EP2870268B2 - Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process - Google Patents
Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process Download PDFInfo
- Publication number
- EP2870268B2 EP2870268B2 EP13735251.4A EP13735251A EP2870268B2 EP 2870268 B2 EP2870268 B2 EP 2870268B2 EP 13735251 A EP13735251 A EP 13735251A EP 2870268 B2 EP2870268 B2 EP 2870268B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- openings
- injection
- furnace gas
- zinc
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 110
- 238000000034 method Methods 0.000 title claims description 17
- 230000007547 defect Effects 0.000 title claims description 8
- 238000005246 galvanizing Methods 0.000 title description 13
- 238000002347 injection Methods 0.000 claims description 93
- 239000007924 injection Substances 0.000 claims description 93
- 230000001681 protective effect Effects 0.000 claims description 93
- 229910052725 zinc Inorganic materials 0.000 claims description 85
- 239000011701 zinc Substances 0.000 claims description 85
- 210000004894 snout Anatomy 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 238000000605 extraction Methods 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 96
- 238000007664 blowing Methods 0.000 description 23
- 239000011261 inert gas Substances 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 13
- 239000010959 steel Substances 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 241001474791 Proboscis Species 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0034—Details related to elements immersed in bath
- C23C2/00342—Moving elements, e.g. pumps or mixers
- C23C2/00344—Means for moving substrates, e.g. immersed rollers or immersed bearings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
- C23C2/004—Snouts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/002—Pretreatement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/02—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
- B05D3/0218—Pretreatment, e.g. heating the substrate
- B05D3/0236—Pretreatment, e.g. heating the substrate with ovens
Definitions
- the invention relates to a method for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, in which metal strip heated in a continuous furnace is moved under protective gas through a furnace nozzle and immersed in a zinc bath, according to the preamble of claim 1. Furthermore the invention relates to a device for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, according to the preamble of claim 7.
- a plant for the continuous hot-dip galvanizing of steel strip consists, among other things, of a continuous furnace, a zinc bath (melt bath), a device for adjusting the zinc coating thickness and a subsequent cooling device.
- the steel strip is continuously annealed in the continuous furnace.
- the desired mechanical properties of the base material are set by recrystallization of the steel.
- iron oxides formed in a preheating zone are reduced.
- the strip is cooled under protective gas (HNX) to a temperature close to the melt bath temperature.
- the protective gas is intended to prevent the annealed strip from oxidizing before galvanizing, which would significantly impair the adhesion of the zinc layer.
- the protective gas The connecting piece between the annealing furnace and the zinc bath is called the furnace trunk.
- a device for removing zinc vapor in a snout of a continuous strip galvanizing line is known.
- the furnace nozzle is provided with injection openings (circulation openings) and suction openings arranged vertically underneath.
- injection openings circulation openings
- suction openings arranged vertically underneath.
- a single injection opening is arranged in the nozzle wall facing the upper side of the steel strip, and a single suction opening is arranged vertically below it. Accordingly, in the nozzle wall facing the underside of the steel strip, there is also a single blow-in opening and a single suction opening vertically underneath.
- a single injection opening is arranged in a side wall of the snout, while two suction openings are provided vertically below them, which are designed as longitudinal slots in tubes, which the Penetrate the side wall of the snout and extend across the entire width of the steel strip on the top and bottom of the steel strip.
- the present invention is based on the object of specifying a method and a device of the type mentioned at the outset with which the absorption of zinc vapor by the protective gas contained in the furnace snout and the propagation of zinc vapor in the furnace snout can be significantly minimized.
- the upper and lower sides of the metal strip to be galvanized are also exposed to protective gas via injection openings in the furnace nozzle.
- Shielding gas loaded with zinc vapor and/or zinc dust is sucked off via suction openings which are arranged on both sides of the metal strip adjacent to the injection openings.
- a large number of injection openings are formed and arranged in the furnace nozzle in such a way that the air flowing out of these injection openings Shielding gas with an impact angle in the range of 70° to 110°, preferably 80° to 100°, particularly preferably about 90°, is directed onto the surface of the metal strip facing the respective injection opening.
- the distance between the respective injection opening of the plurality of injection openings and at least one suction opening assigned to it from the plurality of suction openings is selected and the flow rate of the protective gas exiting from the respective injection opening is controlled in such a way that entrainment occurs when the metal or steel strip moves is counteracted by protective gas in the direction of the zinc bath.
- the distance between the respective injection opening and the at least one suction opening assigned to it is selected to be less than or equal to 25 cm.
- the furnace nozzle is therefore provided with blow-in openings through which protective gas can be applied to the top and bottom of the metal strip, suction openings for sucking off protective gas laden with zinc vapor and/or zinc dust being arranged adjacent to the blow-in openings.
- a large number of injection openings are designed and arranged in the furnace nozzle in such a way that the protective gas flowing out of these injection openings is sprayed at an angle of incidence in the range from 70° to 110°, preferably 80° to 100°, particularly preferably approx.
- the distance between the respective blowing-in opening of the plurality of blowing-in openings and at least one suction opening assigned to it from the plurality of suction openings being selected in such a way that at a predetermined or specifiable flow rate of the protective gas emerging from the respective injection opening counteracts any entrainment of protective gas in the direction of the zinc bath that occurs when the metal strip moves.
- the distance between the respective injection opening and the at least one suction opening assigned to it is less than or equal to 25 cm.
- the invention is based on the idea of influencing the flow conditions of the protective gas, particularly near the strip, in such a way that the aforementioned entrainment of protective gas is minimized and/or the condensation or resublimation of zinc vapor on the walls of the nozzle is prevented.
- the aim of the present invention is to prevent the formation of protective gas laden with zinc vapor in advance by minimizing the entrainment of the protective gas in the direction of the zinc bath.
- the invention proposes an interruption or blocking of the protective gas (current of protective gas) entrained by the metal strip by using a gas lock or gas curtain effect.
- An advantageous embodiment of the method according to the invention provides that the inert gas supplied via the injection openings is previously heated to a temperature of at least 500°C, preferably at least 550°C. With this configuration, the re-sublimation of zinc dust in the furnace nozzle can be prevented even more effectively, since the heated protective gas flow supplied via the injection openings keeps the zinc vapor produced on the zinc bath surface in the gaseous state.
- a preferred embodiment of the device according to the invention provides that the suction openings are connected to the injection openings via a return line having at least one suction fan, the return line having at least one heating device for heating the protective gas to a temperature of at least 500° C., preferably at least 550° C is provided.
- the method according to the invention is preferably carried out in such a way that the temperature of the gas cloud in the spatially higher part of the nozzle is higher than the temperature in the spatially lower immersion region of the strip. This minimizes thermal turbulence in the trunk.
- a further advantageous embodiment of the method according to the invention is characterized in that the protective gas is blown in via the injection openings and the protective gas is sucked off via the suction openings in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a series of at least five, preferably at least seven Injection openings and a row of at least five, preferably at least seven suction openings is formed.
- the protective gas is blown in via the injection openings and the protective gas is sucked off via the suction openings in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a series of at least five, preferably at least seven Injection openings and a row of at least five, preferably at least seven suction openings is formed.
- a preferred embodiment of the device according to the invention provides that the injection openings and the suction openings are formed in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a row of at least five, preferably at least seven, injection openings and one Row of at least five, preferably at least seven suction openings is formed.
- a further advantageous embodiment of the method according to the invention is characterized in that the protective gas volume flow supplied via the injection openings is set equal to the protective gas volume flow sucked off via the suction openings or is set to a value which is at most 5% below the sucked protective gas volume flow. Due to the same or almost the same volume flows of supplied and extracted inert gas and the mentioned preferred uniform distribution of injection points and The gas turbulence in the nozzle is reduced to a minimum.
- the injection openings and the suction openings are arranged in a matrix.
- the injection openings are offset relative to the suction openings—viewed in the direction of strip travel and over the strip width.
- the injection openings and the suction openings of the device according to the invention are preferably arranged at equal distances from one another.
- the distance between the respective injection opening (injection nozzle) and the at least one suction opening assigned to it is preferably less than 15 cm, and particularly preferably less than or equal to 10 cm.
- a further preferred embodiment of the device according to the invention provides that the injection openings are on prong-like branches of a comb-shaped blowpipe structure and the suction openings on prong-like branches of a Comb-shaped suction tube structure are formed, the prong-like branches of the comb-shaped blower tube structure and the prong-like branches of the comb-shaped suction tube structure intermesh.
- the above-mentioned configuration also has the effect that a very uniform surface temperature distribution is established on the pipeline system composed of the comb-shaped pipe structures during operation , wherein the surface temperature of the pipe system arranged in the nozzle when the protective gas flow is heated to a temperature in the range from 450 to 600° C. above the dew point or resublimation temperature of zinc.
- the heating of the piping system with heated protective gas prevents the occurrence of temperature peaks and thus unwanted gas convection or gas turbulence.
- a further advantageous embodiment of the device according to the invention provides that the comb-shaped blowing tube structure and the comb-shaped suction tube structure are thermally insulated from the furnace nozzle by thermal insulation.
- the furnace nozzle is heated to a temperature of at least 400° C., preferably at least 450° C., at least in a region which extends from the zinc bath to the injection openings and/or suction openings.
- this lower region of the furnace nozzle can also be provided with thermal insulation according to a preferred embodiment of the device according to the invention. This makes it possible to achieve that the relevant walls or wall sections of the furnace nozzle are warmer than the temperature at which the condensation or resublimation of zinc vapor begins.
- a furnace trunk 1 of a continuous strip galvanizing is outlined.
- a metal strip 2 to be galvanized preferably steel strip, is annealed in a continuous furnace (not shown) and fed to a zinc bath 3 under protective gas (HNX).
- the strip 2 dips diagonally downwards into the zinc bath 3 and is deflected upwards by a roller 4 arranged in the zinc bath.
- the bath temperature is typically in the range of about 440 to 470°C.
- the strip 2' entrains a quantity of liquid zinc well in excess of the desired coating thickness.
- the excess coating material that is still liquid is scraped off the top and bottom (front and back) of the coated strip 2' by means of flat air jet nozzles 5 extending across the strip width.
- part of the protective gas is entrained in the direction of the zinc bath 3 by the movement of the strip.
- the trunk 1 is provided with a special blowing-suction device 6.
- the blowing suction device 6 has a branched line system 7.1, 7.2 with a large number of Injection and suction openings 7.11, 7.21, by means of which protective gas is circulated in the end area of the nozzle 1, ie near the zinc bath 3, in such a way that the protective gas flow entrained by the strip 2 is interrupted as far as possible, but without causing increased strip vibrations.
- blowing-in and suction openings 7.11, 7.21 are arranged in the direction of movement of the belt 2 in such a way that each blowing-in opening 7.11 is close to at least one suction opening 7.21, whereby the protective gas that has been blown in is sucked off again in the immediate vicinity, thus preventing uncontrollable turbulence of the protective gas .
- the blow-suction device 6 comprises an upper part 6.1 and a lower part 6.2, with the upper part 6.1 extending across the entire width of the upper side of the belt (front side), while the lower part 6.2 extends across the entire width of the lower side of the belt (back side).
- the upper part 6.1 and the lower part 6.2 can each have a box-like design and are accordingly referred to as a blower/suction box or blower/suction box.
- the respective blowing and suction box (6.1, 6.2) is divided by partitions 7.3 into a branched blowing chamber 7.1' with blowing branches 7.10 running parallel to one another and a branched suction chamber 7.2' with suction branches 7.20 running parallel to one another.
- An injection branch 7.10 can be located directly next to a suction branch 7.20, in that both branches 7.10, 7.20 are separated from one another by the same partition wall 7.3.
- the subdivision into a branched blowing chamber 7.1' and a branched suction chamber 7.2' can be realized, for example, by a meandering or folded partition 7.3 or by meandering partitions that are joined together in a gas-tight manner at their abutting ends be as in figure 5 is sketched.
- connection piece 7.51 for suction of the protective gas is arranged below the connection piece 7.41, through which the protective gas is supplied (see also 6 ). This ensures that the flow of the inert gas that is blown in is always or essentially only directed downwards, as a result of which a flow of zinc vapor from the zinc bath into the nozzle 1 is effectively prevented.
- the lower main chamber section 7.5 of the blower/suction box 6.1 or 6.2 preferably has at least two connection pieces 7.51 for sucking off inert gas loaded with zinc vapor is provided.
- the connecting pieces 7.41 of the upper main chamber section 7.4 are arranged at a distance from one another transversely to the direction of travel of the belt.
- the connecting pieces 7.51 of the lower main chamber section 7.5 are spaced apart from one another transversely to the direction of travel of the belt.
- the injection and suction branches 7.10, 7.20 are provided with a large number of openings (nozzles) 7.11, 7.21, which serve as injection openings and suction openings, respectively.
- These openings (nozzles) 7.11, 7.21 are arranged or designed in such a way that the protective gas flowing out of the blow-in openings 7.11 is directed or hits the surface of the strip 2 facing the blow-in opening at an angle of incidence in the range of 70° to 110°, preferably 80° to 100°.
- the injection nozzles 7.11 are preferably designed in such a way that the protective gas flowing out of them is directed essentially at right angles to the surface of the strip (cf. 2 and 4 ).
- the distance between the respective injection nozzle 7.11 and at least one suction opening 7.21 assigned to it is selected in such a way that at a predetermined or specifiable flow rate of the injected protective gas, the entrainment of protective gas in the direction of the zinc bath 3 that occurs when the strip 2 is moving is effectively interrupted or at least minimized .
- the entrainment of protective gas caused by the strip movement contributes to a "natural gas movement".
- the natural gas movement is also driven by the usually existing temperature difference between the relatively hot protective gas entrained by the strip 2 above the zinc bath 3 and the colder protective gas in the upper area of the nozzle 1.
- the interruption or blocking of this natural gas movement according to the invention also means that it is carried along or the transport of zinc vapor from the zinc bath surface 3.1 to the upper nozzle area is interrupted or at least minimized.
- At least one suction opening 7.21 is located in the immediate vicinity of each injection opening 7.11.
- the injection openings 7.11 and the suction openings 7.21 are arranged in a matrix. The blowing in and sucking off thus takes place in several stages, preferably in at least three stages.
- the injection openings 7.11 are arranged offset to the suction openings 7.21 in the direction of strip travel and across the strip width (cf. figure 5 ).
- the injection openings 7.11 and the suction openings 7.21 are preferably arranged at an equal distance from one another.
- a large amount of protective gas can be exchanged via the gas injection channels 7.10 without a large amount of gas being transported in the direction of strip travel.
- the band 2 is not excited to vibrate as a result.
- the undesired transport of zinc vapor from the immersion region of the strip 2 into the upper part of the snout 1 is not supported by the gas flow.
- the alternating arrangement of injection nozzles 7.11 and suction nozzles 7.21 ( 3 ) the nozzle cross-section can be completely flowed through in the transverse direction. Shielding gas not yet loaded with zinc dust mixes with shielding gas loaded with zinc dust and is extracted in close proximity.
- the blowing-suction device 6 or the blowing-suction box 6.1, 6.2 can also be designed in such a way that the injection openings 7.11 on prong-like branches 7.10 of a comb-shaped blowpipe structure 7.1 and the Suction openings 7.21 are formed on prong-like branches 7.20 of a comb-shaped suction tube structure 7.2, the prong-like branches 7.10 of the comb-shaped blower tube structure 7.1 and the prong-like branches 7.20 of the comb-shaped suction tube structure 7.2 interlocking.
- This configuration enables the distance between the injection openings 7.11 and the suction openings 7.21 to be adjusted by shifting the comb-shaped blowing tube structure 7.1 relative to the comb-shaped suction tube structure 7.2.
- a zinc separation device 10 for cleaning the protective gas loaded with zinc vapor and/or zinc dust is integrated in the return line 8.
- the zinc separating device 10 is preferably provided with a cooling device which effects a re-sublimation of zinc vapor.
- the resulting zinc dust can be separated from the protective gas by means of a separating device and fed into a collection container 10.1.
- the gradual blowing in of cleaned or unloaded inert gas and the extraction of inert gas laden with zinc vapor and/or zinc dust in the immediate vicinity of the injection points reduces the concentration of zinc vapor and/or zinc dust in the inert gas in nozzle 1 and thus the partial pressure of the zinc vapor gradually down to an uncritical level.
- the gradual reduction of the content of zinc vapor and zinc dust in the protective gas laden with it is in 4 schematically sketched, with the serpentine arrows Z for zinc vapor, the straight arrows G indicate the flow direction of the protective gas in the trunk 1 and in the blowing suction device (blasting suction box) and the "point clouds" D represent zinc dust. It is to see that the content of zinc vapor and zinc dust gradually decreases from the zinc bath surface 3.1 in the direction of the annealing furnace.
- the cleaned inert gas stream is heated by means of a gas heater 11, for example to a temperature in the range from 450 to 600.degree.
- the snout 1 with the blowing and suction device or the blowing and suction boxes 6.1, 6.2 is heated by this gas flow in such a way that at no point in the snout 1 does the dew point or resublimation temperature of zinc vapor fall below.
- the gas injection channels 7.10 run along the longitudinal axis of the strip or longitudinal axis of the nozzle and parallel to the suction lines 7.20 arranged between them. In combination with the suction lines 7.20, the gas injection channels 7.10 cover a longitudinal section of the strip 2 completely or essentially completely both on the underside of the strip and on the upper side of the strip. This causes a uniform surface temperature of the blower/suction device or blower/suction boxes 6.1, 6.2, the surface temperature being above the dew point or resublimation temperature of zinc vapor.
- the device 6 is designed as a push-pull system. Hot protective gas is blown into the nozzle 1 at a slight overpressure via the injection openings 7.11 in order to generate cross-flows at the injection openings 7.11 (outlet points).
- the flow of inert gas blown in is adjusted to be equal to or slightly below the amount of gas flow extracted by means of a measuring and control device. For example, per hinge side (blow-suction box 6.1 or 6.2) the inert gas flow blown in is about 150 Nm 3 /h at approx. 600°C, while the inert gas flow extracted per strip side including zinc vapor is approx. 200 Nm 3 /h.
- the main blowing chamber (main blowing line) 7.1 and the injection branches (gas injection channels) 7.10 and preferably also the main suction chamber 7.2 and the suction branches (suction lines) 7.20 are thermally insulated from the trunk construction by a heat insulating layer.
- the snout 1 is also provided with an outer thermal insulation 12 in order to keep the inside of the snout walls at a temperature greater than 300°C.
- the lowermost part of the snout 1, i.e. the snout end piece 1.1 located between the blowing suction device and the zinc bath 3, is preferably provided with thermal insulation 13.
- the thermal insulation 13 ensures that the walls or wall sections of the trunk provided with it are warmer than the dew point or resublimation temperature of the protective gas-zinc vapor mixture during operation of the galvanizing plant.
- the thermal insulation 13 is formed, for example, from mineral wool and/or ceramic plates and surrounds the trunk end piece 1.1, preferably in the form of a jacket.
- a further embodiment of the invention provides that the snout end piece 1.1 is provided with a heating device (not shown) in addition to or as an alternative to the heat insulation 13.
- the furnace nozzle 1 designed according to the invention can be divided into three areas A, B and C with regard to the protective gas (cf. 1 ).
- the area A includes the end piece 1.1, which is preferably provided with thermal insulation 13. In this area A there is a relatively high zinc vapor load with little gas movement.
- the surface temperature of the trunk 1 is above 440° C. in this area.
- Area A is followed by area B, which is equipped with the blowing and suction device according to the invention (e.g. in the form of blowing and suction boxes 6.1, 6.2).
- Area B serves as a separation lock or gas curtain. It interrupts the "natural gas flow", in particular the entrainment of protective gas caused by the strip movement in the direction of the zinc bath 3, by blowing in cleaned hot protective gas while at the same time sucking off gas laden with zinc vapor in close proximity to the injection points 7.11. Due to the multi-stage arrangement of the injection nozzles 7.11 and suction nozzles 7.21, the concentration of zinc vapor is gradually reduced in area B.
- the surface temperatures of the blow and suction boxes 6.1, 6.2 and the insides of the trunk 1 are above the dew point or resublimation temperature of zinc vapor, i.e. above 400°C.
- Area C follows above area B.
- Area C is characterized by a low zinc vapor content in the protective gas.
- the surface temperature of the inside of the nozzle is more than 300°C in area C, which prevents condensation or resublimation of the zinc vapor that is still present in the protective gas to a small extent.
- the implementation of the invention is not limited to the exemplary embodiments described above. Rather, numerous variants are possible, which also make use of the invention specified in the attached patent claims in the case of designs that deviate from the exemplary embodiments illustrated in the drawing.
- the mutually parallel injection branches 7.10 and suction branches 7.20 of the blowing suction box 6.1, 6.2 or the "tines" of the comb-shaped blowing tube structure 7.1 and the comb-shaped suction tube structure 7.2 can also be aligned transversely to the direction of belt travel. Which of these variants is implemented depends on the course of the main lines for the protective gas supply and suction in relation to the orientation of the trunk 1 and the relevant mounting options.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Vermeidung von durch Zinkstaub verursachten Oberflächenfehlern an verzinktem Metallband in einer kontinuierlichen Bandverzinkung, bei der in einem Durchlaufofen erhitztes Metallband unter Schutzgas durch einen Ofen-Rüssel hindurchbewegt und in ein Zinkbad eingetaucht wird, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Vorrichtung zur Vermeidung von durch Zinkstaub verursachten Oberflächenfehlern an verzinktem Metallband in einer kontinuierlichen Bandverzinkung, gemäß dem Oberbegriff des Anspruchs 7.The invention relates to a method for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, in which metal strip heated in a continuous furnace is moved under protective gas through a furnace nozzle and immersed in a zinc bath, according to the preamble of
Eine Anlage zur kontinuierlichen Feuerverzinkung von Stahlband besteht unter anderem aus einem Durchlaufofen, einem Zinkbad (Schmelzbad), einer Vorrichtung zur Einstellung der Zinküberzugsdicke und einer nachfolgenden Kühleinrichtung. In dem Durchlaufofen wird das Stahlband kontinuierlich geglüht. Dabei werden durch Rekristallisation des Stahls die gewünschten mechanischen Eigenschaften des Grundwerkstoffs eingestellt. Zudem werden dabei in einer Vorwärmzone gebildete Eisenoxide reduziert. In einer auf den DurchlaufGlühofen folgenden Kühlzone wird das Band unter Schutzgas (HNX) auf eine Temperatur nahe der Schmelzbadtemperatur abgekühlt. Das Schutzgas soll verhindern, dass das geglühte Band vor dem Verzinken oxidiert, wodurch die Haftung der Zinkschicht erheblich verschlechtert würde. Das Schutzgas enthaltende Verbindungsstück zwischen Glühofen und Zinkbad wird Ofen-Rüssel genannt.A plant for the continuous hot-dip galvanizing of steel strip consists, among other things, of a continuous furnace, a zinc bath (melt bath), a device for adjusting the zinc coating thickness and a subsequent cooling device. The steel strip is continuously annealed in the continuous furnace. The desired mechanical properties of the base material are set by recrystallization of the steel. In addition, iron oxides formed in a preheating zone are reduced. In a cooling zone following the continuous annealing furnace, the strip is cooled under protective gas (HNX) to a temperature close to the melt bath temperature. The protective gas is intended to prevent the annealed strip from oxidizing before galvanizing, which would significantly impair the adhesion of the zinc layer. The protective gas The connecting piece between the annealing furnace and the zinc bath is called the furnace trunk.
In einem herkömmlichen Ofen-Rüssel einer kontinuierlichen Bandverzinkungsanlage kommt es üblicherweise zu Ablagerungen von Zinkstaub, der insbesondere bei in der Anlage auftretenden Erschütterungen in größeren Stücken auf das Zinkbad und/oder das Stahlband fällt und damit Oberflächenfehler (Verzinkungsfehler) verursacht. Es wurde erkannt, dass das in Richtung des Zinkbades bewegte Stahlband im Rüssel Schutzgas nach unten mitreißt, wobei das mitgerissene Schutzgas an der Zinkbadoberfläche Zinkdampf aufnimmt, welcher beim Aufsteigen des mitgerissenen Schutzgases an den kälteren Innenwänden des Rüssels kondensiert bzw. resublimiert und sich dort als Staub absetzt.In a conventional furnace snout of a continuous strip galvanizing line, deposits of zinc dust usually occur, which fall in larger pieces onto the zinc bath and/or the steel strip, particularly when the system is subjected to vibrations, thus causing surface defects (galvanizing defects). It was recognized that the steel strip moving in the direction of the zinc bath entrains protective gas downwards in the snout, with the entrained protective gas absorbing zinc vapor on the surface of the zinc bath, which condenses or resublimates on the colder inner walls of the snout when the entrained protective gas rises and turns into dust there settles.
Aus der
Mit der aus der
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, mit dem bzw. der die Aufnahme von Zinkdampf durch das im Ofen-Rüssel enthaltene Schutzgas sowie die Ausbreitung von Zinkdampf im Ofen-Rüssel deutlich minimiert werden kann.The present invention is based on the object of specifying a method and a device of the type mentioned at the outset with which the absorption of zinc vapor by the protective gas contained in the furnace snout and the propagation of zinc vapor in the furnace snout can be significantly minimized.
Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch eine Vorrichtung mit den Merkmalen des Anspruchs 7.This object is achieved by a method having the features of
Bei dem erfindungsgemäßen Verfahren werden im Ofen-Rüssel ebenfalls die Ober- und die Unterseite des zu verzinkenden Metallbandes (z.B. Stahlbandes) über Einblasöffnungen mit Schutzgas beaufschlagt. Mit Zinkdampf und/oder Zinkstaub beladenes Schutzgas wird über Absaugöffnungen, die beidseitig des Metallbandes benachbart den Einblasöffnungen angeordnet sind, abgesaugt. Erfindungsgemäß wird eine Vielzahl der Einblasöffnungen in der Weise ausgebildet und im Ofen-Rüssel angeordnet, dass das aus diesen Einblasöffnungen strömende Schutzgas mit einem Auftreffwinkel im Bereich von 70° bis 110°, vorzugsweise 80° bis 100°, besonders bevorzugt ca. 90° auf die der jeweiligen Einblasöffnung zugewandte Oberfläche des Metallbandes gerichtet ist. Zudem werden der Abstand zwischen der jeweiligen Einblasöffnung der Vielzahl von Einblasöffnungen und wenigstens einer ihr zugeordneten Absaugöffnung aus der Vielzahl von Absaugöffnungen so gewählt und die Strömungsgeschwindigkeit des aus der jeweiligen Einblasöffnung austretenden Schutzgases so gesteuert, dass einer bei Bewegung des Metall- bzw. Stahlbandes auftretenden Mitnahme von Schutzgas in Richtung des Zinkbades entgegengewirkt wird. Erfindungsgemäß wird der Abstand zwischen der jeweiligen Einblasöffnung und der wenigstens einen ihr zugeordneten Absaugöffnung kleiner/gleich 25 cm gewählt.In the method according to the invention, the upper and lower sides of the metal strip to be galvanized (eg steel strip) are also exposed to protective gas via injection openings in the furnace nozzle. Shielding gas loaded with zinc vapor and/or zinc dust is sucked off via suction openings which are arranged on both sides of the metal strip adjacent to the injection openings. According to the invention, a large number of injection openings are formed and arranged in the furnace nozzle in such a way that the air flowing out of these injection openings Shielding gas with an impact angle in the range of 70° to 110°, preferably 80° to 100°, particularly preferably about 90°, is directed onto the surface of the metal strip facing the respective injection opening. In addition, the distance between the respective injection opening of the plurality of injection openings and at least one suction opening assigned to it from the plurality of suction openings is selected and the flow rate of the protective gas exiting from the respective injection opening is controlled in such a way that entrainment occurs when the metal or steel strip moves is counteracted by protective gas in the direction of the zinc bath. According to the invention, the distance between the respective injection opening and the at least one suction opening assigned to it is selected to be less than or equal to 25 cm.
Bei der erfindungsgemäßen Vorrichtung ist somit der Ofen-Rüssel mit Einblasöffnungen versehen, über die die Oberseite und die Unterseite des Metallbandes mit Schutzgas beaufschlagbar ist, wobei benachbart zu den Einblasöffnungen Absaugöffnungen zum Absaugen von mit Zinkdampf und/oder Zinkstaub beladenem Schutzgas angeordnet sind. Erfindungsgemäß ist dabei eine Vielzahl der Einblasöffnungen in der Weise ausgebildet und im Ofen-Rüssel angeordnet, dass das aus diesen Einblasöffnungen strömende Schutzgas mit einem Auftreffwinkel im Bereich von 70° bis 110°, vorzugsweise 80° bis 100°, besonders bevorzugt ca. 90° auf die der jeweiligen Einblasöffnung zugewandte Oberfläche des Metallbandes gerichtet ist, wobei der Abstand zwischen der jeweiligen Einblasöffnung der Vielzahl von Einblasöffnungen und wenigstens einer ihr zugeordneten Absaugöffnung aus der Vielzahl von Absaugöffnungen so gewählt ist, dass bei einer vorgegebenen oder vorgebbaren Strömungsgeschwindigkeit des aus der jeweiligen Einblasöffnung austretenden Schutzgases einer bei Bewegung des Metallbandes auftretenden Mitnahme von Schutzgas in Richtung des Zinkbades entgegengewirkt wird. Der Abstand zwischen der jeweiligen Einblasöffnung und der wenigstens einen ihr zugeordneten Absaugöffnung beträgt dabei kleiner/gleich 25 cm.In the device according to the invention, the furnace nozzle is therefore provided with blow-in openings through which protective gas can be applied to the top and bottom of the metal strip, suction openings for sucking off protective gas laden with zinc vapor and/or zinc dust being arranged adjacent to the blow-in openings. According to the invention, a large number of injection openings are designed and arranged in the furnace nozzle in such a way that the protective gas flowing out of these injection openings is sprayed at an angle of incidence in the range from 70° to 110°, preferably 80° to 100°, particularly preferably approx. 90° is directed towards the surface of the metal strip facing the respective blowing-in opening, the distance between the respective blowing-in opening of the plurality of blowing-in openings and at least one suction opening assigned to it from the plurality of suction openings being selected in such a way that at a predetermined or specifiable flow rate of the protective gas emerging from the respective injection opening counteracts any entrainment of protective gas in the direction of the zinc bath that occurs when the metal strip moves. The distance between the respective injection opening and the at least one suction opening assigned to it is less than or equal to 25 cm.
Die Erfindung basiert auf der Idee, die Strömungsverhältnisse des Schutzgases insbesondere in Bandnähe so zu beeinflussen, dass die erwähnte Mitnahme von Schutzgas minimiert und/oder die Kondensation bzw. Resublimation von Zinkdampf an den Wänden des Rüssels verhindert wird. Im Unterschied zu der aus der
Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass das über die Einblasöffnungen zugeführte Schutzgas zuvor auf eine Temperatur von mindestens 500°C, vorzugsweise mindestens 550°C erwärmt wird. Durch diese Ausgestaltung kann die Resublimation von Zinkstaub im Ofen-Rüssel noch effektiver verhindert werden, da der aufgeheizte, über die Einblasöffnungen zugeführte Schutzgasstrom den an der Zinkbadoberfläche entstehenden Zinkdampf im gasförmigen Zustand hält.An advantageous embodiment of the method according to the invention provides that the inert gas supplied via the injection openings is previously heated to a temperature of at least 500°C, preferably at least 550°C. With this configuration, the re-sublimation of zinc dust in the furnace nozzle can be prevented even more effectively, since the heated protective gas flow supplied via the injection openings keeps the zinc vapor produced on the zinc bath surface in the gaseous state.
Dementsprechend sieht eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass die Absaugöffnungen über eine mindestens einen Absaugventilator aufweisende Rückführleitung mit den Einblasöffnungen verbunden sind, wobei die Rückführleitung mit mindestens einer Heizeinrichtung zum Erwärmen des Schutzgases auf eine Temperatur von mindestens 500°C, vorzugsweise mindestens 550°C versehen ist.Accordingly, a preferred embodiment of the device according to the invention provides that the suction openings are connected to the injection openings via a return line having at least one suction fan, the return line having at least one heating device for heating the protective gas to a temperature of at least 500° C., preferably at least 550° C is provided.
Der großflächig und im Wesentlichen über die gesamte Rüsselbreite gleichmäßig in den Rüssel eingetragene Schutzgasstrom stellt dabei gleichzeitig ein Heizmedium für die Blas-/Saugvorrichtung dar und verhindert kalte Zonen im Rüssel, die zu einer Zinkstaub-Ausfällung führen würden. Durch die offenbarte Temperaturführung im Rüsselbereich entsteht erst gar kein sublimierter Zinkstaub im Rüssel. Vielmehr wird der im Schutzgas enthaltene Zinkdampf abgeführt, bevor er zu Staubkörnern sublimieren kann.The flow of inert gas that is uniformly introduced into the nozzle over a large area and essentially over the entire width of the nozzle simultaneously represents a heating medium for the blowing/suction device and prevents cold zones in the nozzle that would lead to zinc dust precipitation. Due to the disclosed temperature control in the area of the snout, there is no sublimated zinc dust in the snout. Rather, the zinc vapor contained in the protective gas is removed before it can sublimate into dust grains.
Vorzugsweise wird das erfindungsgemäße Verfahren in der Weise ausgeführt, dass die Temperatur der Gaswolke in dem räumlich höher gelegenen Teil des Rüssels höher ist als die Temperatur im räumlich tiefer gelegenen Eintauchbereich des Bandes. Hierdurch werden thermische Turbulenzen im Rüssel minimiert.The method according to the invention is preferably carried out in such a way that the temperature of the gas cloud in the spatially higher part of the nozzle is higher than the temperature in the spatially lower immersion region of the strip. This minimizes thermal turbulence in the trunk.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass das Einblasen von Schutzgas über die Einblasöffnungen und das Absaugen von Schutzgas über die Absaugöffnungen in mindestens drei Stufen durchgeführt wird, die in Bandlaufrichtung aufeinander folgend angeordnet sind, wobei jede der Stufen aus einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Einblasöffnungen und einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Absaugöffnungen gebildet ist. Auf diese Weise lässt sich eine besonders wirksame Sperrung des von dem zu verzinkenden Band mitgerissenen Schutzgases erzielen. Insbesondere lässt sich durch die relativ hohe Anzahl von Einblasöffnungen und Absaugöffnungen eine eher sanfte, turbulenzarme Schutzgas-Blasströmung erzeugen, so dass eine übermäßige, unkontrollierbare Verwirbelung des Schutzgases und erhöhte Bandschwingungen vermieden werden. Durch diese mehrstufige Anordnung der Einblasöffnungen und Absaugöffnungen lassen sich die Konzentration des Zinkdampfes im Schutzgas und damit der Partialdruck des Zinkdampfes stufenweise auf ein unkritisches Maß absenken.A further advantageous embodiment of the method according to the invention is characterized in that the protective gas is blown in via the injection openings and the protective gas is sucked off via the suction openings in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a series of at least five, preferably at least seven Injection openings and a row of at least five, preferably at least seven suction openings is formed. In this way, a particularly effective blocking of the protective gas entrained by the strip to be galvanized can be achieved. In particular, due to the relatively high number of injection openings and suction openings, a rather gentle, low-turbulence blowing flow of protective gas can be generated, so that excessive, uncontrollable turbulence of the protective gas and increased strip vibrations are avoided. This multi-stage arrangement of the injection openings and suction openings allows the concentration of the zinc vapor in the protective gas and thus the partial pressure of the zinc vapor to be gradually reduced to an uncritical level.
Zu diesem Zweck sieht eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass die Einblasöffnungen und die Absaugöffnungen in mindestens drei Stufen ausgebildet sind, die in Bandlaufrichtung aufeinander folgend angeordnet sind, wobei jede der Stufen aus einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Einblasöffnungen und einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Absaugöffnungen gebildet ist.For this purpose, a preferred embodiment of the device according to the invention provides that the injection openings and the suction openings are formed in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a row of at least five, preferably at least seven, injection openings and one Row of at least five, preferably at least seven suction openings is formed.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass der über die Einblasöffnungen zugeführte Schutzgasvolumenstrom gleich dem über die Absaugöffnungen abgesaugten Schutzgasvolumenstrom eingestellt wird oder auf einen Wert eingestellt wird, der maximal 5% unterhalb des abgesaugten Schutzgasvolumenstroms liegt. Durch die gleichen bzw. nahezu gleichen Volumenströme von zugeführtem und abgesaugtem Schutzgas und der erwähnten bevorzugten gleichmäßigen Verteilung von Einblasstellen und Absaugstellen wird die Gasturbulenz im Rüssel auf ein Minimum reduziert.A further advantageous embodiment of the method according to the invention is characterized in that the protective gas volume flow supplied via the injection openings is set equal to the protective gas volume flow sucked off via the suction openings or is set to a value which is at most 5% below the sucked protective gas volume flow. Due to the same or almost the same volume flows of supplied and extracted inert gas and the mentioned preferred uniform distribution of injection points and The gas turbulence in the nozzle is reduced to a minimum.
Zur Erzielung einer möglichst wirksamen Sperrung oder Unterbrechung des durch das bewegte Metallband mitgerissenen Schutzgasstroms bei gleichzeitiger Minimierung der Verwirbelung des Schutzgases ist es günstig, wenn nach einer weiteren bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung die Einblasöffnungen und die Absaugöffnungen matrixförmig angeordnet sind. Auch ist in diesem Zusammenhang günstig, wenn die Einblasöffnungen versetzt zu den Absaugöffnungen - in Bandlaufrichtung sowie über die Bandbreite betrachtet - angeordnet sind. Vorzugsweise sind die Einblasöffnungen und die Absaugöffnungen der erfindungsgemäßen Vorrichtung gleichmäßig voneinander beabstandet angeordnet.In order to block or interrupt the protective gas flow entrained by the moving metal strip as effectively as possible while at the same time minimizing the turbulence of the protective gas, it is advantageous if, according to a further preferred embodiment of the device according to the invention, the injection openings and the suction openings are arranged in a matrix. In this context, it is also favorable if the injection openings are offset relative to the suction openings—viewed in the direction of strip travel and over the strip width. The injection openings and the suction openings of the device according to the invention are preferably arranged at equal distances from one another.
Der Abstand zwischen der jeweiligen Einblasöffnung (Einblasdüse) und der mindestens einen ihr zugeordneten Absaugöffnung ist vorzugsweise kleiner 15 cm, und besonders bevorzugt kleiner/gleich 10 cm.The distance between the respective injection opening (injection nozzle) and the at least one suction opening assigned to it is preferably less than 15 cm, and particularly preferably less than or equal to 10 cm.
Zur Verwirklichung einer turbulenzarmen Unterbrechung des durch das bewegte Metallband mitgerissenen Schutzgasstroms bzw. zur Erzielung einer möglichst gleichmäßigen Verteilung der Einblasstellen und Absaugstellen sieht eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass die Einblasöffnungen an zinkenartigen Zweigen eines kammförmigen Blasrohrgebildes und die Absaugöffnungen an zinkenartigen Zweigen eines kammförmigen Saugrohrgebildes ausgebildet sind, wobei die zinkenartigen Zweige des kammförmigen Blasrohrgebildes und die zinkenartigen Zweige des kammförmigen Saugrohrgebildes ineinander greifen.In order to achieve a low-turbulence interruption of the protective gas flow entrained by the moving metal strip or to achieve the most uniform possible distribution of the injection points and suction points, a further preferred embodiment of the device according to the invention provides that the injection openings are on prong-like branches of a comb-shaped blowpipe structure and the suction openings on prong-like branches of a Comb-shaped suction tube structure are formed, the prong-like branches of the comb-shaped blower tube structure and the prong-like branches of the comb-shaped suction tube structure intermesh.
Wird dabei der Schutzgasstrom vor dem Einblasen mittels eines Gaserhitzers aufgeheizt, vorzugsweise auf eine Temperatur im Bereich von 450 bis 600°C, so bewirkt die vorstehend genannte Ausgestaltung zugleich, dass sich an dem aus den kammförmigen Rohrgebilden zusammengesetzten Rohrleitungssystem im Betrieb eine sehr gleichmäßige Oberflächentemperaturverteilung einstellt, wobei die Oberflächentemperatur des im Rüssel angeordneten Rohrleitungssystems bei Beheizung des Schutzgasstroms auf eine Temperatur im Bereich von 450 bis 600°C oberhalb der Taupunkt- bzw. Resublimationstemperatur von Zink liegt. Insbesondere verhindert die Erwärmung des Rohrleitungssystems mit aufgeheiztem Schutzgas das Auftreten punktueller Temperaturspitzen und damit eine ungewollte Gaskonvektion bzw. Gasturbulenz.If the flow of protective gas is heated by means of a gas heater before it is blown in, preferably to a temperature in the range from 450 to 600°C, the above-mentioned configuration also has the effect that a very uniform surface temperature distribution is established on the pipeline system composed of the comb-shaped pipe structures during operation , wherein the surface temperature of the pipe system arranged in the nozzle when the protective gas flow is heated to a temperature in the range from 450 to 600° C. above the dew point or resublimation temperature of zinc. In particular, the heating of the piping system with heated protective gas prevents the occurrence of temperature peaks and thus unwanted gas convection or gas turbulence.
In diesem Zusammenhang sieht eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass das kammförmige Blasrohrgebilde und das kammförmige Saugrohrgebilde durch eine Wärmeisolierung gegenüber dem Ofen-Rüssel thermisch isoliert sind.In this context, a further advantageous embodiment of the device according to the invention provides that the comb-shaped blowing tube structure and the comb-shaped suction tube structure are thermally insulated from the furnace nozzle by thermal insulation.
Nach einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird der Ofen-Rüssel zumindest in einem Bereich, der sich vom Zinkbad bis zu den Einblasöffnungen und/oder Absaugöffnungen erstreckt, auf eine Temperatur von mindestens 400°C, vorzugsweise mindestens 450°C beheizt. Ergänzend zu einer dafür vorgesehenen Heizeinrichtung, oder alternativ dazu, kann dieser untere Bereich des Ofen-Rüssels nach einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung auch mit einer Wärmeisolierung versehen sein. Hierdurch lässt sich erreichen, dass die relevanten Wände oder Wandabschnitte des Ofen-Rüssels wärmer sind als die Temperatur, bei der die Kondensation bzw. Resublimation von Zinkdampf beginnt.According to a further preferred embodiment of the method according to the invention, the furnace nozzle is heated to a temperature of at least 400° C., preferably at least 450° C., at least in a region which extends from the zinc bath to the injection openings and/or suction openings. In addition to a heating device provided for this purpose, or as an alternative to this, this lower region of the furnace nozzle can also be provided with thermal insulation according to a preferred embodiment of the device according to the invention. This makes it possible to achieve that the relevant walls or wall sections of the furnace nozzle are warmer than the temperature at which the condensation or resublimation of zinc vapor begins.
Weitere bevorzugte und vorteilhafte Ausgestaltungen der Erfindung sind in den beiliegenden Ansprüchen angegeben.Further preferred and advantageous developments of the invention are indicated in the appended claims.
Nachfolgend wird die Erfindung anhand einer mehrere Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen schematisch:
- Fig. 1
- eine Längsschnittansicht eines Abschnitts eines erfindungsgemäß ausgeführten Ofen-Rüssels einer kontinuierlichen Bandverzinkung;
- Fig. 2
- eine Querschnittansicht des Ofen-Rüssels entlang der Schnittlinie II-II in
Fig. 1 ; - Fig. 3
- eine in einem Ofen-Rüssel gemäß
Fig. 1 angeordnete Blas-Saugvorrichtung in Draufsicht mit zugeordneter Rückführleitung, die mit einem Absaugventilator, einer Zinkabscheidevorrichtung und einer Heizeinrichtung zum Erwärmen des von Zink gereinigten, einzublasenden Schutzgases versehen ist; - Fig. 4
- eine weitere Längsschnittansicht eines Abschnitts eines erfindungsgemäß ausgeführten Ofen-Rüssels einer kontinuierlichen Bandverzinkung;
- Fig. 5
- eine Draufsicht auf einen Längsabschnitt des zu verzinkenden Metallbandes in einem Abschnitt des Ofen-Rüssels der
Fig. 4 ; und - Fig. 6
- den Abschnitt des Ofen-Rüssels gemäß
Fig. 4 in einer perspektivischen Darstellung.
- 1
- a longitudinal sectional view of a portion of a furnace snout designed according to the invention of a continuous strip galvanizing;
- 2
- a cross-sectional view of the furnace snout along section line II-II in
1 ; - 3
- one in a furnace proboscis according to
1 arranged blow-suction device in top view with associated return line, which is provided with an exhaust fan, a zinc separator and a heating device for heating the protective gas to be blown in, cleaned of zinc; - 4
- a further longitudinal sectional view of a section of a furnace snout of a continuous strip galvanizing designed according to the invention;
- figure 5
- a top view of a longitudinal section of the metal strip to be galvanized in a section of the furnace snout of FIG
4 ; and - 6
- according to the section of the furnace trunk
4 in a perspective view.
In der Zeichnung ist ein Ofen-Rüssel 1 einer kontinuierlichen Bandverzinkung (Feuerverzinkung) skizziert. Ein zu verzinkendes Metallband 2, vorzugsweise Stahlband, wird in einem (nicht gezeigten) Durchlaufofen geglüht und unter Schutzgas (HNX) einem Zinkbad 3 zugeführt. Das Band 2 taucht schräg nach unten in das Zinkbad 3 ein und wird durch eine im Zinkbad angeordnete Rolle 4 nach oben umgelenkt. Die Badtemperatur liegt typischerweise im Bereich von ca. 440 bis 470°C. Beim Austritt aus dem Bad 3 reißt das Band 2' eine flüssige Zinkmenge mit, die erheblich über der gewünschten Überzugsdicke liegt. Das noch flüssige überschüssige Überzugsmaterial wird mittels sich über die Bandbreite erstreckende Luftstrahl-Flachdüsen 5 von Ober- und Unterseite (Vorder- und Rückseite) des beschichteten Bandes 2' abgestreift.In the drawing, a
In dem Ofen-Rüssel 1 wird ein Teil des Schutzgases durch die Bandbewegung in Richtung Zinkbad 3 mitgerissen. Um zu verhindern, dass das mitgerissene Schutzgas an der Zinkbadoberfläche Zinkdampf aufnimmt, welcher sich an den kälteren Innenwandflächen des Rüssels 1 als Zinkstaub absetzt und Oberflächenfehler an dem verzinkten Band 2' verursachen kann, wenn er in größeren Stücken auf das Band 2 und/oder Zinkbad 3 fällt, ist der Rüssel 1 mit einer besonderen Blas-Saugvorrichtung 6 versehen.In the
Die erfindungsgemäße Blas-Saugvorrichtung 6 weist ein verzweigtes Leitungssystem 7.1, 7.2 mit einer Vielzahl von Einblas- und Absaugöffnungen 7.11, 7.21 auf, mittels derer Schutzgas im Endbereich des Rüssels 1, d.h. nahe des Zinkbades 3, so umgewälzt wird, dass der vom Band 2 mitgerissene Schutzgasstrom möglichst unterbrochen wird, jedoch ohne dass dadurch erhöhte Bandschwingungen verursacht werden. Zu diesem Zweck sind die Einblas- und Absauföffnungen 7.11, 7.21 in Bewegungsrichtung des Bandes 2 so angeordnet, dass jede Einblasöffnung 7.11 in der Nähe wenigstens einer Absaugöffnung 7.21 liegt, wodurch eingeblasenes Schutzgas in unmittelbarer Umgebung wieder abgesaugt und so eine unkontrollierbare Verwirbelung des Schutzgases verhindert wird.The blowing
Die Blas-Saugvorrichtung 6 umfasst einen oberen Teil 6.1 und einen unteren Teil 6.2, wobei sich der obere Teil 6.1 über die gesamte Breite der Bandoberseite (Vorderseite) erstreckt, während sich der untere Teil 6.2 über die gesamte Breite der Bandunterseite (Rückseite) erstreckt. Der obere Teil 6.1 sowie der untere Teil 6.2 können jeweils kastenartig ausgebildet sein und dementsprechend als Blas-Saugkasten bzw. Blas-Saugkästen bezeichnet werden. Der jeweilige Blas-Saugkasten (6.1, 6.2) ist durch Trennwände 7.3 in eine verzweigte Blaskammer 7.1' mit parallel zueinander verlaufenden Einblaszweigen 7.10 und eine verzweigte Saugkammer 7.2' mit parallel zueinander verlaufenden Saugzweigen 7.20 unterteilt. Ein Einblaszweig 7.10 kann dabei unmittelbar neben einem Saugzweig 7.20 liegen, indem beide Zweige 7.10, 7.20 durch dieselbe Trennwand 7.3 voneinander getrennt sind. Die Unterteilung in eine verzweigte Blaskammer 7.1' und eine verzweigte Saugkammer 7.2' kann beispielsweise durch eine mäanderförmig verlaufende oder gefaltete Trennwand 7.3 bzw. durch mäanderförmig aneinandergesetzte Trennwände, die an ihren aneinander stoßenden Enden gasdicht miteinander verbunden sind, verwirklicht sein, wie in
Das Anschlussstück 7.51 zur Absaugung des Schutzgases ist unterhalb des Anschlussstückes 7.41, über welches das Schutzgas zugeführt wird, angeordnet (siehe auch
Wie in den
Die Einblas- und Saugzweige 7.10, 7.20 sind mit einer Vielzahl von Öffnungen (Düsen) 7.11, 7.21 versehen, die als Einblasöffnungen bzw. Absaugöffnungen dienen. Diese Öffnungen (Düsen) 7.11, 7.21 sind so angeordnet bzw. ausgeführt, dass das aus den Einblasöffnungen 7.11 strömende Schutzgas mit einem Auftreffwinkel im Bereich von 70° bis 110°, vorzugsweise 80° bis 100°, auf die der jeweiligen Einblasöffnung zugewandte Oberfläche des Bandes 2 gerichtet ist bzw. trifft. Vorzugsweise sind die Einblasdüsen 7.11 so ausgeführt, dass das aus ihnen ausströmende Schutzgas im Wesentlichen rechtwinklig auf die Bandoberfläche gerichtet ist (vgl.
Die durch die Bandbewegung hervorgerufene Mitnahme von Schutzgas trägt zu einer "natürlichen Gasbewegung" bei. Angetrieben wird die natürliche Gasbewegung zudem durch den üblicherweise vorhandenen Temperaturunterschied zwischen dem durch das Band 2 mitgerissenen, relativ heißen Schutzgas oberhalb des Zinkbades 3 und dem kälteren Schutzgas im oberen Bereich des Rüssels 1. Durch die erfindungsgemäße Unterbrechung oder Sperrung dieser natürlichen Gasbewegung wird zugleich die Mitnahme bzw. der Transport von Zinkdampf von der Zinkbadoberfläche 3.1 in den oberen Rüsselbereich unterbrochen oder zumindest minimiert.The entrainment of protective gas caused by the strip movement contributes to a "natural gas movement". The natural gas movement is also driven by the usually existing temperature difference between the relatively hot protective gas entrained by the
Um eine möglichst gleichmäßige Sperrwirkung für die Gasbewegung in Bandlaufrichtung sowie für die aufwärtsgerichtete Gasbewegung entlang der Innenseite der Rüsselwände zu erzielen, ohne dass es dabei zu erhöhten Bandschwingungen kommt, sind mindestens fünf, vorzugsweise mindestens sieben, besonders bevorzugt mindestens zehn Einblasöffnungen (Düsen) 7.11 über die Breite des Bandes 2 verteilt angeordnet.In order to achieve a blocking effect that is as uniform as possible for the gas movement in the direction of belt travel and for the upward gas movement along the inside of the nozzle walls, without this resulting in increased belt vibrations, at least five, preferably at least seven, particularly preferably at least ten injection openings (nozzles) 7.11 arranged distributed over the width of the
In unmittelbarer Nähe zu jeder Einblasöffnung 7.11 befindet sich mindestens eine Absaugöffnung 7.21. Die Einblasöffnungen 7.11 und die Absaugöffnungen 7.21 sind matrixförmig angeordnet. Das Einblasen und Absaugen erfolgt somit in mehreren Stufen, vorzugsweise in mindestens drei Stufen. Die Einblasöffnungen 7.11 sind dabei in Bandlaufrichtung sowie über die Bandbreite betrachtet versetzt zu den Absaugöffnungen 7.21 angeordnet (vgl.
Über die Gaseinblaskanäle 7.10 kann eine große Menge Schutzgas ausgetauscht werden, ohne dass ein großer Gastransport in Bandlaufrichtung erfolgt. In vorteilhafter Weise wird hierdurch das Band 2 nicht zu Schwingungen angeregt. Gleichzeitig wird durch die Gasströmung der unerwünschte Transport von Zinkdampf aus dem Eintauchbereich des Bandes 2 in den oberen Teil des Rüssels 1 nicht unterstützt.A large amount of protective gas can be exchanged via the gas injection channels 7.10 without a large amount of gas being transported in the direction of strip travel. Advantageously, the
Durch die abwechselnde Anordnung von Einblasdüsen 7.11 und Saugdüsen 7.21 (
Wie in
In der Rückführleitung 8 ist außer dem Sauggebläse oder Saugventilator 9 eine Zinkabscheidevorrichtung 10 zur Reinigung des mit Zinkdampf und/oder Zinkstaub beladenen Schutzgases integriert. Die Zinkabscheidevorrichtung 10 ist vorzugsweise mit einer Kühleinrichtung versehen, die eine Resublimation von Zinkdampf bewirkt. Der dadurch entstehende Zinkstaub kann mittels einer Trenneinrichtung vom Schutzgas abgetrennt und in einen Sammelbehälter 10.1 geleitet werden.In addition to the suction blower or
Das stufenweise Einblasen von gereinigtem bzw. unbeladenem Schutzgas und das in unmittelbarer Nähe zu den Einblasstellen erfolgende Absaugen von mit Zinkdampf und/oder Zinkstaub beladenem Schutzgas senkt die Konzentration des Zinkdampfes und/oder Zinkstaubes in dem im Rüssel 1 befindlichen Schutzgas und damit den Partialdruck des Zinkdampfes stufenweise auf ein unkritisches Maß ab. Die stufenweise Verminderung des Gehaltes an Zinkdampf und Zinkstaub in dem damit beladenen Schutzgas ist in
Der gereinigte Schutzgasstrom wird vor dem Einblasen mittels eines Gaserhitzers 11 aufgeheizt, beispielsweise auf eine Temperatur im Bereich von 450 bis 600°C. Der Rüssel 1 mit der Blas-Saugvorrichtung bzw. den Blas-Saugkästen 6.1, 6.2 wird durch diesen Gasstrom so aufgeheizt, dass an keiner Stelle des Rüssels 1 die Taupunkt- bzw. Resublimationstemperatur von Zinkdampf unterschritten wird.Before being blown in, the cleaned inert gas stream is heated by means of a
Die Gaseinblaskanäle 7.10 verlaufen entlang der Bandlängsachse bzw. Rüssellängsachse und parallel zu den dazwischen angeordneten Absaugleitungen 7.20. In Kombination mit den Absaugleitungen 7.20 überdecken die Gaseinblaskanäle 7.10 einen Längsabschnitt des Bandes 2 vollständig oder im Wesentlichen vollständig sowohl auf der Bandunterseite als auch auf der Bandoberseite. Dies bewirkt eine gleichmäßige Oberflächentemperatur der Blas-Saugvorrichtung bzw. Blas-Saugkästen 6.1, 6.2, wobei die Oberflächentemperatur oberhalb der Taupunkt- bzw. Resublimationstemperatur von Zinkdampf liegt.The gas injection channels 7.10 run along the longitudinal axis of the strip or longitudinal axis of the nozzle and parallel to the suction lines 7.20 arranged between them. In combination with the suction lines 7.20, the gas injection channels 7.10 cover a longitudinal section of the
Die erfindungsgemäße Vorrichtung 6 ist als Druck-Zug-System (Push-Pull-System) ausgeführt. Dabei wird heißes Schutzgas mit leichtem Überdruck über die Einblasöffnungen 7.11 in den Rüssel 1 eingeblasen, um an den Einblasöffnungen 7.11 (Auslassstellen) Querströmungen zu erzeugen. Über eine Mess- und Regeleinrichtung wird der eingeblasene Schutzgasstrom gleich oder geringfügig unterhalb der abgesaugten Gasstrommenge eingestellt. Beispielsweise beträgt der pro Bandseite (Blas-Saugkasten 6.1 oder 6.2) eingeblasene Schutzgasstrom etwa 150 Nm3/h bei ca. 600°C, während der pro Bandseite abgesaugte Schutzgasstrom einschließlich Zinkdampf ca. 200 Nm3/h beträgt.The
Um Wärmeverluste zu minimieren, sind die Blashauptkammer (Blashauptleitung) 7.1 und die Einblaszweige (Gaseinblaskanäle) 7.10 und vorzugsweise auch die Absaughauptkammer 7.2 und die Saugzweige (Absaugleitungen) 7.20 durch eine Wärmeisolierschicht von der Rüsselkonstruktion thermisch isoliert. Der Rüssel 1 ist zudem mit einer äußeren Wärmeisolierung 12 versehen, um die Innenseite der Rüsselwände auf eine Temperatur größer 300°C zu halten.In order to minimize heat losses, the main blowing chamber (main blowing line) 7.1 and the injection branches (gas injection channels) 7.10 and preferably also the main suction chamber 7.2 and the suction branches (suction lines) 7.20 are thermally insulated from the trunk construction by a heat insulating layer. The
Der unterste Teil des Rüssels 1, d.h. das zwischen der Blas-Saugvorrichtung und dem Zinkbad 3 befindlich Rüsselendstück 1.1 ist vorzugsweise mit einer Wärmeisolierung 13 versehen. Die Wärmeisolierung 13 stellt sicher, dass die damit versehenen Wände bzw. Wandabschnitte des Rüssels im Betrieb der Verzinkungsanlage wärmer sind als die Taupunkt- bzw. Resublimationstemperatur des Schutzgas-Zinkdampf-Gemisches. Die Wärmeisolierung 13 ist beispielsweise aus Mineralwolle- und/oder Keramikplatten gebildet und umgibt das Rüsselendstück 1.1 vorzugsweise mantelförmig.The lowermost part of the
Ferner sieht eine weitere Ausgestaltung der Erfindung vor, dass das Rüsselendstück 1.1 ergänzend oder alternativ zu der Wärmeisolierung 13 mit einer Heizeinrichtung (nicht gezeigt) versehen ist.Furthermore, a further embodiment of the invention provides that the snout end piece 1.1 is provided with a heating device (not shown) in addition to or as an alternative to the
Der erfindungsgemäß ausgeführte Ofen-Rüssel 1 lässt sich in Bezug auf das Schutzgas in drei Bereiche A, B und C gliedern (vgl.
Der Bereich A umfasst das Endstück 1.1, das vorzugsweise mit einer Wärmeisolierung 13 versehen ist. In diesem Bereich A tritt eine relativ hohe Zinkdampfbeladung bei geringer Gasbewegung auf. Die Oberflächentemperatur des Rüssels 1 liegt in diesem Bereich oberhalb von 440°C.The area A includes the end piece 1.1, which is preferably provided with
An den Bereich A schließt sich der Bereich B an, der mit der erfindungsgemäßen Blas-Saugvorrichtung (z.B. in Form der Blas-Saugkästen 6.1, 6.2) ausgerüstet ist. Der Bereich B dient als Trennschleuse oder Gasschleier. Er unterbricht den "natürlichen Gasstrom", insbesondere die durch die Bandbewegung verursachte Mitnahme von Schutzgas in Richtung Zinkbad 3, durch Einblasung von gereinigtem heißem Schutzgas bei gleichzeitiger Absaugung von mit Zinkdampf beladenem in räumlicher Nähe zu den Einblasstellen 7.11. Durch die mehrstufige Anordnung der Einblasdüsen 7.11 und Absaugdüsen 7.21 wird die Zinkdampfkonzentration stufenweise im Bereich B reduziert. Die Oberflächentemperaturen der Blas-Saugkästen 6.1, 6.2 und der Innenseiten des Rüssels 1 liegen oberhalb der Taupunkt- bzw. Resublimationstemperatur von Zinkdampf, d.h. oberhalb von 400°C.Area A is followed by area B, which is equipped with the blowing and suction device according to the invention (e.g. in the form of blowing and suction boxes 6.1, 6.2). Area B serves as a separation lock or gas curtain. It interrupts the "natural gas flow", in particular the entrainment of protective gas caused by the strip movement in the direction of the
Oberhalb des Bereichs B folgt der Bereich C. Der Bereich C zeichnet sich durch einen geringen Zinkdampfgehalt im Schutzgas aus. Die Oberflächentemperatur der Rüsselinnenseite beträgt im Bereich C mehr als 300°C, wodurch eine Kondensation bzw. Resublimation des dort im Schutzgas noch geringfügig vorhandenen Zinkdampfes verhindert wird.Area C follows above area B. Area C is characterized by a low zinc vapor content in the protective gas. The surface temperature of the inside of the nozzle is more than 300°C in area C, which prevents condensation or resublimation of the zinc vapor that is still present in the protective gas to a small extent.
Die Ausführung der Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr sind zahlreiche Varianten möglich, die auch bei von den in der Zeichnung dargestellten Ausführungsbeispielen abweichender Gestaltung von der in den beiliegenden Patentansprüchen angegebenen Erfindung Gebrauch machen. So können beispielsweise die parallel zueinander verlaufenden Einblaszweige 7.10 und Saugzweige 7.20 des Blas-Saugkastens 6.1, 6.2 bzw. die "Zinken" des kammförmigen Blasrohrgebildes 7.1 sowie des kammförmigen Saugrohrgebildes 7.2 auch quer zur Bandlaufrichtung ausgerichtet werden. Welche dieser Varianten realisiert wird, hängt vom Verlauf der Hauptleitungen für die Schutzgaszufuhr und -absaugung in Bezug auf die Orientierung des Rüssels 1 bzw. den diesbezüglichen Montagemöglichkeiten ab.The implementation of the invention is not limited to the exemplary embodiments described above. Rather, numerous variants are possible, which also make use of the invention specified in the attached patent claims in the case of designs that deviate from the exemplary embodiments illustrated in the drawing. For example, the mutually parallel injection branches 7.10 and suction branches 7.20 of the blowing suction box 6.1, 6.2 or the "tines" of the comb-shaped blowing tube structure 7.1 and the comb-shaped suction tube structure 7.2 can also be aligned transversely to the direction of belt travel. Which of these variants is implemented depends on the course of the main lines for the protective gas supply and suction in relation to the orientation of the
Claims (16)
- Method for avoiding surface defects, which are caused by zinc dust, on a galvanized metal strip in continuous strip galvanization, in which metal strip (2) heated in a continuous annealing furnace is moved through a snout (1) in protective furnace gas and is immersed into a zinc bath (3), in which, in the snout (1), the upper side and the lower side of the metal strip (2) are acted upon by protective furnace gas via injection openings (7.11), and in which protective furnace gas loaded with zinc vapour and/or zinc dust is extracted via extraction openings (7.21) which are arranged on both sides of the metal strip (2) adjacent to the injection openings (7.11), characterized in that a multiplicity of the injection openings (7.11) are configured and arranged in the snout (1) in such a manner that the protective furnace gas streaming out of said injection openings (7.11) is directed onto that surface of the metal strip (2) which faces the respective injection opening (7.11) with an angle of impact within the range of 70° to 110°, preferably 80° to 100°, wherein the distance between the respective injection opening (7.11) of the multiplicity of the injection openings (7.11) and at least one extraction opening (7.21) assigned thereto from the multiplicity of the extraction openings (7.21) is selected in such a manner, and the flow velocity of the protective furnace gas emerging from the respective injection opening (7.11) is controlled in such a manner, that an entraining of protective furnace gas, which occurs during movement of the metal strip (2), in the direction of the zinc bath (3) is opposed, the distance between the respective injection opening (7.11) and the at least one extraction opening (7.21) assigned thereto is selected smaller than or equal 25 cm.
- Method according to Claim 1, characterized in that the protective furnace gas supplied via the injection openings (7.11) is heated beforehand to a temperature of at least 500°C, preferably at least 550°C.
- Method according to Claim 1 or 2, characterized in that the injection of protective furnace gas via the injection openings (7.11) and the extraction of protective furnace gas via the extraction openings (7.21) is carried out in at least three stages which are arranged consecutively in the strip running direction, wherein each of the stages is formed from a series of at least five, preferably at least seven, injection openings (7.11) and a series of at least five, preferably at least seven, extraction openings (7.21) .
- Method according to one of Claims 1 to 3, characterized in that the snout (1) is heated to a temperature of at least 400°C at least in a region which extends from the zinc bath (3) as far as the injection openings (7.11) and/or extraction openings (7.21) .
- Method according to one of Claims 1 to 4, characterized in that the volumetric flow of protective furnace gas supplied via the injection openings (7.11) is adjusted to be identical to the volumetric flow of protective furnace gas extracted via the extraction openings (7.21), or is adjusted to a value which lies at maximum 5% below the extracted volumetric flow of protective furnace gas.
- Method according to one of Claims 1 to 5, characterized in that the extracted protective furnace gas loaded with zinc vapour and/or zinc dust is cleaned by means of a zinc separating apparatus (10) .
- Apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip (2) which is to be galvanized and is heated in a continuous annealing furnace is moved through a snout (1) in protective furnace gas and is immersed into a zinc bath (3), wherein the furnace pipe (1) is provided with injection openings (7.11) via which the upper side and the lower side of the metal strip (2) can be acted upon by protective furnace gas, and wherein extraction openings (7.21) for extracting protective furnace gas loaded with zinc vapour and/or zinc dust are arranged adjacent to the injection openings (7.11), characterized in that a multiplicity of the injection openings (7.11) are configured and arranged in the snout (1) in such a manner that the protective furnace gas streaming out of said injection openings (7.11) is directed onto that surface of the metal strip (2) which faces the respective injection opening (7.11) with an angle of impact within the range of 70° to 110°, preferably 80° to 100°, wherein the distance between the respective injection opening (7.11) of the multiplicity of the injection openings (7.11) and at least one extraction opening (7.21) assigned thereto from the multiplicity of the extraction openings (7.21) is selected in such a manner that, at a predetermined or predeterminable flow velocity of the protective furnace gas emerging from the respective injection opening (7.11), an entraining of protective furnace gas, which occurs during movement of the metal strip (2), in the direction of the zinc bath (3) is opposed, the distance between the respective injection opening (7.11) and the at least one extraction opening (7.21) assigned thereto is selected smaller than or equal 25 cm.
- Apparatus according to Claim 7, characterized in that the extraction openings (7.21) are connected to the injection openings (7.11) via a return line (8) having at least one extraction ventilator (9), wherein the return line (8) is provided with at least one heating device (11) for heating the protective furnace gas to a temperature of at least 500°C, preferably at least 550°C.
- Apparatus according to Claim 8, characterized in that the return line (8) is provided with a zinc separating apparatus (10).
- Apparatus according to Claims 7 to 9, characterized in that the injection openings (7.11) for injecting protective furnace gas and the extraction openings (7.21) for extracting protective furnace gas are configured in at least three stages which are arranged consecutively in the strip running direction, wherein each of the stages is formed from a series of at least five, preferably at least seven, injection openings (7.11) and a series of at least five, preferably at least seven, extraction openings (7.21) .
- Apparatus according to one of Claims 7 to 10, characterized in that the injection openings (7.11) and the extraction openings (7.21) are arranged in the form of a matrix.
- Apparatus according to one of Claims 7 to 11, characterized in that the injection openings (7.11) are arranged offset with respect to the extraction openings (7.21), as viewed in the strip running direction and over the strip width.
- Apparatus according to one of Claims 7 to 12, characterized in that the injection openings (7.11) and the extraction openings (7.21) are arranged uniformly spaced apart from one another.
- Apparatus according to one of Claims 7 to 13, characterized in that the injection openings (7.21) are formed on teeth-like branches (7.10) of a comb-shaped blow pipe structure (7.1) and the extraction openings (7.21) are formed on teeth-like branches (7.20) of a comb-shaped suction pipe structure (7.2), wherein the teeth-like branches (7.10) of the comb-shaped blow pipe structure (7.1) and the teeth-like branches (7.20) of the comb-shaped suction pipe structure (7.2) intermesh.
- Apparatus according to Claim 14, characterized in that the comb-shaped blow pipe structure (7.1) and the comb-shaped suction pipe structure (7.2) are thermally insulated in relation to the furnace pipe (1) by heat insulation.
- Apparatus according to one of Claims 7 to 15, characterized in that the snout (1) is provided with heat insulation (13) and/or a heating device at least in a region (1.1, A) which extends from the zinc bath (3) as far as the injection openings (7.11) and/or extraction openings (7.21).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13735251T PL2870268T3 (en) | 2012-07-06 | 2013-07-05 | Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012106106.8A DE102012106106A1 (en) | 2012-07-06 | 2012-07-06 | Method and device for avoiding zinc dust-induced surface defects in continuous strip galvanizing |
PCT/EP2013/064249 WO2014006183A1 (en) | 2012-07-06 | 2013-07-05 | Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2870268A1 EP2870268A1 (en) | 2015-05-13 |
EP2870268B1 EP2870268B1 (en) | 2016-09-07 |
EP2870268B2 true EP2870268B2 (en) | 2022-11-30 |
Family
ID=48782310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13735251.4A Active EP2870268B2 (en) | 2012-07-06 | 2013-07-05 | Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process |
Country Status (6)
Country | Link |
---|---|
US (1) | US9695496B2 (en) |
EP (1) | EP2870268B2 (en) |
DE (1) | DE102012106106A1 (en) |
ES (1) | ES2605829T5 (en) |
PL (1) | PL2870268T3 (en) |
WO (1) | WO2014006183A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6256325B2 (en) * | 2014-12-15 | 2018-01-10 | Jfeスチール株式会社 | Continuous hot dip galvanizing method and continuous hot dip galvanizing equipment |
DE102015108334B3 (en) | 2015-05-27 | 2016-11-24 | Thyssenkrupp Ag | Apparatus and method for improved metal vapor extraction in a continuous hot dip process |
CN105063535A (en) * | 2015-08-04 | 2015-11-18 | 江苏捷帝机器人股份有限公司 | Galvanizing device for joint shaft of robot |
BE1023837B1 (en) * | 2016-01-29 | 2017-08-09 | Centre De Recherches Metallurgiques Asbl | DEVICE FOR THE HYDRODYNAMIC STABILIZATION OF A CONTINUOUSLY CONTINUOUS METAL STRIP |
DE202017101798U1 (en) | 2017-03-28 | 2018-06-01 | Schuh Anlagentechnik Gmbh | Mixing separator for hot gases and galvanizing plant with at least one such mixing separator |
DE102017106678A1 (en) | 2017-03-28 | 2018-10-04 | Schuh Anlagentechnik Gmbh | Mixing separator for hot gases and galvanizing plant with at least one such mixing separator |
CN110832104B (en) * | 2017-06-12 | 2021-11-23 | 蒂森克虏伯钢铁欧洲股份公司 | Device and method for gas atmosphere separation |
EP3638821B1 (en) | 2017-06-12 | 2021-01-13 | ThyssenKrupp Steel Europe AG | Nozzle for a hot-dip coating system |
WO2018228661A1 (en) | 2017-06-12 | 2018-12-20 | Thyssenkrupp Steel Europe Ag | Nozzle for a hot-dip coating system and method for operating same |
DE102018211182A1 (en) * | 2018-07-06 | 2020-01-09 | Thyssenkrupp Ag | Device and method for hot dip coating a metal strip |
CN110358999B (en) * | 2019-08-15 | 2021-08-24 | 武汉钢铁有限公司 | Hot galvanizing furnace nose with zinc ash blowing and diffusing treatment function |
WO2024088875A1 (en) * | 2022-10-25 | 2024-05-02 | Tata Steel Ijmuiden B.V. | A method for providing a hnx gas in a snout in a hot dip coating device and a snout |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07316760A (en) † | 1994-05-30 | 1995-12-05 | Nisshin Steel Co Ltd | Device for preventing generation of dross in snout for continuous hot dip coating |
KR20030049330A (en) † | 2001-12-14 | 2003-06-25 | 주식회사 포스코 | Apparatus for zinc pot ash suction and emitting gas of furnace snout |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07157854A (en) | 1993-12-06 | 1995-06-20 | Nippon Steel Corp | Method for cleaning inside of snout of hot dip metal coating |
JPH07157853A (en) | 1993-12-06 | 1995-06-20 | Nippon Steel Corp | Method for removing zinc fume in snout of hot dip metal coating and device therefor |
JPH09228016A (en) | 1996-02-23 | 1997-09-02 | Kawasaki Steel Corp | Method for plating molten metal and device therefor |
JPH11302811A (en) | 1998-04-17 | 1999-11-02 | Nippon Steel Corp | In-furnace atmosphere gas controller for continuous galvanizing equipment |
US6517955B1 (en) * | 1999-02-22 | 2003-02-11 | Nippon Steel Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
JP4523937B2 (en) * | 2003-01-15 | 2010-08-11 | 新日本製鐵株式会社 | High strength hot dip galvanized steel sheet and method for producing the same |
-
2012
- 2012-07-06 DE DE102012106106.8A patent/DE102012106106A1/en not_active Withdrawn
-
2013
- 2013-07-05 WO PCT/EP2013/064249 patent/WO2014006183A1/en active Application Filing
- 2013-07-05 EP EP13735251.4A patent/EP2870268B2/en active Active
- 2013-07-05 US US14/412,929 patent/US9695496B2/en active Active
- 2013-07-05 PL PL13735251T patent/PL2870268T3/en unknown
- 2013-07-05 ES ES13735251T patent/ES2605829T5/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07316760A (en) † | 1994-05-30 | 1995-12-05 | Nisshin Steel Co Ltd | Device for preventing generation of dross in snout for continuous hot dip coating |
KR20030049330A (en) † | 2001-12-14 | 2003-06-25 | 주식회사 포스코 | Apparatus for zinc pot ash suction and emitting gas of furnace snout |
Also Published As
Publication number | Publication date |
---|---|
EP2870268A1 (en) | 2015-05-13 |
WO2014006183A1 (en) | 2014-01-09 |
PL2870268T3 (en) | 2017-07-31 |
EP2870268B1 (en) | 2016-09-07 |
ES2605829T5 (en) | 2023-03-16 |
DE102012106106A1 (en) | 2014-09-18 |
US20150167138A1 (en) | 2015-06-18 |
US9695496B2 (en) | 2017-07-04 |
ES2605829T3 (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2870268B2 (en) | Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process | |
EP3303650B1 (en) | Device and method for improved suction of metal vapor in continuous hot-dip metal coating | |
DE4336364C2 (en) | Device for heating or cooling tabular or band-shaped items to be treated made of glass or ceramic material | |
DE60025269T2 (en) | METHOD AND DEVICE FOR HEATING GLASS | |
DE102005033776B4 (en) | Flat glass furnace | |
DE2360949C2 (en) | Method and device for depositing a metal oxide film on a glass ribbon | |
DE69708482T2 (en) | Continuous annealing process of metal strip in various protective gases and devices | |
EP1390680B1 (en) | Reactor with gas seal using gas conducting bodies | |
DE1809859B2 (en) | PROCESS FOR HARDENING FLAT GLASS PANELS AND DEVICE FOR CARRYING OUT THE PROCESS | |
AT511034B1 (en) | METHOD FOR CONTROLLING A PROTECTION GASATOMOS IN A PROTECTIVE GAS CHAMBER FOR TREATING A METAL STRIP | |
DE3638434C2 (en) | Apparatus and method for forming a metal oxide coating on a glass substrate | |
AT396928B (en) | METHOD AND DEVICE FOR PYROLYTICALLY COATING GLASS | |
EP3632640B1 (en) | Treatment plant for a flexible material sheet which can be passed through a treatment furnace, especially a plastic film | |
EP3638823B1 (en) | Nozzle for a hot-dip coating system and method for operating same | |
DE2618168C3 (en) | Method and apparatus for making heat reflective glass | |
DE102017111991B4 (en) | Device for cooling hot, plane objects | |
EP3638822B1 (en) | Apparatus and method for separating gas atmospheres | |
DE60310106T2 (en) | COOLING DEVICE FOR STEEL STRIP | |
EP0751360A1 (en) | Process for drying bricks, such as perforated bricks, and drying tunnel for carrying out the process | |
EP3591088B1 (en) | Device for hot dip coating of a metal strip | |
DE2852815C2 (en) | ||
AT526925B1 (en) | Tempering device | |
DE10140007C2 (en) | Cooling furnace for tempering large glass parts | |
EP0174589A1 (en) | Apparatus for heating or cooling metal products | |
DE2043880A1 (en) | Method for heat treatment of objects treated on the surface with, for example, paint, varnish or the like, in particular made of wood, and device for carrying out the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 2/40 20060101ALI20160129BHEP Ipc: C23C 2/00 20060101ALI20160129BHEP Ipc: C23C 2/06 20060101AFI20160129BHEP Ipc: C23C 2/02 20060101ALI20160129BHEP Ipc: C21D 1/26 20060101ALI20160129BHEP Ipc: C21D 9/52 20060101ALI20160129BHEP Ipc: C21D 9/56 20060101ALI20160129BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160222 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 826941 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013004383 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161207 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161208 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2605829 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161207 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170109 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170107 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502013004383 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: ARCELORMITTAL Effective date: 20170602 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170705 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130705 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160907 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210628 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210721 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210727 Year of fee payment: 9 Ref country code: AT Payment date: 20210722 Year of fee payment: 9 Ref country code: FI Payment date: 20210722 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20210701 Year of fee payment: 9 Ref country code: GB Payment date: 20210722 Year of fee payment: 9 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20220720 Year of fee payment: 10 Ref country code: ES Payment date: 20220921 Year of fee payment: 10 Ref country code: DE Payment date: 20220620 Year of fee payment: 10 |
|
27A | Patent maintained in amended form |
Effective date: 20221130 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220720 Year of fee payment: 10 Ref country code: BE Payment date: 20220720 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502013004383 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220801 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 826941 Country of ref document: AT Kind code of ref document: T Effective date: 20220705 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2605829 Country of ref document: ES Kind code of ref document: T5 Effective date: 20230316 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220705 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220705 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013004383 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230731 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220705 |