EP2871273B1 - Method for producing a fibre preform - Google Patents

Method for producing a fibre preform Download PDF

Info

Publication number
EP2871273B1
EP2871273B1 EP14192056.1A EP14192056A EP2871273B1 EP 2871273 B1 EP2871273 B1 EP 2871273B1 EP 14192056 A EP14192056 A EP 14192056A EP 2871273 B1 EP2871273 B1 EP 2871273B1
Authority
EP
European Patent Office
Prior art keywords
sub
fibre
elements
cutting pattern
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14192056.1A
Other languages
German (de)
French (fr)
Other versions
EP2871273A1 (en
Inventor
Yannis GROHMANN
Frank Felix Kruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2871273A1 publication Critical patent/EP2871273A1/en
Application granted granted Critical
Publication of EP2871273B1 publication Critical patent/EP2871273B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments

Definitions

  • the invention relates to a method for producing a fiber preform for the production of a fiber composite component having a predetermined geometry and outer end contour, wherein the fiber preform is formed from a fiber material.
  • the invention also relates to a manufacturing plant for this purpose.
  • fiber composite components Components made of a fiber composite material, so-called fiber composite components, have become indispensable in the aerospace industry today. But also in the automotive sector, the use of such materials is becoming more and more popular.
  • critical structural elements are made of fiber reinforced plastics due to the high weight specific strength and stiffness with minimal weight. Due to the anisotropic properties of the fiber composite materials resulting from the fiber orientation, components can be adapted exactly to local loads and thus enable optimal material utilization in terms of lightweight construction.
  • prepregs sin-finished fiber products preimpregnated with a matrix material
  • the fibrous materials can be dry, ligated, pre-fixed or preimpregnated fabrics, nonwovens, uniaxial or multiaxial Be materials.
  • Multiaxialgelege which are composed of two or more fiber layers, either manufactured with a constant width and basis weight per meter or individually using a Tapelegers or a robot laying device.
  • the object is achieved by the method according to claim 1 and the system according to claim 10 according to the invention.
  • the invention proposes that initially a pattern by dividing the fiber preform geometry into a plurality of sub-elements which, when assembled, are to form the later fiber preform geometry with the predetermined outer end contour. Subsequently, the sub-elements are arranged to form a pattern with which the individual sub-elements are to be cut from a fiber material.
  • the generation of the pattern is carried out in dependence on the outer contour of the individual sub-elements, which are to form the geometry of the later fiber preform.
  • the determination of the geometry and arrangement of the individual sub-elements is carried out with the aid of running on a calculating machine optimization method, taking into account the outer contour of the individual sub-elements in order to minimize the waste between adjacent sub-elements of the pattern.
  • the subdivision of the fiber preform geometry in the individual sub-elements and the generation of the pattern can be done using a microprocessor-controlled pattern determination unit.
  • the outer contour of the determined sub-elements corresponds to the outer end contour of the fiber preform.
  • the fiber preform is produced from the individual partial elements by cutting the individual partial elements from the fibrous material according to the pattern by placing or depositing the partial elements before, during or after cutting to form the fiber preform.
  • the fiber preform is thus formed with its predetermined geometry and outer end contour.
  • a fiber preform is a semifinished fiber product formed from a fiber material which at least partially contains the later component form of the fiber composite component to be produced.
  • the optimization method in the sense of the present invention is the solution of an optimization problem such that a desired parameter of the task is minimized with the aid of an objective function.
  • the parameter to be minimized here is the blend, by which the excess material of adjacent sub-elements in the pattern is understood.
  • the target function can be designed in such a way that it minimizes the parameter blending with the aid of an analytical or a numerical method.
  • the steps of subdividing the geometry and generating the pattern are performed multiple times, each time generating different geometries of the individual subelements in the subdivision of the fiber preform geometry.
  • This is particularly advantageous if the application of the method is not restricted to a predefined material size, for example material width.
  • the patterns produced at each pass are then compared with respect to their respective blends, so that, for example, that particular cutting pattern is used that has the least scrap.
  • the cutting pattern of the sub-elements is further generated as a function of a predetermined fiber angle orientation, a permissible cutting angle of the fiber material and a minimum size of a sub-element.
  • the cutting pattern is produced as a function of a number of layers of the fiber preform to be built up.
  • These boundary conditions can have a significant influence on how the sub-elements are arranged within the pattern, for example, as a rule, the fiber preform must have a predetermined fiber angle orientation and thus the sub-elements can not be cut out arbitrarily from the fiber material. Rather, the sub-elements, depending on the position and arrangement within the fiber preform, must correspond to the predetermined fiber angle orientation.
  • a permissible cutting angle of the fiber material and the number of layers to be built up of the fiber preform have a relevance with regard to the arrangement of the sub-elements in the cutting pattern with respect to the fiber material.
  • the fiber preform may, for example, be produced in such a way by initially depositing fiber material of a partial element at least partially. Before it is finally deposited, it is cut according to the pattern at its last cut edge. This is particularly advantageous when the sub-elements are deposited from a fiber endless material, so that the process step of cutting and depositing coincides.
  • the sub-elements inevitably have to be stored next to each other, but in terms of their position within the fiber preform according to pattern.
  • the sub-elements are cut from the fiber material according to the pattern and then the cut sub-elements are stored for the production of the fiber preform. It is advantageous if the cut sub-elements are sorted prior to depositing with respect to their position within the fiber preform and stored sorted in a material storage.
  • the deposition order for the cutting of the sub-elements is relevant, but the order of the cut elements primarily result from the minimization of the waste, it is particularly advantageous the cut sub-elements are sorted prior to depositing with respect to their position within the fiber preform, so that during the deposition process by means of the fiber laying unit, the individual sub-elements can be successively removed from the material storage and stored. As a result, the productivity of the laying process can be increased despite the increased cost when cutting the partial elements.
  • the fiber preform geometry is subdivided into a plurality of strip-shaped sub-elements having a predetermined strip width and the individual strip-shaped sub-elements as Fiber strips cut one after another from a Faserendlosmaterial.
  • This is desirable, for example, when the laying process for the production of the fiber preform is based on the fact that individual fiber strips are to be laid from a continuous fiber material with a predetermined material width.
  • the pattern is thereby produced by arranging the individual fiber strips one after the other on the fiber endless material, the sequence of the fiber strips on the fiber endless material being determined by means of the optimization method for waste optimization as a function of the outer contours of the fiber strips.
  • the individual fiber strips are arranged with respect to their order so that, for example, identical or similar outer contours, which correspond to a cut edge in the cutting of the fiber strips of the continuous material, are arranged adjacent, whereby the waste is minimized when cutting the fiber strips.
  • the cutting edge between two adjacent fiber strips each form the contiguous outer contours of the fiber strips.
  • the outer contours would be identical in terms of their cutting process.
  • the fiber strips on the continuous filament material to be arranged with respect to their sequence in such a way that those fiber strips are arranged adjacent whose outer contours are congruent within a predetermined tolerance range. This also minimizes waste.
  • the course of the cutting edge between subelements adjacent to each other in the cutting pattern can be optimized by means of the optimization method, for example by selecting cutting profiles which lead to a minimal scrap, even if the desired outer contour of the subelement is not realized by the cutting edge can be and this can lead to a final contour trimming. While this is at the expense of productivity, it does increase it at the same time significant savings in wastage.
  • all partial elements or at least one part have a cutting edge which corresponds to the outer contour of the fiber preform.
  • targeted partial elements can be produced with a finished outer contour, which can increase productivity, as a subsequent contouring is eliminated.
  • firstly all partial elements or at least a part thereof are cut according to the generated pattern and the cut partial elements are temporarily stored in a material storage prior to deposition, so that the entire deposition process can be carried out without the process step of cutting.
  • the individual sub-elements are additionally stored temporarily in the material store before they are deposited.
  • the number of sub-elements in the cutting pattern is minimized by means of the optimization method running on the calculating machine.
  • the productivity can be significantly increased since, with fewer sub-elements, the process step of depositing the individual sub-elements is reduced / shortened.
  • the optimization method can be so with the specifications of a minimum number of sub-elements and a minimum In terms of productivity, it is important to achieve a balance between the waste that needs to be reduced and the amount of waste that needs to be reduced. By appropriate specifications, such as increasing productivity or reducing waste, an optimum can be found here with respect to these specifications.
  • the sub-elements consist of unidirectional, mutually parallel and just prepared continuous fibers.
  • the sub-elements consist for example of fabric, fleece or multiaxial material.
  • the sub-elements may consist of dry, prebent, pre-fixed or already preimpregnated fiber material.
  • certain sub-elements may also consist of other auxiliary materials, for example binder fleece, visible fabric or special foils.
  • a sub-element advantageously always has two mutually parallel sides. The mutually parallel sides then advantageously run parallel along an existing fiber angle orientation.
  • a partial element can also have any outer contour that corresponds to the outer contour of the fiber preform at the position of the partial element.
  • the sub-elements advantageously have uniform widths. So it is advantageously only one or two give different widths of subelements. However, it is also conceivable that significantly more different widths are available or completely dispensed with uniform widths.
  • FIG. 1 shows in three variants A to C the respective material consumption.
  • a fiber preform 100 is to be produced by means of fiber strips 110, 112, 114 and 116, wherein the respective fiber strips are to be cut out of a continuous fiber material and thus have a predetermined solid material width.
  • the fiber preform 100 has a circular geometry and outer end contour.
  • the fiber strips are successively cut off from a continuous filament ribbon of material by means of a substantially rectangular angle of intersection.
  • this variant has the largest waste, since the difference to the outer end contour of the fiber preform 100 is greatest due to the rectangular geometry of the individual fiber strips.
  • the order of the arrangement and the cutting angle is optimized, so that the waste is minimized.
  • the cutting angles are generated in such a way that the cutting edge resulting from the cutting angle corresponds in each case to two successive fiber strips.
  • variant B is the FIG. 1 shown that the fiber strips 110 and 116 on have at least one side an identical cutting angle, so that these fiber strips 110 and 116 can be arranged on the FaserstMailendlosmaterial successively and have a common cutting edge. As a result, the material consumption compared to the first variant A can be reduced.
  • variant C of FIG. 1 has been chosen a different arrangement of the fiber strips, which now give common cut edges of the fiber strips 110 and 112 and the fiber strips 114 and 116 and beyond the fiber strips 112 and 116 may also have a common cutting edge. According to this arrangement, the material consumption and thus the waste can be reduced again compared to the variant B.
  • the central fiber strips 112 and 114 are first arranged on the fiber strip endless material, whereupon the outer left fiber strip 110 and then the outer right fiber strip 116 follow. It can also be seen that the fiber strip 110 has no bevelled cutting angle on its lower side, so that it can be cut off with the cutting edge 114 previously arranged on the fiber strip endless material with a cut edge.
  • the two inner fiber strips are arranged on the fiber strand endless material outside, while the two outer fiber strips are then arranged centrally thereof.
  • the fiber strips can thus each be different be arranged on the FaserstMailentlosmaterial, in which case a respective intersection angle between the two fiber strips is determined, which generates a minimum waste.
  • the generation of the cutting pattern with the aid of the optimization method can thus take place in two stages, on the one hand by an optimal arrangement of the individual fiber strips with respect to their required outer contour to form the outer end contour of the fiber preform 100, and on the other hand by the determination of an optimum cutting edge, so that in the sum of the waste is minimized.
  • FIGS. 2a and 2b show two different variants, as two fiber strips can be arranged with their required outer contour, so that there is an optimal angle of intersection.
  • FIG. 2a This is the safest and simplest variant, since the cutting angles of the two fiber strips 210 and 220 do not intersect within the material region. It is irrelevant whether at the cutting edge 212 or 222, the two fiber strips are separated from each other, since in both cases a final contour trimming is necessary and the waste remains the same.
  • both cut angles would intersect within the material area because the two fiber strips 210 and 220 are placed directly adjacent one another.
  • the cutting edge for cutting off the two fiber strips would then take place at the cutting edge 222, wherein the waste when cutting the outer contour for the fiber strip 210 with respect to the variant of FIG. 2a is lower.
  • FIG. 3 shows an embodiment in which the fiber preform is not generated from a plurality of fiber strips with the same fiber strip width, but by individually tuned sub-elements.
  • the fiber preform 300 with its desired geometry and final contour is in subdivided a plurality of sub-elements 310, 312, 314, 316, 318 and 320, wherein these individual sub-elements are then arranged on a fiber material 330 correspondingly so that the waste is minimized.
  • a cutting pattern is produced, which has optimally matched cutting contours in the base material in order to reduce the waste while at the same time increasing productivity, since fewer strips have to be deposited and thus less transport effort or less necessary movement of the robotics when depositing the fiber strips lead to a significant reduction in production time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Faservorformlings für die Herstellung eines Faserverbundbauteils mit einer vorgegebenen Geometrie und Außenendkontur, wobei der Faservorformling aus einem Fasermaterial gebildet wird. Die Erfindung betrifft ebenso eine Fertigungsanlage hierzu.The invention relates to a method for producing a fiber preform for the production of a fiber composite component having a predetermined geometry and outer end contour, wherein the fiber preform is formed from a fiber material. The invention also relates to a manufacturing plant for this purpose.

Bauteile aus einem Faserverbundwerkstoff, sogenannte Faserverbundbauteile, sind aus der Luft- und Raumfahrt heute nicht mehr wegzudenken. Aber auch im Automobilbereich findet die Verwendung derartiger Werkstoffe immer mehr Zuspruch. Insbesondere kritische Strukturelemente werden aufgrund der hohen gewichtsspezifischen Festigkeit und Steifigkeit bei minimalem Gewicht aus faserverstärkten Kunststoffen gefertigt. Durch die aus der Faserorientierung resultierenden anisotropen Eigenschaften der Faserverbundwerkstoffe können Bauteile exakt an lokale Belastungen angepasst werden und ermöglichen so eine optimale Materialausnutzung im Sinne des Leichtbaus.Components made of a fiber composite material, so-called fiber composite components, have become indispensable in the aerospace industry today. But also in the automotive sector, the use of such materials is becoming more and more popular. In particular, critical structural elements are made of fiber reinforced plastics due to the high weight specific strength and stiffness with minimal weight. Due to the anisotropic properties of the fiber composite materials resulting from the fiber orientation, components can be adapted exactly to local loads and thus enable optimal material utilization in terms of lightweight construction.

Im Fertigungsprozess kommen dabei neben trockenen Faserhalbzeugen wie Gelege und Gewebe auch sogenannte Prepregs (mit einem Matrixmaterial vorimprägnierte Faserhalbzeuge) zum Einsatz. Durch die immer höheren Stückzahlen bei der Produktion von faserverstärkten Bauteilen bestehen große Bestrebungen, den Herstellungsprozess weitestgehend zu automatisieren, ohne dabei die Qualität des Herstellungsprozesses bzw. der herzustellenden Bauteile negativ zu beeinflussen. Die Fasermaterialien können trockene, bebinderte, vorfixierte oder vorimprägnierte Gewebe, Vliesstoffe, uniaxiale oder multiaxiale Materialien sein.In the manufacturing process, in addition to dry semi-finished fiber products such as scrim and fabric, so-called prepregs (semi-finished fiber products preimpregnated with a matrix material) are used. Due to the ever increasing quantities in the production of fiber-reinforced components, there are great efforts to automate the manufacturing process as far as possible without adversely affecting the quality of the manufacturing process or of the components to be produced. The fibrous materials can be dry, ligated, pre-fixed or preimpregnated fabrics, nonwovens, uniaxial or multiaxial Be materials.

Gerade in der Großserienproduktion müssen darüber hinaus auch die Aspekte der Produktivität und der Ressourcenschonung mitberücksichtigt werden, da diese aufgrund der großen Stückzahl hier besonders ins Gewicht fallen. So werden auch heute noch sogenannte Multiaxialgelege, die aus zwei oder mehreren Faserlagen aufgebaut werden, entweder mit konstanter Warenbreite und Flächengewicht als Meterware gefertigt oder einzeln mit Hilfe eines Tapelegers oder einer Roboterlegevorrichtung hergestellt.Especially in mass production, the aspects of productivity and the conservation of resources must also be taken into account, as they are particularly important here due to the large number of units. So even today, so-called Multiaxialgelege, which are composed of two or more fiber layers, either manufactured with a constant width and basis weight per meter or individually using a Tapelegers or a robot laying device.

So bietet zwar das Herstellen von Multiaxialgelegen in Form von Meterware mit konstanter Warenbreite den Vorteil einer hohen Produktivität, und zwar auch dann, wenn diese im Nachgang auf die entsprechenden Fasergelegeformen zugeschnitten werden müssen. Allerdings ist der Materialverschnitt bei dieser Art der Herstellung von Fasergelegen besonders groß, so dass er gerade bei der Großserienproduktion negativ ins Gewicht fällt und sich somit signifikant auf den Bauteilpreis auswirkt.The production of multi-axial webs in the form of meter goods with a constant fabric width, for example, offers the advantage of high productivity, even if these have to be tailored to the corresponding fiber web molds. However, the material waste in this type of production of fiber fabrics is particularly large, so that it negatively in weight production, especially in mass production and thus has a significant effect on the component price.

Aus der DE 10 2010 044 721 A1 ist ein Verfahren und eine Vorrichtung zum Herstellen eines Faserhalbzeuges bekannt, bei dem das herzustellende Faserhalbzeug in eine Mehrzahl von Modellstreifen zerlegt wird und diese Modellstreifen dann anschließend mittels einzelner Faserstreifen nacheinander gelegt und hergestellt werden. Auch hierbei ergibt sich der entsprechende Nachteil, dass die Produktivität gegenüber der Herstellung von Multiaxialgelegen mittels Meterware äußerst gering ist, da die einzelnen Teile des vollständigen Modells nacheinander gefertigt werden.From the DE 10 2010 044 721 A1 a method and an apparatus for producing a semi-finished fiber product is known in which the semifinished fiber product to be produced is broken down into a plurality of model strips and these model strips are then subsequently laid and produced by means of individual fiber strips. Again, there is the corresponding disadvantage that the productivity compared to the production of Multiaxialgelegen by meter goods is extremely low, since the individual parts of the complete model are manufactured one after the other.

Aus der WO 2009/156385 A2 ist ein Verfahren zum Herstellen eines Multiaxial-Fasergeleges bekannt, bei dem die einzelnen Rovings der Faserlagen in einem Spreizprozess verarbeitet werden.From the WO 2009/156385 A2 a method for producing a multi-axial fiber fabric is known in which the individual rovings of the fiber layers in one Spreading process to be processed.

Aus der WO 2009/042225 A2 ist eine Vorrichtung bekannt, mit der Faserhalbzeuge aus Faserstreifen hergestellt werden können, wobei die einzelnen Faserstreifen während des Legens der Faserstreifen von einem quasi Endlosband atoque zugeschnitten werden.From the WO 2009/042225 A2 a device is known with which semifinished fiber products can be produced from fiber strips, wherein the individual fiber strips are cut during the laying of the fiber strips of a quasi endless band atoque.

Aus der EP 2 248 659 A1 ist ein Verfahren offenbart, mit dem die Bahnen abzulegender Faserhalbzeugstreifen berechnet werden können, um so zwischen den einzelnen Streifen möglichst kleine Abstände bzw. Lücken zu erzeugen. Dies ist insbesondere dann relevant, wenn die Faserstreifen auf einer gekrümmten Werkzeugoberfläche abgelegt werden sollen.From the EP 2 248 659 A1 discloses a method by which the webs of semi-finished fiber strips to be deposited can be calculated so as to generate as small gaps or gaps between the individual strips as possible. This is particularly relevant if the fiber strips are to be deposited on a curved tool surface.

Aus der WO 2012/104174 A1 ist ein Verfahren zur Herstellung von faserverstärkten Vorformlingen bekannt, wobei die Vorformlinge aus einzelnen Teilelementen zusammengesetzt werden, die mit Hilfe einer Schneidvorrichtung zugeschnitten werden. Anschließend werden die einzelnen zugeschnittenen Teilelemente dann gemäß ihrer Außenendkontur zu den Faservorformlingen zusammengesetzt.From the WO 2012/104174 A1 there is known a process for producing fiber-reinforced preforms, wherein the preforms are composed of individual sub-elements which are cut by means of a cutting device. Subsequently, the individual cut partial elements are then assembled according to their outer end contour to the fiber preforms.

Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung ein verbessertes Verfahren und eine verbesserte Vorrichtung zum Herstellen von Faservorformlingen anzugeben, mit denen der Verschnitt reduziert werden kann, so dass insbesondere bei der Großserienproduktion der Anteil an ungenutztem Material möglichst gering gehalten werden kann.Against this background, it is an object of the present invention to provide an improved method and an improved apparatus for producing fiber preforms with which the waste can be reduced, so that the proportion of unused material can be kept as low as possible, especially in mass production.

Die Aufgabe wird mit dem Verfahren gemäß Anspruch 1 sowie der Anlage gemäß Anspruch 10 erfindungsgemäß gelöst.The object is achieved by the method according to claim 1 and the system according to claim 10 according to the invention.

Demnach wird erfindungsgemäß vorgeschlagen, dass zunächst ein Schnittmuster erzeugt, indem die Faservorformling-Geometrie in einer Mehrzahl von Teilelementen unterteilt wird, die zusammengesetzt die spätere Faservorformling-Geometrie mit der vorgegebenen Außenendkontur bilden sollen. Anschließend werden die Teilelemente zu einem Schnittmuster angeordnet, mit dem die einzelnen Teilelemente aus einem Fasermaterial zugeschnitten werden sollen. Die Erzeugung des Schnittmusters erfolgt dabei in Abhängigkeit von der Außenkontur der einzelnen Teilelemente, die zusammengesetzt die Geometrie des späteren Faservorformlings bilden sollen. Das Ermitteln der Geometrie und Anordnung der einzelnen Teilelemente erfolgt dabei mit Hilfe eines auf einer Rechenmaschine ablaufenden Optimierungsverfahren unter Berücksichtigung der Außenkontur der einzelnen Teilelemente, um den Verschnitt zwischen benachbarten Teilelementen des Schnittmusters zu minimieren. Das Unterteilen der Faservorformling-Geometrie in die einzelnen Teilelemente sowie das Erzeugen des Schnittmusters kann dabei mit Hilfe einer Mikroprozessor gesteuerten Schnittmusterermittlungseinheit erfolgen.Accordingly, the invention proposes that initially a pattern by dividing the fiber preform geometry into a plurality of sub-elements which, when assembled, are to form the later fiber preform geometry with the predetermined outer end contour. Subsequently, the sub-elements are arranged to form a pattern with which the individual sub-elements are to be cut from a fiber material. The generation of the pattern is carried out in dependence on the outer contour of the individual sub-elements, which are to form the geometry of the later fiber preform. The determination of the geometry and arrangement of the individual sub-elements is carried out with the aid of running on a calculating machine optimization method, taking into account the outer contour of the individual sub-elements in order to minimize the waste between adjacent sub-elements of the pattern. The subdivision of the fiber preform geometry in the individual sub-elements and the generation of the pattern can be done using a microprocessor-controlled pattern determination unit.

Die Außenkontur der ermittelten Teilelemente entspricht dabei der Außenendkontur des Faservorformlings.The outer contour of the determined sub-elements corresponds to the outer end contour of the fiber preform.

Ist das Schnittmuster erzeugt, so wird der Faservorformling aus den einzelnen Teilelementen durch Zuschneiden der einzelnen Teilelemente aus dem Fasermaterial gemäß Schnittmuster hergestellt, indem die Teilelemente vor, während oder nach dem Zuschneiden zur Bildung des Faservorformlings angeordnet bzw. abgelegt werden. Der Faservorformling wird so mit seiner vorgegebenen Geometrie und Außenendkontur gebildet. Ein Faservorformling ist ein aus einem Fasermaterial gebildeten Faserhalbzeug, das zumindest teilweise die spätere Bauteilform des herzustellenden Faserverbundbauteils enthält.Once the pattern has been produced, the fiber preform is produced from the individual partial elements by cutting the individual partial elements from the fibrous material according to the pattern by placing or depositing the partial elements before, during or after cutting to form the fiber preform. The fiber preform is thus formed with its predetermined geometry and outer end contour. A fiber preform is a semifinished fiber product formed from a fiber material which at least partially contains the later component form of the fiber composite component to be produced.

Bei dem Optimierungsverfahren im Sinne der vorliegenden Erfindung handelt es sich um die Lösung eines Optimierungsproblems derart, dass mit Hilfe einer Zielfunktion ein gewünschter Parameter der Aufgabenstellung minimiert wird.The optimization method in the sense of the present invention is the solution of an optimization problem such that a desired parameter of the task is minimized with the aid of an objective function.

Der zu minimierende Parameter ist hierbei der Verschnitt, unter dem der Materialüberschuss benachbarter Teilelemente in dem Schnittmuster verstanden wird. Die Zielfunktion kann dabei derart ausgebildet sein, dass sie den Parameterverschnitt mit Hilfe eines analytischen oder eines numerischen Verfahrens minimiert.The parameter to be minimized here is the blend, by which the excess material of adjacent sub-elements in the pattern is understood. The target function can be designed in such a way that it minimizes the parameter blending with the aid of an analytical or a numerical method.

So ist es beispielsweise zweckmäßig und vorteilhaft, wenn die Schritte des Unterteilens der Geometrie und Erzeugung des Schnittmusters mehrfach durchgeführt werden, wobei jedes Mal unterschiedliche Geometrien der einzelnen Teilelemente bei der Unterteilung der Faservorformling-Geometrie erzeugt werden. Dies ist besonders vorteilhaft dann, wenn die Anwendung des Verfahrens nicht auf eine vorgegebene Materialgröße, beispielsweise Materialbreite, beschränkt ist. Die bei jedem Durchgang erzeugten Schnittmuster werden dann hinsichtlich ihres jeweiligen Verschnittes miteinander verglichen, so dass beispielsweise das jenige Schnittmuster zum Zuschnitt verwendet wird, das den geringsten Verschnitt aufweist. Erfindungsgemäss wird das Schnittmuster der Teilelemente weiter in Abhängigkeit von einer vorgegebenen Faserwinkelorientierung, einem zulässigen Schnittwinkel des Fasermaterials und einer minimalen Größe eines Teilelementes erzeugt. Vorteilhafterweise wird das Schnittmuster in Abhängigkeit von einer Anzahl aufzubauender Lagen des Faservorformlings erzeugt. Diese Randbedingungen können dabei einen wesentlichen Einfluss darauf haben, wie die Teilelemente innerhalb des Schnittmusters angeordnet werden, da beispielsweise in der Regel der Faservorformling eine vorgegebene Faserwinkelorientierung aufweisen muss und somit die Teilelemente nicht beliebig aus dem Fasermaterial herausgeschnitten werden können. Vielmehr müssen auch die Teilelemente, je nach Position und Anordnung innerhalb des Faservorformlings, der vorgegebenen Faserwinkelorientierung entsprechen. Darüber hinaus haben auch ein zulässiger Schnittwinkel des Fasermaterials und die Anzahl der aufzubauenden Lagen des Faservorformlings eine Relevanz hinsichtlich der Anordnung der Teilelemente in dem Schnittmuster bezüglich des Fasermaterials.For example, it is expedient and advantageous if the steps of subdividing the geometry and generating the pattern are performed multiple times, each time generating different geometries of the individual subelements in the subdivision of the fiber preform geometry. This is particularly advantageous if the application of the method is not restricted to a predefined material size, for example material width. The patterns produced at each pass are then compared with respect to their respective blends, so that, for example, that particular cutting pattern is used that has the least scrap. According to the invention, the cutting pattern of the sub-elements is further generated as a function of a predetermined fiber angle orientation, a permissible cutting angle of the fiber material and a minimum size of a sub-element. Advantageously, the cutting pattern is produced as a function of a number of layers of the fiber preform to be built up. These boundary conditions can have a significant influence on how the sub-elements are arranged within the pattern, for example, as a rule, the fiber preform must have a predetermined fiber angle orientation and thus the sub-elements can not be cut out arbitrarily from the fiber material. Rather, the sub-elements, depending on the position and arrangement within the fiber preform, must correspond to the predetermined fiber angle orientation. In addition, a permissible cutting angle of the fiber material and the number of layers to be built up of the fiber preform have a relevance with regard to the arrangement of the sub-elements in the cutting pattern with respect to the fiber material.

Der Faservorformling kann bspw. derart hergestellt werden, indem zunächst Fasermaterial eines Teilelementes zumindest teilweise abgelegt wird. Bevor es endgültig abgelegt wird, wird es gemäß dem Schnittmuster an seiner letzten Schnittkante zugeschnitten. Dies ist besonders dann vorteilhaft, wenn die Teilelemente aus einem Faserendlosmaterial abgelegt werden, so dass der Prozessschritt des Zuschneidens und Ablegens zusammenfällt. Dabei müssen die Teilelemente zwangsläufig nicht nebeneinander abgelegt werden, sondern hinsichtlich ihrer Position innerhalb des Faservorformlings gemäß Schnittmuster.The fiber preform may, for example, be produced in such a way by initially depositing fiber material of a partial element at least partially. Before it is finally deposited, it is cut according to the pattern at its last cut edge. This is particularly advantageous when the sub-elements are deposited from a fiber endless material, so that the process step of cutting and depositing coincides. The sub-elements inevitably have to be stored next to each other, but in terms of their position within the fiber preform according to pattern.

Denkbar ist aber auch, dass zumindest ein Teil der Teilelemente aus dem Fasermaterial gemäß dem Schnittmuster zugeschnitten werden und anschließend die zugeschnittenen Teilelemente zur Herstellung des Faservorformlings abgelegt werden. Hierbei ist es vorteilhaft, wenn die zugeschnittenen Teilelemente vor dem Ablegen hinsichtlich ihrer Position innerhalb des Faservorformlings sortiert und in einem Materialspeicher sortiert abgelegt werden. Da bei dem vorliegenden erfindungsgemäßen Verfahren nunmehr nicht, wie aus dem Stand der Technik bekannt, die Ablegereihenfolge für den Zuschnitt der Teilelemente relevant ist, sondern sich die Reihenfolge der zugeschnittenen Elemente in erster Linie aus der Minimierung des Verschnittes ergeben, ist es besonders vorteilhaft, wenn die zugeschnittenen Teilelemente vor dem Ablegen hinsichtlich ihrer Position innerhalb des Faservorformlings sortiert werden, so dass beim Ablegeprozess mittels der Faserlegeeinheit die einzelnen Teilelemente nacheinander aus dem Materialspeicher entnommen und abgelegt werden können. Hierdurch lässt sich trotz des erhöhten Aufwands beim Zuschnitt der Teilelemente die Produktivität des Legeprozesses erhöhen.It is also conceivable that at least a portion of the sub-elements are cut from the fiber material according to the pattern and then the cut sub-elements are stored for the production of the fiber preform. It is advantageous if the cut sub-elements are sorted prior to depositing with respect to their position within the fiber preform and stored sorted in a material storage. Since in the present inventive method now, as known from the prior art, the deposition order for the cutting of the sub-elements is relevant, but the order of the cut elements primarily result from the minimization of the waste, it is particularly advantageous the cut sub-elements are sorted prior to depositing with respect to their position within the fiber preform, so that during the deposition process by means of the fiber laying unit, the individual sub-elements can be successively removed from the material storage and stored. As a result, the productivity of the laying process can be increased despite the increased cost when cutting the partial elements.

In einer vorteilhaften Ausführungsform wird die Faservorformling-Geometrie in eine Mehrzahl von streifenförmigen Teilelementen mit einer vorgegebenen Streifenbreite unterteilt und die einzelnen streifenförmigen Teilelemente als Faserstreifen nacheinander von einem Faserendlosmaterial abgeschnitten. Dies ist beispielsweise dann wünschenswert, wenn der Legeprozess für die Herstellung des Faservorformlings darauf beruht, dass einzelne Faserstreifen aus einem Faserendlosmaterial mit vorgegebener Materialbreite gelegt werden sollen. Das Schnittmuster wird dabei erzeugt, indem die einzelnen Faserstreifen nacheinander auf dem Faserendlosmaterial angeordnet werden, wobei die Reihenfolge der Faserstreifen auf dem Faserendlosmaterial mittels des Optimierungsverfahrens zur Verschnittoptimierung in Abhängigkeit von den Außenkonturen der Faserstreifen ermittelt wird.In an advantageous embodiment, the fiber preform geometry is subdivided into a plurality of strip-shaped sub-elements having a predetermined strip width and the individual strip-shaped sub-elements as Fiber strips cut one after another from a Faserendlosmaterial. This is desirable, for example, when the laying process for the production of the fiber preform is based on the fact that individual fiber strips are to be laid from a continuous fiber material with a predetermined material width. The pattern is thereby produced by arranging the individual fiber strips one after the other on the fiber endless material, the sequence of the fiber strips on the fiber endless material being determined by means of the optimization method for waste optimization as a function of the outer contours of the fiber strips.

So werden bei dieser Ausführungsform die einzelnen Faserstreifen hinsichtlich ihrer Reihenfolge so angeordnet, dass beispielsweise möglichst identische oder ähnliche Außenkonturen, die mit einer Schnittkante beim Zuschnitt der Faserstreifen von dem Endlosmaterial korrespondieren, benachbart angeordnet werden, wodurch der Verschnitt beim Zuschneiden der Faserstreifen minimiert wird. So ist es beispielsweise denkbar, dass die Schnittkante zwischen zwei benachbarten Faserstreifen jeweils die aneinander liegenden Außenkonturen der Faserstreifen bilden. In diesem Falle wären die Außenkonturen hinsichtlich ihres Schnittverlaufes identisch. Denkbar ist aber auch, dass die Faserstreifen auf dem Faserendlosmaterial hinsichtlich ihrer Reihenfolge so angeordnet werden, dass diejenigen Faserstreifen benachbart angeordnet werden, deren Außenkonturen innerhalb eines vorgegebenen Toleranzbereiches deckungsgleich sind. Auch hierdurch lässt sich der Verschnitt minimieren.Thus, in this embodiment, the individual fiber strips are arranged with respect to their order so that, for example, identical or similar outer contours, which correspond to a cut edge in the cutting of the fiber strips of the continuous material, are arranged adjacent, whereby the waste is minimized when cutting the fiber strips. Thus, it is conceivable, for example, that the cutting edge between two adjacent fiber strips each form the contiguous outer contours of the fiber strips. In this case, the outer contours would be identical in terms of their cutting process. It is also conceivable, however, for the fiber strips on the continuous filament material to be arranged with respect to their sequence in such a way that those fiber strips are arranged adjacent whose outer contours are congruent within a predetermined tolerance range. This also minimizes waste.

Des Weiteren lässt sich auch der Verlauf der Schnittkante zwischen jeweils im Schnittmuster benachbarten Teilelementen mittels des Optimierungsverfahrens optimieren, indem beispielsweise Schnittverläufe gewählt werden, die zu einem minimalen Verschnitt führen, und zwar auch dann, wenn hierdurch die gewünschte Außenkontur des Teilelementes durch die Schnittkante nicht realisiert werden kann und es hierdurch zu einer Endkonturbesäumung kommen kann. Dies geht zwar zu Lasten der Produktivität, führt jedoch gleichzeitig zu signifikanten Einsparungen beim Verschnitt.Furthermore, the course of the cutting edge between subelements adjacent to each other in the cutting pattern can be optimized by means of the optimization method, for example by selecting cutting profiles which lead to a minimal scrap, even if the desired outer contour of the subelement is not realized by the cutting edge can be and this can lead to a final contour trimming. While this is at the expense of productivity, it does increase it at the same time significant savings in wastage.

Selbstverständlich ist es auch denkbar, dass alle Teilelemente oder zumindest ein Teil eine Schnittkante aufweisen, die der Außenkontur des Faservorformlings entspricht. Hierdurch lassen sich gezielt Teilelemente mit fertiger Außenkontur herstellen, was die Produktivität erhöhen kann, da eine spätere Konturbearbeitung entfällt.Of course, it is also conceivable that all partial elements or at least one part have a cutting edge which corresponds to the outer contour of the fiber preform. In this way, targeted partial elements can be produced with a finished outer contour, which can increase productivity, as a subsequent contouring is eliminated.

Es ist denkbar und zweckmäßig, dass zunächst alle Teilelemente oder zumindest ein Teil davon gemäß dem erzeugten Schnittmuster zugeschnitten und die zugeschnittenen Teilelemente vor dem Ablegen in einem Materialspeicher zwischengespeichert werden, so dass der gesamte Ablegeprozess ohne den Prozessschritt des Zuschneidens durchgeführt werden kann. In diesem Falle ist es besonders vorteilhaft, wenn die einzelnen Teilelemente zusätzlich vor dem Ablegen in dem Materialspeicher zwischengespeichert werden.It is conceivable and expedient that firstly all partial elements or at least a part thereof are cut according to the generated pattern and the cut partial elements are temporarily stored in a material storage prior to deposition, so that the entire deposition process can be carried out without the process step of cutting. In this case, it is particularly advantageous if the individual sub-elements are additionally stored temporarily in the material store before they are deposited.

Denkbar ist allerdings auch, dass jeweils ein Teilelement gemäß dem erzeugten Schnittmuster zugeschnitten und das aktuell zugeschnittene Teilelement zur Herstellung des Faservorformlings anschließend abgelegt wird, bevor ein weiteres Teilelement zugeschnitten wird. In diesem Fall lässt sich der Schritt des Zwischenspeicherns einsparen, was die Produktivität erhöht und vorteilhafterweise bei einer geringeren Anzahl von Teilelementen Anwendung finden sollte.However, it is also conceivable that in each case a sub-element is cut according to the generated pattern and the currently cut sub-element is subsequently deposited for the production of the fiber preform, before a further sub-element is cut. In this case, the step of caching can be saved, which increases the productivity and should advantageously be applied to a smaller number of sub-elements.

In einer weiteren vorteilhaften Ausführungsform wird mittels des auf der Rechenmaschine ablaufenden Optimierungsverfahrens die Anzahl der Teilelemente in dem Schnittmuster minimiert. Durch die Vorgabe der Minimierung der Anzahl der Teilelemente kann signifikant die Produktivität erhöht werden, da bei weniger Teilelemente der Prozessschritt des Ablegens der einzelnen Teilelemente verringert/verkürzt wird. Mit Hilfe des Optimierungsverfahrens kann so mit den Vorgaben einer minimalen Anzahl von Teilelementen und eines minimalen Verschnittes erreicht werden, dass hinsichtlich der Produktivität, die es gilt zu steigern, der Verschnitt, den es gilt zu reduzieren, in ein Gleichgewicht geführt wird. Durch entsprechende Vorgaben, wie beispielsweise Erhöhung der Produktivität oder Reduzierung des Verschnittes, kann hier ein Optimum hinsichtlich dieser Vorgaben gefunden werden.In a further advantageous embodiment, the number of sub-elements in the cutting pattern is minimized by means of the optimization method running on the calculating machine. By specifying the minimization of the number of sub-elements, the productivity can be significantly increased since, with fewer sub-elements, the process step of depositing the individual sub-elements is reduced / shortened. With the help of the optimization method can be so with the specifications of a minimum number of sub-elements and a minimum In terms of productivity, it is important to achieve a balance between the waste that needs to be reduced and the amount of waste that needs to be reduced. By appropriate specifications, such as increasing productivity or reducing waste, an optimum can be found here with respect to these specifications.

Es wird somit vorteilhafterweise möglich, mit Hilfe des Optimierungsverfahrens ein Optimum in Bezug auf minimalen Verschnitt und größtmöglicher Produktivität zu ermitteln. So macht es beispielsweise wenig Sinn, wenn durch eine hohe Anzahl von Teilelementen zwar der Verschnitt um wenige Prozent reduziert werden kann, die Produktivität jedoch aufgrund der vielen Teilelemente nahezu halbiert wird. Durch eine Gewichtung der Parameter Verschnittreduzierung oder Produktivitätserhöhung kann dabei Wert auf das eine oder das andere gelegt werden, um so ein bestmögliches Schnittmuster für die vorgegebenen Randbedingungen zu erhalten.It is thus advantageously possible, with the aid of the optimization method, to determine an optimum with regard to minimum waste and maximum productivity. For example, it makes little sense if, due to a high number of sub-elements, the waste can be reduced by a few percent, but the productivity is almost halved due to the many sub-elements. By weighting the parameters cut reduction or productivity increase can be placed on one or the other, so as to obtain the best possible pattern for the given boundary conditions.

In einer vorteilhaften Ausführungsform bestehen die Teilelemente aus unidirektionalen, zueinander parallel ausgerichteten und eben vorbereiteten Endlosfasern. Denkbar ist jedoch auch, dass die Teilelemente beispielsweise aus Gewebe, Vlies oder multiaxialem Material bestehen. Die Teilelemente können aus trockenem, vorbebindertem, vorfixiertem oder bereits vorimprägniertem Fasermaterial bestehen. Bei speziellen Lagenaufbauten können aber bestimmte Teilelemente auch aus anderen Hilfswerkstoffen bestehen, zum Beispiel Bindervlies, Sichtgewebe oder Spezialfolien. Ein Teilelement hat dabei vorteilhafterweise immer zwei parallel zueinander liegende Seiten. Die parallel zueinander liegenden Seiten verlaufen dann vorteilhafterweise parallel entlang einer vorhandenen Faserwinkelorientierung. Ein Teilelement kann aber auch eine beliebige Außenkontur haben, die der Außenkontur des Faservorformlings an der Position des Teilelements entspricht. Die Teilelemente haben vorteilhafterweise einheitliche Breiten. Es wird also vorteilhafterweise nur eine oder zwei verschiedene Breiten von Teilelementen geben. Denkbar ist jedoch auch, dass deutlich mehr verschiedene Breiten vorhanden sind oder komplett auf einheitliche Breiten verzichtet wird.In an advantageous embodiment, the sub-elements consist of unidirectional, mutually parallel and just prepared continuous fibers. However, it is also conceivable that the sub-elements consist for example of fabric, fleece or multiaxial material. The sub-elements may consist of dry, prebent, pre-fixed or already preimpregnated fiber material. For special layer structures, however, certain sub-elements may also consist of other auxiliary materials, for example binder fleece, visible fabric or special foils. A sub-element advantageously always has two mutually parallel sides. The mutually parallel sides then advantageously run parallel along an existing fiber angle orientation. However, a partial element can also have any outer contour that corresponds to the outer contour of the fiber preform at the position of the partial element. The sub-elements advantageously have uniform widths. So it is advantageously only one or two give different widths of subelements. However, it is also conceivable that significantly more different widths are available or completely dispensed with uniform widths.

Die Erfindung wird anhand der beigefügten Figuren beispielhaft näher erläutert. Es zeigen:

Figur 1 -
verschiedene Varianten der Verschnittoptimierung;
Figur 2a, 2b -
Varianten der Schnittwinkeloptimierung;
Figur 3 -
eine vorteilhafte Ausführungsform.
The invention will be explained in more detail by way of example with reference to the attached figures. Show it:
FIG. 1 -
different variants of waste optimization;
FIGS. 2a, 2b -
Variants of the Schnittwinkeloptimierung;
FIG. 3 -
an advantageous embodiment.

Figur 1 zeigt bei drei Varianten A bis C den jeweiligen Materialverbrauch. Dabei soll ein Faservorformling 100 mittels Faserstreifen 110, 112, 114 und 116 hergestellt werden, wobei die jeweiligen Faserstreifen aus einem Faserendlosmaterial herausgeschnitten werden sollen und somit eine vorgegebene feste Materialbreite aufweisen. Der Faservorformling 100 hat dabei eine kreisförmige Geometrie und Außenendkontur. FIG. 1 shows in three variants A to C the respective material consumption. In this case, a fiber preform 100 is to be produced by means of fiber strips 110, 112, 114 and 116, wherein the respective fiber strips are to be cut out of a continuous fiber material and thus have a predetermined solid material width. The fiber preform 100 has a circular geometry and outer end contour.

In der ersten Variante A werden die Faserstreifen nacheinander von einem Faserendlosmaterialband abgeschnitten, und zwar mittels im Wesentlichen rechtwinkliger Schnittwinkel. Wie zu erkennen ist, weist diese Variante den größten Verschnitt auf, da aufgrund der rechteckigen Geometrie der einzelnen Faserstreifen die Differenz zu der Außenendkontur des Faservorformlings 100 am größten ist.In the first variant A, the fiber strips are successively cut off from a continuous filament ribbon of material by means of a substantially rectangular angle of intersection. As can be seen, this variant has the largest waste, since the difference to the outer end contour of the fiber preform 100 is greatest due to the rectangular geometry of the individual fiber strips.

Erfindungsgemäß wird nun, um den Verschnitt möglichst gering zu halten, die Reihenfolge der Anordnung sowie die Schnittwinkel optimiert, so dass der Verschnitt minimiert wird. Dabei werden die Schnittwinkel so erzeugt, dass die aus dem Schnittwinkel resultierende Schnittkante jeweils zwei aufeinander folgenden Faserstreifen jeweils entspricht.According to the invention, in order to keep the waste as low as possible, the order of the arrangement and the cutting angle is optimized, so that the waste is minimized. In this case, the cutting angles are generated in such a way that the cutting edge resulting from the cutting angle corresponds in each case to two successive fiber strips.

So ist in Variante B der Figur 1 gezeigt, dass die Faserstreifen 110 und 116 an zumindest einer Seite einen identischen Schnittwinkel aufweisen, so dass diese Faserstreifen 110 und 116 auf dem Faserstreifenendlosmaterial nacheinander angeordnet werden können und eine gemeinsame Schnittkante aufweisen. Hierdurch lässt sich der Materialverbrauch gegenüber der ersten Variante A reduzieren.So in variant B is the FIG. 1 shown that the fiber strips 110 and 116 on have at least one side an identical cutting angle, so that these fiber strips 110 and 116 can be arranged on the Faserstreifenendlosmaterial successively and have a common cutting edge. As a result, the material consumption compared to the first variant A can be reduced.

Gemäß der Variante C der Figur 1 wurde eine andere Anordnung der Faserstreifen gewählt, wodurch sich nunmehr gemeinsame Schnittkanten der Faserstreifen 110 und 112 sowie der Faserstreifen 114 und 116 ergeben und darüber hinaus die Faserstreifen 112 und 116 ebenfalls eine gemeinsame Schnittkante haben können. Gemäß dieser Anordnung kann der Materialverbrauch und somit der Verschnitt, noch einmal gegenüber der Variante B reduziert werden.According to variant C of FIG. 1 has been chosen a different arrangement of the fiber strips, which now give common cut edges of the fiber strips 110 and 112 and the fiber strips 114 and 116 and beyond the fiber strips 112 and 116 may also have a common cutting edge. According to this arrangement, the material consumption and thus the waste can be reduced again compared to the variant B.

Wie in Figur 1 gezeigt, wird durch die Optimierung der Anordnung und somit der Optimierung des Schnittwinkels nicht nur der Verschnitt reduziert, sondern auch die Reihenfolge der Faserstreifen innerhalb des Faservorformlings verändert. So wird in Variante B auf dem Faserstreifenendlosmaterial zunächst die mittig liegenden Faserstreifen 112 und 114 angeordnet, woraufhin der äußere linke Faserstreifen 110 und dann der äußere rechte Faserstreifen 116 folgen. Zu erkennen ist außerdem, dass der Faserstreifen 110 an seiner unteren Seite keinen abgeschrägten Schnittwinkel aufweist, so dass dieser mit dem zuvor auf dem Faserstreifenendlosmaterial angeordneten Faserstreifen 114 mit einer Schnittkante abgeschnitten werden kann.As in FIG. 1 As shown by optimizing the arrangement and thus optimizing the cutting angle, not only is the waste reduced but also the order of the fiber strips within the fiber preform changed. Thus, in variant B, the central fiber strips 112 and 114 are first arranged on the fiber strip endless material, whereupon the outer left fiber strip 110 and then the outer right fiber strip 116 follow. It can also be seen that the fiber strip 110 has no bevelled cutting angle on its lower side, so that it can be cut off with the cutting edge 114 previously arranged on the fiber strip endless material with a cut edge.

In der Variante C sind die beiden innenliegenden Faserstreifen auf dem Faserstreifenendlosmaterial außen angeordnet, während die beiden äußeren Faserstreifen dann mittig hieran angeordnet werden. Hierdurch kann eine noch größere Übereinstimmung mit den Schnittwinkeln erreicht werden.In variant C, the two inner fiber strips are arranged on the fiber strand endless material outside, while the two outer fiber strips are then arranged centrally thereof. As a result, an even greater agreement with the cutting angles can be achieved.

Mittels des Optimierungsverfahrens können somit die Faserstreifen jeweils unterschiedlich auf dem Faserstreifenendlosmaterial angeordnet werden, wobei dann jeweils ein entsprechender Schnittwinkel zwischen den beiden Faserstreifen ermittelt wird, der einen minimalen Verschnitt erzeugt.By means of the optimization method, the fiber strips can thus each be different be arranged on the Faserstreifenentlosmaterial, in which case a respective intersection angle between the two fiber strips is determined, which generates a minimum waste.

Das Erzeugen des Schnittmusters mit Hilfe des Optimierungsverfahrens kann somit in zwei Stufen erfolgen, zum einen durch eine optimale Anordnung der einzelnen Faserstreifen hinsichtlich ihrer geforderten Außenkontur, um die Außenendkontur des Faservorformlings 100 zu bilden, und zum anderen durch die Ermittlung einer optimalen Schnittkante, so dass in der Summe der Verschnitt minimiert wird.The generation of the cutting pattern with the aid of the optimization method can thus take place in two stages, on the one hand by an optimal arrangement of the individual fiber strips with respect to their required outer contour to form the outer end contour of the fiber preform 100, and on the other hand by the determination of an optimum cutting edge, so that in the sum of the waste is minimized.

Die Figuren 2a und 2b zeigen dabei zwei verschiedene Varianten, wie zwei Faserstreifen mit ihrer geforderten Außenkontur angeordnet werden können, so dass sich ein optimaler Schnittwinkel zueinander ergibt. Figur 2a ist dabei die sicherste und einfachste Variante, da sich die Schnittwinkel der beiden Faserstreifen 210 und 220 nicht innerhalb des Materialbereiches schneiden. Es ist dabei unerheblich, ob an der Schnittkante 212 oder 222 die beiden Faserstreifen voneinander getrennt werden, da in beiden Fällen eine Endkonturbesäumung notwendig ist und der Verschnitt gleich bleibt.The FIGS. 2a and 2b show two different variants, as two fiber strips can be arranged with their required outer contour, so that there is an optimal angle of intersection. FIG. 2a This is the safest and simplest variant, since the cutting angles of the two fiber strips 210 and 220 do not intersect within the material region. It is irrelevant whether at the cutting edge 212 or 222, the two fiber strips are separated from each other, since in both cases a final contour trimming is necessary and the waste remains the same.

In Figur 2b würden sich beide Schnittwinkel innerhalb des Materialbereiches schneiden, da die beiden Faserstreifen 210 und 220 direkt aneinander angrenzend angeordnet werden. Die Schnittkante zum Abschneiden der beiden Faserstreifen würde dann an der Schnittkante 222 erfolgen, wobei der Verschnitt beim Zuschnitt der Außenkontur für den Faserstreifen 210 gegenüber der Variante der Figur 2a geringer ist.In FIG. 2b For example, both cut angles would intersect within the material area because the two fiber strips 210 and 220 are placed directly adjacent one another. The cutting edge for cutting off the two fiber strips would then take place at the cutting edge 222, wherein the waste when cutting the outer contour for the fiber strip 210 with respect to the variant of FIG. 2a is lower.

Figur 3 zeigt eine Ausführungsform, bei der der Faservorformling nicht aus einer Mehrzahl von Faserstreifen mit gleichbleibender Faserstreifenbreite erzeugt wird, sondern durch individuell abgestimmte Teilelemente. Der Faservorformling 300 mit seiner gewünschten Geometrie und Endkontur wird dabei in eine Mehrzahl von Teilelementen 310, 312, 314, 316, 318 und 320 unterteilt, wobei diese einzelnen Teilelemente dann auf einem Fasermaterial 330 entsprechend so angeordnet werden, dass der Verschnitt minimiert wird. Dabei wird ein Schnittmuster erzeugt, das optimal aufeinander abgestimmte Schnittkonturen im Grundmaterial aufweist, um den Verschnitt zu reduzieren und dabei gleichzeitig die Produktivität zu erhöhen, da weniger Streifen abgelegt werden müssen und somit weniger Transportaufwand bzw. weniger notwendige Bewegung der Robotik beim Ablegen der Faserstreifen zu einer deutlichen Reduzierung der Fertigungszeit führen. FIG. 3 shows an embodiment in which the fiber preform is not generated from a plurality of fiber strips with the same fiber strip width, but by individually tuned sub-elements. The fiber preform 300 with its desired geometry and final contour is in subdivided a plurality of sub-elements 310, 312, 314, 316, 318 and 320, wherein these individual sub-elements are then arranged on a fiber material 330 correspondingly so that the waste is minimized. In this case, a cutting pattern is produced, which has optimally matched cutting contours in the base material in order to reduce the waste while at the same time increasing productivity, since fewer strips have to be deposited and thus less transport effort or less necessary movement of the robotics when depositing the fiber strips lead to a significant reduction in production time.

Claims (15)

  1. Method for producing a fibre preform for the production of a fibre composite component with a predefined geometry and final outer contour, the fibre preform being formed from a fibre material, comprising the steps:
    a) producing a cutting pattern by subdividing the fibre preform geometry into a plurality of sub-elements which, put together, form the subsequent fibre preform geometry with the predefined final outer contour, and arranging the sub-elements in a cutting pattern in order to cut the individual sub-elements out of a fibre material on the basis of the outer contours of the individual sub-elements, the trim between adjacent sub-elements of the cutting pattern being minimized by means of an optimization method running on a computer, and
    b) producing the fibre preform from the individual sub-elements by cutting the individual sub-elements in accordance with the cutting pattern produced,
    characterized in that the cutting pattern of the sub-elements is further produced on the basis of a predefined fibre angle orientation, a permissible cutting angle of the fibre material and a minimum size of a sub-element.
  2. Method according to Claim 1, characterized in that the cutting pattern of the sub-elements is further produced on the basis of a number of layers of the fibre preform that are to be built up.
  3. Method according to Claim 1 or 2, characterized in that the fibre preform is produced in that, firstly, fibre material of a sub-element is at least partly laid down and the at least partly laid-down fibre material is then finally cut in accordance with the cutting pattern.
  4. Method according to Claim 1 or 2, characterized in that the fibre preform is produced in that at least some of the sub-elements are cut out of the fibre material in accordance with the cutting pattern, and then the cut sub-elements are laid down to produce the fibre preform.
  5. Method according to Claim 4, characterized in that before being laid down, the cut sub-elements are sorted with regard to their position within the fibre preform and are laid down in a sorted manner in a material store.
  6. Method according to one of the preceding claims, characterized in that the fibre preform geometry is subdivided into a plurality of strip-like sub-elements with a predefined strip width, and the individual strip-like sub-elements are cut off one after another as fibre strips from a continuous fibre strip material, the cutting pattern being produced in that the individual fibre strips are arranged one after another on the continuous fibre strip material, the order of the fibre strips on the continuous fibre strip material being determined by means of the optimization method for trim optimization on the basis of the outer contours of the fibre strips.
  7. Method according to one of the preceding claims, characterized in that the cut edges between respective sub-elements that are adjacent in the cutting pattern are also determined by means of the optimization method for trim optimization on the basis of the outer contours of the sub-elements.
  8. Method according to Claim 7, characterized in that the cut edges of the sub-elements correspond to the final outer contour of the respective sub-element.
  9. Method according to one of the preceding claims, characterized in that the number of sub-elements in the cutting pattern is minimized by means of the optimization method running on the computer.
  10. Production system for producing a fibre preform for the production of a fibre composite component with a predefined geometry and final outer contour, configured to carry out the method according to one of the preceding claims, comprising
    - a cutting pattern determining unit, which is configured to subdivide a predefined fibre preform geometry into a plurality of sub-elements which, put together, form the subsequent fibre preform geometry with the predefined final outer contour, and to produce a cutting pattern for cutting the individual sub-elements out of a fibre material by arranging the sub-elements in the cutting pattern on the basis of the outer contours of the individual sub-elements in such a way that, by means of an optimization method running on the cutting pattern determining unit, the trim between adjacent sub-elements of the cutting pattern is minimized, and
    - a production device which is designed to produce the fibre preform from the individual sub-elements by cutting the individual sub-elements in accordance with the cutting pattern produced,
    characterized in that the cutting pattern determining unit is further configured to produce the cutting pattern of the sub-elements on the basis of a predefined fibre angle orientation, a possible cutting angle of the fibre material and a minimum size of a sub-element.
  11. Production system according to Claim 10, characterized in that the cutting pattern determining unit is further configured to produce the cutting pattern of the sub-elements on the basis of a number of layers of the fibre preform that are to be built up.
  12. Production system according to Claim 10 or 11, characterized in that the production system is designed, firstly, to cut at least some of the sub-elements in accordance with the cutting pattern produced, to temporarily store the cut sub-elements in a material store before being laid down, and to lay down the temporarily stored sub-elements to produce the fibre preform, or in that the production system is designed in each case to at least partly lay down a sub-element by means of a fibre laying unit and to cut the said sub-element in accordance with the cutting pattern produced before a further sub-element is laid down.
  13. Production system according to one of Claims 10 to 12, characterized in that the cutting pattern determining unit is further configured to subdivide the fibre preform geometry into a plurality of strip-like sub-elements with a predefined strip width, so that the individual strip-like sub-elements can be cut off one after another as fibre strips from a continuous fibre strip material, the cutting pattern being produced in that the individual fibre strips are arranged one after another on the continuous fibre strip material, the order of the fibre strips on the continuous fibre strip material being determined by means of the optimization method for trim optimization on the basis of the outer contours of the fibre strips, and the production system further having a material providing device for providing a continuous fibre strip material, the cutting device being designed to cut the fibre strips out of the continuous fibre strip material provided in accordance with the cutting pattern.
  14. Production system according to one of Claims 10 to 13, characterized in that the cutting pattern determining unit is further configured to determine the cut edges between respectively successive fibre strips by means of the optimization method for trim optimization on the basis of the outer contours of the fibre strips.
  15. Production system according to one of Claims 10 to 14, characterized in that the cutting pattern determining unit is further configured to minimize the number of sub-elements in the cutting pattern by means of the optimization method running on the cutting pattern determining unit.
EP14192056.1A 2013-11-07 2014-11-06 Method for producing a fibre preform Active EP2871273B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310112259 DE102013112259A1 (en) 2013-11-07 2013-11-07 Process for producing a fiber preform

Publications (2)

Publication Number Publication Date
EP2871273A1 EP2871273A1 (en) 2015-05-13
EP2871273B1 true EP2871273B1 (en) 2018-01-10

Family

ID=51868846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14192056.1A Active EP2871273B1 (en) 2013-11-07 2014-11-06 Method for producing a fibre preform

Country Status (2)

Country Link
EP (1) EP2871273B1 (en)
DE (1) DE102013112259A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017128394B4 (en) 2017-11-30 2019-10-17 Held-Systems Gmbh Method for cutting cut parts and device for cutting

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405683A (en) * 1993-10-20 1995-04-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-rectangular towpreg architectures
DE10145308C1 (en) * 2001-09-14 2003-03-13 Daimler Chrysler Ag Weight variation reduction in cut and stacked sheet molding compound sections for series production of composite components uses of a reference section for determination of the size of all other sections cut from the same mat
US7867352B2 (en) * 2006-02-13 2011-01-11 The Boeing Company Composite material placement method and system
US8048253B2 (en) 2007-09-26 2011-11-01 Fiberforge Corporation System and method for the rapid, automated creation of advanced composite tailored blanks
EP2138615B1 (en) 2008-06-23 2013-04-24 Liba Maschinenfabrik GmbH Method for producing a multi-axial fibre clutch, unidirectional fibre layers and method for its production, multi-axial fibre clutch and composite part with a matrix
US8165702B2 (en) * 2009-05-08 2012-04-24 Accudyne Systems Inc. Article manufacturing process
DE102009042384B4 (en) * 2009-09-21 2013-08-08 Liba Maschinenfabrik Gmbh A method and apparatus for applying a unidirectional fiber ply to a moving support and method of making a multiaxial fabric
US20110089591A1 (en) * 2009-10-16 2011-04-21 Gerber Scientific International, Inc. Methods and Systems for Manufacturing Composite Parts
DE102010044721A1 (en) 2010-09-08 2012-03-08 Daimler Ag Method and device for producing a semi-finished fiber product
CH704406A1 (en) * 2011-01-31 2012-07-31 Kringlan Composites Ag A process for the manufacture of preforms.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2871273A1 (en) 2015-05-13
DE102013112259A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
DE602005002300T2 (en) A method of making a structural composite beam for aircraft
DE102006035939B4 (en) Process for the production of fiber composite components and fiber composite component
DE10301646B4 (en) Thread or fiber fabric, method and apparatus for its manufacture and fiber reinforced body
WO2005011962A1 (en) Fiber nonwoven fabric and method for the production thereof
DE102007032904B3 (en) Method for structural fixing of textile materials for use in high speed fiber composite components with and without thermoplastic component, involves fixing of cutting part contours, which are determined by suitable simulation software
DE102013104609B4 (en) Nestingablage
EP3237183B1 (en) Method and apparatus for manufacturing a sandwich component
EP2871273B1 (en) Method for producing a fibre preform
DE102015217404A1 (en) Process for the production of fiber-reinforced plastic components
DE102016103484A1 (en) Fiber laying head for laying semifinished fiber profiles, fiber laying plant and method for this
WO2022253612A1 (en) Prepreg stack and method for producing same
DE102010031579B4 (en) Production of fiber composite components from prepreg blanks
DE102016221917A1 (en) Process for producing a fiber composite component in a pultrusion device, pultrusion device and fiber composite component
DE102018105762B3 (en) Process for producing a fiber laminate and a fiber composite component
DE102015109864A1 (en) Plant and method for producing a curved, multi-layer preform made of fibers of a fiber composite material
DE102018109212A1 (en) Method and installation for producing a fiber preform and method for producing a fiber composite component
DE102019123127A1 (en) Semi-finished product, fiber composite component and process for its production
EP2842727A1 (en) Fibre-reinforced composite component
DE10309806A1 (en) Process for the production of resin mats with flowable scrim or textile reinforcement as well as components made of these resin mats
DE102013218143A1 (en) Reinforced semi-finished fiber product and process for its production
DE102013011580B4 (en) Process for producing a fiber-reinforced plastic component
WO2003080319A1 (en) Method for the production of resin prepregs with liquid reinforcer for non-woven or textile material and components made from said resin prepregs
EP3755833B1 (en) Thread structure
DE102015225955A1 (en) Method for producing a hybrid component consisting of at least two materials and hybrid component
DE102021110907A1 (en) Process for the production of components from fiber-plastic composites and components from fiber-plastic composites

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160914

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962543

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006877

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006877

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141106

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231010

Year of fee payment: 10

Ref country code: DE

Payment date: 20231010

Year of fee payment: 10

Ref country code: AT

Payment date: 20231027

Year of fee payment: 10