EP2878910B1 - Mikrokanalstruktur für wärmetauscher und integrierter mikrokanalwärmetauscher - Google Patents

Mikrokanalstruktur für wärmetauscher und integrierter mikrokanalwärmetauscher Download PDF

Info

Publication number
EP2878910B1
EP2878910B1 EP13796426.8A EP13796426A EP2878910B1 EP 2878910 B1 EP2878910 B1 EP 2878910B1 EP 13796426 A EP13796426 A EP 13796426A EP 2878910 B1 EP2878910 B1 EP 2878910B1
Authority
EP
European Patent Office
Prior art keywords
fluid
fin
micro
flow direction
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13796426.8A
Other languages
English (en)
French (fr)
Other versions
EP2878910A1 (de
EP2878910A4 (de
Inventor
Jingzhen SHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Shenshi Energy Conservation Technology Co Ltd
Original Assignee
Hangzhou Shenshi Energy Conservation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012101708047A external-priority patent/CN102706201A/zh
Priority claimed from CN2012101708028A external-priority patent/CN102706187A/zh
Application filed by Hangzhou Shenshi Energy Conservation Technology Co Ltd filed Critical Hangzhou Shenshi Energy Conservation Technology Co Ltd
Publication of EP2878910A1 publication Critical patent/EP2878910A1/de
Publication of EP2878910A4 publication Critical patent/EP2878910A4/de
Application granted granted Critical
Publication of EP2878910B1 publication Critical patent/EP2878910B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a heat exchange apparatus for the purpose of heat exchange between two fluids, in particular, relates to a stacked plate arrangement having a streamline type micro-channel structure as defined in the preamble of claim 1 and to an integrated type micro-channel heat exchanger comprising the stacked plate arrangement suitable for heat energy transfer between water and a cooling agent.
  • a stacked plate arrangement having a micro-channel structure as defined in the preamble of claim 1 is disclosed for instance in US 7334 631 B2 .
  • micro-channel heat exchangers for a heat pump system of prior arts are configured with flat aluminum tube section bars, in addition to inlets and outlets of cooling agents and working fluids, and thus are limited to branch-stream typed heat exchangers used for heat exchange between a cooling agent and the air.
  • the micro-channel heat exchanger disclosed by Chinese Patent Literature CN102095285A is one of the aforementioned branch-stream type heat exchangers.
  • the flat tubes for heat exchange are aluminum tube section bars, so they are of fixed dimensions. As there are constraints with respect to selection of hydraulic diameters of the micro-channels, it is difficult to get an aluminum tube section bar which is suitable for optimized heat design.
  • the wall thickness between the micro-channels are unable to be made into a suitable dimension required for heat transfer (the wall is required to be very thin), thus, the micro-channel heat exchangers using flat tubes of aluminum tube section bars cannot be a development direction of the micro-channel heat exchanger technology.
  • micro-channel heat exchangers machined by lithography, chemical or photoelectric etching, diamond cutting or wire-electrode cutting has become a new technology development direction of the present technical field.
  • the micro-channel heat exchangers disclosed by Chinese Patent Literatures CN101509736A and CN201973962U are this type of heat exchangers.
  • this type of heat exchangers has disadvantages such as thick heat-exchange walls, inconvenience of assembly, monotonous connection means of inlets and outlets, etc.
  • the micro-channel heat exchanger disclosed by CN101509736A is formed by stacking heat-exchange units which comprise three layers including a cooling agent channel layer, a partition board layer and a working fluid channel layer, and it is required to machine three fluid channel layers of different shapes and then to integrate them into a whole piece by atomic diffusion, which has complicated assembly processes and higher processing costs.
  • cooling agent channels and working fluid channels are formed between metal plates which have been stacked and bound together, at least one of the two opposed surfaces of adjacent metal plates is configured with alternately arranged cooling agent grooves and working fluid grooves, after the metal plates are stacked and bound together, the cooling agent grooves and working fluid grooves respectively form cooling agent channels and working fluid channels, and because the multiple layers of metal plates are bound together by atomic diffusion, each binding interface of the metal plates must have a width no less than 0.4mm in order to ensure overall binding strength of the heat exchanger, which leads to that the heat-exchange walls thereof are relatively thick and the heat-exchange capacity thereof is not able to meet the requirements.
  • micro-channel heat exchangers of prior arts no matter whether it is a flat aluminum tube type or a compact type of micro-channel heat exchanger for heat exchange between water and a cooling agent, have internal channels that are basically straight channels with square-shaped or circular-shaped cross-sections.
  • the micro-channels of this type of heat exchangers are able to enhance heat exchange, they cause increase of fluid pressure loss, and this type of micro-channel structure also does not take into consideration the influence of turbulence on heat transfer enhancement.
  • U.S. patent application US2008/066888A1 describes a heat sink for reducing pressure drop.
  • the heat sink comprises a base panel having a top surface and a bottom surface.
  • a plurality of pin fins extend outwardly from the top surface and each fin has a cross-sectional configuration with two radiuses, a first radius and a second radius, wherein the first radius is larger than the second radius.
  • U.S. Patent Literature US7334631B2 and Japanese Patent Literature JP2006170549A both disclose a micro-channel heat exchanger, wherein, micro-channels of this micro-channel heat exchanger are alternately formed between multiple stacked layers of heat-exchange plates; a plurality of regularly arranged streamline type fins are provided on the heat-exchange plates; and the micro-channels are formed between the fins.
  • this type of heat exchangers has an increased forced convection heat transfer coefficient as well as a reduced fluid pressure loss, however, for such a configuration, due to lack of micro structures which are able to facilitate phase transition of condensation or evaporation, the heat transfer performance still needs to be improved and the fluid flow resistance still needs to be reduced.
  • an objective of the present invention is to solve the problem that the micro-channel structure of the heat exchangers of prior arts is not optimally designed, causing relatively high fluid flow resistance and relatively poor heat exchange capacity, thus the present invention provides a micro-channel structure with a high forced convection heat transfer coefficient as well as low fluid flow resistance for a heat exchanger and an integrated type micro-channel heat exchanger comprising the same.
  • a stacked-plate arrangement having a micro-channel structure formed between multiple layers of heat exchange plates, a plurality of fin units are formed on the heat exchange plate, the fin units are arranged uniformly into a plurality of fin unit groups in the direction perpendicular to a flow direction of fluid, and the fin unit groups are arranged in a staggered manner and spaced from one another by a distance in the flow direction of the fluid; a rear end of a fin unit at the upstream side is arranged in an intermediate position between two adjacent fin units at the downstream side; wherein the fin unit comprises at least two fins, with the adjacent fins spaced from each other by a distance; and the fluid channels between the adjacent fin units and between the adjacent fins form the micro-channel structure.
  • an external contour of the fin unit is rectilinear shaped or curvilinear shaped.
  • tilt directions of the adjacent fin unit groups relative to the flow direction of the fluid are opposite, and an intersection angle between each fin unit thereof and the flow direction of the fluid is 45° ⁇ 55°.
  • each two fin units adjacent along the flow direction of the fluid constitute a fin unit subgroup, with the two fin units thereof spaced from each other by a distance of a ⁇ 2mm in the flow direction of the fluid and by a distance of b ⁇ 2mm in the direction perpendicular to the flow direction of the fluid; two adjacent fin unit subgroups are spaced apart by a distance that is ⁇ 2a in the flow direction of the fluid, and two adjacent fin unit subgroups are spaced apart by a distance that is ⁇ 2b in the direction perpendicular to the flow direction of the fluid.
  • the fin unit has a length of L ⁇ 2.5mm in the flow direction of the fluid and a width of h ⁇ 1.5mm in the direction perpendicular to the flow direction of the fluid, and the fin has a thickness of ⁇ 0.5mm.
  • the fins that form the fin unit include main edges which form an external contour of the fin unit and sub edges which adjoin the main edges, the sub edges of the adjacent fins are parallel to each other and spaced from each other by a distance of 0.05mm ⁇ t ⁇ 0.35mm, and an intersection angle between each sub edge and the flow direction of the fluid is 0° ⁇ 15°.
  • an external contour of the fin unit is an S-shaped curve with a straight middle segment
  • the fin unit comprises a front fin, a rear fin and an intermediate fin which is parallelogram shaped and is arranged between the front fin and the rear fin.
  • an external contour of the fin unit is rectilinear shaped, and the fin unit comprises three parallelogram-shaped fins, with a circular arc transition segment at each obtuse angle of each of the parallelogram-shaped fins.
  • the micro-channel structure comprises a diversion segment, a heat exchange segment and a confluence segment arranged successively along the flow direction of the fluid, and the adjacent fin units of the diversion segment as well as those of the confluence segment are spaced apart by a larger distance in the flow direction of the fluid than the adjacent fin units of the heat exchange segment.
  • the fins on the heat exchange plate are preferably formed by light etching molding.
  • an integrated type micro-channel heat exchanger comprising multiple layers of heat exchange plates arranged in a stacked manner, with a plurality of fin units formed on the heat exchange plate, the fin units are arranged uniformly into a plurality of fin unit groups in the direction perpendicular to a flow direction of a fluid, and the fin unit groups are arranged in a staggered manner and spaced from one another by a distance in the flow direction of fluid; a rear end of a fin unit at the upstream side is arranged in an intermediate position between two adjacent fin units at the downstream side; the fin unit comprises at least two fins, with the adjacent fins spaced from each other by a distance; the fluid channels between the adjacent fin units and between the adjacent fins form a micro-channel structure; working fluid micro-channels and cooling agent micro-channels are alternately arranged in the direction perpendicular to a plate plane of the heat exchange plates, wherein a diversion segment and an inlet in communication
  • the fins are formed on one side of each heat exchange plate, and the fin-side of a heat exchange plate and the plane-side of another adjacent heat exchange plate are combined to form the micro-channel structure.
  • the fins are formed on one side of each heat exchange plate, and the fin-sides of adjacent heat exchange plates are combined to form the micro-channel structure.
  • the fins are formed on both sides of each heat exchange plate, with fins on one side forming the working fluid micro-channels and fins on the other side forming the cooling agent micro-channels.
  • an external contour of the fin unit is rectilinear shaped or curvilinear shaped, and an intersection angle between each fin unit and the flow direction of the fluid is 45° ⁇ 55°.
  • an external contour of the fin unit is an S-shaped curve with a straight middle segment, and the fin unit comprises two fins which are spaced from each other by a distance of 0.05mm ⁇ t ⁇ 0.35mm; an intersection angle between each intermediate edge of the fins and the flow direction of the fluid is 0° ⁇ 15°.
  • an external contour of the fin unit is rectilinear shaped, and the fin unit comprises three parallelogram-shaped fins, with a circular arc transition segment at each obtuse angle of each of the parallelogram-shaped fins.
  • the inlets are respectively arranged at opposite lateral sides relative to the diversion segment, and the outlets are respectively arranged at opposite lateral sides relative to the confluence segment.
  • the fins on the heat exchange plate are formed by light etching molding.
  • the multiple layers of heat exchange plates are bound into a whole piece by atomic diffusion.
  • FIG. 1 shows a novel micro-channel structure for a heat exchanger of the present invention, wherein, the micro-channel structure is formed between multiple layers of heat exchange plates 1 arranged in a stacked manner, with a plurality of fin units 2 formed on the heat exchange plate 1, the fin units 2 are arranged uniformly into a plurality of fin unit groups 9 in the direction perpendicular to a flow direction of fluid, and the fin unit groups 9 are arranged in a staggered manner and spaced from one another by a distance in the flow direction of the fluid; and a rear end of a fin unit 2 at the upstream side is arranged in an intermediate position between two adjacent fin units 2 at the downstream side.
  • the intermediate position mentioned in the present invention refers to any position between the two adjacent fin units 2 at the downstream side, including the case that the rear end of the fin unit 2 at the upstream side extends into an inside position between the two adjacent fin units 2 at the downstream side, as well as the case that the rear end of the fin unit 2 at the upstream side stays at an outside position between the two adjacent fin units 2 at the downstream side.
  • the fin unit 2 comprises at least two fins 21, with the adjacent fins 21 spaced from each other by a distance; and the fluid channels between the adjacent fin units 2 and between the adjacent fins 21 form the micro-channel structure. Therefore, the heat exchange area of the micro-channel structure for a heat exchanger of the present invention is greatly increased upon the heat exchange area of micro-channel structures of prior arts.
  • Direction V in FIG. 1 which indicates a direction from the entrance to the exit of the micro-channel structure.
  • An external contour of the fin unit 2 is curvilinear shaped, specifically in this embodiment, the external contour of the fin unit 2 is an S-shaped curve with a straight middle segment, as shown in FIG. 2 and FIG. 3 , it comprises a front fin 211, a rear fin 213 and an intermediate fin 212 which is parallelogram shaped and is arranged between the front fin 211 and the rear fin 212.
  • the micro-channel structure comprises a diversion segment 4, a heat exchange segment 6 and a confluence segment 5 arranged successively along the flow direction of the fluid, and the adjacent fin units 2 of the diversion segment 4 as well as those of the confluence segment 5 are spaced apart by a larger distance in the flow direction of the fluid than the adjacent fin units 2 of the heat exchange segment 6.
  • the fluid flows into each single plate layer through the entrance segment, enters the diversion segment where it is dispersed uniformly, undergoes heat exchange in the heat exchange segment, enters the confluence segment to converge, and then flows out through the exit segment.
  • the fins 21 on the heat exchange plate 1 are formed by light etching molding.
  • FIG. 4 and FIG. 5 show another micro-channel structure of the present invention which is substantially consistent with the micro-channel structure of Embodiment 1, except for the difference with the shape of the fin unit.
  • An external contour of the fin unit 2 is rectilinear shaped, specifically in this embodiment, the shown fin unit 2 comprises three parallelogram-shaped fins 21, with a circular arc transition segment at each obtuse angle of each of the parallelogram-shaped fins 21.
  • Such a micro-channel structure avoids vortex that is formed by continuous streamline, so as to reduce the fluid pressure loss caused by flow resistance.
  • two adjacent fin unit subgroups 3 are spaced apart by a distance of 3mm in the flow direction of the fluid, and two adjacent fin unit subgroups 3 are spaced apart by a distance of 5mm in the direction perpendicular to the flow direction of the fluid.
  • micro-channel structure of this embodiment is substantially consistent with Embodiment 2, except for the difference with the arranged positions and dimension parameters of the fins.
  • two adjacent fin unit subgroups 3 are spaced apart by a distance of 3mm in the flow direction of the fluid, and two adjacent fin unit subgroups 3 are spaced apart by a distance of 4mm in the direction perpendicular to the flow direction of the fluid.
  • the fin unit 2 of the present invention might alternatively comprise two, four or more of the fins 21.
  • the curvilinear shape of the external contour of the fin unit might alternatively be a part of a sinusoidal curve, a circle, an ellipse or a parabola curve.
  • FIG. 6 shows an integrated type micro-channel heat exchanger of the present invention which comprises multiple layers of heat exchange plates 1 arranged in a stacked manner, with a plurality of fin units 2 formed on the heat exchange plate 1, the fin units 2 are arranged uniformly into a plurality of fin unit groups 9 in the direction perpendicular to a flow direction of a fluid, and the fin unit groups 9 are arranged in a staggered manner and spaced from one another by a distance in the flow direction of fluid; a rear end of a fin unit 2 at the upstream side is arranged in an intermediate position between two adjacent fin units 2 at the downstream side.
  • the intermediate position mentioned in the present invention refers to any position between the two adjacent fin units 2 at the downstream side, including the case that the rear end of the fin unit 2 at the upstream side extends into an inside position between the two adjacent fin units 2 at the downstream side, as well as the case that the rear end of the fin unit 2 at the upstream side stays at an outside position between the two adjacent fin units 2 at the downstream side.
  • the fin unit 2 comprises at least two fins 21, with the adjacent fins 21 spaced from each other by a distance; the fluid channels between the adjacent fin units 2 and between the adjacent fins 21 form a micro-channel structure. Therefore, the heat exchange area of the micro-channel structure for the heat exchanger of the present invention is greatly increased upon the heat exchange area of micro-channel structures of prior arts.
  • Working fluid (Fluid B in FIG. 6 ) micro-channels and cooling agent (Fluid A in FIG. 6 ) micro-channels are alternately arranged in the direction perpendicular to a plate plane of the heat exchange plates 1, wherein a diversion segment 4 and an inlet 7 in communication with a fluid inflow pipeline are provided in the micro-channel structure at the upstream side of the flowing fluid, and a confluence segment 5 and an outlet 8 in communication with a fluid outflow pipeline are provided in the micro-channel structure at the downstream side of the flowing fluid; the inlets 7 and the outlets 8 of multiple layers of the working fluid micro-channels are intercommunicated; and the inlets 7 and the outlets 8 of multiple layers of the cooling agent micro-channels are intercommunicated.
  • Direction V in FIG. 7 which indicates a direction from the entrance to the exit of the micro-channel structure.
  • the fins 21 are formed on one side of each heat exchange plate 1, and the fin-side of a heat exchange plate 1 and the plane-side of another adjacent heat exchange plate 1 are combined to form the micro-channel structure.
  • the heat exchange plate 1 are formed by light etching molding, and adjacent heat exchange plates 1 are bound into a whole piece by atomic diffusion.
  • FIG. 7 shows the heat exchange plate 1 of a cooling agent channel layer thereof
  • FIG. 8 shows the heat exchange plate 1 of a working fluid channel layer thereof.
  • the inlets 7 of the working fluid channel layer are respectively arranged at opposite lateral sides relative to the diversion segment 4
  • the outlets 8 of the working fluid channel layer are respectively arranged at opposite lateral sides relative to the confluence segment 5, so as to accommodate mounting location requirement of different pipelines.
  • Each of the two fluids flowing through the integrated type micro-channel heat exchanger has a flow direction at the entrance segment or at the exit segment which is perpendicular to its flow direction in the heat exchange segment.
  • the cooling agent fluid flows in through its inlet 7, undergoes dispersion in its diversion segment 4 and is then dispersed into the inner cavity of the heat exchange plate 1 with micro-channels for cooling agent fluid;
  • the working fluid flows in through its inlet 7, undergoes dispersion in its diversion segment 4 and is then dispersed into the inner cavity of the heat exchange plate 1 with micro-channels for working fluid;
  • these two fluids undergo heat exchange in the heat exchange segments 6, respectively converge in the confluence segments 5 for respective fluid and then flow out respectively through the outlet 8 for cooling agent fluid and the outlet 8 for working fluid.
  • the inlet for working fluid and the outlet for working fluid on the other lateral side are reserved as spare, for adaption of different ways of connection.
  • the integrated type micro-channel heat exchanger of this embodiment is substantially consistent with Embodiment 4, except for the difference with the shape of the fin unit.
  • the fin unit 2 comprises three parallelogram-shaped fins 21, with a circular arc transition segment at each obtuse angle of each of the parallelogram-shaped fins 21.
  • Such a micro-channel structure avoids vortex that is formed by continuous streamline, so as to reduce the fluid pressure loss caused by flow resistance.
  • two adjacent fin unit subgroups 3 are spaced apart by a distance of 3mm in the flow direction of the fluid, and two adjacent fin unit subgroups 3 are spaced apart by a distance of 2mm in the direction perpendicular to the flow direction of the fluid.
  • the integrated type micro-channel heat exchanger of this embodiment is substantially consistent with Embodiment 5, except for the difference with the arranged positions and dimension parameters of the fins.
  • two adjacent fin unit subgroups 3 are spaced apart by a distance of 3mm in the flow direction of the fluid, and two adjacent fin unit subgroups 3 are spaced apart by a distance of 4mm in the direction perpendicular to the flow direction of the fluid.
  • a fin unit 2 of the present invention might alternatively comprise four or more of the fins 21.
  • the curvilinear shape of the external contour of the fin unit might alternatively be a part of a sinusoidal curve, a circle, an ellipse or a parabola curve.
  • the fins 21 might alternatively be formed on one side of each heat exchange plate 1, the fin-sides of adjacent heat exchange plates 1 are combined to form the micro-channel structure for one fluid, and the micro-channel structure for the other fluid is also formed on the heat exchange plates at the combined fin-sides.
  • the two kinds of fluid micro-channels are alternately arranged to form the heat exchanger.
  • the fins 21 might alternatively be formed on both sides of each heat exchange plate 1, with fins 21 on one side forming the working fluid micro-channels and fins 21 on the other side forming the cooling agent micro-channels. Multiple layers of the heat exchange plates 1 are stacked to form the heat exchanger.
  • the inlets 7 of the cooling agent channel layer are respectively arranged at opposite lateral sides relative to the diversion segment 4, and the outlets 8 of the cooling agent channel layer are respectively arranged at opposite lateral sides relative to the confluence segment 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Claims (15)

  1. Anordnung gestapelter Platten mit einer zwischen mehreren Lagen von Wärmetauscherplatten ausgebildeten Mikrokanalstruktur, wobei auf der Wärmetauscherplatte (1) mehrere Rippeneinheiten (2) ausgebildet sind, wobei die Rippeneinheiten (2) in der Richtung senkrecht zu einer Strömungsrichtung von Fluid gleichmäßig zu mehreren Rippeneinheitengruppen (9) angeordnet sind, und wobei die Rippeneinheitengruppen (9) versetzt und in der Strömungsrichtung des Fluids voneinander beabstandet angeordnet sind; wobei ein hinteres Ende einer Rippeneinheit (2) auf der vorgelagerten Seite in einer Zwischenposition zwischen zwei benachbarten Rippeneinheiten (2) auf der nachgelagerten Seite angeordnet ist;
    dadurch gekennzeichnet, dass
    die Rippeneinheit (2) mindestens zwei Rippen (21) umfasst, wobei die benachbarten Rippen (21) um einen Abstand voneinander beabstandet sind; und die Fluidkanäle zwischen den benachbarten Rippeneinheiten (2) und zwischen den benachbarten Rippen (21) die Mikrokanalstruktur bilden.
  2. Anordnung gestapelter Platten nach Anspruch 1, dadurch gekennzeichnet, dass eine Außenkontur der Rippeneinheit (2) geradlinig geformt oder krummlinig geformt ist; Neigungsrichtungen der benachbarten Rippeneinheitengruppen (9) relativ zur Strömungsrichtung des Fluids entgegengesetzt sind und ein Schnittwinkel zwischen jeder Rippeneinheit (2) davon und der Strömungsrichtung des Fluids 45°≤ α ≤55° beträgt.
  3. Anordnung gestapelter Platten nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeweils zwei entlang der Strömungsrichtung des Fluids benachbarte Rippeneinheiten (2) eine Rippeneinheit-Untergruppe (3) bilden, deren beide Rippeneinheiten (2) in der Strömungsrichtung des Fluids um einen Abstand von a ≤ 2 mm und in der Richtung senkrecht zur Strömungsrichtung des Fluids um einen Abstand von b ≤ 2 mm voneinander beabstandet sind; zwei benachbarte Rippeneinheit-Untergruppen (3) in der Strömungsrichtung des Fluids um einen Abstand von ≥ 2a und zwei benachbarte Rippeneinheit-Untergruppen (3) in der Richtung senkrecht zur Strömungsrichtung des Fluids um einen Abstand von ≥ 2b voneinander beabstandet sind.
  4. Anordnung gestapelter Platten nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Rippeneinheit (2) in der Strömungsrichtung des Fluids eine Länge von L ≤ 2,5 mm und in der Richtung senkrecht zur Strömungsrichtung des Fluids eine Breite von h ≤ 1,5 mm aufweist und die Rippe (21) eine Dicke von δ ≤ 0,5 mm aufweist.
  5. Anordnung gestapelter Platten nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die die Rippeneinheit (2) ausbildenden Rippen (21), die eine Außenkontur der Rippeneinheit (2) ausbilden, Hauptkanten (214) und an die Hauptkanten (214) angrenzende Unterkanten (215) beinhalten, die Unterkanten (215) der benachbarten Rippen (21) parallel zueinander und um einen Abstand von 0,05 mm ≤ t ≤ 0,35 mm voneinander beabstandet sind, und ein Schnittwinkel zwischen jeder Unterkante (215) und der Strömungsrichtung des Fluids 0° ≤ β ≤ 15° beträgt.
  6. Anordnung gestapelter Platten nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Außenkontur der Rippeneinheit (2) eine S-förmige Kurve mit einem geraden Mittelsegment ist und die Rippeneinheit (2) eine vordere Rippe (211), eine hintere Rippe (213) und eine Zwischenrippe (212) umfasst, die parallelogrammförmig ist und zwischen der vorderen Rippe (211) und der hinteren Rippe (213) angeordnet ist.
  7. Anordnung gestapelter Platten nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Außenkontur der Rippeneinheit (2) geradlinig geformt ist und die Rippeneinheit (2) drei parallelogrammförmige Rippen (21) mit einem Kreisbogenübergangssegment an jedem stumpfen Winkel jeder der parallelogrammförmigen Rippen (21) umfasst.
  8. Anordnung gestapelter Platten nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mikrokanalstruktur ein Umlenksegment (4), ein Wärmetauschersegment (6) und ein Zusammenflusssegment (5) umfasst, die entlang der Strömungsrichtung des Fluids aufeinanderfolgend angeordnet sind, und die benachbarten Rippeneinheiten (2) des Umlenksegments (4) sowie diejenigen des Zusammenflusssegments (5) in der Strömungsrichtung des Fluids um einen größeren Abstand voneinander beabstandet sind als die benachbarten Rippeneinheiten (2) des Wärmetauschersegments (6).
  9. Anordnung gestapelter Platten nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Rippen (21) auf der Wärmetauscherplatte (1) durch Ätzformen mit Licht ausgebildet sind.
  10. Integrierter Mikrokanalwärmetauscher, dadurch gekennzeichnet, dass er mehrere Lagen von Wärmetauscherplatten (1) umfasst, die in einer gestapelten Weise angeordnet sind, mit mehreren Rippeneinheiten (2), die auf der Wärmetauscherplatte (1) ausgebildet sind, wobei die Rippeneinheiten (2) gleichmäßig in mehrere Rippeneinheitengruppen (9) in der Richtung senkrecht zu einer Strömungsrichtung eines Fluids angeordnet sind, und die Rippeneinheitengruppen (9) in einer versetzten Weise und voneinander um einen Abstand beabstandet in der Strömungsrichtung des Fluids angeordnet sind; ein hinteres Ende einer Rippeneinheit (2) an der vorgelagerten Seite in einer Zwischenposition zwischen zwei benachbarten Rippeneinheiten (2) an der nachgelagerten Seite angeordnet ist; die Rippeneinheit (2) mindestens zwei Rippen (21) umfasst, wobei die benachbarten Rippen (21) um einen Abstand voneinander beabstandet sind; die Fluidkanäle zwischen den benachbarten Rippeneinheiten (2) und zwischen den benachbarten Rippen (21) eine Mikrokanalstruktur bilden; Arbeitsfluid-Mikrokanäle und Kühlmittel-Mikrokanäle abwechselnd in der Richtung senkrecht zu einer Plattenebene der Wärmetauscherplatten (1) angeordnet sind, wobei ein Umlenksegment (4) und ein Einlass (7) in Verbindung mit einer Fluid-Einströmleitung an der nachgelagerten Seite des strömenden Fluids vorgesehen sind, und ein Zusammenflusssegment (5) und ein Auslass (8) in Verbindung mit einer Fluid-Ausströmleitung in der Mikrokanalstruktur an der nachgelagerten Seite des strömenden Fluids vorgesehen sind; die Einlässe (7) und die Auslässe (8) von mehreren Lagen der Arbeitsfluid-Mikrokanäle miteinander in Verbindung stehen; und die Einlässe (7) und die Auslässe (8) der mehreren Lagen der Kühlmittel-Mikrokanäle miteinander in Verbindung stehen.
  11. Integrierter Mikrokanalwärmetauscher nach Anspruch 10, dadurch gekennzeichnet, dass die Rippen (21) auf einer Seite jeder Wärmetauscherplatte (1) ausgebildet sind und die Rippenseite einer Wärmetauscherplatte (1) und die Planseite einer anderen benachbarten Wärmetauscherplatte (1) kombiniert sind, um die Mikrokanalstruktur auszubilden.
  12. Integrierter Mikrokanalwärmetauscher nach Anspruch 10, dadurch gekennzeichnet, dass die Rippen (21) auf einer Seite jeder Wärmetauscherplatte (1) ausgebildet sind und die Rippenseiten benachbarter Wärmetauscherplatten (1) kombiniert sind, um die Mikrokanalstruktur auszubilden.
  13. Integrierter Mikrokanalwärmetauscher nach Anspruch 10, dadurch gekennzeichnet, dass die Rippen (21) auf beiden Seiten jeder Wärmetauscherplatte (1) ausgebildet sind, wobei Rippen (21) auf einer Seite die Arbeitsfluid-Mikrokanäle ausbilden und Rippen (21) auf der anderen Seite die Kühlmittel-Mikrokanäle ausbilden.
  14. Integrierter Mikrokanalwärmetauscher nach einem der Ansprüche 10-13, dadurch gekennzeichnet, dass die Einlässe (7) jeweils an gegenüberliegenden lateralen Seiten relativ zu dem Umlenksegment (4) angeordnet sind und die Auslässe (8) jeweils an gegenüberliegenden lateralen Seiten relativ zu dem Zusammenflusssegment (5) angeordnet sind.
  15. Integrierter Mikrokanalwärmetauscher nach einem der Ansprüche 10-14, dadurch gekennzeichnet, dass die mehreren Lagen von Wärmetauscherplatten (1) durch Atomdiffusion zu einem ganzen Stück verbunden sind.
EP13796426.8A 2012-05-29 2013-05-29 Mikrokanalstruktur für wärmetauscher und integrierter mikrokanalwärmetauscher Active EP2878910B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2012101708047A CN102706201A (zh) 2012-05-29 2012-05-29 一种换热器的微通道结构
CN2012101708028A CN102706187A (zh) 2012-05-29 2012-05-29 一种集成式微通道换热器
PCT/CN2013/076409 WO2013178066A1 (zh) 2012-05-29 2013-05-29 一种换热器的微通道结构以及集成式微通道换热器

Publications (3)

Publication Number Publication Date
EP2878910A1 EP2878910A1 (de) 2015-06-03
EP2878910A4 EP2878910A4 (de) 2016-06-08
EP2878910B1 true EP2878910B1 (de) 2019-07-31

Family

ID=49672425

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13796426.8A Active EP2878910B1 (de) 2012-05-29 2013-05-29 Mikrokanalstruktur für wärmetauscher und integrierter mikrokanalwärmetauscher

Country Status (5)

Country Link
US (1) US20150122467A1 (de)
EP (1) EP2878910B1 (de)
JP (1) JP3197685U (de)
HU (1) HUE046861T2 (de)
WO (1) WO2013178066A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056928B1 (ja) * 2015-09-09 2017-01-11 株式会社富士通ゼネラル マイクロ流路熱交換器
CN105679722B (zh) * 2016-01-22 2018-08-21 东南大学 基于筒状双层分流结构微通道的换热系统
JP6815965B2 (ja) * 2017-10-12 2021-01-20 株式会社神戸製鋼所 熱交換プレートに用いられる金属製元板材
JP6663899B2 (ja) * 2017-11-29 2020-03-13 本田技研工業株式会社 冷却装置
CN108106469B (zh) * 2018-01-26 2023-08-25 上海交通大学 一种适用于摇晃工况的板翅式换热器翅片组件及换热器
JP6642603B2 (ja) * 2018-02-28 2020-02-05 株式会社富士通ゼネラル 隔壁式熱交換器
JP7210151B2 (ja) * 2018-03-30 2023-01-23 住友精密工業株式会社 拡散接合型熱交換器
CN108548437B (zh) * 2018-06-08 2023-11-03 陕西益信伟创智能科技有限公司 基于仿生的鱼刺型微小交错肺泡换热器芯体及换热器
JP6881516B2 (ja) * 2019-07-29 2021-06-02 株式会社富士通ゼネラル 隔壁式熱交換器
DE102020202835A1 (de) * 2020-03-05 2021-09-09 Hanon Systems Wärmeübertrager und Verfahren zum Betreiben eines Wärmeübertragers
EP4012313A1 (de) * 2020-12-14 2022-06-15 Asetek Danmark A/S Heizkörper mit angepassten rippen
CN113543600A (zh) * 2021-07-21 2021-10-22 中国石油大学(华东) 一种不完全填充错列式微通道换热器
CN114783967A (zh) * 2022-03-31 2022-07-22 江苏大学 一种芯片液冷散热用硅基腔槽
CN115117514B (zh) * 2022-08-25 2022-11-11 四川大学 一种交错逆流式一体化冷却系统及电动车
CN117001289B (zh) * 2023-08-25 2024-05-03 西安交通大学 一种制备异形微细通道板式换热器的复合工艺及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4817709A (en) * 1987-12-02 1989-04-04 Carrier Corporation Ramp wing enhanced plate fin
JP2006125767A (ja) * 2004-10-29 2006-05-18 Tokyo Institute Of Technology 熱交換器
JP2006170549A (ja) 2004-12-17 2006-06-29 Yasuyoshi Kato 熱交換器
DE102005029321A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Wärmeübertrager
DE102006013503A1 (de) * 2006-03-23 2008-01-24 Esk Ceramics Gmbh & Co. Kg Plattenwärmetauscher, Verfahren zu dessen Herstellung und dessen Verwendung
US20080066888A1 (en) * 2006-09-08 2008-03-20 Danaher Motion Stockholm Ab Heat sink
CN101178292B (zh) * 2006-11-08 2011-05-04 浙江三花制冷集团有限公司 一种翅片和冷凝器
ATE549085T1 (de) * 2008-11-26 2012-03-15 Corning Inc Wärmetauscher für mikrostrukturen
CN101509736A (zh) 2009-03-10 2009-08-19 江苏三江电器集团有限公司 紧凑型微通道换热器
CN201973962U (zh) 2011-01-30 2011-09-14 杭州沈氏换热器有限公司 一种微通道换热器
CN102095285B (zh) 2011-02-10 2012-07-18 Tcl空调器(中山)有限公司 一种微通道换热器的扁管加工方法
CN102706201A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种换热器的微通道结构
CN102706187A (zh) * 2012-05-29 2012-10-03 浙江微智源能源技术有限公司 一种集成式微通道换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2878910A1 (de) 2015-06-03
JP3197685U (ja) 2015-06-04
US20150122467A1 (en) 2015-05-07
WO2013178066A1 (zh) 2013-12-05
HUE046861T2 (hu) 2020-03-30
EP2878910A4 (de) 2016-06-08

Similar Documents

Publication Publication Date Title
EP2878910B1 (de) Mikrokanalstruktur für wärmetauscher und integrierter mikrokanalwärmetauscher
EP2151653B1 (de) Mikrokanal-Wärmetauscher
CA2960353C (en) Heat exchanger including furcating unit cells
EP2889570B1 (de) Wärmetauscher
CN102706187A (zh) 一种集成式微通道换热器
US20180045472A1 (en) Heat exchanger device
CN102706201A (zh) 一种换热器的微通道结构
US20200363133A1 (en) Heat exchanger including furcating unit cells
US20100230081A1 (en) Corrugated Micro Tube Heat Exchanger
EP1867944A3 (de) Wärmetauscher
CN103933914A (zh) 在联合微通道装置中进行单元操作的方法和系统
EP3855106B1 (de) Fraktaler wärmetauscher mit kanal
CN210321342U (zh) 一种复合导流结构印刷电路板换热器
CN202599166U (zh) 一种集成式微通道换热器
CN113834354B (zh) 一种三维均混流换热器芯体及换热器
US20130192805A1 (en) Twist Vane Counter-Parallel Flow Heat Exchanger Apparatus And Method
CN106370043A (zh) 一种新型换热器芯部
CN202599167U (zh) 微通道换热器
CN210051186U (zh) 三介质换热器
EP3598053B1 (de) Plattenwärmetauscher
CN102313401A (zh) 微通道换热器
CN214199794U (zh) 一种螺旋换热器
CN210668345U (zh) 具有高度梯度的微通道结构
CN106403688B (zh) 一种换热器芯部
US20050183851A1 (en) High efficiency flat panel microchannel heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160506

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/04 20060101AFI20160429BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1161354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013058542

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E046861

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013058542

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1161354

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230523

Year of fee payment: 11

Ref country code: DE

Payment date: 20230510

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230426

Year of fee payment: 11

Ref country code: AT

Payment date: 20230421

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230519

Year of fee payment: 11