EP2870268B2 - Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process - Google Patents

Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process Download PDF

Info

Publication number
EP2870268B2
EP2870268B2 EP13735251.4A EP13735251A EP2870268B2 EP 2870268 B2 EP2870268 B2 EP 2870268B2 EP 13735251 A EP13735251 A EP 13735251A EP 2870268 B2 EP2870268 B2 EP 2870268B2
Authority
EP
European Patent Office
Prior art keywords
openings
injection
furnace gas
zinc
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13735251.4A
Other languages
German (de)
French (fr)
Other versions
EP2870268A1 (en
EP2870268B1 (en
Inventor
Norbert Schaffrath
Sabine Zeizinger
Michael Peters
Gernot Nothacker
Klaus Josef Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48782310&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2870268(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to PL13735251T priority Critical patent/PL2870268T3/en
Publication of EP2870268A1 publication Critical patent/EP2870268A1/en
Publication of EP2870268B1 publication Critical patent/EP2870268B1/en
Application granted granted Critical
Publication of EP2870268B2 publication Critical patent/EP2870268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • B05D3/0236Pretreatment, e.g. heating the substrate with ovens

Definitions

  • the invention relates to a method for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, in which metal strip heated in a continuous furnace is moved under protective gas through a furnace nozzle and immersed in a zinc bath, according to the preamble of claim 1. Furthermore the invention relates to a device for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, according to the preamble of claim 7.
  • a plant for the continuous hot-dip galvanizing of steel strip consists, among other things, of a continuous furnace, a zinc bath (melt bath), a device for adjusting the zinc coating thickness and a subsequent cooling device.
  • the steel strip is continuously annealed in the continuous furnace.
  • the desired mechanical properties of the base material are set by recrystallization of the steel.
  • iron oxides formed in a preheating zone are reduced.
  • the strip is cooled under protective gas (HNX) to a temperature close to the melt bath temperature.
  • the protective gas is intended to prevent the annealed strip from oxidizing before galvanizing, which would significantly impair the adhesion of the zinc layer.
  • the protective gas The connecting piece between the annealing furnace and the zinc bath is called the furnace trunk.
  • a device for removing zinc vapor in a snout of a continuous strip galvanizing line is known.
  • the furnace nozzle is provided with injection openings (circulation openings) and suction openings arranged vertically underneath.
  • injection openings circulation openings
  • suction openings arranged vertically underneath.
  • a single injection opening is arranged in the nozzle wall facing the upper side of the steel strip, and a single suction opening is arranged vertically below it. Accordingly, in the nozzle wall facing the underside of the steel strip, there is also a single blow-in opening and a single suction opening vertically underneath.
  • a single injection opening is arranged in a side wall of the snout, while two suction openings are provided vertically below them, which are designed as longitudinal slots in tubes, which the Penetrate the side wall of the snout and extend across the entire width of the steel strip on the top and bottom of the steel strip.
  • the present invention is based on the object of specifying a method and a device of the type mentioned at the outset with which the absorption of zinc vapor by the protective gas contained in the furnace snout and the propagation of zinc vapor in the furnace snout can be significantly minimized.
  • the upper and lower sides of the metal strip to be galvanized are also exposed to protective gas via injection openings in the furnace nozzle.
  • Shielding gas loaded with zinc vapor and/or zinc dust is sucked off via suction openings which are arranged on both sides of the metal strip adjacent to the injection openings.
  • a large number of injection openings are formed and arranged in the furnace nozzle in such a way that the air flowing out of these injection openings Shielding gas with an impact angle in the range of 70° to 110°, preferably 80° to 100°, particularly preferably about 90°, is directed onto the surface of the metal strip facing the respective injection opening.
  • the distance between the respective injection opening of the plurality of injection openings and at least one suction opening assigned to it from the plurality of suction openings is selected and the flow rate of the protective gas exiting from the respective injection opening is controlled in such a way that entrainment occurs when the metal or steel strip moves is counteracted by protective gas in the direction of the zinc bath.
  • the distance between the respective injection opening and the at least one suction opening assigned to it is selected to be less than or equal to 25 cm.
  • the furnace nozzle is therefore provided with blow-in openings through which protective gas can be applied to the top and bottom of the metal strip, suction openings for sucking off protective gas laden with zinc vapor and/or zinc dust being arranged adjacent to the blow-in openings.
  • a large number of injection openings are designed and arranged in the furnace nozzle in such a way that the protective gas flowing out of these injection openings is sprayed at an angle of incidence in the range from 70° to 110°, preferably 80° to 100°, particularly preferably approx.
  • the distance between the respective blowing-in opening of the plurality of blowing-in openings and at least one suction opening assigned to it from the plurality of suction openings being selected in such a way that at a predetermined or specifiable flow rate of the protective gas emerging from the respective injection opening counteracts any entrainment of protective gas in the direction of the zinc bath that occurs when the metal strip moves.
  • the distance between the respective injection opening and the at least one suction opening assigned to it is less than or equal to 25 cm.
  • the invention is based on the idea of influencing the flow conditions of the protective gas, particularly near the strip, in such a way that the aforementioned entrainment of protective gas is minimized and/or the condensation or resublimation of zinc vapor on the walls of the nozzle is prevented.
  • the aim of the present invention is to prevent the formation of protective gas laden with zinc vapor in advance by minimizing the entrainment of the protective gas in the direction of the zinc bath.
  • the invention proposes an interruption or blocking of the protective gas (current of protective gas) entrained by the metal strip by using a gas lock or gas curtain effect.
  • An advantageous embodiment of the method according to the invention provides that the inert gas supplied via the injection openings is previously heated to a temperature of at least 500°C, preferably at least 550°C. With this configuration, the re-sublimation of zinc dust in the furnace nozzle can be prevented even more effectively, since the heated protective gas flow supplied via the injection openings keeps the zinc vapor produced on the zinc bath surface in the gaseous state.
  • a preferred embodiment of the device according to the invention provides that the suction openings are connected to the injection openings via a return line having at least one suction fan, the return line having at least one heating device for heating the protective gas to a temperature of at least 500° C., preferably at least 550° C is provided.
  • the method according to the invention is preferably carried out in such a way that the temperature of the gas cloud in the spatially higher part of the nozzle is higher than the temperature in the spatially lower immersion region of the strip. This minimizes thermal turbulence in the trunk.
  • a further advantageous embodiment of the method according to the invention is characterized in that the protective gas is blown in via the injection openings and the protective gas is sucked off via the suction openings in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a series of at least five, preferably at least seven Injection openings and a row of at least five, preferably at least seven suction openings is formed.
  • the protective gas is blown in via the injection openings and the protective gas is sucked off via the suction openings in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a series of at least five, preferably at least seven Injection openings and a row of at least five, preferably at least seven suction openings is formed.
  • a preferred embodiment of the device according to the invention provides that the injection openings and the suction openings are formed in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a row of at least five, preferably at least seven, injection openings and one Row of at least five, preferably at least seven suction openings is formed.
  • a further advantageous embodiment of the method according to the invention is characterized in that the protective gas volume flow supplied via the injection openings is set equal to the protective gas volume flow sucked off via the suction openings or is set to a value which is at most 5% below the sucked protective gas volume flow. Due to the same or almost the same volume flows of supplied and extracted inert gas and the mentioned preferred uniform distribution of injection points and The gas turbulence in the nozzle is reduced to a minimum.
  • the injection openings and the suction openings are arranged in a matrix.
  • the injection openings are offset relative to the suction openings—viewed in the direction of strip travel and over the strip width.
  • the injection openings and the suction openings of the device according to the invention are preferably arranged at equal distances from one another.
  • the distance between the respective injection opening (injection nozzle) and the at least one suction opening assigned to it is preferably less than 15 cm, and particularly preferably less than or equal to 10 cm.
  • a further preferred embodiment of the device according to the invention provides that the injection openings are on prong-like branches of a comb-shaped blowpipe structure and the suction openings on prong-like branches of a Comb-shaped suction tube structure are formed, the prong-like branches of the comb-shaped blower tube structure and the prong-like branches of the comb-shaped suction tube structure intermesh.
  • the above-mentioned configuration also has the effect that a very uniform surface temperature distribution is established on the pipeline system composed of the comb-shaped pipe structures during operation , wherein the surface temperature of the pipe system arranged in the nozzle when the protective gas flow is heated to a temperature in the range from 450 to 600° C. above the dew point or resublimation temperature of zinc.
  • the heating of the piping system with heated protective gas prevents the occurrence of temperature peaks and thus unwanted gas convection or gas turbulence.
  • a further advantageous embodiment of the device according to the invention provides that the comb-shaped blowing tube structure and the comb-shaped suction tube structure are thermally insulated from the furnace nozzle by thermal insulation.
  • the furnace nozzle is heated to a temperature of at least 400° C., preferably at least 450° C., at least in a region which extends from the zinc bath to the injection openings and/or suction openings.
  • this lower region of the furnace nozzle can also be provided with thermal insulation according to a preferred embodiment of the device according to the invention. This makes it possible to achieve that the relevant walls or wall sections of the furnace nozzle are warmer than the temperature at which the condensation or resublimation of zinc vapor begins.
  • a furnace trunk 1 of a continuous strip galvanizing is outlined.
  • a metal strip 2 to be galvanized preferably steel strip, is annealed in a continuous furnace (not shown) and fed to a zinc bath 3 under protective gas (HNX).
  • the strip 2 dips diagonally downwards into the zinc bath 3 and is deflected upwards by a roller 4 arranged in the zinc bath.
  • the bath temperature is typically in the range of about 440 to 470°C.
  • the strip 2' entrains a quantity of liquid zinc well in excess of the desired coating thickness.
  • the excess coating material that is still liquid is scraped off the top and bottom (front and back) of the coated strip 2' by means of flat air jet nozzles 5 extending across the strip width.
  • part of the protective gas is entrained in the direction of the zinc bath 3 by the movement of the strip.
  • the trunk 1 is provided with a special blowing-suction device 6.
  • the blowing suction device 6 has a branched line system 7.1, 7.2 with a large number of Injection and suction openings 7.11, 7.21, by means of which protective gas is circulated in the end area of the nozzle 1, ie near the zinc bath 3, in such a way that the protective gas flow entrained by the strip 2 is interrupted as far as possible, but without causing increased strip vibrations.
  • blowing-in and suction openings 7.11, 7.21 are arranged in the direction of movement of the belt 2 in such a way that each blowing-in opening 7.11 is close to at least one suction opening 7.21, whereby the protective gas that has been blown in is sucked off again in the immediate vicinity, thus preventing uncontrollable turbulence of the protective gas .
  • the blow-suction device 6 comprises an upper part 6.1 and a lower part 6.2, with the upper part 6.1 extending across the entire width of the upper side of the belt (front side), while the lower part 6.2 extends across the entire width of the lower side of the belt (back side).
  • the upper part 6.1 and the lower part 6.2 can each have a box-like design and are accordingly referred to as a blower/suction box or blower/suction box.
  • the respective blowing and suction box (6.1, 6.2) is divided by partitions 7.3 into a branched blowing chamber 7.1' with blowing branches 7.10 running parallel to one another and a branched suction chamber 7.2' with suction branches 7.20 running parallel to one another.
  • An injection branch 7.10 can be located directly next to a suction branch 7.20, in that both branches 7.10, 7.20 are separated from one another by the same partition wall 7.3.
  • the subdivision into a branched blowing chamber 7.1' and a branched suction chamber 7.2' can be realized, for example, by a meandering or folded partition 7.3 or by meandering partitions that are joined together in a gas-tight manner at their abutting ends be as in figure 5 is sketched.
  • connection piece 7.51 for suction of the protective gas is arranged below the connection piece 7.41, through which the protective gas is supplied (see also 6 ). This ensures that the flow of the inert gas that is blown in is always or essentially only directed downwards, as a result of which a flow of zinc vapor from the zinc bath into the nozzle 1 is effectively prevented.
  • the lower main chamber section 7.5 of the blower/suction box 6.1 or 6.2 preferably has at least two connection pieces 7.51 for sucking off inert gas loaded with zinc vapor is provided.
  • the connecting pieces 7.41 of the upper main chamber section 7.4 are arranged at a distance from one another transversely to the direction of travel of the belt.
  • the connecting pieces 7.51 of the lower main chamber section 7.5 are spaced apart from one another transversely to the direction of travel of the belt.
  • the injection and suction branches 7.10, 7.20 are provided with a large number of openings (nozzles) 7.11, 7.21, which serve as injection openings and suction openings, respectively.
  • These openings (nozzles) 7.11, 7.21 are arranged or designed in such a way that the protective gas flowing out of the blow-in openings 7.11 is directed or hits the surface of the strip 2 facing the blow-in opening at an angle of incidence in the range of 70° to 110°, preferably 80° to 100°.
  • the injection nozzles 7.11 are preferably designed in such a way that the protective gas flowing out of them is directed essentially at right angles to the surface of the strip (cf. 2 and 4 ).
  • the distance between the respective injection nozzle 7.11 and at least one suction opening 7.21 assigned to it is selected in such a way that at a predetermined or specifiable flow rate of the injected protective gas, the entrainment of protective gas in the direction of the zinc bath 3 that occurs when the strip 2 is moving is effectively interrupted or at least minimized .
  • the entrainment of protective gas caused by the strip movement contributes to a "natural gas movement".
  • the natural gas movement is also driven by the usually existing temperature difference between the relatively hot protective gas entrained by the strip 2 above the zinc bath 3 and the colder protective gas in the upper area of the nozzle 1.
  • the interruption or blocking of this natural gas movement according to the invention also means that it is carried along or the transport of zinc vapor from the zinc bath surface 3.1 to the upper nozzle area is interrupted or at least minimized.
  • At least one suction opening 7.21 is located in the immediate vicinity of each injection opening 7.11.
  • the injection openings 7.11 and the suction openings 7.21 are arranged in a matrix. The blowing in and sucking off thus takes place in several stages, preferably in at least three stages.
  • the injection openings 7.11 are arranged offset to the suction openings 7.21 in the direction of strip travel and across the strip width (cf. figure 5 ).
  • the injection openings 7.11 and the suction openings 7.21 are preferably arranged at an equal distance from one another.
  • a large amount of protective gas can be exchanged via the gas injection channels 7.10 without a large amount of gas being transported in the direction of strip travel.
  • the band 2 is not excited to vibrate as a result.
  • the undesired transport of zinc vapor from the immersion region of the strip 2 into the upper part of the snout 1 is not supported by the gas flow.
  • the alternating arrangement of injection nozzles 7.11 and suction nozzles 7.21 ( 3 ) the nozzle cross-section can be completely flowed through in the transverse direction. Shielding gas not yet loaded with zinc dust mixes with shielding gas loaded with zinc dust and is extracted in close proximity.
  • the blowing-suction device 6 or the blowing-suction box 6.1, 6.2 can also be designed in such a way that the injection openings 7.11 on prong-like branches 7.10 of a comb-shaped blowpipe structure 7.1 and the Suction openings 7.21 are formed on prong-like branches 7.20 of a comb-shaped suction tube structure 7.2, the prong-like branches 7.10 of the comb-shaped blower tube structure 7.1 and the prong-like branches 7.20 of the comb-shaped suction tube structure 7.2 interlocking.
  • This configuration enables the distance between the injection openings 7.11 and the suction openings 7.21 to be adjusted by shifting the comb-shaped blowing tube structure 7.1 relative to the comb-shaped suction tube structure 7.2.
  • a zinc separation device 10 for cleaning the protective gas loaded with zinc vapor and/or zinc dust is integrated in the return line 8.
  • the zinc separating device 10 is preferably provided with a cooling device which effects a re-sublimation of zinc vapor.
  • the resulting zinc dust can be separated from the protective gas by means of a separating device and fed into a collection container 10.1.
  • the gradual blowing in of cleaned or unloaded inert gas and the extraction of inert gas laden with zinc vapor and/or zinc dust in the immediate vicinity of the injection points reduces the concentration of zinc vapor and/or zinc dust in the inert gas in nozzle 1 and thus the partial pressure of the zinc vapor gradually down to an uncritical level.
  • the gradual reduction of the content of zinc vapor and zinc dust in the protective gas laden with it is in 4 schematically sketched, with the serpentine arrows Z for zinc vapor, the straight arrows G indicate the flow direction of the protective gas in the trunk 1 and in the blowing suction device (blasting suction box) and the "point clouds" D represent zinc dust. It is to see that the content of zinc vapor and zinc dust gradually decreases from the zinc bath surface 3.1 in the direction of the annealing furnace.
  • the cleaned inert gas stream is heated by means of a gas heater 11, for example to a temperature in the range from 450 to 600.degree.
  • the snout 1 with the blowing and suction device or the blowing and suction boxes 6.1, 6.2 is heated by this gas flow in such a way that at no point in the snout 1 does the dew point or resublimation temperature of zinc vapor fall below.
  • the gas injection channels 7.10 run along the longitudinal axis of the strip or longitudinal axis of the nozzle and parallel to the suction lines 7.20 arranged between them. In combination with the suction lines 7.20, the gas injection channels 7.10 cover a longitudinal section of the strip 2 completely or essentially completely both on the underside of the strip and on the upper side of the strip. This causes a uniform surface temperature of the blower/suction device or blower/suction boxes 6.1, 6.2, the surface temperature being above the dew point or resublimation temperature of zinc vapor.
  • the device 6 is designed as a push-pull system. Hot protective gas is blown into the nozzle 1 at a slight overpressure via the injection openings 7.11 in order to generate cross-flows at the injection openings 7.11 (outlet points).
  • the flow of inert gas blown in is adjusted to be equal to or slightly below the amount of gas flow extracted by means of a measuring and control device. For example, per hinge side (blow-suction box 6.1 or 6.2) the inert gas flow blown in is about 150 Nm 3 /h at approx. 600°C, while the inert gas flow extracted per strip side including zinc vapor is approx. 200 Nm 3 /h.
  • the main blowing chamber (main blowing line) 7.1 and the injection branches (gas injection channels) 7.10 and preferably also the main suction chamber 7.2 and the suction branches (suction lines) 7.20 are thermally insulated from the trunk construction by a heat insulating layer.
  • the snout 1 is also provided with an outer thermal insulation 12 in order to keep the inside of the snout walls at a temperature greater than 300°C.
  • the lowermost part of the snout 1, i.e. the snout end piece 1.1 located between the blowing suction device and the zinc bath 3, is preferably provided with thermal insulation 13.
  • the thermal insulation 13 ensures that the walls or wall sections of the trunk provided with it are warmer than the dew point or resublimation temperature of the protective gas-zinc vapor mixture during operation of the galvanizing plant.
  • the thermal insulation 13 is formed, for example, from mineral wool and/or ceramic plates and surrounds the trunk end piece 1.1, preferably in the form of a jacket.
  • a further embodiment of the invention provides that the snout end piece 1.1 is provided with a heating device (not shown) in addition to or as an alternative to the heat insulation 13.
  • the furnace nozzle 1 designed according to the invention can be divided into three areas A, B and C with regard to the protective gas (cf. 1 ).
  • the area A includes the end piece 1.1, which is preferably provided with thermal insulation 13. In this area A there is a relatively high zinc vapor load with little gas movement.
  • the surface temperature of the trunk 1 is above 440° C. in this area.
  • Area A is followed by area B, which is equipped with the blowing and suction device according to the invention (e.g. in the form of blowing and suction boxes 6.1, 6.2).
  • Area B serves as a separation lock or gas curtain. It interrupts the "natural gas flow", in particular the entrainment of protective gas caused by the strip movement in the direction of the zinc bath 3, by blowing in cleaned hot protective gas while at the same time sucking off gas laden with zinc vapor in close proximity to the injection points 7.11. Due to the multi-stage arrangement of the injection nozzles 7.11 and suction nozzles 7.21, the concentration of zinc vapor is gradually reduced in area B.
  • the surface temperatures of the blow and suction boxes 6.1, 6.2 and the insides of the trunk 1 are above the dew point or resublimation temperature of zinc vapor, i.e. above 400°C.
  • Area C follows above area B.
  • Area C is characterized by a low zinc vapor content in the protective gas.
  • the surface temperature of the inside of the nozzle is more than 300°C in area C, which prevents condensation or resublimation of the zinc vapor that is still present in the protective gas to a small extent.
  • the implementation of the invention is not limited to the exemplary embodiments described above. Rather, numerous variants are possible, which also make use of the invention specified in the attached patent claims in the case of designs that deviate from the exemplary embodiments illustrated in the drawing.
  • the mutually parallel injection branches 7.10 and suction branches 7.20 of the blowing suction box 6.1, 6.2 or the "tines" of the comb-shaped blowing tube structure 7.1 and the comb-shaped suction tube structure 7.2 can also be aligned transversely to the direction of belt travel. Which of these variants is implemented depends on the course of the main lines for the protective gas supply and suction in relation to the orientation of the trunk 1 and the relevant mounting options.

Description

Die Erfindung betrifft ein Verfahren zur Vermeidung von durch Zinkstaub verursachten Oberflächenfehlern an verzinktem Metallband in einer kontinuierlichen Bandverzinkung, bei der in einem Durchlaufofen erhitztes Metallband unter Schutzgas durch einen Ofen-Rüssel hindurchbewegt und in ein Zinkbad eingetaucht wird, gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Vorrichtung zur Vermeidung von durch Zinkstaub verursachten Oberflächenfehlern an verzinktem Metallband in einer kontinuierlichen Bandverzinkung, gemäß dem Oberbegriff des Anspruchs 7.The invention relates to a method for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, in which metal strip heated in a continuous furnace is moved under protective gas through a furnace nozzle and immersed in a zinc bath, according to the preamble of claim 1. Furthermore the invention relates to a device for avoiding surface defects on galvanized metal strip caused by zinc dust in continuous strip galvanizing, according to the preamble of claim 7.

Eine Anlage zur kontinuierlichen Feuerverzinkung von Stahlband besteht unter anderem aus einem Durchlaufofen, einem Zinkbad (Schmelzbad), einer Vorrichtung zur Einstellung der Zinküberzugsdicke und einer nachfolgenden Kühleinrichtung. In dem Durchlaufofen wird das Stahlband kontinuierlich geglüht. Dabei werden durch Rekristallisation des Stahls die gewünschten mechanischen Eigenschaften des Grundwerkstoffs eingestellt. Zudem werden dabei in einer Vorwärmzone gebildete Eisenoxide reduziert. In einer auf den DurchlaufGlühofen folgenden Kühlzone wird das Band unter Schutzgas (HNX) auf eine Temperatur nahe der Schmelzbadtemperatur abgekühlt. Das Schutzgas soll verhindern, dass das geglühte Band vor dem Verzinken oxidiert, wodurch die Haftung der Zinkschicht erheblich verschlechtert würde. Das Schutzgas enthaltende Verbindungsstück zwischen Glühofen und Zinkbad wird Ofen-Rüssel genannt.A plant for the continuous hot-dip galvanizing of steel strip consists, among other things, of a continuous furnace, a zinc bath (melt bath), a device for adjusting the zinc coating thickness and a subsequent cooling device. The steel strip is continuously annealed in the continuous furnace. The desired mechanical properties of the base material are set by recrystallization of the steel. In addition, iron oxides formed in a preheating zone are reduced. In a cooling zone following the continuous annealing furnace, the strip is cooled under protective gas (HNX) to a temperature close to the melt bath temperature. The protective gas is intended to prevent the annealed strip from oxidizing before galvanizing, which would significantly impair the adhesion of the zinc layer. The protective gas The connecting piece between the annealing furnace and the zinc bath is called the furnace trunk.

In einem herkömmlichen Ofen-Rüssel einer kontinuierlichen Bandverzinkungsanlage kommt es üblicherweise zu Ablagerungen von Zinkstaub, der insbesondere bei in der Anlage auftretenden Erschütterungen in größeren Stücken auf das Zinkbad und/oder das Stahlband fällt und damit Oberflächenfehler (Verzinkungsfehler) verursacht. Es wurde erkannt, dass das in Richtung des Zinkbades bewegte Stahlband im Rüssel Schutzgas nach unten mitreißt, wobei das mitgerissene Schutzgas an der Zinkbadoberfläche Zinkdampf aufnimmt, welcher beim Aufsteigen des mitgerissenen Schutzgases an den kälteren Innenwänden des Rüssels kondensiert bzw. resublimiert und sich dort als Staub absetzt.In a conventional furnace snout of a continuous strip galvanizing line, deposits of zinc dust usually occur, which fall in larger pieces onto the zinc bath and/or the steel strip, particularly when the system is subjected to vibrations, thus causing surface defects (galvanizing defects). It was recognized that the steel strip moving in the direction of the zinc bath entrains protective gas downwards in the snout, with the entrained protective gas absorbing zinc vapor on the surface of the zinc bath, which condenses or resublimates on the colder inner walls of the snout when the entrained protective gas rises and turns into dust there settles.

Aus der JP 7157853 (A ) ist eine Vorrichtung zum Entfernen von Zinkdampf in einem Rüssel einer kontinuierlichen Bandverzinkungsanlage bekannt. Um den auf der Zinkbadoberfläche entstehenden Zinkdampf zu entfernen, ist der Ofen-Rüssel mit Einblasöffnungen (Umwälzöffnungen) und vertikal darunter angeordneten Absaugöffnungen versehen. In einem ersten Ausführungsbeispiel sind in der der Oberseite des Stahlbandes zugewandten Rüsselwand eine einzelne Einblasöffnung und vertikal darunter eine einzelne Absaugöffnung angeordnet. Dementsprechend sind in der der Unterseite des Stahlbandes zugewandten Rüsselwand ebenfalls eine einzelne Einblasöffnung und vertikal darunter eine einzelne Absaugöffnung angeordnet. In einem zweiten Ausführungsbeispiel ist in einer Seitenwand des Rüssels eine einzelne Einblasöffnung angeordnet, während vertikal darunter zwei Absaugöffnungen vorgesehen sind, die als Längsschlitze in Rohren ausgebildet sind, welche die Seitenwand des Rüssels durchdringen und sich auf der Ober- und Unterseite des Stahlbandes über die gesamte Stahlbandbreite erstrecken.From the JP 7157853 (A ) A device for removing zinc vapor in a snout of a continuous strip galvanizing line is known. In order to remove the zinc vapor that forms on the surface of the zinc bath, the furnace nozzle is provided with injection openings (circulation openings) and suction openings arranged vertically underneath. In a first exemplary embodiment, a single injection opening is arranged in the nozzle wall facing the upper side of the steel strip, and a single suction opening is arranged vertically below it. Accordingly, in the nozzle wall facing the underside of the steel strip, there is also a single blow-in opening and a single suction opening vertically underneath. In a second embodiment, a single injection opening is arranged in a side wall of the snout, while two suction openings are provided vertically below them, which are designed as longitudinal slots in tubes, which the Penetrate the side wall of the snout and extend across the entire width of the steel strip on the top and bottom of the steel strip.

Mit der aus der JP 7157853 (A ) bekannten Vorrichtung muss eine relativ große Menge an Zinkdampf bzw. Zinkstaub aus dem abgesaugten Schutzgas entfernt werden. Denn aufgrund der Ausgestaltung und Anordnung der Einblasöffnungen und Absaugöffnungen ist davon auszugehen, dass diese bekannte Vorrichtung die Aufnahme von Zinkdampf durch das vom Stahlband mitgerissene Schutzgas und die Ausbreitung von Zinkdampf im Ofen-Rüssel begünstigt.With the one from the JP 7157853 (A ) known device, a relatively large amount of zinc vapor or zinc dust must be removed from the suctioned inert gas. Because of the design and arrangement of the injection openings and suction openings, it can be assumed that this known device promotes the absorption of zinc vapor by the protective gas entrained by the steel strip and the propagation of zinc vapor in the furnace nozzle.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, mit dem bzw. der die Aufnahme von Zinkdampf durch das im Ofen-Rüssel enthaltene Schutzgas sowie die Ausbreitung von Zinkdampf im Ofen-Rüssel deutlich minimiert werden kann.The present invention is based on the object of specifying a method and a device of the type mentioned at the outset with which the absorption of zinc vapor by the protective gas contained in the furnace snout and the propagation of zinc vapor in the furnace snout can be significantly minimized.

Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch eine Vorrichtung mit den Merkmalen des Anspruchs 7.This object is achieved by a method having the features of claim 1 or by a device having the features of claim 7.

Bei dem erfindungsgemäßen Verfahren werden im Ofen-Rüssel ebenfalls die Ober- und die Unterseite des zu verzinkenden Metallbandes (z.B. Stahlbandes) über Einblasöffnungen mit Schutzgas beaufschlagt. Mit Zinkdampf und/oder Zinkstaub beladenes Schutzgas wird über Absaugöffnungen, die beidseitig des Metallbandes benachbart den Einblasöffnungen angeordnet sind, abgesaugt. Erfindungsgemäß wird eine Vielzahl der Einblasöffnungen in der Weise ausgebildet und im Ofen-Rüssel angeordnet, dass das aus diesen Einblasöffnungen strömende Schutzgas mit einem Auftreffwinkel im Bereich von 70° bis 110°, vorzugsweise 80° bis 100°, besonders bevorzugt ca. 90° auf die der jeweiligen Einblasöffnung zugewandte Oberfläche des Metallbandes gerichtet ist. Zudem werden der Abstand zwischen der jeweiligen Einblasöffnung der Vielzahl von Einblasöffnungen und wenigstens einer ihr zugeordneten Absaugöffnung aus der Vielzahl von Absaugöffnungen so gewählt und die Strömungsgeschwindigkeit des aus der jeweiligen Einblasöffnung austretenden Schutzgases so gesteuert, dass einer bei Bewegung des Metall- bzw. Stahlbandes auftretenden Mitnahme von Schutzgas in Richtung des Zinkbades entgegengewirkt wird. Erfindungsgemäß wird der Abstand zwischen der jeweiligen Einblasöffnung und der wenigstens einen ihr zugeordneten Absaugöffnung kleiner/gleich 25 cm gewählt.In the method according to the invention, the upper and lower sides of the metal strip to be galvanized (eg steel strip) are also exposed to protective gas via injection openings in the furnace nozzle. Shielding gas loaded with zinc vapor and/or zinc dust is sucked off via suction openings which are arranged on both sides of the metal strip adjacent to the injection openings. According to the invention, a large number of injection openings are formed and arranged in the furnace nozzle in such a way that the air flowing out of these injection openings Shielding gas with an impact angle in the range of 70° to 110°, preferably 80° to 100°, particularly preferably about 90°, is directed onto the surface of the metal strip facing the respective injection opening. In addition, the distance between the respective injection opening of the plurality of injection openings and at least one suction opening assigned to it from the plurality of suction openings is selected and the flow rate of the protective gas exiting from the respective injection opening is controlled in such a way that entrainment occurs when the metal or steel strip moves is counteracted by protective gas in the direction of the zinc bath. According to the invention, the distance between the respective injection opening and the at least one suction opening assigned to it is selected to be less than or equal to 25 cm.

Bei der erfindungsgemäßen Vorrichtung ist somit der Ofen-Rüssel mit Einblasöffnungen versehen, über die die Oberseite und die Unterseite des Metallbandes mit Schutzgas beaufschlagbar ist, wobei benachbart zu den Einblasöffnungen Absaugöffnungen zum Absaugen von mit Zinkdampf und/oder Zinkstaub beladenem Schutzgas angeordnet sind. Erfindungsgemäß ist dabei eine Vielzahl der Einblasöffnungen in der Weise ausgebildet und im Ofen-Rüssel angeordnet, dass das aus diesen Einblasöffnungen strömende Schutzgas mit einem Auftreffwinkel im Bereich von 70° bis 110°, vorzugsweise 80° bis 100°, besonders bevorzugt ca. 90° auf die der jeweiligen Einblasöffnung zugewandte Oberfläche des Metallbandes gerichtet ist, wobei der Abstand zwischen der jeweiligen Einblasöffnung der Vielzahl von Einblasöffnungen und wenigstens einer ihr zugeordneten Absaugöffnung aus der Vielzahl von Absaugöffnungen so gewählt ist, dass bei einer vorgegebenen oder vorgebbaren Strömungsgeschwindigkeit des aus der jeweiligen Einblasöffnung austretenden Schutzgases einer bei Bewegung des Metallbandes auftretenden Mitnahme von Schutzgas in Richtung des Zinkbades entgegengewirkt wird. Der Abstand zwischen der jeweiligen Einblasöffnung und der wenigstens einen ihr zugeordneten Absaugöffnung beträgt dabei kleiner/gleich 25 cm.In the device according to the invention, the furnace nozzle is therefore provided with blow-in openings through which protective gas can be applied to the top and bottom of the metal strip, suction openings for sucking off protective gas laden with zinc vapor and/or zinc dust being arranged adjacent to the blow-in openings. According to the invention, a large number of injection openings are designed and arranged in the furnace nozzle in such a way that the protective gas flowing out of these injection openings is sprayed at an angle of incidence in the range from 70° to 110°, preferably 80° to 100°, particularly preferably approx. 90° is directed towards the surface of the metal strip facing the respective blowing-in opening, the distance between the respective blowing-in opening of the plurality of blowing-in openings and at least one suction opening assigned to it from the plurality of suction openings being selected in such a way that at a predetermined or specifiable flow rate of the protective gas emerging from the respective injection opening counteracts any entrainment of protective gas in the direction of the zinc bath that occurs when the metal strip moves. The distance between the respective injection opening and the at least one suction opening assigned to it is less than or equal to 25 cm.

Die Erfindung basiert auf der Idee, die Strömungsverhältnisse des Schutzgases insbesondere in Bandnähe so zu beeinflussen, dass die erwähnte Mitnahme von Schutzgas minimiert und/oder die Kondensation bzw. Resublimation von Zinkdampf an den Wänden des Rüssels verhindert wird. Im Unterschied zu der aus der JP 7157853 (A ) bekannten Vorrichtung ist es das Ziel der vorliegenden Erfindung, die Bildung von mit Zinkdampf beladenen Schutzgas bereits im Voraus zu verhindern, indem das Mitreißen des Schutzgases in Richtung Zinkbad minimiert wird. Die Erfindung schlägt hierzu eine Unterbrechung bzw. Sperrung des vom Metallband mitgerissenen Schutzgases (Schutzgasstromes) durch Anwendung eines Gasschleusen- oder Gasschleiereffektes vor.The invention is based on the idea of influencing the flow conditions of the protective gas, particularly near the strip, in such a way that the aforementioned entrainment of protective gas is minimized and/or the condensation or resublimation of zinc vapor on the walls of the nozzle is prevented. In contrast to the one from the JP 7157853 (A ) known device, the aim of the present invention is to prevent the formation of protective gas laden with zinc vapor in advance by minimizing the entrainment of the protective gas in the direction of the zinc bath. For this purpose, the invention proposes an interruption or blocking of the protective gas (current of protective gas) entrained by the metal strip by using a gas lock or gas curtain effect.

Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass das über die Einblasöffnungen zugeführte Schutzgas zuvor auf eine Temperatur von mindestens 500°C, vorzugsweise mindestens 550°C erwärmt wird. Durch diese Ausgestaltung kann die Resublimation von Zinkstaub im Ofen-Rüssel noch effektiver verhindert werden, da der aufgeheizte, über die Einblasöffnungen zugeführte Schutzgasstrom den an der Zinkbadoberfläche entstehenden Zinkdampf im gasförmigen Zustand hält.An advantageous embodiment of the method according to the invention provides that the inert gas supplied via the injection openings is previously heated to a temperature of at least 500°C, preferably at least 550°C. With this configuration, the re-sublimation of zinc dust in the furnace nozzle can be prevented even more effectively, since the heated protective gas flow supplied via the injection openings keeps the zinc vapor produced on the zinc bath surface in the gaseous state.

Dementsprechend sieht eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass die Absaugöffnungen über eine mindestens einen Absaugventilator aufweisende Rückführleitung mit den Einblasöffnungen verbunden sind, wobei die Rückführleitung mit mindestens einer Heizeinrichtung zum Erwärmen des Schutzgases auf eine Temperatur von mindestens 500°C, vorzugsweise mindestens 550°C versehen ist.Accordingly, a preferred embodiment of the device according to the invention provides that the suction openings are connected to the injection openings via a return line having at least one suction fan, the return line having at least one heating device for heating the protective gas to a temperature of at least 500° C., preferably at least 550° C is provided.

Der großflächig und im Wesentlichen über die gesamte Rüsselbreite gleichmäßig in den Rüssel eingetragene Schutzgasstrom stellt dabei gleichzeitig ein Heizmedium für die Blas-/Saugvorrichtung dar und verhindert kalte Zonen im Rüssel, die zu einer Zinkstaub-Ausfällung führen würden. Durch die offenbarte Temperaturführung im Rüsselbereich entsteht erst gar kein sublimierter Zinkstaub im Rüssel. Vielmehr wird der im Schutzgas enthaltene Zinkdampf abgeführt, bevor er zu Staubkörnern sublimieren kann.The flow of inert gas that is uniformly introduced into the nozzle over a large area and essentially over the entire width of the nozzle simultaneously represents a heating medium for the blowing/suction device and prevents cold zones in the nozzle that would lead to zinc dust precipitation. Due to the disclosed temperature control in the area of the snout, there is no sublimated zinc dust in the snout. Rather, the zinc vapor contained in the protective gas is removed before it can sublimate into dust grains.

Vorzugsweise wird das erfindungsgemäße Verfahren in der Weise ausgeführt, dass die Temperatur der Gaswolke in dem räumlich höher gelegenen Teil des Rüssels höher ist als die Temperatur im räumlich tiefer gelegenen Eintauchbereich des Bandes. Hierdurch werden thermische Turbulenzen im Rüssel minimiert.The method according to the invention is preferably carried out in such a way that the temperature of the gas cloud in the spatially higher part of the nozzle is higher than the temperature in the spatially lower immersion region of the strip. This minimizes thermal turbulence in the trunk.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass das Einblasen von Schutzgas über die Einblasöffnungen und das Absaugen von Schutzgas über die Absaugöffnungen in mindestens drei Stufen durchgeführt wird, die in Bandlaufrichtung aufeinander folgend angeordnet sind, wobei jede der Stufen aus einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Einblasöffnungen und einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Absaugöffnungen gebildet ist. Auf diese Weise lässt sich eine besonders wirksame Sperrung des von dem zu verzinkenden Band mitgerissenen Schutzgases erzielen. Insbesondere lässt sich durch die relativ hohe Anzahl von Einblasöffnungen und Absaugöffnungen eine eher sanfte, turbulenzarme Schutzgas-Blasströmung erzeugen, so dass eine übermäßige, unkontrollierbare Verwirbelung des Schutzgases und erhöhte Bandschwingungen vermieden werden. Durch diese mehrstufige Anordnung der Einblasöffnungen und Absaugöffnungen lassen sich die Konzentration des Zinkdampfes im Schutzgas und damit der Partialdruck des Zinkdampfes stufenweise auf ein unkritisches Maß absenken.A further advantageous embodiment of the method according to the invention is characterized in that the protective gas is blown in via the injection openings and the protective gas is sucked off via the suction openings in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a series of at least five, preferably at least seven Injection openings and a row of at least five, preferably at least seven suction openings is formed. In this way, a particularly effective blocking of the protective gas entrained by the strip to be galvanized can be achieved. In particular, due to the relatively high number of injection openings and suction openings, a rather gentle, low-turbulence blowing flow of protective gas can be generated, so that excessive, uncontrollable turbulence of the protective gas and increased strip vibrations are avoided. This multi-stage arrangement of the injection openings and suction openings allows the concentration of the zinc vapor in the protective gas and thus the partial pressure of the zinc vapor to be gradually reduced to an uncritical level.

Zu diesem Zweck sieht eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass die Einblasöffnungen und die Absaugöffnungen in mindestens drei Stufen ausgebildet sind, die in Bandlaufrichtung aufeinander folgend angeordnet sind, wobei jede der Stufen aus einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Einblasöffnungen und einer Reihe von mindestens fünf, vorzugsweise mindestens sieben Absaugöffnungen gebildet ist.For this purpose, a preferred embodiment of the device according to the invention provides that the injection openings and the suction openings are formed in at least three stages, which are arranged one after the other in the direction of strip travel, with each of the stages consisting of a row of at least five, preferably at least seven, injection openings and one Row of at least five, preferably at least seven suction openings is formed.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass der über die Einblasöffnungen zugeführte Schutzgasvolumenstrom gleich dem über die Absaugöffnungen abgesaugten Schutzgasvolumenstrom eingestellt wird oder auf einen Wert eingestellt wird, der maximal 5% unterhalb des abgesaugten Schutzgasvolumenstroms liegt. Durch die gleichen bzw. nahezu gleichen Volumenströme von zugeführtem und abgesaugtem Schutzgas und der erwähnten bevorzugten gleichmäßigen Verteilung von Einblasstellen und Absaugstellen wird die Gasturbulenz im Rüssel auf ein Minimum reduziert.A further advantageous embodiment of the method according to the invention is characterized in that the protective gas volume flow supplied via the injection openings is set equal to the protective gas volume flow sucked off via the suction openings or is set to a value which is at most 5% below the sucked protective gas volume flow. Due to the same or almost the same volume flows of supplied and extracted inert gas and the mentioned preferred uniform distribution of injection points and The gas turbulence in the nozzle is reduced to a minimum.

Zur Erzielung einer möglichst wirksamen Sperrung oder Unterbrechung des durch das bewegte Metallband mitgerissenen Schutzgasstroms bei gleichzeitiger Minimierung der Verwirbelung des Schutzgases ist es günstig, wenn nach einer weiteren bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung die Einblasöffnungen und die Absaugöffnungen matrixförmig angeordnet sind. Auch ist in diesem Zusammenhang günstig, wenn die Einblasöffnungen versetzt zu den Absaugöffnungen - in Bandlaufrichtung sowie über die Bandbreite betrachtet - angeordnet sind. Vorzugsweise sind die Einblasöffnungen und die Absaugöffnungen der erfindungsgemäßen Vorrichtung gleichmäßig voneinander beabstandet angeordnet.In order to block or interrupt the protective gas flow entrained by the moving metal strip as effectively as possible while at the same time minimizing the turbulence of the protective gas, it is advantageous if, according to a further preferred embodiment of the device according to the invention, the injection openings and the suction openings are arranged in a matrix. In this context, it is also favorable if the injection openings are offset relative to the suction openings—viewed in the direction of strip travel and over the strip width. The injection openings and the suction openings of the device according to the invention are preferably arranged at equal distances from one another.

Der Abstand zwischen der jeweiligen Einblasöffnung (Einblasdüse) und der mindestens einen ihr zugeordneten Absaugöffnung ist vorzugsweise kleiner 15 cm, und besonders bevorzugt kleiner/gleich 10 cm.The distance between the respective injection opening (injection nozzle) and the at least one suction opening assigned to it is preferably less than 15 cm, and particularly preferably less than or equal to 10 cm.

Zur Verwirklichung einer turbulenzarmen Unterbrechung des durch das bewegte Metallband mitgerissenen Schutzgasstroms bzw. zur Erzielung einer möglichst gleichmäßigen Verteilung der Einblasstellen und Absaugstellen sieht eine weitere bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass die Einblasöffnungen an zinkenartigen Zweigen eines kammförmigen Blasrohrgebildes und die Absaugöffnungen an zinkenartigen Zweigen eines kammförmigen Saugrohrgebildes ausgebildet sind, wobei die zinkenartigen Zweige des kammförmigen Blasrohrgebildes und die zinkenartigen Zweige des kammförmigen Saugrohrgebildes ineinander greifen.In order to achieve a low-turbulence interruption of the protective gas flow entrained by the moving metal strip or to achieve the most uniform possible distribution of the injection points and suction points, a further preferred embodiment of the device according to the invention provides that the injection openings are on prong-like branches of a comb-shaped blowpipe structure and the suction openings on prong-like branches of a Comb-shaped suction tube structure are formed, the prong-like branches of the comb-shaped blower tube structure and the prong-like branches of the comb-shaped suction tube structure intermesh.

Wird dabei der Schutzgasstrom vor dem Einblasen mittels eines Gaserhitzers aufgeheizt, vorzugsweise auf eine Temperatur im Bereich von 450 bis 600°C, so bewirkt die vorstehend genannte Ausgestaltung zugleich, dass sich an dem aus den kammförmigen Rohrgebilden zusammengesetzten Rohrleitungssystem im Betrieb eine sehr gleichmäßige Oberflächentemperaturverteilung einstellt, wobei die Oberflächentemperatur des im Rüssel angeordneten Rohrleitungssystems bei Beheizung des Schutzgasstroms auf eine Temperatur im Bereich von 450 bis 600°C oberhalb der Taupunkt- bzw. Resublimationstemperatur von Zink liegt. Insbesondere verhindert die Erwärmung des Rohrleitungssystems mit aufgeheiztem Schutzgas das Auftreten punktueller Temperaturspitzen und damit eine ungewollte Gaskonvektion bzw. Gasturbulenz.If the flow of protective gas is heated by means of a gas heater before it is blown in, preferably to a temperature in the range from 450 to 600°C, the above-mentioned configuration also has the effect that a very uniform surface temperature distribution is established on the pipeline system composed of the comb-shaped pipe structures during operation , wherein the surface temperature of the pipe system arranged in the nozzle when the protective gas flow is heated to a temperature in the range from 450 to 600° C. above the dew point or resublimation temperature of zinc. In particular, the heating of the piping system with heated protective gas prevents the occurrence of temperature peaks and thus unwanted gas convection or gas turbulence.

In diesem Zusammenhang sieht eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Vorrichtung vor, dass das kammförmige Blasrohrgebilde und das kammförmige Saugrohrgebilde durch eine Wärmeisolierung gegenüber dem Ofen-Rüssel thermisch isoliert sind.In this context, a further advantageous embodiment of the device according to the invention provides that the comb-shaped blowing tube structure and the comb-shaped suction tube structure are thermally insulated from the furnace nozzle by thermal insulation.

Nach einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird der Ofen-Rüssel zumindest in einem Bereich, der sich vom Zinkbad bis zu den Einblasöffnungen und/oder Absaugöffnungen erstreckt, auf eine Temperatur von mindestens 400°C, vorzugsweise mindestens 450°C beheizt. Ergänzend zu einer dafür vorgesehenen Heizeinrichtung, oder alternativ dazu, kann dieser untere Bereich des Ofen-Rüssels nach einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung auch mit einer Wärmeisolierung versehen sein. Hierdurch lässt sich erreichen, dass die relevanten Wände oder Wandabschnitte des Ofen-Rüssels wärmer sind als die Temperatur, bei der die Kondensation bzw. Resublimation von Zinkdampf beginnt.According to a further preferred embodiment of the method according to the invention, the furnace nozzle is heated to a temperature of at least 400° C., preferably at least 450° C., at least in a region which extends from the zinc bath to the injection openings and/or suction openings. In addition to a heating device provided for this purpose, or as an alternative to this, this lower region of the furnace nozzle can also be provided with thermal insulation according to a preferred embodiment of the device according to the invention. This makes it possible to achieve that the relevant walls or wall sections of the furnace nozzle are warmer than the temperature at which the condensation or resublimation of zinc vapor begins.

Weitere bevorzugte und vorteilhafte Ausgestaltungen der Erfindung sind in den beiliegenden Ansprüchen angegeben.Further preferred and advantageous developments of the invention are indicated in the appended claims.

Nachfolgend wird die Erfindung anhand einer mehrere Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen schematisch:

Fig. 1
eine Längsschnittansicht eines Abschnitts eines erfindungsgemäß ausgeführten Ofen-Rüssels einer kontinuierlichen Bandverzinkung;
Fig. 2
eine Querschnittansicht des Ofen-Rüssels entlang der Schnittlinie II-II in Fig. 1;
Fig. 3
eine in einem Ofen-Rüssel gemäß Fig. 1 angeordnete Blas-Saugvorrichtung in Draufsicht mit zugeordneter Rückführleitung, die mit einem Absaugventilator, einer Zinkabscheidevorrichtung und einer Heizeinrichtung zum Erwärmen des von Zink gereinigten, einzublasenden Schutzgases versehen ist;
Fig. 4
eine weitere Längsschnittansicht eines Abschnitts eines erfindungsgemäß ausgeführten Ofen-Rüssels einer kontinuierlichen Bandverzinkung;
Fig. 5
eine Draufsicht auf einen Längsabschnitt des zu verzinkenden Metallbandes in einem Abschnitt des Ofen-Rüssels der Fig. 4; und
Fig. 6
den Abschnitt des Ofen-Rüssels gemäß Fig. 4 in einer perspektivischen Darstellung.
The invention is explained in more detail below with reference to a drawing showing several exemplary embodiments. They show schematically:
1
a longitudinal sectional view of a portion of a furnace snout designed according to the invention of a continuous strip galvanizing;
2
a cross-sectional view of the furnace snout along section line II-II in 1 ;
3
one in a furnace proboscis according to 1 arranged blow-suction device in top view with associated return line, which is provided with an exhaust fan, a zinc separator and a heating device for heating the protective gas to be blown in, cleaned of zinc;
4
a further longitudinal sectional view of a section of a furnace snout of a continuous strip galvanizing designed according to the invention;
figure 5
a top view of a longitudinal section of the metal strip to be galvanized in a section of the furnace snout of FIG 4 ; and
6
according to the section of the furnace trunk 4 in a perspective view.

In der Zeichnung ist ein Ofen-Rüssel 1 einer kontinuierlichen Bandverzinkung (Feuerverzinkung) skizziert. Ein zu verzinkendes Metallband 2, vorzugsweise Stahlband, wird in einem (nicht gezeigten) Durchlaufofen geglüht und unter Schutzgas (HNX) einem Zinkbad 3 zugeführt. Das Band 2 taucht schräg nach unten in das Zinkbad 3 ein und wird durch eine im Zinkbad angeordnete Rolle 4 nach oben umgelenkt. Die Badtemperatur liegt typischerweise im Bereich von ca. 440 bis 470°C. Beim Austritt aus dem Bad 3 reißt das Band 2' eine flüssige Zinkmenge mit, die erheblich über der gewünschten Überzugsdicke liegt. Das noch flüssige überschüssige Überzugsmaterial wird mittels sich über die Bandbreite erstreckende Luftstrahl-Flachdüsen 5 von Ober- und Unterseite (Vorder- und Rückseite) des beschichteten Bandes 2' abgestreift.In the drawing, a furnace trunk 1 of a continuous strip galvanizing (hot-dip galvanizing) is outlined. A metal strip 2 to be galvanized, preferably steel strip, is annealed in a continuous furnace (not shown) and fed to a zinc bath 3 under protective gas (HNX). The strip 2 dips diagonally downwards into the zinc bath 3 and is deflected upwards by a roller 4 arranged in the zinc bath. The bath temperature is typically in the range of about 440 to 470°C. On exiting the bath 3, the strip 2' entrains a quantity of liquid zinc well in excess of the desired coating thickness. The excess coating material that is still liquid is scraped off the top and bottom (front and back) of the coated strip 2' by means of flat air jet nozzles 5 extending across the strip width.

In dem Ofen-Rüssel 1 wird ein Teil des Schutzgases durch die Bandbewegung in Richtung Zinkbad 3 mitgerissen. Um zu verhindern, dass das mitgerissene Schutzgas an der Zinkbadoberfläche Zinkdampf aufnimmt, welcher sich an den kälteren Innenwandflächen des Rüssels 1 als Zinkstaub absetzt und Oberflächenfehler an dem verzinkten Band 2' verursachen kann, wenn er in größeren Stücken auf das Band 2 und/oder Zinkbad 3 fällt, ist der Rüssel 1 mit einer besonderen Blas-Saugvorrichtung 6 versehen.In the furnace nozzle 1, part of the protective gas is entrained in the direction of the zinc bath 3 by the movement of the strip. In order to prevent the inert gas that is entrained from absorbing zinc vapor on the zinc bath surface, which deposits as zinc dust on the colder inner wall surfaces of the nozzle 1 and can cause surface defects on the galvanized strip 2' if it is in larger pieces on the strip 2 and/or zinc bath 3 falls, the trunk 1 is provided with a special blowing-suction device 6.

Die erfindungsgemäße Blas-Saugvorrichtung 6 weist ein verzweigtes Leitungssystem 7.1, 7.2 mit einer Vielzahl von Einblas- und Absaugöffnungen 7.11, 7.21 auf, mittels derer Schutzgas im Endbereich des Rüssels 1, d.h. nahe des Zinkbades 3, so umgewälzt wird, dass der vom Band 2 mitgerissene Schutzgasstrom möglichst unterbrochen wird, jedoch ohne dass dadurch erhöhte Bandschwingungen verursacht werden. Zu diesem Zweck sind die Einblas- und Absauföffnungen 7.11, 7.21 in Bewegungsrichtung des Bandes 2 so angeordnet, dass jede Einblasöffnung 7.11 in der Nähe wenigstens einer Absaugöffnung 7.21 liegt, wodurch eingeblasenes Schutzgas in unmittelbarer Umgebung wieder abgesaugt und so eine unkontrollierbare Verwirbelung des Schutzgases verhindert wird.The blowing suction device 6 according to the invention has a branched line system 7.1, 7.2 with a large number of Injection and suction openings 7.11, 7.21, by means of which protective gas is circulated in the end area of the nozzle 1, ie near the zinc bath 3, in such a way that the protective gas flow entrained by the strip 2 is interrupted as far as possible, but without causing increased strip vibrations. For this purpose, the blowing-in and suction openings 7.11, 7.21 are arranged in the direction of movement of the belt 2 in such a way that each blowing-in opening 7.11 is close to at least one suction opening 7.21, whereby the protective gas that has been blown in is sucked off again in the immediate vicinity, thus preventing uncontrollable turbulence of the protective gas .

Die Blas-Saugvorrichtung 6 umfasst einen oberen Teil 6.1 und einen unteren Teil 6.2, wobei sich der obere Teil 6.1 über die gesamte Breite der Bandoberseite (Vorderseite) erstreckt, während sich der untere Teil 6.2 über die gesamte Breite der Bandunterseite (Rückseite) erstreckt. Der obere Teil 6.1 sowie der untere Teil 6.2 können jeweils kastenartig ausgebildet sein und dementsprechend als Blas-Saugkasten bzw. Blas-Saugkästen bezeichnet werden. Der jeweilige Blas-Saugkasten (6.1, 6.2) ist durch Trennwände 7.3 in eine verzweigte Blaskammer 7.1' mit parallel zueinander verlaufenden Einblaszweigen 7.10 und eine verzweigte Saugkammer 7.2' mit parallel zueinander verlaufenden Saugzweigen 7.20 unterteilt. Ein Einblaszweig 7.10 kann dabei unmittelbar neben einem Saugzweig 7.20 liegen, indem beide Zweige 7.10, 7.20 durch dieselbe Trennwand 7.3 voneinander getrennt sind. Die Unterteilung in eine verzweigte Blaskammer 7.1' und eine verzweigte Saugkammer 7.2' kann beispielsweise durch eine mäanderförmig verlaufende oder gefaltete Trennwand 7.3 bzw. durch mäanderförmig aneinandergesetzte Trennwände, die an ihren aneinander stoßenden Enden gasdicht miteinander verbunden sind, verwirklicht sein, wie in Fig. 5 skizziert ist. In die quer zur Bandlaufrichtung verlaufenden Hauptkammerabschnitte 7.4, 7.5 münden Anschlussstücke 7.41, 7.51 zum Anschluss mindestens einer Rückführleitung 8, die an einem Sauggebläse, Saugventilator 9 oder dergleichen angeschlossen ist und einen Gaskreislauf definiert bzw. ermöglicht (vgl. Fig. 3).The blow-suction device 6 comprises an upper part 6.1 and a lower part 6.2, with the upper part 6.1 extending across the entire width of the upper side of the belt (front side), while the lower part 6.2 extends across the entire width of the lower side of the belt (back side). The upper part 6.1 and the lower part 6.2 can each have a box-like design and are accordingly referred to as a blower/suction box or blower/suction box. The respective blowing and suction box (6.1, 6.2) is divided by partitions 7.3 into a branched blowing chamber 7.1' with blowing branches 7.10 running parallel to one another and a branched suction chamber 7.2' with suction branches 7.20 running parallel to one another. An injection branch 7.10 can be located directly next to a suction branch 7.20, in that both branches 7.10, 7.20 are separated from one another by the same partition wall 7.3. The subdivision into a branched blowing chamber 7.1' and a branched suction chamber 7.2' can be realized, for example, by a meandering or folded partition 7.3 or by meandering partitions that are joined together in a gas-tight manner at their abutting ends be as in figure 5 is sketched. Connecting pieces 7.41, 7.51 for connecting at least one return line 8, which is connected to a suction blower, suction fan 9 or the like and defines or enables a gas circuit (cf. 3 ).

Das Anschlussstück 7.51 zur Absaugung des Schutzgases ist unterhalb des Anschlussstückes 7.41, über welches das Schutzgas zugeführt wird, angeordnet (siehe auch Fig. 6). Dadurch ist sichergestellt, dass die Strömung des eingeblasenen Schutzgases stets oder im Wesentlichen nur nach unten gerichtet ist, wodurch ein Aufströmen von Zinkdampf aus dem Zinkbad in den Rüssel 1 hinein wirksam verhindert wird.The connection piece 7.51 for suction of the protective gas is arranged below the connection piece 7.41, through which the protective gas is supplied (see also 6 ). This ensures that the flow of the inert gas that is blown in is always or essentially only directed downwards, as a result of which a flow of zinc vapor from the zinc bath into the nozzle 1 is effectively prevented.

Wie in den Figuren 5 und 6 dargestellt, münden in den oberen Hauptkammerabschnitt 7.4 des jeweiligen Blas-Saugkastens 6.1 bzw. 6.2 vorzugsweise mindestens zwei Anschlussstücke 7.41 zum Einblasen von Schutzgas, während der tiefer angeordnete Hauptkammerabschnitt 7.5 des Blas-Saugkastens 6.1 bzw. 6.2 vorzugsweise mit mindestens zwei Anschlussstücke 7.51 zum Absaugen von mit Zinkdampf beladenem Schutzgas vorgesehen ist. Die Anschlussstücke 7.41 des oberen Hauptkammerabschnitts 7.4 sind dabei quer zur Bandlaufrichtung voneinander beabstandet angeordnet. Ebenso sind die Anschlussstücke 7.51 des unteren Hauptkammerabschnitts 7.5 quer zur Bandlaufrichtung voneinander beabstandet.As in the figures 5 and 6 shown, preferably at least two connection pieces 7.41 for blowing in protective gas open into the upper main chamber section 7.4 of the respective blower/suction box 6.1 or 6.2, while the lower main chamber section 7.5 of the blower/suction box 6.1 or 6.2 preferably has at least two connection pieces 7.51 for sucking off inert gas loaded with zinc vapor is provided. The connecting pieces 7.41 of the upper main chamber section 7.4 are arranged at a distance from one another transversely to the direction of travel of the belt. Likewise, the connecting pieces 7.51 of the lower main chamber section 7.5 are spaced apart from one another transversely to the direction of travel of the belt.

Die Einblas- und Saugzweige 7.10, 7.20 sind mit einer Vielzahl von Öffnungen (Düsen) 7.11, 7.21 versehen, die als Einblasöffnungen bzw. Absaugöffnungen dienen. Diese Öffnungen (Düsen) 7.11, 7.21 sind so angeordnet bzw. ausgeführt, dass das aus den Einblasöffnungen 7.11 strömende Schutzgas mit einem Auftreffwinkel im Bereich von 70° bis 110°, vorzugsweise 80° bis 100°, auf die der jeweiligen Einblasöffnung zugewandte Oberfläche des Bandes 2 gerichtet ist bzw. trifft. Vorzugsweise sind die Einblasdüsen 7.11 so ausgeführt, dass das aus ihnen ausströmende Schutzgas im Wesentlichen rechtwinklig auf die Bandoberfläche gerichtet ist (vgl. Fig. 2 und 4). Der Abstand zwischen der jeweiligen Einblasdüse 7.11 und wenigstens einer ihr zugeordneten Absaugöffnung 7.21 ist dabei so gewählt, dass bei einer vorgegebenen oder vorgebbaren Strömungsgeschwindigkeit des eingeblasenen Schutzgases die bei Bewegung des Bandes 2 auftretende Mitnahme von Schutzgas in Richtung des Zinkbades 3 wirksam unterbrochen oder zumindest minimiert wird.The injection and suction branches 7.10, 7.20 are provided with a large number of openings (nozzles) 7.11, 7.21, which serve as injection openings and suction openings, respectively. These openings (nozzles) 7.11, 7.21 are arranged or designed in such a way that the protective gas flowing out of the blow-in openings 7.11 is directed or hits the surface of the strip 2 facing the blow-in opening at an angle of incidence in the range of 70° to 110°, preferably 80° to 100°. The injection nozzles 7.11 are preferably designed in such a way that the protective gas flowing out of them is directed essentially at right angles to the surface of the strip (cf. 2 and 4 ). The distance between the respective injection nozzle 7.11 and at least one suction opening 7.21 assigned to it is selected in such a way that at a predetermined or specifiable flow rate of the injected protective gas, the entrainment of protective gas in the direction of the zinc bath 3 that occurs when the strip 2 is moving is effectively interrupted or at least minimized .

Die durch die Bandbewegung hervorgerufene Mitnahme von Schutzgas trägt zu einer "natürlichen Gasbewegung" bei. Angetrieben wird die natürliche Gasbewegung zudem durch den üblicherweise vorhandenen Temperaturunterschied zwischen dem durch das Band 2 mitgerissenen, relativ heißen Schutzgas oberhalb des Zinkbades 3 und dem kälteren Schutzgas im oberen Bereich des Rüssels 1. Durch die erfindungsgemäße Unterbrechung oder Sperrung dieser natürlichen Gasbewegung wird zugleich die Mitnahme bzw. der Transport von Zinkdampf von der Zinkbadoberfläche 3.1 in den oberen Rüsselbereich unterbrochen oder zumindest minimiert.The entrainment of protective gas caused by the strip movement contributes to a "natural gas movement". The natural gas movement is also driven by the usually existing temperature difference between the relatively hot protective gas entrained by the strip 2 above the zinc bath 3 and the colder protective gas in the upper area of the nozzle 1. The interruption or blocking of this natural gas movement according to the invention also means that it is carried along or the transport of zinc vapor from the zinc bath surface 3.1 to the upper nozzle area is interrupted or at least minimized.

Um eine möglichst gleichmäßige Sperrwirkung für die Gasbewegung in Bandlaufrichtung sowie für die aufwärtsgerichtete Gasbewegung entlang der Innenseite der Rüsselwände zu erzielen, ohne dass es dabei zu erhöhten Bandschwingungen kommt, sind mindestens fünf, vorzugsweise mindestens sieben, besonders bevorzugt mindestens zehn Einblasöffnungen (Düsen) 7.11 über die Breite des Bandes 2 verteilt angeordnet.In order to achieve a blocking effect that is as uniform as possible for the gas movement in the direction of belt travel and for the upward gas movement along the inside of the nozzle walls, without this resulting in increased belt vibrations, at least five, preferably at least seven, particularly preferably at least ten injection openings (nozzles) 7.11 arranged distributed over the width of the strip 2.

In unmittelbarer Nähe zu jeder Einblasöffnung 7.11 befindet sich mindestens eine Absaugöffnung 7.21. Die Einblasöffnungen 7.11 und die Absaugöffnungen 7.21 sind matrixförmig angeordnet. Das Einblasen und Absaugen erfolgt somit in mehreren Stufen, vorzugsweise in mindestens drei Stufen. Die Einblasöffnungen 7.11 sind dabei in Bandlaufrichtung sowie über die Bandbreite betrachtet versetzt zu den Absaugöffnungen 7.21 angeordnet (vgl. Fig. 5). Vorzugsweise sind die Einblasöffnungen 7.11 und die Absaugöffnungen 7.21 gleichmäßig voneinander beabstandet angeordnet.At least one suction opening 7.21 is located in the immediate vicinity of each injection opening 7.11. The injection openings 7.11 and the suction openings 7.21 are arranged in a matrix. The blowing in and sucking off thus takes place in several stages, preferably in at least three stages. The injection openings 7.11 are arranged offset to the suction openings 7.21 in the direction of strip travel and across the strip width (cf. figure 5 ). The injection openings 7.11 and the suction openings 7.21 are preferably arranged at an equal distance from one another.

Über die Gaseinblaskanäle 7.10 kann eine große Menge Schutzgas ausgetauscht werden, ohne dass ein großer Gastransport in Bandlaufrichtung erfolgt. In vorteilhafter Weise wird hierdurch das Band 2 nicht zu Schwingungen angeregt. Gleichzeitig wird durch die Gasströmung der unerwünschte Transport von Zinkdampf aus dem Eintauchbereich des Bandes 2 in den oberen Teil des Rüssels 1 nicht unterstützt.A large amount of protective gas can be exchanged via the gas injection channels 7.10 without a large amount of gas being transported in the direction of strip travel. Advantageously, the band 2 is not excited to vibrate as a result. At the same time, the undesired transport of zinc vapor from the immersion region of the strip 2 into the upper part of the snout 1 is not supported by the gas flow.

Durch die abwechselnde Anordnung von Einblasdüsen 7.11 und Saugdüsen 7.21 (Fig. 3) kann der Rüsselquerschnitt vollständig in Querrichtung durchströmt werden. Noch nicht mit Zinkstaub beladenes Schutzgas mischt sich mit Zinkstaub beladenem Schutzgas und wird in räumlicher Nähe abgesaugt.The alternating arrangement of injection nozzles 7.11 and suction nozzles 7.21 ( 3 ) the nozzle cross-section can be completely flowed through in the transverse direction. Shielding gas not yet loaded with zinc dust mixes with shielding gas loaded with zinc dust and is extracted in close proximity.

Wie in Fig. 3 skizziert ist, kann die Blas-Saugvorrichtung 6 bzw. der Blas-Saugkasten 6.1, 6.2 auch dergestalt ausgeführt werden, dass die Einblasöffnungen 7.11 an zinkenartigen Zweigen 7.10 eines kammförmigen Blasrohrgebildes 7.1 und die Absaugöffnungen 7.21 an zinkenartigen Zweigen 7.20 eines kammförmigen Saugrohrgebildes 7.2 ausgebildet sind, wobei die zinkenartigen Zweige 7.10 des kammförmigen Blasrohrgebildes 7.1 und die zinkenartigen Zweige 7.20 des kammförmigen Saugrohrgebildes 7.2 ineinander greifen. Diese Ausgestaltung ermöglicht eine Justierung des Abstandes der Einblasöffnungen 7.11 von den Absaugöffnungen 7.21 durch Verschieben des kammförmigen Blasrohrgebildes 7.1 relativ zu dem kammförmigen Saugrohrgebilde 7.2.As in 3 is outlined, the blowing-suction device 6 or the blowing-suction box 6.1, 6.2 can also be designed in such a way that the injection openings 7.11 on prong-like branches 7.10 of a comb-shaped blowpipe structure 7.1 and the Suction openings 7.21 are formed on prong-like branches 7.20 of a comb-shaped suction tube structure 7.2, the prong-like branches 7.10 of the comb-shaped blower tube structure 7.1 and the prong-like branches 7.20 of the comb-shaped suction tube structure 7.2 interlocking. This configuration enables the distance between the injection openings 7.11 and the suction openings 7.21 to be adjusted by shifting the comb-shaped blowing tube structure 7.1 relative to the comb-shaped suction tube structure 7.2.

In der Rückführleitung 8 ist außer dem Sauggebläse oder Saugventilator 9 eine Zinkabscheidevorrichtung 10 zur Reinigung des mit Zinkdampf und/oder Zinkstaub beladenen Schutzgases integriert. Die Zinkabscheidevorrichtung 10 ist vorzugsweise mit einer Kühleinrichtung versehen, die eine Resublimation von Zinkdampf bewirkt. Der dadurch entstehende Zinkstaub kann mittels einer Trenneinrichtung vom Schutzgas abgetrennt und in einen Sammelbehälter 10.1 geleitet werden.In addition to the suction blower or suction fan 9, a zinc separation device 10 for cleaning the protective gas loaded with zinc vapor and/or zinc dust is integrated in the return line 8. The zinc separating device 10 is preferably provided with a cooling device which effects a re-sublimation of zinc vapor. The resulting zinc dust can be separated from the protective gas by means of a separating device and fed into a collection container 10.1.

Das stufenweise Einblasen von gereinigtem bzw. unbeladenem Schutzgas und das in unmittelbarer Nähe zu den Einblasstellen erfolgende Absaugen von mit Zinkdampf und/oder Zinkstaub beladenem Schutzgas senkt die Konzentration des Zinkdampfes und/oder Zinkstaubes in dem im Rüssel 1 befindlichen Schutzgas und damit den Partialdruck des Zinkdampfes stufenweise auf ein unkritisches Maß ab. Die stufenweise Verminderung des Gehaltes an Zinkdampf und Zinkstaub in dem damit beladenen Schutzgas ist in Fig. 4 schematisch skizziert, wobei die schlangenförmigen Pfeile Z für Zinkdampf stehen, die geradlinigen Pfeile G die Strömungsrichtung des Schutzgases im Rüssel 1 und in der Blas-Absaugvorrichtung (Blas-Saugkasten) anzeigen und die "Punktwolken" D Zinkstaub darstellen. Es ist zu erkennen, dass der Gehalt an Zinkdampf und Zinkstaub von der Zinkbadoberfläche 3.1 in Richtung Glühofen stufenweise abnimmt.The gradual blowing in of cleaned or unloaded inert gas and the extraction of inert gas laden with zinc vapor and/or zinc dust in the immediate vicinity of the injection points reduces the concentration of zinc vapor and/or zinc dust in the inert gas in nozzle 1 and thus the partial pressure of the zinc vapor gradually down to an uncritical level. The gradual reduction of the content of zinc vapor and zinc dust in the protective gas laden with it is in 4 schematically sketched, with the serpentine arrows Z for zinc vapor, the straight arrows G indicate the flow direction of the protective gas in the trunk 1 and in the blowing suction device (blasting suction box) and the "point clouds" D represent zinc dust. It is to see that the content of zinc vapor and zinc dust gradually decreases from the zinc bath surface 3.1 in the direction of the annealing furnace.

Der gereinigte Schutzgasstrom wird vor dem Einblasen mittels eines Gaserhitzers 11 aufgeheizt, beispielsweise auf eine Temperatur im Bereich von 450 bis 600°C. Der Rüssel 1 mit der Blas-Saugvorrichtung bzw. den Blas-Saugkästen 6.1, 6.2 wird durch diesen Gasstrom so aufgeheizt, dass an keiner Stelle des Rüssels 1 die Taupunkt- bzw. Resublimationstemperatur von Zinkdampf unterschritten wird.Before being blown in, the cleaned inert gas stream is heated by means of a gas heater 11, for example to a temperature in the range from 450 to 600.degree. The snout 1 with the blowing and suction device or the blowing and suction boxes 6.1, 6.2 is heated by this gas flow in such a way that at no point in the snout 1 does the dew point or resublimation temperature of zinc vapor fall below.

Die Gaseinblaskanäle 7.10 verlaufen entlang der Bandlängsachse bzw. Rüssellängsachse und parallel zu den dazwischen angeordneten Absaugleitungen 7.20. In Kombination mit den Absaugleitungen 7.20 überdecken die Gaseinblaskanäle 7.10 einen Längsabschnitt des Bandes 2 vollständig oder im Wesentlichen vollständig sowohl auf der Bandunterseite als auch auf der Bandoberseite. Dies bewirkt eine gleichmäßige Oberflächentemperatur der Blas-Saugvorrichtung bzw. Blas-Saugkästen 6.1, 6.2, wobei die Oberflächentemperatur oberhalb der Taupunkt- bzw. Resublimationstemperatur von Zinkdampf liegt.The gas injection channels 7.10 run along the longitudinal axis of the strip or longitudinal axis of the nozzle and parallel to the suction lines 7.20 arranged between them. In combination with the suction lines 7.20, the gas injection channels 7.10 cover a longitudinal section of the strip 2 completely or essentially completely both on the underside of the strip and on the upper side of the strip. This causes a uniform surface temperature of the blower/suction device or blower/suction boxes 6.1, 6.2, the surface temperature being above the dew point or resublimation temperature of zinc vapor.

Die erfindungsgemäße Vorrichtung 6 ist als Druck-Zug-System (Push-Pull-System) ausgeführt. Dabei wird heißes Schutzgas mit leichtem Überdruck über die Einblasöffnungen 7.11 in den Rüssel 1 eingeblasen, um an den Einblasöffnungen 7.11 (Auslassstellen) Querströmungen zu erzeugen. Über eine Mess- und Regeleinrichtung wird der eingeblasene Schutzgasstrom gleich oder geringfügig unterhalb der abgesaugten Gasstrommenge eingestellt. Beispielsweise beträgt der pro Bandseite (Blas-Saugkasten 6.1 oder 6.2) eingeblasene Schutzgasstrom etwa 150 Nm3/h bei ca. 600°C, während der pro Bandseite abgesaugte Schutzgasstrom einschließlich Zinkdampf ca. 200 Nm3/h beträgt.The device 6 according to the invention is designed as a push-pull system. Hot protective gas is blown into the nozzle 1 at a slight overpressure via the injection openings 7.11 in order to generate cross-flows at the injection openings 7.11 (outlet points). The flow of inert gas blown in is adjusted to be equal to or slightly below the amount of gas flow extracted by means of a measuring and control device. For example, per hinge side (blow-suction box 6.1 or 6.2) the inert gas flow blown in is about 150 Nm 3 /h at approx. 600°C, while the inert gas flow extracted per strip side including zinc vapor is approx. 200 Nm 3 /h.

Um Wärmeverluste zu minimieren, sind die Blashauptkammer (Blashauptleitung) 7.1 und die Einblaszweige (Gaseinblaskanäle) 7.10 und vorzugsweise auch die Absaughauptkammer 7.2 und die Saugzweige (Absaugleitungen) 7.20 durch eine Wärmeisolierschicht von der Rüsselkonstruktion thermisch isoliert. Der Rüssel 1 ist zudem mit einer äußeren Wärmeisolierung 12 versehen, um die Innenseite der Rüsselwände auf eine Temperatur größer 300°C zu halten.In order to minimize heat losses, the main blowing chamber (main blowing line) 7.1 and the injection branches (gas injection channels) 7.10 and preferably also the main suction chamber 7.2 and the suction branches (suction lines) 7.20 are thermally insulated from the trunk construction by a heat insulating layer. The snout 1 is also provided with an outer thermal insulation 12 in order to keep the inside of the snout walls at a temperature greater than 300°C.

Der unterste Teil des Rüssels 1, d.h. das zwischen der Blas-Saugvorrichtung und dem Zinkbad 3 befindlich Rüsselendstück 1.1 ist vorzugsweise mit einer Wärmeisolierung 13 versehen. Die Wärmeisolierung 13 stellt sicher, dass die damit versehenen Wände bzw. Wandabschnitte des Rüssels im Betrieb der Verzinkungsanlage wärmer sind als die Taupunkt- bzw. Resublimationstemperatur des Schutzgas-Zinkdampf-Gemisches. Die Wärmeisolierung 13 ist beispielsweise aus Mineralwolle- und/oder Keramikplatten gebildet und umgibt das Rüsselendstück 1.1 vorzugsweise mantelförmig.The lowermost part of the snout 1, i.e. the snout end piece 1.1 located between the blowing suction device and the zinc bath 3, is preferably provided with thermal insulation 13. The thermal insulation 13 ensures that the walls or wall sections of the trunk provided with it are warmer than the dew point or resublimation temperature of the protective gas-zinc vapor mixture during operation of the galvanizing plant. The thermal insulation 13 is formed, for example, from mineral wool and/or ceramic plates and surrounds the trunk end piece 1.1, preferably in the form of a jacket.

Ferner sieht eine weitere Ausgestaltung der Erfindung vor, dass das Rüsselendstück 1.1 ergänzend oder alternativ zu der Wärmeisolierung 13 mit einer Heizeinrichtung (nicht gezeigt) versehen ist.Furthermore, a further embodiment of the invention provides that the snout end piece 1.1 is provided with a heating device (not shown) in addition to or as an alternative to the heat insulation 13.

Der erfindungsgemäß ausgeführte Ofen-Rüssel 1 lässt sich in Bezug auf das Schutzgas in drei Bereiche A, B und C gliedern (vgl. Fig. 1).The furnace nozzle 1 designed according to the invention can be divided into three areas A, B and C with regard to the protective gas (cf. 1 ).

Der Bereich A umfasst das Endstück 1.1, das vorzugsweise mit einer Wärmeisolierung 13 versehen ist. In diesem Bereich A tritt eine relativ hohe Zinkdampfbeladung bei geringer Gasbewegung auf. Die Oberflächentemperatur des Rüssels 1 liegt in diesem Bereich oberhalb von 440°C.The area A includes the end piece 1.1, which is preferably provided with thermal insulation 13. In this area A there is a relatively high zinc vapor load with little gas movement. The surface temperature of the trunk 1 is above 440° C. in this area.

An den Bereich A schließt sich der Bereich B an, der mit der erfindungsgemäßen Blas-Saugvorrichtung (z.B. in Form der Blas-Saugkästen 6.1, 6.2) ausgerüstet ist. Der Bereich B dient als Trennschleuse oder Gasschleier. Er unterbricht den "natürlichen Gasstrom", insbesondere die durch die Bandbewegung verursachte Mitnahme von Schutzgas in Richtung Zinkbad 3, durch Einblasung von gereinigtem heißem Schutzgas bei gleichzeitiger Absaugung von mit Zinkdampf beladenem in räumlicher Nähe zu den Einblasstellen 7.11. Durch die mehrstufige Anordnung der Einblasdüsen 7.11 und Absaugdüsen 7.21 wird die Zinkdampfkonzentration stufenweise im Bereich B reduziert. Die Oberflächentemperaturen der Blas-Saugkästen 6.1, 6.2 und der Innenseiten des Rüssels 1 liegen oberhalb der Taupunkt- bzw. Resublimationstemperatur von Zinkdampf, d.h. oberhalb von 400°C.Area A is followed by area B, which is equipped with the blowing and suction device according to the invention (e.g. in the form of blowing and suction boxes 6.1, 6.2). Area B serves as a separation lock or gas curtain. It interrupts the "natural gas flow", in particular the entrainment of protective gas caused by the strip movement in the direction of the zinc bath 3, by blowing in cleaned hot protective gas while at the same time sucking off gas laden with zinc vapor in close proximity to the injection points 7.11. Due to the multi-stage arrangement of the injection nozzles 7.11 and suction nozzles 7.21, the concentration of zinc vapor is gradually reduced in area B. The surface temperatures of the blow and suction boxes 6.1, 6.2 and the insides of the trunk 1 are above the dew point or resublimation temperature of zinc vapor, i.e. above 400°C.

Oberhalb des Bereichs B folgt der Bereich C. Der Bereich C zeichnet sich durch einen geringen Zinkdampfgehalt im Schutzgas aus. Die Oberflächentemperatur der Rüsselinnenseite beträgt im Bereich C mehr als 300°C, wodurch eine Kondensation bzw. Resublimation des dort im Schutzgas noch geringfügig vorhandenen Zinkdampfes verhindert wird.Area C follows above area B. Area C is characterized by a low zinc vapor content in the protective gas. The surface temperature of the inside of the nozzle is more than 300°C in area C, which prevents condensation or resublimation of the zinc vapor that is still present in the protective gas to a small extent.

Die Ausführung der Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr sind zahlreiche Varianten möglich, die auch bei von den in der Zeichnung dargestellten Ausführungsbeispielen abweichender Gestaltung von der in den beiliegenden Patentansprüchen angegebenen Erfindung Gebrauch machen. So können beispielsweise die parallel zueinander verlaufenden Einblaszweige 7.10 und Saugzweige 7.20 des Blas-Saugkastens 6.1, 6.2 bzw. die "Zinken" des kammförmigen Blasrohrgebildes 7.1 sowie des kammförmigen Saugrohrgebildes 7.2 auch quer zur Bandlaufrichtung ausgerichtet werden. Welche dieser Varianten realisiert wird, hängt vom Verlauf der Hauptleitungen für die Schutzgaszufuhr und -absaugung in Bezug auf die Orientierung des Rüssels 1 bzw. den diesbezüglichen Montagemöglichkeiten ab.The implementation of the invention is not limited to the exemplary embodiments described above. Rather, numerous variants are possible, which also make use of the invention specified in the attached patent claims in the case of designs that deviate from the exemplary embodiments illustrated in the drawing. For example, the mutually parallel injection branches 7.10 and suction branches 7.20 of the blowing suction box 6.1, 6.2 or the "tines" of the comb-shaped blowing tube structure 7.1 and the comb-shaped suction tube structure 7.2 can also be aligned transversely to the direction of belt travel. Which of these variants is implemented depends on the course of the main lines for the protective gas supply and suction in relation to the orientation of the trunk 1 and the relevant mounting options.

Claims (16)

  1. Method for avoiding surface defects, which are caused by zinc dust, on a galvanized metal strip in continuous strip galvanization, in which metal strip (2) heated in a continuous annealing furnace is moved through a snout (1) in protective furnace gas and is immersed into a zinc bath (3), in which, in the snout (1), the upper side and the lower side of the metal strip (2) are acted upon by protective furnace gas via injection openings (7.11), and in which protective furnace gas loaded with zinc vapour and/or zinc dust is extracted via extraction openings (7.21) which are arranged on both sides of the metal strip (2) adjacent to the injection openings (7.11), characterized in that a multiplicity of the injection openings (7.11) are configured and arranged in the snout (1) in such a manner that the protective furnace gas streaming out of said injection openings (7.11) is directed onto that surface of the metal strip (2) which faces the respective injection opening (7.11) with an angle of impact within the range of 70° to 110°, preferably 80° to 100°, wherein the distance between the respective injection opening (7.11) of the multiplicity of the injection openings (7.11) and at least one extraction opening (7.21) assigned thereto from the multiplicity of the extraction openings (7.21) is selected in such a manner, and the flow velocity of the protective furnace gas emerging from the respective injection opening (7.11) is controlled in such a manner, that an entraining of protective furnace gas, which occurs during movement of the metal strip (2), in the direction of the zinc bath (3) is opposed, the distance between the respective injection opening (7.11) and the at least one extraction opening (7.21) assigned thereto is selected smaller than or equal 25 cm.
  2. Method according to Claim 1, characterized in that the protective furnace gas supplied via the injection openings (7.11) is heated beforehand to a temperature of at least 500°C, preferably at least 550°C.
  3. Method according to Claim 1 or 2, characterized in that the injection of protective furnace gas via the injection openings (7.11) and the extraction of protective furnace gas via the extraction openings (7.21) is carried out in at least three stages which are arranged consecutively in the strip running direction, wherein each of the stages is formed from a series of at least five, preferably at least seven, injection openings (7.11) and a series of at least five, preferably at least seven, extraction openings (7.21) .
  4. Method according to one of Claims 1 to 3, characterized in that the snout (1) is heated to a temperature of at least 400°C at least in a region which extends from the zinc bath (3) as far as the injection openings (7.11) and/or extraction openings (7.21) .
  5. Method according to one of Claims 1 to 4, characterized in that the volumetric flow of protective furnace gas supplied via the injection openings (7.11) is adjusted to be identical to the volumetric flow of protective furnace gas extracted via the extraction openings (7.21), or is adjusted to a value which lies at maximum 5% below the extracted volumetric flow of protective furnace gas.
  6. Method according to one of Claims 1 to 5, characterized in that the extracted protective furnace gas loaded with zinc vapour and/or zinc dust is cleaned by means of a zinc separating apparatus (10) .
  7. Apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip (2) which is to be galvanized and is heated in a continuous annealing furnace is moved through a snout (1) in protective furnace gas and is immersed into a zinc bath (3), wherein the furnace pipe (1) is provided with injection openings (7.11) via which the upper side and the lower side of the metal strip (2) can be acted upon by protective furnace gas, and wherein extraction openings (7.21) for extracting protective furnace gas loaded with zinc vapour and/or zinc dust are arranged adjacent to the injection openings (7.11), characterized in that a multiplicity of the injection openings (7.11) are configured and arranged in the snout (1) in such a manner that the protective furnace gas streaming out of said injection openings (7.11) is directed onto that surface of the metal strip (2) which faces the respective injection opening (7.11) with an angle of impact within the range of 70° to 110°, preferably 80° to 100°, wherein the distance between the respective injection opening (7.11) of the multiplicity of the injection openings (7.11) and at least one extraction opening (7.21) assigned thereto from the multiplicity of the extraction openings (7.21) is selected in such a manner that, at a predetermined or predeterminable flow velocity of the protective furnace gas emerging from the respective injection opening (7.11), an entraining of protective furnace gas, which occurs during movement of the metal strip (2), in the direction of the zinc bath (3) is opposed, the distance between the respective injection opening (7.11) and the at least one extraction opening (7.21) assigned thereto is selected smaller than or equal 25 cm.
  8. Apparatus according to Claim 7, characterized in that the extraction openings (7.21) are connected to the injection openings (7.11) via a return line (8) having at least one extraction ventilator (9), wherein the return line (8) is provided with at least one heating device (11) for heating the protective furnace gas to a temperature of at least 500°C, preferably at least 550°C.
  9. Apparatus according to Claim 8, characterized in that the return line (8) is provided with a zinc separating apparatus (10).
  10. Apparatus according to Claims 7 to 9, characterized in that the injection openings (7.11) for injecting protective furnace gas and the extraction openings (7.21) for extracting protective furnace gas are configured in at least three stages which are arranged consecutively in the strip running direction, wherein each of the stages is formed from a series of at least five, preferably at least seven, injection openings (7.11) and a series of at least five, preferably at least seven, extraction openings (7.21) .
  11. Apparatus according to one of Claims 7 to 10, characterized in that the injection openings (7.11) and the extraction openings (7.21) are arranged in the form of a matrix.
  12. Apparatus according to one of Claims 7 to 11, characterized in that the injection openings (7.11) are arranged offset with respect to the extraction openings (7.21), as viewed in the strip running direction and over the strip width.
  13. Apparatus according to one of Claims 7 to 12, characterized in that the injection openings (7.11) and the extraction openings (7.21) are arranged uniformly spaced apart from one another.
  14. Apparatus according to one of Claims 7 to 13, characterized in that the injection openings (7.21) are formed on teeth-like branches (7.10) of a comb-shaped blow pipe structure (7.1) and the extraction openings (7.21) are formed on teeth-like branches (7.20) of a comb-shaped suction pipe structure (7.2), wherein the teeth-like branches (7.10) of the comb-shaped blow pipe structure (7.1) and the teeth-like branches (7.20) of the comb-shaped suction pipe structure (7.2) intermesh.
  15. Apparatus according to Claim 14, characterized in that the comb-shaped blow pipe structure (7.1) and the comb-shaped suction pipe structure (7.2) are thermally insulated in relation to the furnace pipe (1) by heat insulation.
  16. Apparatus according to one of Claims 7 to 15, characterized in that the snout (1) is provided with heat insulation (13) and/or a heating device at least in a region (1.1, A) which extends from the zinc bath (3) as far as the injection openings (7.11) and/or extraction openings (7.21).
EP13735251.4A 2012-07-06 2013-07-05 Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process Active EP2870268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13735251T PL2870268T3 (en) 2012-07-06 2013-07-05 Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012106106.8A DE102012106106A1 (en) 2012-07-06 2012-07-06 Method and device for avoiding zinc dust-induced surface defects in continuous strip galvanizing
PCT/EP2013/064249 WO2014006183A1 (en) 2012-07-06 2013-07-05 Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process

Publications (3)

Publication Number Publication Date
EP2870268A1 EP2870268A1 (en) 2015-05-13
EP2870268B1 EP2870268B1 (en) 2016-09-07
EP2870268B2 true EP2870268B2 (en) 2022-11-30

Family

ID=48782310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13735251.4A Active EP2870268B2 (en) 2012-07-06 2013-07-05 Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process

Country Status (6)

Country Link
US (1) US9695496B2 (en)
EP (1) EP2870268B2 (en)
DE (1) DE102012106106A1 (en)
ES (1) ES2605829T5 (en)
PL (1) PL2870268T3 (en)
WO (1) WO2014006183A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6256325B2 (en) * 2014-12-15 2018-01-10 Jfeスチール株式会社 Continuous hot dip galvanizing method and continuous hot dip galvanizing equipment
DE102015108334B3 (en) 2015-05-27 2016-11-24 Thyssenkrupp Ag Apparatus and method for improved metal vapor extraction in a continuous hot dip process
CN105063535A (en) * 2015-08-04 2015-11-18 江苏捷帝机器人股份有限公司 Galvanizing device for joint shaft of robot
BE1023837B1 (en) * 2016-01-29 2017-08-09 Centre De Recherches Metallurgiques Asbl DEVICE FOR THE HYDRODYNAMIC STABILIZATION OF A CONTINUOUSLY CONTINUOUS METAL STRIP
DE102017106678A1 (en) 2017-03-28 2018-10-04 Schuh Anlagentechnik Gmbh Mixing separator for hot gases and galvanizing plant with at least one such mixing separator
DE202017101798U1 (en) 2017-03-28 2018-06-01 Schuh Anlagentechnik Gmbh Mixing separator for hot gases and galvanizing plant with at least one such mixing separator
WO2018228663A1 (en) 2017-06-12 2018-12-20 Thyssenkrupp Steel Europe Ag Apparatus and method for separating gas atmospheres
EP3638821B1 (en) 2017-06-12 2021-01-13 ThyssenKrupp Steel Europe AG Nozzle for a hot-dip coating system
WO2018228661A1 (en) 2017-06-12 2018-12-20 Thyssenkrupp Steel Europe Ag Nozzle for a hot-dip coating system and method for operating same
DE102018211182A1 (en) * 2018-07-06 2020-01-09 Thyssenkrupp Ag Device and method for hot dip coating a metal strip
CN110358999B (en) * 2019-08-15 2021-08-24 武汉钢铁有限公司 Hot galvanizing furnace nose with zinc ash blowing and diffusing treatment function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316760A (en) 1994-05-30 1995-12-05 Nisshin Steel Co Ltd Device for preventing generation of dross in snout for continuous hot dip coating
KR20030049330A (en) 2001-12-14 2003-06-25 주식회사 포스코 Apparatus for zinc pot ash suction and emitting gas of furnace snout

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157853A (en) 1993-12-06 1995-06-20 Nippon Steel Corp Method for removing zinc fume in snout of hot dip metal coating and device therefor
JPH07157854A (en) * 1993-12-06 1995-06-20 Nippon Steel Corp Method for cleaning inside of snout of hot dip metal coating
JPH09228016A (en) * 1996-02-23 1997-09-02 Kawasaki Steel Corp Method for plating molten metal and device therefor
JPH11302811A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp In-furnace atmosphere gas controller for continuous galvanizing equipment
CA2336373C (en) * 1999-02-22 2007-02-27 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
KR100700473B1 (en) * 2003-01-15 2007-03-28 신닛뽄세이테쯔 카부시키카이샤 High-strength hot-dip galvanized steel sheet and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316760A (en) 1994-05-30 1995-12-05 Nisshin Steel Co Ltd Device for preventing generation of dross in snout for continuous hot dip coating
KR20030049330A (en) 2001-12-14 2003-06-25 주식회사 포스코 Apparatus for zinc pot ash suction and emitting gas of furnace snout

Also Published As

Publication number Publication date
WO2014006183A1 (en) 2014-01-09
US9695496B2 (en) 2017-07-04
EP2870268A1 (en) 2015-05-13
DE102012106106A1 (en) 2014-09-18
EP2870268B1 (en) 2016-09-07
US20150167138A1 (en) 2015-06-18
ES2605829T5 (en) 2023-03-16
PL2870268T3 (en) 2017-07-31
ES2605829T3 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
EP2870268B2 (en) Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process
EP3303650B1 (en) Device and method for improved suction of metal vapor in continuous hot-dip metal coating
DE4336364C2 (en) Device for heating or cooling tabular or band-shaped items to be treated made of glass or ceramic material
DE60025269T2 (en) METHOD AND DEVICE FOR HEATING GLASS
DE102005033776B4 (en) Flat glass furnace
DE3638426C2 (en) Method and apparatus for forming a metal oxide coating on a hot glass substrate
DE2360949C2 (en) Method and device for depositing a metal oxide film on a glass ribbon
EP1390680B1 (en) Reactor with gas seal using gas conducting bodies
DE1809859B2 (en) PROCESS FOR HARDENING FLAT GLASS PANELS AND DEVICE FOR CARRYING OUT THE PROCESS
AT511034B1 (en) METHOD FOR CONTROLLING A PROTECTION GASATOMOS IN A PROTECTIVE GAS CHAMBER FOR TREATING A METAL STRIP
AT396927B (en) DEVICE AND METHOD FOR FORMING A COATING ON A GLASS SUBSTRATE
AT396928B (en) METHOD AND DEVICE FOR PYROLYTICALLY COATING GLASS
DE2618168C3 (en) Method and apparatus for making heat reflective glass
DE102017111991B4 (en) Device for cooling hot, plane objects
EP3638822B1 (en) Apparatus and method for separating gas atmospheres
EP3638823B1 (en) Nozzle for a hot-dip coating system and method for operating same
DE60310106T2 (en) COOLING DEVICE FOR STEEL STRIP
EP0751360A1 (en) Process for drying bricks, such as perforated bricks, and drying tunnel for carrying out the process
EP3591088B1 (en) Device for hot dip coating of a metal strip
DE2852815C2 (en)
DE10140007C2 (en) Cooling furnace for tempering large glass parts
DE102008028592B3 (en) Cooling device comprises a vapor barrier for a continuous heat treatment system for heat treatment of tape material, and a gas tightly surrounding duct arranged in oven exit and guided up to the surface of a coolant to environment
EP0799165A1 (en) Device for the surface treatment of hollow glass bodies
DE1729287C3 (en) Device for the heat treatment of a material web
DE1930250C (en) Method and device for handling your glass panes in a vertical position

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 2/40 20060101ALI20160129BHEP

Ipc: C23C 2/00 20060101ALI20160129BHEP

Ipc: C23C 2/06 20060101AFI20160129BHEP

Ipc: C23C 2/02 20060101ALI20160129BHEP

Ipc: C21D 1/26 20060101ALI20160129BHEP

Ipc: C21D 9/52 20060101ALI20160129BHEP

Ipc: C21D 9/56 20060101ALI20160129BHEP

INTG Intention to grant announced

Effective date: 20160222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 826941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004383

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2605829

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013004383

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ARCELORMITTAL

Effective date: 20170602

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210628

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210727

Year of fee payment: 9

Ref country code: AT

Payment date: 20210722

Year of fee payment: 9

Ref country code: FI

Payment date: 20210722

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210701

Year of fee payment: 9

Ref country code: GB

Payment date: 20210722

Year of fee payment: 9

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20220720

Year of fee payment: 10

Ref country code: ES

Payment date: 20220921

Year of fee payment: 10

Ref country code: DE

Payment date: 20220620

Year of fee payment: 10

27A Patent maintained in amended form

Effective date: 20221130

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220720

Year of fee payment: 10

Ref country code: BE

Payment date: 20220720

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502013004383

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 826941

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220705

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2605829

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20230316

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013004383

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230705