erfindungsgemäß ist vorgesehen, dass der Zuganker 20 zwei separat hergestellte Zugankerelemente 30, 32 umfasst. Im gezeigten Ausführungsbeispiel nach FIG 1 umfasst der Zuganker 20 zudem ein Verbindungsmittel 34, welches die beiden monolithischen Zugankerelemente 30, 32 lösbar miteinander verbindet. Das Verbindungsmittel 34 ist als eine Schraubenmutter bzw. als Doppelmutter ausgebildet, die mittig zwischen ihren beiden Einschrauböffnungen 37 (FIG 5) einen nach innen ge- richteten Kranz 36 aufweist.
Der Rotor 10 lässt sich gedanklich axial in einen ersten Rotorendabschnitt 38, in einen weiteren Rotorabschnitt 40 und in einen zweiten Rotorendabschnitt 42 einteilen, wobei das Verbindungsmittel 34 axial gesehen im weiteren Rotorabschnitt 40 angeordnet ist. Bei dem gezeigten Gasturbinenrotor 10 ist der erste Rotorendabschnitt 38 als Verdichterrotor 44 ausgebildet, und der zweite Rotorendabschnitt 42 als Turbinenrotor 48. Im Bereich des weiteren Rotorabschnitts 40 ist radial au- ßerhalb des Rotors 10 eine Brennkammer der Gasturbine angeordnet. Um im Servicefall der Gasturbine ggf. nur die Rotorscheiben 12 des Turbinenrotors 48 zu lösen, ohne dass gleichzeitig die mittlere Hohlwelle 18 und die im Verdichterrotor 44 angeordneten Rotorscheiben 12 sich lösen, ist vorgesehen, dass nach dem Lösen des am zweiten Rotorendabschnitts 42 angeordneten Gegenlagers 28 das zum zweiten Rotorendabschnitt 42 benachbarte Verbindungsmittel 34 mit dem am ersten Rotor- endabschnitt 38 angeordnete Gegenlager 26 die dazwischen angeordneten Rotorbauteile 14, 16 miteinander verspannt. Um dies zu erreichen sind mehrere Ausführungsbeispiel denkbar. Hierzu zeigen die Figuren 2, 3 und 4 unterschiedliche Ausführungsbeispiele. Die Figuren 2 bis 4 zeigen einen Ausschnitt aus dem Übergangsbereich zwischen dem weiteren Rotorabschnitt 40 und dem zweiten Rotorendabschnitt 42 in einem Längsschnitt. Dargestellt sind die beiden Zugankerelemente 30 und 32 sowie eine deren beiden Enden miteinander verbindende Doppelmutter 35 als Verbindungsmittel 34. Radial zur Doppelmut- ter 35 benachbart ist die mittlere Hohlwelle 18 angeordnet. Die Doppelmutter 35 weist eine konische Fläche 50 auf, deren Steigung mit einer nach innen weisenden Fläche 52 der mittleren Hohlwelle 18 korrespondiert. Zudem ist mittig zwischen den beiden Einschrauböffnungen 37 der Doppelmutter 35 ein kleinerer Wellenbund 54 vorgesehen, dessen Seitenfläche 56 an einer dazu parallelen Seitenfläche 58 der mittleren Hohlwelle 18 anliegt. Beim Zusammensetzen des Rotors 10 wird zuerst das erste Gegenlager 26 auf das Zugankerelement 30 endseitig aufgeschraubt. Anschließend wird diese Baugruppe senkrecht auf- gestellt, so dass die einzelnen scheibenförmigen oder trommeiförmigen Rotorbauteile 14, 16 von oben auf das erste Gegenlager 26 abgelegt werden können. Anschließend wird die Doppelmutter 35 auf das noch freie Ende des Zugankerelements 30 aufgeschraubt, wobei währenddessen die zwischen der Dop- pelmutter 35 und dem ersten Gegenlager 26 liegenden Rotorbauteile 14, 16 miteinander verspannt werden. Anschließend wird das zweite Zugankerelement 32 in die Doppelmutter 35 eingeschraubt, wonach die für den Turbinenrotor 48 vorgesehenen Rotorscheiben 12 auf das zweite Zugankerelement 32 von oben aufgefädelt und abgelegt werden können. Schlussendlich wird das zweite Gegenlager 28 auf das noch freie Ende des Zugankerelements 32 aufgeschraubt. Dabei wird der gesamte Zuganker 20 derartig elastisch gedehnt, dass sich die Verspan- nung von der Doppelmutter 35 bzw. dem Verbindungsmittel 34 und dem ersten Gegenlager 26 wieder löst.
Gemäß dem Ausführungsbeispiel nach FIG 2 können sowohl in der mittleren Hohlwelle 18 als auch in der Doppelmutter 35 sich axial erstreckende Bohrungen 60 vorgesehen sein, mit denen ein Kühlmittel von einem Rotor (end) abschnitt zu einem anderen Rotor (end) abschnitt geleitet werden kann. FIG 3 zeigt den gleichen Ausschnitt wie FIG 2, wobei jedoch die Konstruktion zur axialen Verspannung im Bereich der Doppelmutter 35 und der mittleren Hohlwelle 18 verglichen mit der Konstruktion nach FIG 2 geringfügig abgewandelt ist. Die zur Errichtung der axialen Verspannung erforderliche radiale Überlappung von Doppelmutter und mittlerer Hohlwelle 18 erfolgt hier unter Einsatz einer dazwischen angeordneten mit einem Kragen versehene Hülse 62.
FIG 4 zeigt ein weiteres Ausführungsbeispiel zum Verspannen der Rotorbauteile 14, 16 zwischen einem ersten Gegenlager (in FIG 4 nicht dargestellt) und dem Verbindungsmittel 34. Das Verbindungsmittel 34 ist erneut als Doppelmutter 35 mit zwei einander gegenüberliegenden Einschrauböffnungen 37 ausgestaltet. Mittig zwischen den Einschrauböffnungen 37 ist am Außen- umfang ein größerer Wellenbund 54 vorgesehen, in dem über den Umfang gleichmäßig verteilte Öffnungen 64 zur Durchführung eines Kühlfluids vorgesehen sind. Die beiden parallelen Seitenflächen 56 des Wellenbundes 54 gehen über einen Radius in gewölbte abfallende Flanken 57 über, die an den Einschraub- Öffnungen 37 enden. Diese Doppelmutter 35 mit der Einschrauböffnung 37 sowie vier gleichmäßig verteilte Durchtrittsöffnungen 64 zeigt FIG 5 in perspektivischer Darstellung.
Um im Betrieb RadialSchwingungen des Zugankers 20 zu vermei- den, kann an der mantelseitigen Fläche des Wellenbunds 54 eine umlaufende Nut 66 mit einem darin liegenden Stützdraht 68 vorgesehen sein, mit Hilfe dessen der Zuganker 20 sich radial an einem der Rotorbauteile, nach FIG 6 an der mittleren Hohlwelle 18, abstützt.
Den Ausführungsbeispielen nach den Figuren 2 bis 6 ist ge- mein, dass sie Gasturbinenrotoren 10 zeigen, bei denen das zweite Gegenlager 28 noch nicht auf das zweite Zugankerelement 32 aufgeschraubt ist, so dass nur die in den Figuren 2 bis 6 links von der Doppelmutter 35 dargestellten Rotorbauteile 14, 16 mit dem ersten Gegenlager 26 verspannt sind und die rechts davon gezeigten Rotorbauteile 14, 16 nicht.
Insgesamt betrifft die Erfindung somit einen Rotor 10 für eine axial durchströmbare Turbomaschine, umfassend eine Anzahl von mehreren scheibenförmigen oder trommeiförmigen Rotorbau- teilen 14, 16 und zumindest einen sich durch die Rotorbauteile 14, 16 hindurch erstreckenden stiftförmigen Zuganker 20, an dessen überstehenden Enden jeweils ein Gegenlager 26, 28 zum axialen Verspannen der dazwischen angeordneten Rotorbauteile 14, 16 aufgeschraubt ist.
Um einen Rotor 10 bereitzustellen, mit dem sich kürzere Serviceintervallzeiten erreichen lassen, ist vorgesehen, dass der Zuganker 20 zumindest zwei axial benachbarte Zugankerelemente 30, 32 umfasst, die jeweils über ein Verbindungsmittel 34 lösbar miteinander verbunden sind.

Claims

Rotor (10) für eine axial durchströmbare Turbomaschine, umfassend
- eine Anzahl von mehreren scheibenförmigen (14) oder trommeiförmigen (16) Rotorbauteilen,
- zumindest einen sich durch die Rotorbauteile (14) hindurch erstreckenden Zuganker (20) , an dessen überstehenden Enden jeweils ein Gegenlager (26, 28) zum axialen Verspannen der dazwischen angeordneten Rotorbauteile (14, 16) aufgeschraubt ist,
dadurch gekennzeichnet,
dass der Zuganker (20) zumindest zwei axial benachbarte Zugankerelemente (30, 32) umfasst, die jeweils über ein Verbindungsmittel (34) lösbar miteinander verbunden sind.
Rotor (10) nach Anspruch 1,
bei der der Rotor (10) entlang seiner Längserstreckung einen ersten Rotorendabschnitt (38) , zumindest einen weiteren Rotorabschnitt (40) und einen zweiten Rotorendabschnitt (42) umfasst,
wobei das Verbindungsmittel (34) axial gesehen in einem der weiteren Rotorabschnitte (40) angeordnet ist.
Rotor (10) nach Anspruch 1 oder 2,
bei dem die Verbindungsmittel (34) als Schraubenmutter (35) ausgebildet sind, in welche die einander gegenüberliegenden Enden von axial benachbarten Zugankerelementen (30, 32) eingeschraubt sind.
Rotor (10) nach Anspruch 3,
bei dem die Schraubenmutter als Doppelmutter (35) ausgebildet ist, die mittig zwischen den beiden Einschrauböffnungen (37) einen nach innen gerichteten Kranz (36) aufweist . Rotor (10) nach Anspruch 2 oder 3,
bei dem das Verbindungsmittel (34) und eines der Rotorbauteile (14) derart ausgebildet sind, dass nach dem Lösen des am zweiten Rotorendabschnitt (42) angeordneten Gegenlagers (26, 28) das zum zweiten Rotorendabschnitt (42) benachbarte Verbindungsmittel (34) mit dem am ersten Rotorendabschnitt (38) angeordneten Gegenlager (26, 28) die dazwischen angeordneten Rotorbauteile (14) miteinander verspannt .
Rotor (10) nach einem der vorangehenden Ansprüche, bei der das jeweilige Verbindungsmittel (34) mehrere Öffnungen (64) zur Durchleitung eines Fluids vom einem der Rotor (end) abschnitte (38, 40, 42) zu einem anderen der Rotor (end) abschnitte (38, 40, 42) aufweisen.
Rotor (10) nach Anspruch 6,
bei dem das jeweilige Verbindungsmittel (34) einen am Umfang angeordneten, umlaufenden Wellenbund (54) aufweist, in dem die Öffnungen als Durchtrittsöffnungen (64) angeordnet sind.
Rotor (10) nach einem der Ansprüche 1 bis 6,
bei dem das jeweilige Verbindungsmittel (34) sich radial an zumindest einem der Rotorbauteile (14) abstützt.
Rotor (10) nach einem der Ansprüche 2 bis 7,
bei der
- der Rotor (10) als ein Gasturbinenrotor,
- der erste Rotorendabschnitt (38) als ein Verdichterrotor (44) ,
- der weitere Rotorabschnitt (40) als ein mittlerer Rotorabschnitt und
- der zweite Rotorendabschnitt (42) als ein Turbinenrotor (48)
ausgebildet sind.
10. Rotor (10) nach Anspruch 8,
bei dem der mittlere Rotorabschnitt von einer Hohlwelle (18) oder mehreren schaufellosen Rotorscheiben (12) und die Rotorendabschnitte (38, 40, 42) von Rotorscheiben (12) gebildet sind.
11. Doppelmutter (35) zum Verbinden zweier Zugankerelemente (30, 32),
die mittig zwischen den beiden Einschrauböffnungen (64) einen nach innen gerichteten Kranz (36) oder einen Trennsteg aufweist.
12. Doppelmutter (35) nach Anspruch 11,
die mittig zwischen den beiden Einschrauböffnungen (64) an ihrem äußeren Umfang einen umlaufenden Wellenbund (54) aufweist .
Doppelmutter (35) nach Anspruch 12,
bei dem im Wellenbund (54) eine Anzahl von sich axial erstreckenden Durchtrittsöffnungen (64) vorgesehen ist.
EP13762773.3A 2012-09-07 2013-09-06 Rotor für eine axial durchströmbare turbomaschine und doppelmutter zum verbinden zweier zugankerelemente Withdrawn EP2880264A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012215886 2012-09-07
PCT/EP2013/068505 WO2014037521A1 (de) 2012-09-07 2013-09-06 Rotor für eine axial durchströmbare turbomaschine und doppelmutter zum verbinden zweier zugankerelemente

Publications (1)

Publication Number Publication Date
EP2880264A1 true EP2880264A1 (de) 2015-06-10

Family

ID=49182221

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13762773.3A Withdrawn EP2880264A1 (de) 2012-09-07 2013-09-06 Rotor für eine axial durchströmbare turbomaschine und doppelmutter zum verbinden zweier zugankerelemente
EP13763011.7A Withdrawn EP2888448A1 (de) 2012-09-07 2013-09-06 Verfahren zum zusammensetzen bzw. lösen eines eine anzahl von rotorbauteilen umfassenden rotors einer axial durchströmbaren turbomaschine und derartiger rotor

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13763011.7A Withdrawn EP2888448A1 (de) 2012-09-07 2013-09-06 Verfahren zum zusammensetzen bzw. lösen eines eine anzahl von rotorbauteilen umfassenden rotors einer axial durchströmbaren turbomaschine und derartiger rotor

Country Status (12)

Country Link
US (2) US20150247406A1 (de)
EP (2) EP2880264A1 (de)
JP (2) JP2015528539A (de)
KR (2) KR20150047508A (de)
CN (2) CN104603396B (de)
BR (2) BR112015004983A2 (de)
CA (2) CA2884133A1 (de)
IN (2) IN2015DN00890A (de)
MX (1) MX2015002944A (de)
RU (2) RU2015109757A (de)
SA (2) SA515360111B1 (de)
WO (2) WO2014037521A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927425A1 (de) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Läufer für eine Gasturbine mit Verdrehsicherung für eine Wellenmutter
EP2980354A1 (de) * 2014-07-30 2016-02-03 Siemens Aktiengesellschaft Läufer für eine Gasturbine und zugehörige Gasturbine
RU2567887C1 (ru) * 2014-08-08 2015-11-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Ротор компрессора газотурбинного двигателя
DE102014220294A1 (de) 2014-10-07 2016-04-07 Siemens Aktiengesellschaft Spannsystem zum Vorspannen eines Zugangs einer Strömungskraftmaschine
DE102015225428A1 (de) * 2015-12-16 2017-07-06 Siemens Aktiengesellschaft Läufer für eine Strömungsmaschine
IT201600123382A1 (it) * 2016-12-05 2018-06-05 Ansaldo Energia Spa Metodo e dispositivo per controllare il posizionamento di almeno un disco rotorico attorno ad un tirante di un rotore di una turbina a gas
US11131195B2 (en) 2019-03-14 2021-09-28 Raytheon Technologies Corporation Tie shaft assembly for a gas turbine engine
US11105204B2 (en) 2019-06-11 2021-08-31 Pratt & Whitney Canada Corp. Turbine assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090067947A1 (en) * 2006-11-17 2009-03-12 Mitsubishi Heavy Industries, Ltd. Fastening device
GB2452932A (en) * 2007-09-19 2009-03-25 Siemens Ag Turbine or turbomachine with axial shaft-mounted compressor and turbine blades
EP2447471A2 (de) * 2010-10-29 2012-05-02 United Technologies Corporation Zugankeranordnung eines Rotors für ein Gasturbinentriebwerk

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB308260A (en) * 1928-03-20 1930-06-16 Albert Paul Streit Improvements in locking stretchers for tensioning wires and the manufacture thereof
US3970398A (en) * 1975-08-04 1976-07-20 United Technologies Corporation Shaft coupling
JPS6058680U (ja) * 1983-09-29 1985-04-24 ジャパンライフ株式会社 プラグとソケット
FR2640014A1 (fr) * 1988-12-01 1990-06-08 Linz Emile Tendeur de cables
US5454662A (en) * 1993-11-23 1995-10-03 Animal Enclosure Systems Connector for coupling the pipes of a pipe corral
JP3733573B2 (ja) * 1995-03-03 2006-01-11 石川島播磨重工業株式会社 ガスタービンとその組立方法
JPH10325491A (ja) * 1997-05-26 1998-12-08 Nippon Yuuki Kk 配管接続部品
US7409819B2 (en) * 2004-10-29 2008-08-12 General Electric Company Gas turbine engine and method of assembling same
US7584621B2 (en) * 2005-08-05 2009-09-08 Siemens Energy, Inc. Radially expanding turbine engine exhaust cylinder interface
DE102005052819A1 (de) * 2005-11-05 2007-05-10 Mtu Aero Engines Gmbh Turbomaschine, insbesondere Gasturbine
US7775779B2 (en) * 2005-11-17 2010-08-17 Sclumberger Technology Corporation Pump apparatus, systems and methods
EP1970530A1 (de) * 2007-03-12 2008-09-17 Siemens Aktiengesellschaft Läufer einer thermischen Strömungsmaschine sowie thermische Strömungsmaschine
US8186939B2 (en) * 2009-08-25 2012-05-29 Pratt & Whitney Canada Corp. Turbine disc and retaining nut arrangement
EP2415967A1 (de) * 2010-08-03 2012-02-08 Siemens Aktiengesellschaft Gasturbinenmotor mit Spannungsbolzen
ITCO20130071A1 (it) * 2013-12-18 2015-06-19 Nuovo Pignone Srl Metodo per assemblare un insieme di giranti mediante tiranti, girante e turbomacchina

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090067947A1 (en) * 2006-11-17 2009-03-12 Mitsubishi Heavy Industries, Ltd. Fastening device
GB2452932A (en) * 2007-09-19 2009-03-25 Siemens Ag Turbine or turbomachine with axial shaft-mounted compressor and turbine blades
EP2447471A2 (de) * 2010-10-29 2012-05-02 United Technologies Corporation Zugankeranordnung eines Rotors für ein Gasturbinentriebwerk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014037521A1 *

Also Published As

Publication number Publication date
MX2015002944A (es) 2015-06-02
US20150260044A1 (en) 2015-09-17
US20150247406A1 (en) 2015-09-03
BR112015004983A2 (pt) 2017-07-04
WO2014037521A1 (de) 2014-03-13
KR20150047509A (ko) 2015-05-04
EP2888448A1 (de) 2015-07-01
CA2884126A1 (en) 2014-03-13
RU2015112596A (ru) 2016-10-27
BR112015004993A2 (pt) 2017-07-04
WO2014037523A1 (de) 2014-03-13
CN104619954B (zh) 2016-08-24
JP2015528539A (ja) 2015-09-28
CN104619954A (zh) 2015-05-13
IN2015DN00890A (de) 2015-06-12
JP2015527534A (ja) 2015-09-17
CN104603396B (zh) 2016-08-24
SA515360111B1 (ar) 2016-02-24
SA515360112B1 (ar) 2015-12-20
RU2015109757A (ru) 2016-10-27
CN104603396A (zh) 2015-05-06
CA2884133A1 (en) 2014-03-13
IN2015DN01253A (de) 2015-06-26
KR20150047508A (ko) 2015-05-04

Similar Documents

Publication Publication Date Title
WO2014037521A1 (de) Rotor für eine axial durchströmbare turbomaschine und doppelmutter zum verbinden zweier zugankerelemente
EP2011965B1 (de) Vorrichtung und Verfahren zum Einspannen von beschaufelten Rotorscheiben eines Strahltriebwerkes
EP0834645B1 (de) Verdichterradbefestigung für Turbolader
DE3219006C2 (de) Laufrad einer Strömungsmaschine
EP2845999A2 (de) Verfahren zum Auswuchten und zur Montage eines Turbinenrotors
WO2007051443A1 (de) Turbomaschine mit einem zuganker bestehend aus zug- und druckhülsen
EP2255071B1 (de) Turbinenrotor für eine gasturbine
EP3092371B1 (de) Rotor mit axial gesichertem stützring
DE102008008887A1 (de) Mehrteiliger beschaufelter Rotor für eine Strömungsmaschine
EP3122999B1 (de) Ringförmige spannmutter für einen zuganker
DE102012008723A1 (de) Leitrad für Turbomaschinen und Herstellungsverfahren
WO2015007443A1 (de) Rotor für eine thermische strömungsmaschine
EP3176386B1 (de) Innenringsystem, zugehöriger innenring, zwichengehäuse und strömungsmaschine
EP0893576B1 (de) Verbindung von rotierenden Bauteilen
EP2522819B1 (de) Befestigung einer Axiallagerscheibe in einer magnetgelagerten Turbomaschine mittels einer Schrumpfscheibenverbindung
WO2015024696A1 (de) Rotor für eine thermische strömungsmaschine
DE102004016244B4 (de) Rotor für eine Turbomaschine
DE60215327T2 (de) Turbinen- oder kompressorvorrichtung und verfahren zur montage der vorrichtung
EP3179169B1 (de) Verfahren zur montage einer brennkammer eines gasturbinentriebwerks
WO2000036279A1 (de) Verbindungsanordnung zweier laufscheiben einer axial-strömungsmaschine
EP3064705B1 (de) Rotor mit einem Sicherungsblech zur Sicherung einer Drehverriegelung gegen ein Losdrehen
EP2927425A1 (de) Läufer für eine Gasturbine mit Verdrehsicherung für eine Wellenmutter
EP3054089A1 (de) Turbomaschinen-Hohlwelle mit Hitzeschild
DE202012005657U1 (de) Drehelastischer Dämpfer oder Kupplung mit einem Flansch zum Anschluss an einen Flansch eines weiteren Bauteils
EP1862638A1 (de) Verfahren zum Reparieren des Rotors einer Gasturbine sowie Rotor einer Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160704

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161115