EP2871273B1 - Procédé de fabrication d'une ébauche en fibre - Google Patents

Procédé de fabrication d'une ébauche en fibre Download PDF

Info

Publication number
EP2871273B1
EP2871273B1 EP14192056.1A EP14192056A EP2871273B1 EP 2871273 B1 EP2871273 B1 EP 2871273B1 EP 14192056 A EP14192056 A EP 14192056A EP 2871273 B1 EP2871273 B1 EP 2871273B1
Authority
EP
European Patent Office
Prior art keywords
sub
fibre
elements
cutting pattern
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14192056.1A
Other languages
German (de)
English (en)
Other versions
EP2871273A1 (fr
Inventor
Yannis GROHMANN
Frank Felix Kruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2871273A1 publication Critical patent/EP2871273A1/fr
Application granted granted Critical
Publication of EP2871273B1 publication Critical patent/EP2871273B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments

Definitions

  • the invention relates to a method for producing a fiber preform for the production of a fiber composite component having a predetermined geometry and outer end contour, wherein the fiber preform is formed from a fiber material.
  • the invention also relates to a manufacturing plant for this purpose.
  • fiber composite components Components made of a fiber composite material, so-called fiber composite components, have become indispensable in the aerospace industry today. But also in the automotive sector, the use of such materials is becoming more and more popular.
  • critical structural elements are made of fiber reinforced plastics due to the high weight specific strength and stiffness with minimal weight. Due to the anisotropic properties of the fiber composite materials resulting from the fiber orientation, components can be adapted exactly to local loads and thus enable optimal material utilization in terms of lightweight construction.
  • prepregs sin-finished fiber products preimpregnated with a matrix material
  • the fibrous materials can be dry, ligated, pre-fixed or preimpregnated fabrics, nonwovens, uniaxial or multiaxial Be materials.
  • Multiaxialgelege which are composed of two or more fiber layers, either manufactured with a constant width and basis weight per meter or individually using a Tapelegers or a robot laying device.
  • the object is achieved by the method according to claim 1 and the system according to claim 10 according to the invention.
  • the invention proposes that initially a pattern by dividing the fiber preform geometry into a plurality of sub-elements which, when assembled, are to form the later fiber preform geometry with the predetermined outer end contour. Subsequently, the sub-elements are arranged to form a pattern with which the individual sub-elements are to be cut from a fiber material.
  • the generation of the pattern is carried out in dependence on the outer contour of the individual sub-elements, which are to form the geometry of the later fiber preform.
  • the determination of the geometry and arrangement of the individual sub-elements is carried out with the aid of running on a calculating machine optimization method, taking into account the outer contour of the individual sub-elements in order to minimize the waste between adjacent sub-elements of the pattern.
  • the subdivision of the fiber preform geometry in the individual sub-elements and the generation of the pattern can be done using a microprocessor-controlled pattern determination unit.
  • the outer contour of the determined sub-elements corresponds to the outer end contour of the fiber preform.
  • the fiber preform is produced from the individual partial elements by cutting the individual partial elements from the fibrous material according to the pattern by placing or depositing the partial elements before, during or after cutting to form the fiber preform.
  • the fiber preform is thus formed with its predetermined geometry and outer end contour.
  • a fiber preform is a semifinished fiber product formed from a fiber material which at least partially contains the later component form of the fiber composite component to be produced.
  • the optimization method in the sense of the present invention is the solution of an optimization problem such that a desired parameter of the task is minimized with the aid of an objective function.
  • the parameter to be minimized here is the blend, by which the excess material of adjacent sub-elements in the pattern is understood.
  • the target function can be designed in such a way that it minimizes the parameter blending with the aid of an analytical or a numerical method.
  • the steps of subdividing the geometry and generating the pattern are performed multiple times, each time generating different geometries of the individual subelements in the subdivision of the fiber preform geometry.
  • This is particularly advantageous if the application of the method is not restricted to a predefined material size, for example material width.
  • the patterns produced at each pass are then compared with respect to their respective blends, so that, for example, that particular cutting pattern is used that has the least scrap.
  • the cutting pattern of the sub-elements is further generated as a function of a predetermined fiber angle orientation, a permissible cutting angle of the fiber material and a minimum size of a sub-element.
  • the cutting pattern is produced as a function of a number of layers of the fiber preform to be built up.
  • These boundary conditions can have a significant influence on how the sub-elements are arranged within the pattern, for example, as a rule, the fiber preform must have a predetermined fiber angle orientation and thus the sub-elements can not be cut out arbitrarily from the fiber material. Rather, the sub-elements, depending on the position and arrangement within the fiber preform, must correspond to the predetermined fiber angle orientation.
  • a permissible cutting angle of the fiber material and the number of layers to be built up of the fiber preform have a relevance with regard to the arrangement of the sub-elements in the cutting pattern with respect to the fiber material.
  • the fiber preform may, for example, be produced in such a way by initially depositing fiber material of a partial element at least partially. Before it is finally deposited, it is cut according to the pattern at its last cut edge. This is particularly advantageous when the sub-elements are deposited from a fiber endless material, so that the process step of cutting and depositing coincides.
  • the sub-elements inevitably have to be stored next to each other, but in terms of their position within the fiber preform according to pattern.
  • the sub-elements are cut from the fiber material according to the pattern and then the cut sub-elements are stored for the production of the fiber preform. It is advantageous if the cut sub-elements are sorted prior to depositing with respect to their position within the fiber preform and stored sorted in a material storage.
  • the deposition order for the cutting of the sub-elements is relevant, but the order of the cut elements primarily result from the minimization of the waste, it is particularly advantageous the cut sub-elements are sorted prior to depositing with respect to their position within the fiber preform, so that during the deposition process by means of the fiber laying unit, the individual sub-elements can be successively removed from the material storage and stored. As a result, the productivity of the laying process can be increased despite the increased cost when cutting the partial elements.
  • the fiber preform geometry is subdivided into a plurality of strip-shaped sub-elements having a predetermined strip width and the individual strip-shaped sub-elements as Fiber strips cut one after another from a Faserendlosmaterial.
  • This is desirable, for example, when the laying process for the production of the fiber preform is based on the fact that individual fiber strips are to be laid from a continuous fiber material with a predetermined material width.
  • the pattern is thereby produced by arranging the individual fiber strips one after the other on the fiber endless material, the sequence of the fiber strips on the fiber endless material being determined by means of the optimization method for waste optimization as a function of the outer contours of the fiber strips.
  • the individual fiber strips are arranged with respect to their order so that, for example, identical or similar outer contours, which correspond to a cut edge in the cutting of the fiber strips of the continuous material, are arranged adjacent, whereby the waste is minimized when cutting the fiber strips.
  • the cutting edge between two adjacent fiber strips each form the contiguous outer contours of the fiber strips.
  • the outer contours would be identical in terms of their cutting process.
  • the fiber strips on the continuous filament material to be arranged with respect to their sequence in such a way that those fiber strips are arranged adjacent whose outer contours are congruent within a predetermined tolerance range. This also minimizes waste.
  • the course of the cutting edge between subelements adjacent to each other in the cutting pattern can be optimized by means of the optimization method, for example by selecting cutting profiles which lead to a minimal scrap, even if the desired outer contour of the subelement is not realized by the cutting edge can be and this can lead to a final contour trimming. While this is at the expense of productivity, it does increase it at the same time significant savings in wastage.
  • all partial elements or at least one part have a cutting edge which corresponds to the outer contour of the fiber preform.
  • targeted partial elements can be produced with a finished outer contour, which can increase productivity, as a subsequent contouring is eliminated.
  • firstly all partial elements or at least a part thereof are cut according to the generated pattern and the cut partial elements are temporarily stored in a material storage prior to deposition, so that the entire deposition process can be carried out without the process step of cutting.
  • the individual sub-elements are additionally stored temporarily in the material store before they are deposited.
  • the number of sub-elements in the cutting pattern is minimized by means of the optimization method running on the calculating machine.
  • the productivity can be significantly increased since, with fewer sub-elements, the process step of depositing the individual sub-elements is reduced / shortened.
  • the optimization method can be so with the specifications of a minimum number of sub-elements and a minimum In terms of productivity, it is important to achieve a balance between the waste that needs to be reduced and the amount of waste that needs to be reduced. By appropriate specifications, such as increasing productivity or reducing waste, an optimum can be found here with respect to these specifications.
  • the sub-elements consist of unidirectional, mutually parallel and just prepared continuous fibers.
  • the sub-elements consist for example of fabric, fleece or multiaxial material.
  • the sub-elements may consist of dry, prebent, pre-fixed or already preimpregnated fiber material.
  • certain sub-elements may also consist of other auxiliary materials, for example binder fleece, visible fabric or special foils.
  • a sub-element advantageously always has two mutually parallel sides. The mutually parallel sides then advantageously run parallel along an existing fiber angle orientation.
  • a partial element can also have any outer contour that corresponds to the outer contour of the fiber preform at the position of the partial element.
  • the sub-elements advantageously have uniform widths. So it is advantageously only one or two give different widths of subelements. However, it is also conceivable that significantly more different widths are available or completely dispensed with uniform widths.
  • FIG. 1 shows in three variants A to C the respective material consumption.
  • a fiber preform 100 is to be produced by means of fiber strips 110, 112, 114 and 116, wherein the respective fiber strips are to be cut out of a continuous fiber material and thus have a predetermined solid material width.
  • the fiber preform 100 has a circular geometry and outer end contour.
  • the fiber strips are successively cut off from a continuous filament ribbon of material by means of a substantially rectangular angle of intersection.
  • this variant has the largest waste, since the difference to the outer end contour of the fiber preform 100 is greatest due to the rectangular geometry of the individual fiber strips.
  • the order of the arrangement and the cutting angle is optimized, so that the waste is minimized.
  • the cutting angles are generated in such a way that the cutting edge resulting from the cutting angle corresponds in each case to two successive fiber strips.
  • variant B is the FIG. 1 shown that the fiber strips 110 and 116 on have at least one side an identical cutting angle, so that these fiber strips 110 and 116 can be arranged on the FaserstMailendlosmaterial successively and have a common cutting edge. As a result, the material consumption compared to the first variant A can be reduced.
  • variant C of FIG. 1 has been chosen a different arrangement of the fiber strips, which now give common cut edges of the fiber strips 110 and 112 and the fiber strips 114 and 116 and beyond the fiber strips 112 and 116 may also have a common cutting edge. According to this arrangement, the material consumption and thus the waste can be reduced again compared to the variant B.
  • the central fiber strips 112 and 114 are first arranged on the fiber strip endless material, whereupon the outer left fiber strip 110 and then the outer right fiber strip 116 follow. It can also be seen that the fiber strip 110 has no bevelled cutting angle on its lower side, so that it can be cut off with the cutting edge 114 previously arranged on the fiber strip endless material with a cut edge.
  • the two inner fiber strips are arranged on the fiber strand endless material outside, while the two outer fiber strips are then arranged centrally thereof.
  • the fiber strips can thus each be different be arranged on the FaserstMailentlosmaterial, in which case a respective intersection angle between the two fiber strips is determined, which generates a minimum waste.
  • the generation of the cutting pattern with the aid of the optimization method can thus take place in two stages, on the one hand by an optimal arrangement of the individual fiber strips with respect to their required outer contour to form the outer end contour of the fiber preform 100, and on the other hand by the determination of an optimum cutting edge, so that in the sum of the waste is minimized.
  • FIGS. 2a and 2b show two different variants, as two fiber strips can be arranged with their required outer contour, so that there is an optimal angle of intersection.
  • FIG. 2a This is the safest and simplest variant, since the cutting angles of the two fiber strips 210 and 220 do not intersect within the material region. It is irrelevant whether at the cutting edge 212 or 222, the two fiber strips are separated from each other, since in both cases a final contour trimming is necessary and the waste remains the same.
  • both cut angles would intersect within the material area because the two fiber strips 210 and 220 are placed directly adjacent one another.
  • the cutting edge for cutting off the two fiber strips would then take place at the cutting edge 222, wherein the waste when cutting the outer contour for the fiber strip 210 with respect to the variant of FIG. 2a is lower.
  • FIG. 3 shows an embodiment in which the fiber preform is not generated from a plurality of fiber strips with the same fiber strip width, but by individually tuned sub-elements.
  • the fiber preform 300 with its desired geometry and final contour is in subdivided a plurality of sub-elements 310, 312, 314, 316, 318 and 320, wherein these individual sub-elements are then arranged on a fiber material 330 correspondingly so that the waste is minimized.
  • a cutting pattern is produced, which has optimally matched cutting contours in the base material in order to reduce the waste while at the same time increasing productivity, since fewer strips have to be deposited and thus less transport effort or less necessary movement of the robotics when depositing the fiber strips lead to a significant reduction in production time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Claims (15)

  1. Procédé de fabrication d'une préforme en fibres pour la fabrication d'un composite renforcé par des fibres ayant une géométrie et un contour final extérieur prédéfinis, la préforme en fibres étant formée d'un matériau fibreux, comprenant les étapes suivantes :
    a) production d'un modèle de découpage par division de la géométrie de la préforme en fibres en une pluralité d'éléments partiels qui ensemble forment la géométrie ultérieure de la préforme en fibres avec le contour final extérieur prédéfini, et disposition des éléments partiels dans un modèle de découpage pour découper les éléments partiels individuels dans un matériau fibreux en fonction des contours extérieurs des éléments partiels individuels, les chutes de découpage entre des éléments partiels adjacents du modèle de découpage étant minimisées au moyen d'un procédé d'optimisation exécuté sur un ordinateur, et
    b) fabrication de la préforme en fibres à partir des éléments partiels individuels par découpage des éléments partiels individuels selon le modèle de découpage produit,
    caractérisé en ce que le modèle de découpage des éléments partiels est en outre produit en fonction d'une orientation angulaire des fibres prédéfinie, d'un angle de coupe admissible du matériau fibreux et d'une taille minimale d'un élément partiel.
  2. Procédé selon la revendication 1, caractérisé en ce que le modèle de découpage des éléments partiels est en outre produit en fonction d'un nombre de couches à construire de la préforme en fibres.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la préforme en fibres est fabriquée en posant d'abord au moins en partie le matériau en fibres d'un élément partiel et en découpant ensuite de manière définitive le matériau en fibres au moins partiellement déposé selon le modèle de découpage.
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que la préforme en fibres est fabriquée en découpant au moins une partie des éléments partiels dans le matériau en fibres selon le modèle de découpage et en déposant ensuite les éléments partiels découpés pour fabriquer la préforme en fibres.
  5. Procédé selon la revendication 4, caractérisé en ce que les éléments partiels découpés sont triés en rapport avec leur position à l'intérieur de la préforme en fibres avant d'être posés et sont ensuite posés à l'état trié dans un accumulateur de matériau.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la géométrie de la préforme en fibres est divisée en une pluralité d'éléments partiels en forme de bande ayant une largeur de bande prédéfinie, et les éléments partiels en forme de bande individuels sont découpés en bandes de fibres les uns après les autres à partir d'un matériau sans fin de bande de fibres, le modèle de découpage étant produit en disposant les unes après les autres les bandes de fibres individuelles sur le matériau sans fin de bande de fibres, la séquence des bandes de fibres sur le matériau sans fin de bande de fibres étant déterminée au moyen du procédé d'optimisation pour l'optimisation du découpage en fonction des contours extérieurs des bandes de fibres.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'en outre les arêtes de coupe entre des éléments partiels respectifs adjacents dans le modèle de découpage sont déterminées au moyen du procédé d'optimisation pour l'optimisation du découpage en fonction des contours extérieurs des éléments partiels.
  8. Procédé selon la revendication 7, caractérisé en ce que les arêtes de coupe des éléments partiels correspondent au contour final extérieur de l'élément partiel respectif.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le nombre des éléments partiels dans le modèle de découpage est minimisé au moyen du procédé d'optimisation exécuté sur l'ordinateur.
  10. Installation de fabrication pour la fabrication d'une préforme en fibres pour la fabrication d'un composite renforcé par des fibres ayant une géométrie et un contour final extérieur prédéfinis, prévue pour mettre en oeuvre le procédé selon l'une quelconque des revendications précédentes, comprenant
    - une unité de détermination de modèle de découpage qui est prévue pour diviser une géométrie de préforme en fibres prédéfinie en une pluralité d'éléments partiels qui ensemble forment la géométrie ultérieure de la préforme en fibres avec le contour final extérieur prédéfini, et pour produire un modèle de découpage pour découper les éléments partiels individuels dans un matériau fibreux par agencement des éléments partiels dans le modèle de découpage en fonction des contours extérieurs des éléments partiels individuels, en minimisant, au moyen d'un procédé d'optimisation exécuté sur l'unité de détermination de modèle de découpage, les chutes de découpage entre des éléments partiels adjacents du modèle de découpage, et
    - un dispositif de fabrication qui est réalisé pour fabriquer la préforme en fibres à partir des éléments partiels individuels par découpe des éléments partiels individuels selon le modèle de découpage produit,
    caractérisée en ce que l'unité de détermination de modèle de découpage est en outre prévue pour produire le modèle de découpage des éléments partiels en fonction d'une orientation angulaire des fibres prédéfinie, d'un angle de coupe possible du matériau fibreux et d'une taille minimale d'un élément partiel.
  11. Installation de fabrication selon la revendication 10, caractérisée en ce que l'unité de détermination de modèle de découpage est en outre prévue pour produire le modèle de découpage des éléments partiels en fonction d'un nombre de couches à construire de la préforme en fibres.
  12. Installation de fabrication selon la revendication 10 ou 11, caractérisée en ce que l'installation de fabrication est réalisée pour découper tout d'abord au moins une partie des éléments partiels en fonction du modèle de découpage produit, stocker temporairement les éléments partiels découpés avant leur dépose dans un accumulateur de matériau et pour déposer les éléments partiels stockés temporairement pour fabriquer la préforme en fibres, ou en ce que l'installation de fabrication est réalisée pour déposer à chaque fois au moins en partie un élément partiel au moyen d'une unité de pose de fibres et le découper selon le modèle de découpage produit avant de déposer un autre élément partiel.
  13. Installation de fabrication selon l'une quelconque des revendications 10 à 12, caractérisée en ce que l'unité de détermination de modèle de découpage est en outre prévue pour diviser la géométrie de la préforme en fibres en une pluralité d'éléments partiels en forme de bande avec une largeur de bande prédéfinie, de telle sorte que les éléments partiels individuels en forme de bande puissent être découpés en bandes de fibres les uns après les autres depuis un matériau sans fin de bande de fibres, le modèle de découpage étant produit en disposant les unes après les autres les bandes de fibres individuelles sur le matériau sans fin de bande de fibres, la séquence des bandes de fibres sur le matériau sans fin de bande de fibres étant déterminée au moyen du procédé d'optimisation pour l'optimisation du découpage en fonction des contours extérieurs des bandes de fibres, et l'installation de fabrication présentant en outre un dispositif de fourniture de matériau pour fournir un matériau sans fin de bande de fibres, le dispositif de découpage étant réalisé pour découper les bandes de fibres à partir du matériau sans fin de bande de fibres fourni selon le modèle de découpage.
  14. Installation de fabrication selon l'une quelconque des revendications 10 à 13, caractérisée en ce que l'unité de détermination de modèle de découpage est en outre prévue pour déterminer les arêtes de coupe entre des bandes de fibres respectivement successives au moyen du procédé d'optimisation pour l'optimisation du découpage en fonction des contours extérieurs des bandes de fibres.
  15. Installation de fabrication selon l'une quelconque des revendications 10 à 14, caractérisée en ce que l'unité de détermination de modèle de découpage est en outre prévue pour minimiser le nombre des éléments partiels dans le modèle de découpage au moyen du procédé d'optimisation exécuté sur l'unité de détermination de modèle de découpage.
EP14192056.1A 2013-11-07 2014-11-06 Procédé de fabrication d'une ébauche en fibre Active EP2871273B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310112259 DE102013112259A1 (de) 2013-11-07 2013-11-07 Verfahren zur Herstellung eines Faservorformlings

Publications (2)

Publication Number Publication Date
EP2871273A1 EP2871273A1 (fr) 2015-05-13
EP2871273B1 true EP2871273B1 (fr) 2018-01-10

Family

ID=51868846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14192056.1A Active EP2871273B1 (fr) 2013-11-07 2014-11-06 Procédé de fabrication d'une ébauche en fibre

Country Status (2)

Country Link
EP (1) EP2871273B1 (fr)
DE (1) DE102013112259A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017128394B4 (de) 2017-11-30 2019-10-17 Held-Systems Gmbh Verfahren zum Schneiden von Schnitt-Teilen und Vorrichtung zum Schneiden

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405683A (en) * 1993-10-20 1995-04-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-rectangular towpreg architectures
DE10145308C1 (de) * 2001-09-14 2003-03-13 Daimler Chrysler Ag Verfahren zum gewichtsgenauen Zusammenstellen von Harzmattenstapeln für die Herstellung von SMC-Teilen
US7867352B2 (en) * 2006-02-13 2011-01-11 The Boeing Company Composite material placement method and system
US8048253B2 (en) 2007-09-26 2011-11-01 Fiberforge Corporation System and method for the rapid, automated creation of advanced composite tailored blanks
EP2138615B1 (fr) 2008-06-23 2013-04-24 Liba Maschinenfabrik GmbH Procédé de fabrication d'une nappe multiaxiale, couches de fibres unidirectionnelles et leur procédé de fabrication, nappe multiaxiale et pièce composite dotée d'une matrice
US8165702B2 (en) * 2009-05-08 2012-04-24 Accudyne Systems Inc. Article manufacturing process
DE102009042384B4 (de) * 2009-09-21 2013-08-08 Liba Maschinenfabrik Gmbh Verfahren und Einrichtung zum Aufbringen einer unidirektionalen Faserlage auf eine sich bewegende Unterstützung und Verfahren zum Herstellen eines Multiaxialgeleges
WO2011047167A1 (fr) * 2009-10-16 2011-04-21 Gerber Scientific International, Inc. Procédés et systèmes pour fabriquer des parties composites
DE102010044721A1 (de) 2010-09-08 2012-03-08 Daimler Ag Verfahren und Vorrichtung zum Herstellen eines Faserhalbzeugs
CH704406A1 (de) * 2011-01-31 2012-07-31 Kringlan Composites Ag Verfahren zur Herstellung von Vorformen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013112259A1 (de) 2015-05-07
EP2871273A1 (fr) 2015-05-13

Similar Documents

Publication Publication Date Title
DE602005002300T2 (de) Ein Verfahren zur Herstellung eines strukturellen Verbundträgers für Flugzeuge
DE102006035939B4 (de) Verfahren zur Herstellung von Faserverbundbauteilen und Faserverbundbauteil
DE102007032904B3 (de) Verfahren zur Strukturfixierung von textilen Flächengebilden für Hochleistungs-Faserverbundbauteile und ein nach diesem Verfahren hergestelltes textiles Flächengebilde
DE10301646B4 (de) Faden-oder Fasergelege, Verfahren und Vorrichtung zu seiner Herstellung und faserverstärkter Körper
WO2005011962A1 (fr) Matelas de fibres et procede de fabrication
DE102013104609B4 (de) Nestingablage
EP3237183B1 (fr) Procédé et dispositif destinés à la fabrication d'une pièce en sandwich
DE102016103484A1 (de) Faserlegekopf zum Legen von Faserhalbzeugprofilen, Faserlegeanlage sowie Verfahren hierzu
EP2871273B1 (fr) Procédé de fabrication d'une ébauche en fibre
DE102015217404A1 (de) Verfahren zur Herstellung von faserverstärkten Kunststoffbauteilen
DE102015109864A1 (de) Anlage und Verfahren zur Herstellung einer gekrümmten, mehrlagigen Preform aus Fasern eines Faserverbundwerkstoffes
WO2022253612A1 (fr) Empilement de préimprégné et son procédé de production
DE102010031579B4 (de) Herstellung von Faserverbundbauteilen aus Prepreg-Zuschnitten
DE102016221917A1 (de) Verfahren zur Herstellung eines Faserverbundbauteils in einer Pultrusionsvorrichtung, Pultrusionsvorrichtung sowie Faserverbundbauteil
DE102018109212A1 (de) Verfahren und Anlage zum Herstellen einer Faserpreform sowie Verfahren zur Herstellung eines Faserverbundbauteils
DE102019123127A1 (de) Halbzeug, Faserverbundbauteil sowie Verfahren zu dessen Herstellung
EP2842727A1 (fr) Composant composite renforcé de fibres
DE10309806A1 (de) Verfahren zur Herstellung von Harzmatten mit fließfähiger Gelege- oder Textilverstärkung sowie von Bauteilen aus diesen Harzmatten
DE102013218143A1 (de) Verstärktes Faserhalbzeug und Verfahren zu dessen Herstellung
DE102013011580B4 (de) Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
EP1490208A1 (fr) Procede de fabrication de mats impregnes de resine a renfort textile ou par non-tisses et composants produits a partir de ces mats impregnes de resine
EP3755833B1 (fr) Structure de fil
DE102015225955A1 (de) Verfahren zur Herstellung eines aus zumindest zwei Werkstoffen bestehenden Hybridbauteils und Hybridbauteil
DE102021110907A1 (de) Verfahren zur Herstellung von Bauteilen aus Faser-Kunststoff-Verbunden und Bauteile aus Faser-Kunststoff-Verbunden
EP3615321B1 (fr) Procédé pour la fabrication simultanée de deux éléments composites fibreux ou plus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006877

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006877

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141106

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231010

Year of fee payment: 10

Ref country code: DE

Payment date: 20231010

Year of fee payment: 10

Ref country code: AT

Payment date: 20231027

Year of fee payment: 10