EP2876653A1 - Multikontaktelement für einen Varistor - Google Patents

Multikontaktelement für einen Varistor Download PDF

Info

Publication number
EP2876653A1
EP2876653A1 EP14192944.8A EP14192944A EP2876653A1 EP 2876653 A1 EP2876653 A1 EP 2876653A1 EP 14192944 A EP14192944 A EP 14192944A EP 2876653 A1 EP2876653 A1 EP 2876653A1
Authority
EP
European Patent Office
Prior art keywords
intermediate layer
elements
contact
mke
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14192944.8A
Other languages
English (en)
French (fr)
Other versions
EP2876653B1 (de
Inventor
Jan-Erik Schmutz
Friedrich-Eckhard Brand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Priority to SI201430293T priority Critical patent/SI2876653T1/sl
Publication of EP2876653A1 publication Critical patent/EP2876653A1/de
Application granted granted Critical
Publication of EP2876653B1 publication Critical patent/EP2876653B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • H01C7/126Means for protecting against excessive pressure or for disconnecting in case of failure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • H01C1/084Cooling, heating or ventilating arrangements using self-cooling, e.g. fins, heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/12Two or more separate fusible members in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers

Definitions

  • the invention relates to a multi-contact element for a varistor.
  • Varistors provide a voltage dependent resistor in electrical circuits. Varistors are therefore used in many applications, typically to dissipate overvoltages above a certain threshold voltage so as to prevent overloading or damaging a subsequent device. Therefore, varistors are often synonymous as a surge protection device called. An example of such overvoltage is a voltage that can be caused by lightning. If such an overvoltage event occurs, the task of the varistor is to divert the current past the respective electrically downstream consumer and thus to limit the voltage at the electrical load.
  • the varistor generally has as its material a granular metal oxide, e.g. Zinc oxide and / or bismuth oxide and / or manganese oxide and / or chromium oxide and / or silicon carbide, which is introduced as a rule as a (sintered) ceramic between two planar electrodes as supply elements.
  • a granular metal oxide e.g. Zinc oxide and / or bismuth oxide and / or manganese oxide and / or chromium oxide and / or silicon carbide
  • the individual grains have a different conductivity.
  • barrier layers i. at the points of contact of the grains. It can be seen that with increasing thickness, the number of grain boundaries increases and thus the limit voltage. When a voltage is applied to the lead elements, an electric field is formed. Depending on the voltage while the barrier layers are now degraded and the resistance decreases.
  • both the current distribution and the overcoming of the barrier layers are not a uniform process, but rather local current paths are formed which come into the conducting state at different rates.
  • a temperature sensor which operates a switch when a certain temperature is exceeded.
  • temperature sensors can only be used to detect slow events. Rapid heating, as occurs, for example, when applying a high voltage, leads to a greatly delayed due to the necessary and known slow heat conduction temperature rise at the temperature sensor, so that the varistor would be destroyed as a rule. Also, the separation ability is usually limited here, i. only small currents can be switched off.
  • Such an energy input may e.g. arise because over an extended period of time an overvoltage occurs, which leads to a switching of the varistor and now the short-circuit current of the network is derived via the varistor. In this case, significant heating of the varistor occurs and there is a risk of fire. Furthermore, the varistor can be damaged so far that the varistor breaks down explosively.
  • varistors are therefore provided with an upstream fuse element.
  • the invention is based on the object to provide a contact element for a varistor, which circumvents one or more of these disadvantages.
  • the invention takes advantage of the fact that a breakdown of a varistor is usually first of all a local phenomenon, which is only then a phenomenon relating to the entire varistor.
  • the invention proposes the division of the fuse into individual fuse elements 1, 2,... N as in FIG FIG. 1 shown in parallel contact a varistor.
  • a corresponding exemplary structure is shown in FIG FIG. 1 shown.
  • a multicontact element MKE is used for a varistor VAR, wherein the multicontact element MKE has a sandwich structure.
  • the sandwich structure has in a lowermost layer US two or more contact elements KE1, KE2 for contacting the varistor VAR and in a topmost layer OS at least one common connection electrode A for contacting a consumer network to be protected.
  • a first intermediate layer ZS1 of an electrically insulating material layer is provided at least in sections.
  • an electrically insulating material layer can be used, for example, by a board material, a glass fiber mat soaked with epoxy resin, for example FR4, or else polymers, ceramics or glass.
  • the securing elements DK1, DK2 are designed as plated-through holes within the first intermediate layer ZS1. As a result, a low height is possible.
  • the fuse elements DK1, DK2 in the first intermediate layer are in direct electrical contact with the common connection electrode A.
  • Each of the fuse elements DK1, DK2 is in direct or indirect electrical contact with a subset of the contact elements KE1, KE2. That is, in the embodiment of the FIG. 2 the contact element KE1 is in direct contact with the securing element DK1 and the contact element KE2 is in direct contact with the securing element DK2.
  • the securing elements DK1, DK2 have blow-out channels AK in the first intermediate layer ZS1, so that in the event of thermal overloading of a securing element DK1, DK2 of the first intermediate layer ZS1, the affected securing element DK1 can evaporate through the blow-off channel and thus establish the electrical connection to the underlying ( Part-) varistor is interrupted. That The plasma produced in the separation case can pass via blow-off channels AK into a possibly existing surrounding extinguishing medium LM and the plasma is cooled there.
  • each contact element KE assigned exactly one securing element DK the advantageous division can also be carried out with respect to a contact element or, if for example it is not possible to achieve a desired nominal value with a securing element, this by a parallel connection of several m fuse elements a 1 , b 1 , ..., m 1 Representing a first fuse element 1, a parallel connection of a plurality of fuse elements a 2 , b 2 , ..., m 2 representative of a second fuse element 2, etc. to achieve, as in FIG. 3 compared to FIG. 1 is clarified.
  • Each of the fuse elements DK1, DK2, DK3, DK4 is in direct or indirect electrical contact with a subset of the contact elements KE1, KE2. That is, in the embodiment of the FIG. 4 the contact element KE1 is in direct contact with the security elements DK1 1 and DK1 2 , while the contact element KE2 is in direct contact with the security elements DK2 1 and DK2 2 .
  • a second intermediate layer ZS2 is provided from an electrically insulating material layer.
  • an electrically insulating material layer can, for example, in turn be used by a circuit board material, a glass fiber mat impregnated with epoxy resin, for example FR4, or else polymers, ceramics or glass. Particularly advantageous here, in addition to individual material layers and combination products such as multi-layer boards or the like can be used.
  • fuse elements DK3, DK4 which are designed so that they can carry a specified surge current, wherein the specified surge current per fuse element is less than the specified surge current of the varistor VAR. That Although the nominal value of the individual fuse elements is small, the necessary separation capacity can be provided by the parallel connection of the fuse elements, while at the same time ensuring that due to the low nominal value of the individual fuse elements a quick shutdown in the local fault current event and thus in total global fault current case is made available.
  • the securing elements DK3, DK4 are designed as plated-through holes within the second intermediate layer ZS2. As a result, a low height is possible.
  • the fuse elements DK3, DK4 in the second intermediate layer are in turn in electrical contact via at least one plated-through hole DK1, DK2 of the first intermediate layer ZS1 with the common terminal electrode A.
  • Each of the fuse elements DK3, DK4 of the second intermediate layer ZS2 is in direct electrical contact with a subset of the contact elements KE1, KE2. That is, in the embodiment of the FIG. 7 the contact elements KE1 is in direct contact with the securing elements DK3 and the contact elements KE2 are in direct contact with the securing element DK4. In the embodiment of the FIG. 8 is the contact elements KE1 in direct contact with the security elements DK2 and DK3 and the contact elements KE2 in direct contact with the security elements DK4 and DK5.
  • the securing elements DK3, DK4 have blow-out channels AK in the second intermediate layer ZS2, so that in the event of thermal overloading of a securing element DK3, DK4 of the second intermediate layer ZS2, the affected securing element DK3, DK4 can evaporate through the blow-off channel and thus establish the electrical connection to the underlying (part) varistor is interrupted. That The plasma produced in the separation case can pass via blow-off channels AK into a possibly existing surrounding extinguishing medium LM and the plasma is cooled there.
  • FIGS. 7 and 8 are doing the Figures 5 corresponding variants of a series connection of a fuse element of a first intermediate layer realized with a parallel circuit of fuse elements of a second intermediate layer.
  • the arrangement is not limited to these forms of series connections, but it can of course also be provided that in each case parallel circuits are provided in both the first intermediate layer and in the second intermediate layer, which are connected in series.
  • parallel circuits are provided in both the first intermediate layer and in the second intermediate layer, which are connected in series.
  • FIG. 11 An exemplary meander-shaped arrangement of such a multi-contact element is shown in FIG FIG. 11 shown.
  • a (partial) current of the varistor VAR occurs at the contact element KE1 and is passed through the via through a third intermediate layer ZS3, which is shown by way of example as insulation to the varistor, and through a second intermediate layer ZS2.
  • a conductor track position between the first intermediate layer ZS1 and the second intermediate layer ZS2 which may likewise be configured in the manner of a securing element, a contact to a second through-connection to the right is produced.
  • a contacting to a third via right next to it is produced.
  • This process can be provided as many times as necessary to achieve the desired rating or voltage.
  • fuse elements are connected in parallel, this would, for example, in the illustrated cut perspective simply possible that in a further underlying layer the same arrangement is repeated, wherein at a suitable location, a compound of the levels is provided on Leiterbahneben.
  • the strip conductors can also be designed as further securing elements.
  • an electrically insulating extinguishing medium LM for example, polyoxymethylene (POM) or quartz sand can be used as an electrically insulating extinguishing agent.
  • the securing elements DK1, DK2 of the first intermediate layer ZS1 and, if present, also the securing elements DK3, DK4 of the second intermediate layer ZS2 are designed to have a nominal value of up to 10 A, preferably 1 A.
  • the surge current capability is designed so that currents up to 1 kA, in particular up to 2 kA or more can be worn short term
  • At least one of the securing elements DK1, DK2; DK3, DK4 is machined by means of a bore in such a way that the flow-throughable diameter is reduced and the blow-out duct is enlarged.
  • backup values can be set precisely by post-processing a via.
  • through holes targeted connections to a connection electrode A are interrupted and so the nominal value can be subsequently adjusted. For example, can be removed by drilling a fuse element of a parallel circuit of fuse elements.
  • the bore is eccentric.
  • the invention is not limited to the multi-contact element, but also includes a varistor VAR, which has at least one multi-contact element MKE. It can even be provided that both terminals of a varistor are equipped by means of the multi-contact elements according to the invention. Also in more recently available multi-contact varistors, i. Varistors with one or more center taps, the invention is equally applicable to all connections.
  • connection between the multicontact element MKE and the varistor ceramic VAR preferably takes place via a pressure contact.
  • a soldering, adhesive or clamping connection may be provided.
  • the varistor VAR and the multi-contact element MKE are then in a housing G, in particular when an extinguishing agent LM is still used.
  • the fuse elements are arranged substantially parallel to the varistor surface.
  • the fuse elements can be manufactured particularly easily in printed circuit board technology. Particularly advantageous multi-layer printed circuit boards can be used for this purpose.
  • a multi-layer printed circuit board and a printed circuit board can be used, which has at the bottom of the contact elements, which are connected by vias to the conductor on the top.
  • a second circuit board, which has no copper coating on the bottom and the recesses and holes is fixed on the lower circuit board, so that the recesses are aligned substantially over the (fuse) traces and the holes at the end. Through the holes, wires can be bonded, soldered or welded to the end of the fuse tracks, which can then be attached to the top of the top board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Fuses (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Gegenstand der Erfindung ist ein Multikontaktelement (MKE) für einen Varistor (VAR), wobei das Multikontaktelement (MKE) eine Sandwichstruktur aufweist, wobei die Sandwichstruktur in einer untersten Schicht (US) zwei oder mehrere Kontaktelemente (KE1, KE2) aufweist, und wobei die Sandwichstruktur in einer obersten Schicht (OS) zumindest eine gemeinsame Anschlusselektrode (A) aufweist, wobei zwischen der untersten Schicht (US) und der obersten Schicht (OS) zumindest abschnittsweise eine erste Zwischenschicht (ZS1) aus einer elektrisch isolierenden Materiallage vorgesehen ist, wobei sich in der ersten Zwischenschicht (ZS1) Sicherungselemente (DK1, DK2) befinden, die so ausgelegt sind, dass sie einen spezifizierten Stoßstrom tragen können, wobei der spezifizierte Stoßstrom pro Sicherungselement geringer ist als der spezifizierte Stoßstrom des Varistors (VAR), wobei die Sicherungselemente (DK1, DK2) als Durchkontaktierung innerhalb der ersten Zwischenschicht (ZS1) ausgeführt sind, wobei die Sicherungselemente (DK1, DK2) in der ersten Zwischenschicht in direktem elektrischen Kontakt mit der gemeinsamen Anschlusselektrode (A) stehen, wobei jedes der Sicherungselemente (DK1, DK2) mit einer Untermenge der Kontaktelemente (KE1, KE2) in direktem oder indirektem elektrischen Kontakt steht, wobei die Sicherungselemente (DK1, DK2) über Ausblaskanäle (AK) in der ersten Zwischenschicht (ZS1) verfügen, sodass im Falle einer thermischen Überlastung eines Sicherungselemente (DK1, DK2) der ersten Zwischenschicht (ZS1) das betroffene Sicherungselement (DK1) durch den Ausblaskanal verdampfen kann.

Description

  • Die Erfindung betrifft ein Multikontaktelement für einen Varistor.
  • Varistoren stellen in elektrischen Schaltungen einen spannungsabhängigen Widerstand zur Verfügung. Varistoren werden daher in vielerlei Anwendungen eingesetzt, typischerweise um Überspannungen oberhalb einer bestimmten Grenzspannung abzuleiten, um so eine Überlastung oder Beschädigung einer nachfolgenden Einrichtung zu verhindern. Daher werden Varistoren häufig auch synonym als Überspannungsschutzgerät bezeichnet. Ein Beispiel für eine solche Überspannung ist eine Spannung, welche durch Blitzeinwirkung entstehen kann. Tritt ein solches Überspannungsereignis ein, so ist die Aufgabe des Varistors den Strom am jeweiligen elektrisch nachgeordneten Verbraucher vorbei abzuleiten und so die Spannung am elektrischen Verbraucher zu begrenzen.
  • Dabei weist der Varistor im Allgemeinen als Werkstoff ein körniges Metalloxid, z.B. Zinkoxid und/oder Wismutoxid und/oder Manganoxid und/oder Chromoxid und/oder Siliziumkarbid auf, der zwischen zwei flächigen Elektroden als Zuleitungselemente in aller Regel als (gesinterte) Keramik eingebracht ist.
  • Typischerweise besitzen die einzelnen Körner eine unterschiedliche Leitfähigkeit. Dabei bilden sich an den jeweiligen Korngrenzen, d.h. an den Berührpunkten der Körner, Sperrschichten aus. Dabei kann man feststellen, dass mit zunehmender Dicke die Anzahl der Korngrenzen steigt und damit auch die Grenzspannung. Wird eine Spannung an die Zuleitungselemente gelegt, bildet sich ein elektrisches Feld aus. In Abhängigkeit der Spannung werden dabei die Sperrschichten nun abgebaut und der Widerstand sinkt.
  • Aufgrund der Materialeigenschaften des Varistors ist sowohl die Stromverteilung als auch die Überwindung der Sperrschichten kein uniformer Prozess, sondern es bilden sich lokal Strompfade aus, die unterschiedlich schnell in den leitenden Zustand kommen.
  • Bedingt durch die Materialeigenschaften und in Folge von Benutzung des Varistors treten Leckströme auf. Diese Leckströme sind zwar in aller Regel gering, führen jedoch unter Umständen zu einer erheblichen Erwärmung des Bauelements und daher besteht Brandgefahr. Um hier gegenzusteuern wird typischerweise ein Temperatursensor verwendet, der bei Überschreiten einer bestimmten Temperatur einen Schalter betätigt. Temperatursensoren sind dabei jedoch nur zur Detektion von langsamen Ereignissen einsetzbar. Eine schnelle Erwärmung, wie sie beispielsweise beim Anliegen einer hohen Spannung entstehet, führt zu einem auf Grund der nötigen und bekanntermaßen langsamen Wärmeleitung stark verzögerten Temperaturanstieg am Temperatursensor, so dass der Varistor in aller Regel schon zerstört wäre. Auch ist das Trennvermögen hier in aller Regel beschränkt, d.h. es können nur geringe Ströme abgeschaltet werden.
  • Ein solcher Energieeintrag kann z.B. dadurch entstehen, dass über längere Zeit eine Überspannung auftritt, die zu einem Durchschalten des Varistors führt und nun der Kurzschlussstrom des Netzes über den Varistor abgeleitet wird. In diesem Fall tritt eine erhebliche Erwärmung des Varistors auf und es besteht Brandgefahr. Weiterhin kann der Varistor dabei soweit geschädigt werden, dass der Varistor explosionsartig durchlegiert.
  • Typischerweise werden Varistoren deshalb mit einem vorgeschalteten Sicherungselement versehen.
  • Bisher wurden hierfür klassische Schmelzsicherungen verwendet, die dem jeweiligen Überspannungsschutzgerät vorgeschaltet waren. Dabei waren jedoch zwei sich widersprechende Randbedingungen abzuwägen: Während bei einem Überspannungsereignis kurzfristig ein hoher Strom fließt, der nicht zu einem Auslösen der Schmelzsicherung führen soll, muss bei einer Schädigung des Überspannungsschutzgerätes bei einem möglichst geringen Strom eine sichere Auslösung bereitgestellt werden.
  • D.h. um eine schnelle Abtrennung im Fehlerfall des Überspannungsschutzgerätes, d.h. bei geringen Fehlerströmen, zu gewährleisten, müsste eine Schmelzsicherung mit einem kleinen Nennwert verwendet werden. Eine solche Schmelzsicherung trägt aber aufgrund des damit verbundenen I2t Wertes nur geringe Impulsströme. Umgekehrt muss aber, um einen großen Impulsstrom ableiten zu können, die Schmelzsicherung einen großen Nennwert besitzen.
  • Dennoch treten immer wieder Schäden an Varistoren auf, die nicht durch die vorgenannten Elemente detektiert werden können, d.h. es treten Ströme auf, die durch das Trennvermögen der thermischen Abschaltung nicht mehr abgetrennt werden können, die aber für ein vorgeschaltetes Sicherungselement zu gering sind.
  • Vor diesem Hintergrund ist es das Bestreben den Sicherungsnennwert des vorgeschalteten Sicherungselementes zu minimieren, aber dennoch die maximale Stoßstromfestigkeit zu erhalten.
  • Bisher konnte dieses Problem nur unzureichend gelöst werden.
  • Einen ersten Ansatz, um dieses Problem zu lösen, wurde in DE 10 2012 011 241.6 beschrieben. Hierbei wird eine Aufteilung der Ströme in parallele Pfade vorgeschlagen, um so den Nennwert der Einzelsicherungen zu reduzieren.
  • Obwohl die vorgestellte Lösung ihre Aufgabe erfüllt, wäre es wünschenswert eine Lösung zu finden die einfach einstellbar ist und zudem geringere Baugrößen ermöglicht und zudem einfach herstellbar ist.
  • Der Erfindung liegt die Aufgabe zu Grunde, ein Kontaktelement für einen Varistor bereitzustellen, das einen oder mehrere dieser Nachteile umgeht.
  • Diese Aufgabe wird durch die Merkmale des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen sind auch Gegenstand der abhängigen Ansprüche.
  • Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen anhand bevorzugter Ausführungsformen näher erläutert.
  • Es zeigen
  • Fig. 1
    ein Prinzip-Ersatzschaltbild eines Aspektes der Erfindung,
    Fig. 2
    einen Schnitt durch eine beispielhafte Anordnung gemäß Ausführungsformen der Erfindung,
    Fig. 3
    ein Prinzip-Ersatzschaltbild eines weiteren Aspektes der Erfindung,
    Fig. 4
    einen Schnitt durch eine weitere beispielhafte Anordnung gemäß Ausführungsformen der Erfindung,
    Fig. 5
    Prinzipdarstellungen äquivalenter Schaltungen gemäß eines Aspektes der Erfindung,
    Fig. 6
    ein Prinzip-Ersatzschaltbild noch eines weiteren Aspektes der Erfindung,
    Fig. 7
    einen Schnitt durch eine weitere beispielhafte Anordnung gemäß Ausführungsformen der Erfindung,
    Fig. 8
    einen Schnitt durch eine weitere beispielhafte Anordnung gemäß Ausführungsformen der Erfindung,
    Fig. 9
    ein Prinzip-Ersatzschaltbild und eine hierzu korrespondierende quasiräumliche Anordnung gemäß eines weiteren Aspektes der Erfindung,
    Fig. 10
    ein Prinzip-Ersatzschaltbild in quasi-räumliche Anordnung gemäß eines weiteren Aspektes der Erfindung,
    Fig. 11
    einen Schnitt durch eine weitere beispielhafte Anordnung gemäß Ausführungsformen der Erfindung,
    Fig. 12
    einen Schnitt durch eine weitere beispielhafte Anordnung gemäß Ausführungsformen der Erfindung, und
    Fig. 13
    eine Draufsicht auf Fig. 12.
  • Die Erfindung macht sich zu Nutzen, dass ein Durchlegieren eines Varistors in aller Regel zunächst eine lokale Erscheinung ist, die erst anschließend eine den gesamten Varistor betreffende Erscheinung ist.
  • Daher schlägt die Erfindung die Aufteilung der Sicherung in einzelne Sicherungselemente 1, 2, ... n wie in Figur 1 gezeigt vor, die parallel einen Varistor kontaktieren. Ein hierzu korrespondierender beispielhafter Aufbau ist in Figur 1 gezeigt. Dabei wird ein Multikontaktelement MKE für einen Varistor VAR eingesetzt, wobei das Multikontaktelement MKE eine Sandwichstruktur aufweist. Dabei weist die Sandwichstruktur in einer untersten Schicht US zwei oder mehrere Kontaktelemente KE1, KE2 zur Kontaktierung des Varistors VAR und in einer obersten Schicht OS zumindest eine gemeinsame Anschlusselektrode A zur Kontaktierung eines zu schützenden Verbrauchernetzes auf.
  • Zwischen der untersten Schicht US und der obersten Schicht OS ist zumindest abschnittsweise eine erste Zwischenschicht ZS1 aus einer elektrisch isolierenden Materiallage vorgesehen. Eine solche elektrisch isolierende Materiallage kann z.B. durch ein Platinen-Material, eine mit Epoxidharz getränkte Glasfasermatte, z.B. FR4, oder aber auch Polymere, Keramiken oder Glas verwendet werden.
  • In der ersten Zwischenschicht ZS1 befinden sich nun die einzelnen Sicherungselemente DK1, DK2, die so ausgelegt sind, dass sie einen spezifizierten Stoßstrom tragen können, wobei der spezifizierte Stoßstrom pro Sicherungselement geringer ist als der spezifizierte Stoßstrom des Varistors VAR. D.h. obwohl der Nennwert der einzelnen Sicherungselemente klein ist, kann durch die Parallelschaltung der Sicherungselemente das notwendige Trennvermögen zur Verfügung gestellt werden, während zugleich sichergestellt werden kann, dass durch den geringen Nennwert der einzelnen Sicherungselemente eine schnelle Abschaltung im lokalen Fehlerstromfall und somit auch in Summe bei einem globalen Fehlerstromfall zur Verfügung gestellt wird.
  • Dabei sind die Sicherungselemente DK1, DK2 als Durchkontaktierung innerhalb der ersten Zwischenschicht ZS1 ausgeführt. Hierdurch wird eine geringe Bauhöhe ermöglicht.
  • Hierzu stehen die Sicherungselemente DK1, DK2 in der ersten Zwischenschicht in direktem elektrischem Kontakt mit der gemeinsamen Anschlusselektrode A.
  • Jedes der Sicherungselemente DK1, DK2 steht mit einer Untermenge der Kontaktelemente KE1, KE2 in direktem oder indirektem elektrischen Kontakt. D.h. in der Ausführungsform der Figur 2 steht das Kontaktelemente KE1 in direktem Kontakt mit der Sicherungselement DK1 und das Kontaktelemente KE2 in direktem Kontakt mit der Sicherungselement DK2.
  • Für den Fehlerfall verfügen die Sicherungselemente DK1, DK2 über Ausblaskanäle AK in der ersten Zwischenschicht ZS1, sodass im Falle einer thermischen Überlastung eines Sicherungselements DK1, DK2 der ersten Zwischenschicht ZS1 das betroffene Sicherungselement DK1 durch den Ausblaskanal verdampfen kann und so die elektrische Verbindung zum darunterliegenden (Teil-) Varistor unterbrochen wird. D.h. das im Abtrennfall entstehende Plasma kann über Ausblaskanäle AK in ein eventuell vorhandenes umgebendes Löschmedium LM gelangen und das Plasma wird dort gekühlt.
  • Waren in der Ausführungsform der Figur 1 und Figur 2 jedem Kontaktelement KE genau ein Sicherungselement DK zugeordnet, kann die vorteilhafte Aufteilung auch in Bezug auf ein Kontaktelement vorgenommen werden oder aber, falls z.B. es nicht möglich ist, einen gewünschten Nennwert mit einem Sicherungselement zu erreichen, dieses durch eine Parallelschaltung von mehreren m Sicherungselementen a1, b1, ..., m1 stellvertretend für ein erstes Sicherungselement 1, eine Parallelschaltung von mehreren Sicherungselemente a2, b2, ..., m2 stellvertretend für ein zweites Sicherungselement 2, usw. zu erreichen, wie dies in Figur 3 im Vergleich zu Figur 1 verdeutlicht ist.
  • D.h. in Figur 4 steht jedes der Sicherungselemente DK1, DK2, DK3, DK4 mit einer Untermenge der Kontaktelemente KE1, KE2 in direktem oder indirektem elektrischen Kontakt. D.h. in der Ausführungsform der Figur 4 steht das Kontaktelemente KE1 in direktem Kontakt mit den Sicherungselementen DK11 und DK12, während das Kontaktelement KE2 in direktem Kontakt mit den Sicherungselementen DK21 und DK22 steht.
  • In einer weiteren Ausführungsform der Erfindung ist, wie in Figur 7 bzw. 8 gezeigt, zwischen der untersten Schicht US und der ersten Zwischenschicht ZS1 zumindest abschnittsweise eine zweite Zwischenschicht ZS2 aus einer elektrisch isolierenden Materiallage vorgesehen. Eine solche elektrisch isolierende Materiallage kann z.B. wiederum durch ein Platinen-Material, eine mit Epoxidharz getränkte Glasfasermatte, z.B. FR4, oder aber auch Polymere, Keramiken oder Glas verwendet werden. Besonders vorteilhaft können hier neben einzelnen Materiallagen auch Kombinationsprodukte wie z.B. Multi-Layer-Platinen oder dergleichen verwendet werden.
  • Wiederum befinden sich in der zweiten Zwischenschicht ZS2 Sicherungselemente DK3, DK4, die so ausgelegt sind, dass sie einen spezifizierten Stoßstrom tragen können, wobei der spezifizierte Stoßstrom pro Sicherungselement geringer ist als der spezifizierte Stoßstrom des Varistors VAR. D.h. obwohl der Nennwert der einzelnen Sicherungselemente klein ist, kann durch die Parallelschaltung der Sicherungselemente das notwendige Trennvermögen zur Verfügung gestellt werden, während zugleich sichergestellt werden kann, dass durch den geringen Nennwert der einzelnen Sicherungselemente eine schnelle Abschaltung im lokalen Fehlerstromfall und somit auch in Summe bei einem globalen Fehlerstromfall zur Verfügung gestellt wird.
  • Dabei sind die Sicherungselemente DK3, DK4 als Durchkontaktierung innerhalb der zweiten Zwischenschicht ZS2 ausgeführt. Hierdurch wird eine geringe Bauhöhe ermöglicht.
  • Die Sicherungselemente DK3, DK4 in der zweiten Zwischenschicht stehen wiederum in elektrischem Kontakt über zumindest eine Durchkontaktierung DK1, DK2 der ersten Zwischenschicht ZS1 mit der gemeinsamen Anschlusselektrode A.
  • Jedes der Sicherungselemente DK3, DK4 der zweiten Zwischenschicht ZS2 steht mit einer Untermenge der Kontaktelemente KE1, KE2 in direktem elektrischen Kontakt. D.h. in der Ausführungsform der Figur 7 steht das Kontaktelemente KE1 in direktem Kontakt mit den Sicherungselementen DK3 und das Kontaktelemente KE2 in direktem Kontakt mit dem Sicherungselement DK4. In der Ausführungsform der Figur 8 steht das Kontaktelemente KE1 in direktem Kontakt mit den Sicherungselementen DK2 und DK3 und das Kontaktelemente KE2 in direktem Kontakt mit den Sicherungselementen DK4 und DK5.
  • Für den Fehlerfall verfügen die Sicherungselemente DK3, DK4 über Ausblaskanäle AK in der zweiten Zwischenschicht ZS2, sodass im Falle einer thermischen Überlastung eines Sicherungselements DK3, DK4 der zweiten Zwischenschicht ZS2 das betroffene Sicherungselement DK3, DK4 durch den Ausblaskanal verdampfen kann und so die elektrische Verbindung zum darunterliegenden (Teil-) Varistor unterbrochen wird. D.h. das im Abtrennfall entstehende Plasma kann über Ausblaskanäle AK in ein eventuell vorhandenes umgebendes Löschmedium LM gelangen und das Plasma wird dort gekühlt.
  • In Figur 7 und 8 sind dabei den Figuren 5 entsprechende Varianten einer Serienschaltung eines Sicherungselementes einer ersten Zwischenschicht mit einer Parallelschaltung von Sicherungselementen einer zweiten Zwischenschicht realisiert. Dabei ist die Anordnung nicht auf diese Formen der Serienschaltungen beschränkt, sondern es kann natürlich auch vorgesehen sein, dass sowohl in der ersten Zwischenschicht als auch in der zweiten Zwischenschicht jeweils Parallelschaltungen vorgesehen sind, die in Serie geschaltet werden. Diese Maßnahmen erlauben den Nennwert der einzelnen Sicherungselemente als auch den Nennwert der durch die Schaltung bereitgestellt wird, sehr präzise einzustellen. Ganz allgemein ist dieses Prinzip in Figur 9 noch einmal verdeutlicht, wobei in der unteren Darstellung der Figur 9 eine mögliche quasi-räumliche alternierende Anordnung gezeigt ist, wie sie beispielhaft mit einer Zwischenschicht realisierbar ist. Wiederum kann, wie in Figur 10 angedeutet, ein einzelnes Sicherungselement als eine Parallelschaltung von Sicherungselementen realisiert sein.
  • Eine beispielhafte mäanderförmige Anordnung eines solchen Multikontaktelements ist in Figur 11 gezeigt. Dort ist ein möglicher Strompfad anhand des gestichelten Pfeiles verdeutlicht. Dabei tritt ein (Teil-) Strom des Varistors VAR am Kontaktelement KE1 ein und wird über die Durchkontaktierung durch eine dritte Zwischenschicht ZS3, welche beispielhaft als Isolation zum Varistor eingezeichnet ist, und durch eine zweite Zwischenschicht ZS2 hindurchgeführt. Anschließend wird in einer Leiterbahnlage zwischen der ersten Zwischenschicht ZS1 und der zweiten Zwischenschicht ZS2, die ebenfalls sicherungselementartig ausgestaltet sein kann, eine Kontaktierung zu einer zweiten Durchkontaktierung rechts daneben hergestellt. Anschließend wird in einer zweiten Leiterbahnlage zwischen der dritten Zwischenschicht ZS3 und der zweiten Zwischenschicht ZS2, die ebenfalls sicherungselementartig ausgestaltet sein kann, eine Kontaktierung zu einer dritten Durchkontaktierung rechts daneben hergestellt. Dieser Vorgang kann sooft vorgesehen werden, wie nötig, um den gewünschten Nennwert bzw. die gewünschte Spannung zu erzielen. Natürlich kann zudem vorgesehen sein, dass auch hier mehrere Sicherungselemente parallel geschaltet sind, dies wäre z.B. bei der dargestellten Schnittperspektive einfach dadurch möglich, dass in einer weiteren dahinterliegenden Ebene dieselbe Anordnung wiederholt wird, wobei an geeigneten Stelle eine Verbindung der Ebenen auf Leiterbahneben bereitgestellt wird.
  • Wie in den Figuren 2, 4, 7 und 8 gezeigt, sind zumindest ein Teil der Durchkontaktierungen DK1, DK2 der ersten Zwischenschicht ZS1 über Leiterbahnen mit der Anschlusselektrode A verbunden. Durch geeignete Dimensionierung und/oder Ausformung der Leiterbahnen können die Leiterbahnen auch als weitere Sicherungselemente ausgelegt sind.
  • Um einen zusätzlichen Schutz für den Fehlerfall bereitzustellen, kann zudem vorgesehen sein, dass zumindest ein Teil der Ausblaskanäle AK oberhalb der ersten Zwischenschicht ZS1 von einem elektrisch isolierendem Löschmittel LM umgeben ist. Beispielsweise kann Polyoxymethylen (POM) oder Quarzsand als ein elektrisch isolierendes Löschmittel verwendet werden.
  • In einer besonders bevorzugten Ausführungsform sind die Sicherungselemente DK1, DK2 der ersten Zwischenschicht ZS1 und soweit vorhanden auch die Sicherungselemente DK3, DK4 der zweiten Zwischenschicht ZS2 auf einen Nennwert von bis zu 10 A bevorzugt 1 A ausgelegt. Weiterhin vorteilhaft ist die Stoßstromfestigkeit so ausgelegt, dass Ströme bis zu 1 kA, insbesondere bis zu 2 kA oder darüber kurzfristig getragen werden können
  • Wie in Figur 12 gezeigt kann auch vorgesehen sein, dass zumindest eines der Sicherungselemente DK1, DK2; DK3, DK4 mittels Bohrung so bearbeitet wird, dass der stromdurchfließbare Durchmesser vermindert und der Ausblaskanal vergrößert wird. Hierdurch können z.B. Sicherungswerte präzise durch Nachbearbeitung einer Durchkontaktierung eingestellt werden. Zudem kann vorgesehen sein, dass z.B. durch Bohrung gezielt Verbindungen zu einer Anschlusselektrode A unterbrochen werden und so der Nennwert nachträglich eingestellt werden kann. Z.B. kann durch Ausbohren ein Sicherungselement einer Parallelschaltung von Sicherungselementen entfernt werden.
  • Um den Nennwert besonders präzise einzustellen, kann z.B. vorgesehen sein, dass die Bohrung exzentrisch ist.
  • Ohne weiteres ist die Erfindung nicht nur auf das Multikontaktelement beschränkt, sondern umfasst auch einen Varistor VAR, der zumindest ein Multikontaktelement MKE aufweist. Es kann sogar vorgesehen sein, dass beide Anschlüsse eines Varistors mittels der erfindungsgemäßen Multikontaktelemente ausgestattet werden. Auch bei neuerdings am Markt erhältlichen Mehrkontaktvaristoren, d.h. Varistoren mit einem oder mehreren Mittelabgriffen, ist die Erfindung in gleicher Weise für alle Anschlüsse einsetzbar.
  • Die Verbindung zwischen dem Multikontaktelement MKE und der Varistorkeramik VAR erfolgt bevorzugt über eine Druckkontaktierung. Alternativ oder zusätzlich kann auch eine Löt-, Klebe- oder Klemmverbindung vorgesehen sein.
  • Bevorzugt sind der Varistor VAR und das Multikontaktelement MKE dann in einem Gehäuse G, insbesondere dann, wenn ein Löschmittel LM weiterhin verwendet wird.
  • Im Ergebnis wird eine Anordnung vorgeschlagen, bei der die Sicherungselemente im Wesentlichen parallel zur Varistor-Oberfläche angeordnet sind. Besonders einfach lassen sich die Sicherungselemente dabei in Leiterplattentechnik fertigen. Besonders vorteilhaft können hierfür Multi-Layer-Leiterplatten eingesetzt werden.
  • Statt einer Multi-Layer-Leiterplatte kann auch eine Leiterplatte verwendet werden, die an der Unterseite die Kontaktelemente besitzt, welche durch Durchkontaktierungen mit der Leiterbahn auf der Oberseite verbunden werden. Eine zweite Leiterplatte, die auf der Unterseite keine Kupferbeschichtung besitzt und die Aussparungen und Bohrungen aufweist, wird auf der unteren Leiterplatte fixiert, so dass die Aussparungen im Wesentlichen über den (Sicherungs-) Leiterbahnen und den Bohrungen an deren Ende ausgerichtet sind. Durch die Bohrlöcher können Drähte an das Ende der Sicherungsleiterbahnen gebondet, gelötet oder geschweißt werden, die dann an der Oberseite der oberen Leiterplatte befestigt werden können.
  • Für höhere Spannungsebenen können mehrere Durchkontaktierungen in Reihe geschaltet werden. Diese trennen bei großen Kurzschlussströmen annähernd gleichzeitig auf, wodurch eine ausreichende Gegenspannung zur Abschaltung erreicht wird.
  • Bezugszeichenliste
  • Multikontaktelement MKE
    Varistor VAR
    Kontaktelemente KE1, KE2
    oberste Schicht OS
    gemeinsame Anschlusselektrode A
    unterste Schicht US
    erste Zwischenschicht ZS1
    Sicherungselement DK1, DK2, DK3, DK4
    Ausblaskanal AK
    zweite Zwischenschicht ZS2
    elektrisch isolierendes Löschmittel LM

Claims (13)

  1. Multikontaktelement (MKE) für einen Varistor (VAR),
    • wobei das Multikontaktelement (MKE) eine Sandwichstruktur aufweist,
    • wobei die Sandwichstruktur in einer untersten Schicht (US) zwei oder mehrere Kontaktelemente (KE1, KE2) aufweist, und wobei die Sandwichstruktur in einer obersten Schicht (OS) zumindest eine gemeinsame Anschlusselektrode (A) aufweist,
    • wobei zwischen der untersten Schicht (US) und der obersten Schicht (OS) zumindest abschnittsweise eine erste Zwischenschicht (ZS1) aus einer elektrisch isolierenden Materiallage vorgesehen ist,
    • wobei sich in der ersten Zwischenschicht (ZS1) Sicherungselemente (DK1, DK2) befinden, die so ausgelegt sind, dass sie einen spezifizierten Stoßstrom tragen können, wobei der spezifizierte Stoßstrom pro Sicherungselement geringer ist als der spezifizierte Stoßstrom des Varistors (VAR),
    • wobei die Sicherungselemente (DK1, DK2) als Durchkontaktierung innerhalb der ersten Zwischenschicht (ZS1) ausgeführt sind,
    • wobei die Sicherungselemente (DK1, DK2) in der ersten Zwischenschicht in direktem elektrischen Kontakt mit der gemeinsamen Anschlusselektrode (A) stehen,
    • wobei jedes der Sicherungselemente (DK1, DK2) mit einer Untermenge der Kontaktelemente (KE1, KE2) in direktem oder indirektem elektrischen Kontakt steht,
    • wobei die Sicherungselemente (DK1, DK2) über Ausblaskanäle (AK) in der ersten Zwischenschicht (ZS1) verfügen, sodass im Falle einer thermischen Überlastung eines Sicherungselemente (DK1, DK2) der ersten Zwischenschicht (ZS1) das betroffene Sicherungselement (DK1) durch den Ausblaskanal verdampfen kann.
  2. Multikontaktelement nach Anspruch 1, dadurch gekennzeichnet, dass zwischen der untersten Schicht (US) und der ersten Zwischenschicht (ZS1) zumindest abschnittsweise eine zweite Zwischenschicht (ZS2) aus einer elektrisch isolierenden Materiallage vorgesehen ist,
    • wobei sich in der zweiten Zwischenschicht (ZS2) Sicherungselemente (DK3, DK4) befinden, die so ausgelegt sind, dass sie einen spezifizierten Stoßstrom tragen können, wobei der spezifizierte Stoßstrom pro Sicherungselement geringer ist als der spezifizierte Stoßstrom des Varistors (VAR),
    • wobei die Sicherungselemente (DK3, DK4) als Durchkontaktierung innerhalb der zweiten Zwischenschicht (ZS2) ausgeführt sind,
    • wobei die Sicherungselemente (DK3, DK4) in der zweiten Zwischenschicht in elektrischem Kontakt über zumindest eine Durchkontaktierung (DK1,DK2) der ersten Zwischenschicht (ZS1) mit der gemeinsamen Anschlusselektrode (A) stehen,
    • wobei jedes der Sicherungselemente (DK3, DK4) der zweiten Zwischenschicht mit einer Untermenge der Kontaktelemente (KE1, KE2) in direktem elektrischen Kontakt steht,
    • wobei die Sicherungselemente (DK3, DK4) über Ausblaskanäle in der ersten Zwischenschicht (ZS1) und in der zweiten Zwischenschicht (ZS2) verfügen, sodass im Falle einer thermischen Überlastung eines Sicherungselements (DK3, DK4) der zweiten Zwischenschicht (ZS2) das betroffene Sicherungselement (DK3) durch den Ausblaskanal verdampfen kann.
  3. Multikontaktelement (MKE) nach Anspruch 2, dadurch gekennzeichnet, dass die zweite Zwischenschicht ein Platinen-Material aufweist.
  4. Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Zwischenschicht (ZS1) ein Platinen-Material aufweist.
  5. Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Durchkontaktierungen (DK1, DK2) der ersten Zwischenschicht (ZS1) über Leiterbahnen mit der Anschlusselektrode (A) verbunden sind, wobei die Leiterbahnen als Sicherungselemente ausgelegt sind.
  6. Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Ausblaskanäle (AK) oberhalb der ersten Zwischenschicht von einem elektrisch isolierendem Löschmittel (LM) umgeben ist.
  7. Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil der Ausblaskanäle (AK) oberhalb der ersten Zwischenschicht (ZS1) von Polyoxymethylen oder Quarzsand als ein elektrisch isolierendes Löschmittel (LM) umgeben ist.
  8. Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sicherungselemente (DK1, DK2; DK3, DK4) einen Nennstrom von bis zu 10 A bevorzugt 1 A aufweisen.
  9. Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mehrzahl von Sicherungselementen (DK1, DK2; DK3, DK4) parallel geschaltet sind.
  10. Multikontaktelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest eines der Sicherungselemente (DK1, DK2; DK3, DK4) mittels Bohrung so bearbeitet wird, dass der stromdurchfließbare Durchmesser vermindert und der Ausblaskanal vergrößert wird.
  11. Multikontaktelement nach Anspruch 10, dadurch gekennzeichnet, dass die Bohrung exzentrisch ist.
  12. Varistor (VAR) aufweisend zumindest ein Multikontaktelement (MKE) nach einem der vorhergehenden Ansprüche.
  13. Varistor (VAR) nach Anspruch 12, dadurch gekennzeichnet, dass das Multikontaktelement (MKE) und der Varistor (VAR) in einem Gehäuse (G) angeordnet sind.
EP14192944.8A 2013-11-20 2014-11-13 Multikontaktelement für einen Varistor Not-in-force EP2876653B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201430293T SI2876653T1 (sl) 2013-11-20 2014-11-13 Večkontaktni element za varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310223648 DE102013223648B3 (de) 2013-11-20 2013-11-20 Multikontaktelement für einen Varistor

Publications (2)

Publication Number Publication Date
EP2876653A1 true EP2876653A1 (de) 2015-05-27
EP2876653B1 EP2876653B1 (de) 2017-06-28

Family

ID=51897162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14192944.8A Not-in-force EP2876653B1 (de) 2013-11-20 2014-11-13 Multikontaktelement für einen Varistor

Country Status (5)

Country Link
US (1) US9514865B2 (de)
EP (1) EP2876653B1 (de)
CN (1) CN104658724B (de)
DE (1) DE102013223648B3 (de)
SI (1) SI2876653T1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160374203A1 (en) * 2015-06-19 2016-12-22 Mersen Usa Newburyport-Ma, Llc Printed circuit board via fuse
DE102017210472A1 (de) * 2017-06-22 2018-12-27 Phoenix Contact Gmbh & Co. Kg Varistor mit Durchlegierungsoptimierung
US10685767B2 (en) * 2017-09-14 2020-06-16 Raycap IP Development Ltd Surge protective device modules and systems including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129403A (ja) * 1995-11-02 1997-05-16 Tama Electric Co Ltd ヒューズ付きバリスタ
US6445277B1 (en) * 1999-06-22 2002-09-03 Yazaki Corporation Safety device of electric circuit and process for producing the same
JP2003229303A (ja) * 2002-02-05 2003-08-15 Nippon Chemicon Corp 電圧非直線性抵抗器及びその製造方法
US20100252908A1 (en) * 2009-04-03 2010-10-07 Freescale Semiconductor, Inc. Electrically alterable circuit for use in an integrated circuit device
DE102009049076A1 (de) * 2009-10-12 2011-04-14 Epcos Ag Elektrisches Bauelement
US20120326269A1 (en) * 2011-06-21 2012-12-27 International Business Machines Corporation E-fuse structures and methods of manufacture
DE102012011241A1 (de) 2012-06-06 2013-12-12 Phoenix Contact Gmbh & Co. Kg Kontaktelement für einen Varistor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146685A (en) * 1935-12-24 1939-02-07 Gen Electric Electric circuit interrupter
DE2834207C2 (de) * 1978-08-04 1984-03-29 Wabco Westinghouse S.p.A., Turin Sicherheitswiderstand
US6199484B1 (en) * 1997-01-06 2001-03-13 The Ensign-Bickford Company Voltage-protected semiconductor bridge igniter elements
WO2004114331A1 (ja) * 2003-06-23 2004-12-29 Tyco Electronics Raychem K.K. Ptcサーミスタ、および回路の保護方法
TWI246767B (en) * 2003-10-24 2006-01-01 Yamaha Corp Semiconductor device with capacitor and fuse and its manufacture method
US7388273B2 (en) * 2005-06-14 2008-06-17 International Business Machines Corporation Reprogrammable fuse structure and method
JP4825559B2 (ja) * 2006-03-27 2011-11-30 富士通セミコンダクター株式会社 半導体装置
US20080117555A1 (en) * 2006-11-17 2008-05-22 AC Data Systems of Idaho, Inc. Anti-arcing system for power surge protectors
US7572682B2 (en) * 2007-05-31 2009-08-11 International Business Machines Corporation Semiconductor structure for fuse and anti-fuse applications
US7732922B2 (en) * 2008-01-07 2010-06-08 International Business Machines Corporation Simultaneous grain modulation for BEOL applications
US8101505B2 (en) * 2008-06-09 2012-01-24 International Business Machines Corporation Programmable electrical fuse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129403A (ja) * 1995-11-02 1997-05-16 Tama Electric Co Ltd ヒューズ付きバリスタ
US6445277B1 (en) * 1999-06-22 2002-09-03 Yazaki Corporation Safety device of electric circuit and process for producing the same
JP2003229303A (ja) * 2002-02-05 2003-08-15 Nippon Chemicon Corp 電圧非直線性抵抗器及びその製造方法
US20100252908A1 (en) * 2009-04-03 2010-10-07 Freescale Semiconductor, Inc. Electrically alterable circuit for use in an integrated circuit device
DE102009049076A1 (de) * 2009-10-12 2011-04-14 Epcos Ag Elektrisches Bauelement
US20120326269A1 (en) * 2011-06-21 2012-12-27 International Business Machines Corporation E-fuse structures and methods of manufacture
DE102012011241A1 (de) 2012-06-06 2013-12-12 Phoenix Contact Gmbh & Co. Kg Kontaktelement für einen Varistor

Also Published As

Publication number Publication date
US20150170806A1 (en) 2015-06-18
SI2876653T1 (sl) 2017-10-30
DE102013223648B3 (de) 2015-01-08
US9514865B2 (en) 2016-12-06
CN104658724A (zh) 2015-05-27
EP2876653B1 (de) 2017-06-28
CN104658724B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
EP1566868B1 (de) Überspannungsschutzelement und Zündelement für ein Überspannungsschutzelement
DE102008034508A1 (de) Integrierter Thermistor und Vorrichtung mit metallischem Element und Verfahren
EP3178104B1 (de) Schmelzsicherung für eine zu schützende einrichtung
EP2568480B1 (de) Überspannungsschutzgerät
DE102011101841A1 (de) Doppelt gewickelter Schmelzleiter und assoziierte Schmelzsicherung
EP2876653B1 (de) Multikontaktelement für einen Varistor
DE3741014C2 (de) Schutz integrierter Schaltkreise vor elektrostatischen Entladungen
EP2859561B1 (de) Varistorensemble
DE4143095C1 (en) Electrical building block, for simplicity and reliability - comprises resistor in series with melt fuse and connection element forming protective wall section, fixed on substrate with silicone adhesive
EP2883427B1 (de) Vorrichtung zum anschliessen an ein stromnetz sowie verfahren zum schutz einer derartigen vorrichtung
EP0222305A1 (de) Integrierte Schaltungsanordnung zum Schutz von Teilnehmerleitungen gegen Überspannungen
DE2933399C3 (de) Leistungsunterbrecher
DE102009057479B4 (de) Vorrichtung zur Signalisierung eines Stoßstroms
DE102018129679B4 (de) Überspannungsschutzvorrichtung mit thermischer Überlastschutzvorrichtung
EP3417518A1 (de) Überspannungsschutzgerät
DE102014102065B4 (de) Zündelement zur Verwendung bei einem Überspannungsschutzelement, Überspannungsschutzelement und Verfahren zur Herstellung eines Zündelements
EP1547113B1 (de) Mittels lichtbogen selbst-konfigurierendes bauelement
EP3320552B1 (de) Kondensatoranordnung, hochspannung gleichstrom übertragung
AT17235U1 (de) Leiterplatte mit Schutzelement
DE202018006385U1 (de) Überspannungsschutzvorrichtung mit thermischer Überlastschutzvorrichtung
DE112017001436T5 (de) Lichtbogenunterdrückungsverbinder
DE102015225376B3 (de) Überspannungsschutzgerät vom Typ II
EP0966087B1 (de) Überspannungsschutzschaltung
WO2023110286A1 (de) Kurzschlussschutz für einen umrichter
WO2020003291A1 (de) Funkenstrecke mit zündkreis und funkenstreckenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150916

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161216

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAF Information related to payment of grant fee modified

Free format text: ORIGINAL CODE: EPIDOSCIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20170508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHOENIX CONTACT GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 905511

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170929

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170628

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171129

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20181030

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200130

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191114

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20200723

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 905511

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014004400

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601