EP2864617A2 - Piston and crankcase assembly for an internal combustion engine - Google Patents

Piston and crankcase assembly for an internal combustion engine

Info

Publication number
EP2864617A2
EP2864617A2 EP13744418.8A EP13744418A EP2864617A2 EP 2864617 A2 EP2864617 A2 EP 2864617A2 EP 13744418 A EP13744418 A EP 13744418A EP 2864617 A2 EP2864617 A2 EP 2864617A2
Authority
EP
European Patent Office
Prior art keywords
piston
arrangement according
coolant
bore
crankcase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13744418.8A
Other languages
German (de)
French (fr)
Other versions
EP2864617B1 (en
Inventor
Ulrich Bischofberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2864617A2 publication Critical patent/EP2864617A2/en
Application granted granted Critical
Publication of EP2864617B1 publication Critical patent/EP2864617B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/18Pistons  having cooling means the means being a liquid or solid coolant, e.g. sodium, in a closed chamber in piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity
    • F05C2251/046Expansivity dissimilar

Definitions

  • the present invention relates to an arrangement of a piston made of a material based on steel and a crankcase made of an aluminum-based material for an internal combustion engine, wherein the piston has a piston head and a piston skirt, wherein the piston head has a circumferential ring portion and in the Area of the ring portion has a circumferential cooling passage, wherein the piston skirt has hub bores provided with piston bosses, which are arranged via hub connections on the underside of the piston head, wherein the piston hubs are connected to each other via running surfaces.
  • the object of the present invention is to develop a generic arrangement so that it has the lowest possible engine noise during operation and the oil consumption and the blow-by effect are not excessively increased.
  • the piston is made of a material based on steel and that the crankcase is made of an aluminum-based material, that in the piston at least one outwardly closed bore is provided between a tread and a hub bore is arranged, that the at least one bore opens into the cooling channel, and that the cooling channel and the at least one bore contain a coolant in the form of a low-melting metal or a low-melting metal alloy.
  • the arrangement according to the invention is characterized in that the heat generated in the region of the piston crown is directed via the piston head in a targeted manner into the environment of the at least one bore.
  • the area between the piston hub and the piston shaft is heated comparatively strongly.
  • the treads are at least partially heated more than in pistons in the prior art.
  • This increased heating causes an additional thermal expansion of the piston in the region of the piston shaft during engine operation. corresponds to the thermal expansion of the crankcase substantially. This reduces the warm play between piston and cylinder. It has been found that an acceptable over the entire load range running clearance between the piston and the crankcase adjusts.
  • the arrangement according to the invention ensures that in the finished engine, the pistons can still move freely even at low temperatures down to -30 ° C. In operational warm condition, the running clearance between the piston and crankcase increases only slightly, so that increased secondary movements of the piston and thus increased engine noise can be avoided. Furthermore, the seal to the piston head side combustion chamber is improved, so that the oil consumption and the blow-by effect are reduced.
  • the term "clearance” installation play, warm play, running play, cold play is understood to be the difference between the diameter of the cylinder bore or the cylinder liner on the one hand and the diameter of the piston on the other hand, whereby the diameter of the piston is measured at its largest point.
  • the piston is made of a material selected from the group consisting of precipitation-hardening ferritic-pearlitic steels (so-called AFP steels) and martensitic hardening steels with carbon contents of between 0.3 and 0.8% by weight. These materials differ mainly in their hardness, strength and manufacturability, but have approximately the same coefficients of thermal expansion between 11 and 13 E-6 1 / K.
  • the crankcase is advantageously made of an aluminum-silicon casting material.
  • hypoeutectic aluminum-silicon alloys AISi7 to Al-Si9
  • AISi7 to Al-Si9 having a thermal expansion coefficient between 22 E-6 1 / K - 24 E-6 1 / K
  • aluminum-silicon Alloys with a silicon content up to AISM7 and with a coefficient of expansion between 19 E-6 1 / K and 22 E-6 1 / K.
  • the crankcase may, for example, be provided with at least one cylinder liner made of a cast iron material.
  • the cylinder liners serve to reduce wear in the cylinder and are cast in a conventional manner in the crankcase.
  • the resulting effective coefficient of expansion W Zy of the cylinder is typically between 17 E-6 1 / K and 20 E-6 1 / K. This depends in a conventional manner on the ratio of the wall thickness of the cylinder liner to the total thickness of the cylinder wall and the material used in each case of the crankcase.
  • crankcase can also be provided with at least one cylinder bore, which is provided with a coating on the basis of a ferrous material.
  • Low melting metals suitable for use as coolant in the flask are especially sodium or potassium.
  • Galinstan® alloys, low melting bismuth alloys and sodium-potassium alloys can be used as the low-melting metal alloys.
  • Galinstan® alloys are gallium, indium and tin alloy systems that are liquid at room temperature. These alloys consist of 65 wt% to 95 wt% gallium, 5 wt% to 26 wt% indium and 0 wt% to 16 wt% tin. Preferred alloys are, for example, those with 68% by weight to 69% by weight of gallium, 21% by weight to 22% by weight of indium and 9.5% by weight to 10.5% by weight of tin ( Mp -19 ° C), 62% by weight of gallium, 22% by weight of indium and 16% by weight of tin (mp 10.7 ° C.) and 59.6% by weight of gallium, 26% by weight.
  • Low melting bismuth alloys include, for example, LBE (eutectic bismuth-lead alloy, mp. 124 ° C), Roses metal (50 wt .-% bismuth, 28 wt .-% lead and 22 wt .-% tin, mp.
  • Orion metal 42 wt% bismuth, 42 wt% lead and 16 wt% tin, mp 108 ° C
  • Quick solder 52 weight percent bismuth, 32 weight percent lead and 16 weight percent tin, mp 96 ° C
  • d'Arcets metal 50 weight percent bismuth, 25 weight percent lead and 25 wt% tin
  • Wood's metal 50 wt% bismuth, 25 wt% lead, 12.5 wt% tin and 12.5 wt% cadmium, mp 71 ° C
  • Lipowitz metal 50 wt% bismuth, 27 wt% lead, 13 wt% tin and 10 wt% cadmium, mp 70 ° C
  • Harper's metal 44 wt% bismuth, 25 wt%).
  • Suitable sodium-potassium alloys may contain from 40% to 90% by weight of potassium. Particularly suitable is the eutectic alloy NaK with 78 wt .-% potassium and 22% by weight of sodium (mp. -12.6 ° C).
  • the coolant may additionally contain lithium and / or lithium nitride. If nitrogen is used as a protective gas during filling, this can react with the lithium to lithium nitride and be removed in this way from the cooling channel.
  • the coolant may further contain sodium oxides and / or potassium oxides if, during filling, any existing dry air has reacted with the coolant.
  • four holes are provided, which are arranged between a running surface and a hub bore in order to achieve a particularly uniform temperature distribution in the piston.
  • the amount of coolant received in the cooling channel or in the at least one bore depends on its thermal conductivity and the degree of the desired Temperature control off.
  • the coolant has a filling level up to half the height of the cooling channel in order to achieve a shaker effect and thus a particularly effective heat distribution in the piston.
  • the heating of the piston and thus its thermal expansion can also be controlled with the amount of filled coolant. It has been shown that sometimes even a filling of 3% to 10% of the cooling passage volume with the coolant is sufficient to ensure the function of the piston provided according to the invention in cooperation with the inventively provided crankcase.
  • FIG. 1 shows an embodiment of a piston for an inventive arrangement, partly in section.
  • Figure 2 is a section along the line II - II in Figure 1.
  • Fig. 3 shows a first embodiment of an inventive arrangement in
  • Fig. 4 is an enlarged partial view of Figure 3;
  • Fig. 5 shows another embodiment of an inventive arrangement in section.
  • Figures 1 and 2 show an embodiment of a piston 10 for an inventive arrangement.
  • the piston 10 may be a one-piece or multi-piece piston.
  • the piston 10 is made of a steel-based material.
  • Figures 1 and 2 show an example of a piston 10 in the form of a one-piece box piston.
  • the piston 10 has a piston head 11 with a combustion tion recess 13 having the piston head 12, a peripheral land 14 and a ring portion 15 for receiving piston rings (not shown). In the amount of the ring section 15, a circumferential cooling channel 23 is provided.
  • the piston 10 further includes a piston stem 16 with piston bosses 17 and hub bores 18 for receiving a piston pin (not shown).
  • the piston hubs 17 are connected via hub connections 19 with the underside 11 a of the piston head 11.
  • the piston hubs 17 are connected to one another via running surfaces 21, 22 (cf., in particular, FIG.
  • the contour of the running surfaces 21, 22 is straight in the axial direction. But there are also arched contours conceivable.
  • the piston diameter for determining the clearance is always measured at its largest point.
  • the piston shaft 16 has four holes 24a, 24b, 24c, 24d in the exemplary embodiment.
  • the bores 24a-d in the exemplary embodiment extend approximately axially and parallel to the piston center axis M.
  • the bores 24a-d may, however, also extend inclined at an angle to the piston center axis M.
  • the bores 24a-d are arranged between a running surface 21, 22 and a hub bore 18. The bores 24a-d open into the cooling channel 23rd
  • the piston 10 may for example be cast in a conventional manner, wherein the cooling channel 23 and the bores 24a-d can be introduced in a conventional manner by means of a salt core.
  • the cooling channel 23 and the bores 24a-d are filled with a coolant.
  • a coolant On the representation of the coolant was omitted in Figures 1 and 2 for reasons of clarity. Reference is made to FIGS. 3 to 5.
  • Figure 3 shows a first embodiment of an inventive arrangement 100 with a piston 110 made of a martensitic hardening steel with the name 42CrMo4 with a thermal expansion coefficient of 12 E-6 1 / K.
  • the piston 110 is received in this embodiment in a cylinder liner 130, which in turn is accommodated in a crankcase 140.
  • the cylinder liner 130 can be made of a cast iron material in a manner known per se. stand.
  • the crankcase 140 is in the embodiment of an aluminum-silicon alloy of the type AISi9 with a thermal expansion coefficient of 23 E-6 1 / K.
  • the piston 110 is substantially similar in construction to the piston 10 according to Figures 1 and 2, so that the same structural elements are provided with the same reference numerals and reference is made to the description of Figures 1 and 2.
  • a coolant 127 is also accommodated in the cooling channel 23 and in the bores 24a-d of the piston 110 according to FIG. 3, a coolant 127 is also accommodated.
  • Figure 4 shows an enlarged partial view of Figure 3, which illustrates a detail of the bores 24a-d in the lower region of the piston bosses 17 on the example of the bore 24a.
  • At least one of the holes 24a-d, in the embodiment, the bore 24a has an opening 125 to the outside.
  • the coolant 127 namely a low-melting metal or a low-melting metal alloy, as exemplified above, is filled through the opening 125 in the bore 24 a. From there, the coolant 127 is distributed in the cooling channel 23 and in the further holes 24b-d.
  • the opening 125 is then sealed, in the embodiment by means of a pressed-steel ball 126.
  • the opening 125 can also be closed, for example, by welding a lid or pressing a cap (not shown).
  • the size of the bores 24a-d and the filling amount of the coolant 127 depend essentially on the size of the piston 110 and the desired cooling capacity. On average, about. 10 g to 40 g coolant 127 per piston 110 required.
  • the cooling capacity can be controlled by the amount of added refrigerant 127 taking into account its thermal conductivity coefficient. For example. is a level in the cooling channel 23 suitable, which corresponds approximately to half the height of the cooling channel 23. In this case, during operation, the known sha ker effect can additionally be used for a particularly effective heat distribution in favor of the running surfaces 21, 22.
  • a maximum surface temperature of the piston 110 of about 260 ° C.
  • the underside 11a of the piston head 11 can be cooled by injection with cooling oil.
  • a lance is inserted through the opening 125 and purged by nitrogen or other suitable inert gas or by dry air.
  • nitrogen or other suitable inert gas or by dry air is introduced into the opening 125 under protective gas (for example nitrogen, inert gas or dry air), so that the coolant 127 is received in the bore 24a or the cooling channel 23.
  • Another method for filling the bore 24a is characterized in that after flushing with nitrogen, inert gas or dry air, the bores 24a-d and the cooling channel 23 are evacuated and the coolant 127 is introduced in a vacuum.
  • the coolant 127 can more easily move in and out of the cooling channel 23 and into and out of the holes 24a-d since it is not hindered by the presence of shielding gas.
  • Another possibility for removing the protective gas from the cooling channel 23 or the bores 24a-d is to use nitrogen or dry air (ie essentially a mixture of nitrogen and oxygen) as protective gas and a small amount of the coolant 127 Lithium, according to experience about 1.8 mg to 2.0 mg of lithium per cubic centimeter gas space (ie volume of the cooling channel 23 plus volume of the holes 24a-d). While, for example, sodium and potassium react with oxygen to form oxides, the lithium reacts with nitrogen to form lithium nitride. The protective gas is thus almost completely bound as a solid in the coolant 127.
  • nitrogen or dry air ie essentially a mixture of nitrogen and oxygen
  • FIG. 5 shows a further exemplary embodiment of an arrangement 200 according to the invention with a martensitic hardening steel piston 210 with the designation 42CrMo4 with a thermal expansion coefficient of 12 E-6 1 / K.
  • the piston 210 is received in this embodiment in a cylinder bore 241 of a crankcase 240.
  • the cylinder bore 241 is in a conventional manner with a coating 242 based on a ferrous material with a Thermal expansion coefficient of 20 E-6 1 / K provided.
  • the coating 242 typically has a thickness of 100 ⁇ to 200 ⁇ .
  • the crankcase 240 is in the embodiment of an aluminum-silicon alloy of the type Al-Si9 with a thermal expansion coefficient of 23 E-6 1 / K.
  • the piston 210 is substantially similar in construction to the piston 10 according to FIGS. 1 and 2, so that identical structural elements are given the same reference numerals and reference is made to FIGS. 1 and 2 for the description.
  • a coolant 227 is also received in the cooling channel 23 and in the bores 24a-d of the piston 210 according to FIG. 3, a coolant 227 is also received.
  • Table 1 shows by way of example the two embodiments of an inventive arrangement according to Figures 3 to 5 (numbers 1 and 2) compared to embodiments of the prior art (numbers 3 to 8).
  • the piston used was filled with pure sodium with a thermal conductivity of 140W / (mK).
  • the filling amount was 5% of the added volume of the cooling channel 23 and the bores 24a-d. It can be clearly seen that the respective piston clearance, ie the change of the same in all cases installation clearance of 50 ⁇ both at low temperatures and at the highest loads in the inventive arrangement is the lowest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

The invention relates to an assembly (100, 200) consisting of a piston (10, 110, 210) made of a steel-based material, and a crankcase (140, 240) made of an aluminum-based material, for an internal combustion engine. Said piston (10, 110, 210) comprises a piston head (11) and a piston skirt (16), said piston head (11) having a peripheral annular part (15) and in the region of said annular part (15), a peripheral cooling channel (23). The piston skirt (16) comprises piston bores (17) provided with hub bores (18), which are arranged over the hub connections (19) on the underside (11a) of the piston head (11). Said piston hubs (17) are interconnected over the running surfaces (21, 22). According to the invention, at least one bore (24a, 24b, 24c, 24d) which is closed towards the outside is arranged between a running surface (21, 22) and a hub bore (18) such that the at least one bore (24a, 24b, 24c, 24d) leads into the cooling channel (23), and that the cooling channel (23) and the at least one bore (24a, 24b, 24c, 24d) contain a coolant (127, 227) in the form of a metal or a metal alloy which have a low-melting point.

Description

Anordnung aus einem Kolben und einem Kurbelgehäuse  Arrangement of a piston and a crankcase
für einen Verbrennungsmotor  for an internal combustion engine
Die vorliegende Erfindung betrifft eine Anordnung aus einem Kolben aus einem Werkstoff auf der Basis von Stahl und einem Kurbelgehäuse aus einem Werkstoff auf der Basis von Aluminium für einen Verbrennungsmotor, wobei der Kolben einen Kolbenkopf und einen Kolbenschaft aufweist, wobei der Kolbenkopf eine umlaufende Ringpartie sowie im Bereich der Ringpartie einen umlaufenden Kühlkanal aufweist, wobei der Kolbenschaft mit Nabenbohrungen versehene Kolbennaben aufweist, die über Nabenanbindungen an der Unterseite des Kolbenkopfes angeordnet sind, wobei die Kolbennaben über Laufflächen miteinander verbunden sind. The present invention relates to an arrangement of a piston made of a material based on steel and a crankcase made of an aluminum-based material for an internal combustion engine, wherein the piston has a piston head and a piston skirt, wherein the piston head has a circumferential ring portion and in the Area of the ring portion has a circumferential cooling passage, wherein the piston skirt has hub bores provided with piston bosses, which are arranged via hub connections on the underside of the piston head, wherein the piston hubs are connected to each other via running surfaces.
In modernen Verbrennungsmotoren sind die Kolben im Bereich der Kolbenböden immer höheren mechanischen und thermischen Belastungen ausgesetzt. Diesen Belastungen sind Kolben aus einem Werkstoff auf der Basis von Aluminium zunehmend nicht mehr gewachsen. An Aluminiumkolben werden bei höherer Belastung vor allem vorzeitig Risse beobachtet, die von den heißen Stellen am Kolbenboden oder im Bereich des Nabenzenits ausgehen. Derartige Risse können zum Ausfall des Motors führen. Daher wird die Verwendung von Kolben auf der Basis eines Stahlwerkstoffs angestrebt. Trotz des relativ hohen spezifischen Gewichts derartiger Werkstoffe im Vergleich mit Werkstoffen auf der Basis von Aluminium gelingt es, annähernd gewichtsgleiche Kolben mit wesentlich höherer Belastbarkeit herzustellen. Als nachteilig erweist sich bei einer gattungsgemäßen Anordnung jedoch der gegenüber einem aluminiumbasierten Werkstoff kleinere Ausdehnungskoeffizient von stahlbasierten Werkstoffen. Dies führt dazu, dass im Motorbetrieb größere Laufspiele zwischen Kolben und Kurbelgehäuse auftreten. Dieser Effekt wird unter verschiedenen Be- triebszuständen des Verbrennungsmotors beobachtet. Dies kann zu störenden Motorgeräuschen sowie zu einem erhöhten Ölverbrauch sowie zu Blowby-Effekten führen. In modern internal combustion engines, the pistons in the region of the piston crowns are exposed to increasingly higher mechanical and thermal loads. Pistons made of a material based on aluminum are increasingly no longer able to cope with these loads. Above all, premature cracks on aluminum pistons are observed at higher loads, starting from the hot spots on the piston crown or in the region of the nabenzene. Such cracks can lead to failure of the engine. Therefore, the use of pistons based on a steel material is desired. Despite the relatively high specific weight of such materials in comparison with aluminum-based materials, it is possible to produce approximately equal-weight pistons with significantly higher load capacity. A disadvantage, however, proves in a generic arrangement, compared to an aluminum-based material smaller coefficient of expansion of steel-based materials. As a result, larger running clearances between the piston and the crankcase occur during engine operation. This effect is observed under different operating conditions of the internal combustion engine. This can lead to annoying engine noise as well as increased oil consumption and blow-by effects.
|Bestätigungskopie| Die DE 10 2009 018 981 A1 offenbart einen Kolben aus einem Werkstoff auf der Basis von Stahl, der zur Verwendung in einem Kurbelgehäuse aus einem Werkstoff auf der Basis von Aluminium geeignet ist. Bei diesem Kolben sind die Kolbennaben von den Laufflächen beabstandet, d.h. die mechanische Anbindung der Kolbennaben an die Laufflächen ist unterbrochen, so dass der Kolbenschaft sich mit dem heißeren Kolbenkopf stärker ausdehnt, so dass die Zunahme des Laufspiels im Motorbetrieb reduziert wird. Nachteilig hieran ist, dass ein derartiger Kolben nur begrenzt Seitenkräfte aufnehmen kann, da eine mechanische Abstützung der Laufflächen zu den Kolbennaben nicht oder nur ungenügend vorhanden ist. Außerdem können verstärkt Deformationen im Bereich der Ringnuten auftreten, welche die Funktion der Kolbenringe zur Abdichtung gegenüber dem Verbrennungsdruck und den Verbrennungsgasen aus dem kolbenkopfseitigen Brennraum beeinträchtigen. | Confirmation copy | DE 10 2009 018 981 A1 discloses a piston made of a material based on steel, which is suitable for use in a crankcase made of a material based on aluminum. In this piston, the piston hubs are spaced from the treads, ie the mechanical connection of the piston hubs to the treads is interrupted, so that the piston shank expands more strongly with the hotter piston head, so that the increase of the running play in the engine operation is reduced. The disadvantage of this is that such a piston can absorb only limited lateral forces, since a mechanical support of the running surfaces to the piston hubs is not or only insufficiently available. In addition, more deformations in the region of the annular grooves may occur, which affect the function of the piston rings to seal against the combustion pressure and the combustion gases from the piston head side combustion chamber.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine gattungsgemäße Anordnung so weiterzuentwickeln, dass sie im Betrieb möglichst geringe Motorgeräusche aufweist und der Ölverbrauch sowie der Blowby-Effekt nicht übermäßig erhöht werden. The object of the present invention is to develop a generic arrangement so that it has the lowest possible engine noise during operation and the oil consumption and the blow-by effect are not excessively increased.
Die Lösung besteht darin, dass der Kolben aus einem Werkstoff auf der Basis von Stahl und dass das Kurbelgehäuse aus einem Werkstoff auf der Basis von Aluminium hergestellt ist, dass im Kolben mindestens eine nach außen verschlossene Bohrung vorgesehen ist, die zwischen einer Lauffläche und einer Nabenbohrung angeordnet ist, dass die mindestens eine Bohrung in den Kühlkanal mündet, und dass der Kühlkanal und die mindestens eine Bohrung ein Kühlmittel in Form eines niedrig schmelzenden Metalls oder einer niedrig schmelzenden Metalllegierung enthalten. The solution is that the piston is made of a material based on steel and that the crankcase is made of an aluminum-based material, that in the piston at least one outwardly closed bore is provided between a tread and a hub bore is arranged, that the at least one bore opens into the cooling channel, and that the cooling channel and the at least one bore contain a coolant in the form of a low-melting metal or a low-melting metal alloy.
Die erfindungsgemäße Anordnung zeichnet sich dadurch aus, dass die im Bereich des Kolbenbodens erzeugte Wärme über den Kolbenkopf gezielt in die Umgebung der mindestens einen Bohrung geleitet wird. Dadurch wird gezielt der Bereich zwischen der Kolbennabe und dem Kolbenschaft vergleichsweise stark erwärmt. Auch die Laufflächen werden zumindest teilweise stärker erwärmt als bei Kolben im Stand der Technik. Diese verstärkte Erwärmung bewirkt im Motorbetrieb eine zusätzliche thermische Ausdehnung des Kolbens im Bereich des Kolbenschafts, welche der re- gulären thermischen Ausdehnung des Kurbelgehäuses im Wesentlichen entspricht. Dadurch wird das Warmspiel zwischen Kolben und Zylinder reduziert. Es hat sich herausgestellt, dass sich ein über den gesamten Lastbereich akzeptables Laufspiel zwischen dem Kolben und dem Kurbelgehäuse einstellt. Die erfindungsgemäße Anordnung stellt sicher, dass im fertigen Motor die Kolben sich selbst bei tiefen Temperaturen bis zu -30°C noch frei bewegen können. Im betriebswarmen Zustand erhöht sich das Laufspiel zwischen Kolben und Kurbelgehäuse nur geringfügig, so dass verstärkte Sekundärbewegungen des Kolbens und damit erhöhte Motorgeräusche vermieden werden. Ferner wird die Abdichtung zum kolbenkopfseitigen Brennraum hin verbessert, so dass der Ölverbrauch sowie der Blowby-Effekt reduziert werden. The arrangement according to the invention is characterized in that the heat generated in the region of the piston crown is directed via the piston head in a targeted manner into the environment of the at least one bore. As a result, the area between the piston hub and the piston shaft is heated comparatively strongly. Also, the treads are at least partially heated more than in pistons in the prior art. This increased heating causes an additional thermal expansion of the piston in the region of the piston shaft during engine operation. corresponds to the thermal expansion of the crankcase substantially. This reduces the warm play between piston and cylinder. It has been found that an acceptable over the entire load range running clearance between the piston and the crankcase adjusts. The arrangement according to the invention ensures that in the finished engine, the pistons can still move freely even at low temperatures down to -30 ° C. In operational warm condition, the running clearance between the piston and crankcase increases only slightly, so that increased secondary movements of the piston and thus increased engine noise can be avoided. Furthermore, the seal to the piston head side combustion chamber is improved, so that the oil consumption and the blow-by effect are reduced.
Im Sinne der vorliegenden Erfindung wird als„Spiel" (Einbauspiel, Warmspiel, Laufspiel, Kaltspiel) die Differenz zwischen dem Durchmesser der Zylinderbohrung oder der Zylinderlaufbuchse einerseits und dem Durchmesser des Kolbens andererseits verstanden. Dabei wird der Durchmesser des Kolbens an seiner größten Stelle gemessen. For the purposes of the present invention, the term "clearance" (installation play, warm play, running play, cold play) is understood to be the difference between the diameter of the cylinder bore or the cylinder liner on the one hand and the diameter of the piston on the other hand, whereby the diameter of the piston is measured at its largest point.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen. Advantageous developments emerge from the subclaims.
In besonders vorteilhafter Weise bilden der Wärmeausdehnungskoeffizient WKo des Werkstoffs des Kolbens und der effektive Wärmeausdehnungskoeffizient WKu des Werkstoffs des Kurbelgehäuses ein Verhältnis von WKo / WKu = 0,4 bis 0,7. Damit ist ein besonders guter Ausgleich der unterschiedlichen Wärmeausdehnung von Kolben und Kurbelgehäuse in der erfindungsgemäßen Anordnung möglich. Dies gilt auch im Zusammenwirken mit einer optional in das Kurbelgehäuse eingegossenen Zylinderlaufbuchse. In a particularly advantageous manner, the thermal expansion coefficient W Ko of the material of the piston and the effective thermal expansion coefficient W Ku of the material of the crankcase form a ratio of W Ko / W Ku = 0.4 to 0.7. This is a particularly good compensation of the different thermal expansion of the piston and crankcase in the inventive arrangement is possible. This also applies in conjunction with an optionally cast in the crankcase cylinder liner.
Vorzugsweise besteht der Kolben aus einem Werkstoff, der ausgewählt ist aus der Gruppe umfassend ausscheidungshärtende ferritisch-perlitische Stähle (sogenannte AFP-Stähle) sowie martensitisch härtende Stähle mit Kohlenstoffgehalten zwischen 0,3 und 0,8 Gew.-%. Diese Werkstoffe unterscheiden sich hauptsächlich in ihrer Härte, Festigkeit und Herstellbarkeit, weisen jedoch in etwa die gleichen thermischen Ausdehnungskoeffizienten zwischen 11 und 13 E-6 1/K auf. Das Kurbelgehäuse besteht vorteilhafterweise aus einem Aluminium-Silizium- Gusswerkstoff. Besonders bevorzugt ist ein Werkstoff, der ausgewählt ist aus der Gruppe umfassend untereutektische Aluminium-Silizium-Legierungen (AISi7 bis Al- Si9) mit einem thermischen Ausdehnungskoeffizient zwischen 22 E-6 1/K - 24 E-6 1/K sowie Aluminium-Silizium-Legierungen mit einem Siliziumgehalt bis zu AISM7 und mit einem Ausdehnungskoeffizienten zwischen 19 E-6 1/K und 22 E-6 1/K. Preferably, the piston is made of a material selected from the group consisting of precipitation-hardening ferritic-pearlitic steels (so-called AFP steels) and martensitic hardening steels with carbon contents of between 0.3 and 0.8% by weight. These materials differ mainly in their hardness, strength and manufacturability, but have approximately the same coefficients of thermal expansion between 11 and 13 E-6 1 / K. The crankcase is advantageously made of an aluminum-silicon casting material. Particularly preferred is a material which is selected from the group comprising hypoeutectic aluminum-silicon alloys (AISi7 to Al-Si9) having a thermal expansion coefficient between 22 E-6 1 / K - 24 E-6 1 / K and aluminum-silicon Alloys with a silicon content up to AISM7 and with a coefficient of expansion between 19 E-6 1 / K and 22 E-6 1 / K.
Das Kurbelgehäuse kann bspw. mit mindestens einer Zylinderlaufbuchse aus einem Gusseisenwerkstoff versehen sein. Die Zylinderlaufbuchsen dienen zur Verschleißminderung im Zylinder und werden in an sich bekannter Weise in das Kurbelgehäuse eingegossen. Der resultierende effektive Ausdehnungskoeffizient WZy des Zylinders liegt dabei typischerweise zwischen 17 E-6 1/K und 20 E-6 1/K. Dies hängt in an sich bekannter Weise vom Verhältnis der Wanddicke der Zylinderlaufbuchse zur Gesamtdicke der Zylinderwand sowie vom jeweils verwendeten Werkstoff des Kurbelgehäuses ab. The crankcase may, for example, be provided with at least one cylinder liner made of a cast iron material. The cylinder liners serve to reduce wear in the cylinder and are cast in a conventional manner in the crankcase. The resulting effective coefficient of expansion W Zy of the cylinder is typically between 17 E-6 1 / K and 20 E-6 1 / K. This depends in a conventional manner on the ratio of the wall thickness of the cylinder liner to the total thickness of the cylinder wall and the material used in each case of the crankcase.
Das Kurbelgehäuse kann aber auch mit mindestens einer Zylinderbohrung versehen sein, die mit einer Beschichtung auf der Basis eines Eisenwerkstoffs versehen ist. However, the crankcase can also be provided with at least one cylinder bore, which is provided with a coating on the basis of a ferrous material.
Niedrig schmelzende Metalle, die zur Verwendung als Kühlmittel im Kolben geeignet sind, sind insbesondere Natrium oder Kalium. Als niedrig schmelzende Metalllegierungen können insbesondere Galinstan®-Legierungen, niedrig schmelzende Bismut- Legierungen und Natrium-Kalium-Legierungen eingesetzt werden. Low melting metals suitable for use as coolant in the flask are especially sodium or potassium. In particular, Galinstan® alloys, low melting bismuth alloys and sodium-potassium alloys can be used as the low-melting metal alloys.
Als sog. Galinstan®-Legierungen werden Legierungssysteme aus Gallium, Indium und Zinn bezeichnet, die bei Raumtemperatur flüssig sind. Diese Legierungen bestehen aus 65 Gew.-% bis 95 Gew.-% Gallium, 5 Gew.-% bis 26 Gew.-% Indium und 0 Gew.-% bis 16 Gew.-% Zinn. Bevorzugte Legierungen sind bspw. solche mit 68 Gew.-% bis 69 Gew.-% Gallium, 21 Gew.-% bis 22 Gew.-% Indium und 9,5 Gew.-% bis 10,5 Gew.-% Zinn (Schmp. -19°C), 62 Gew.-% Gallium, 22 Gew.-% Indium und 16 Gew.-% Zinn (Schmp.10,7°C) sowie 59,6 Gew.-% Gallium, 26 Gew.-% Indium und 14,4 Gew. %- Zinn (ternäres Eutektikum, Schmp. 11°C). Niedrig schmelzende Bismut-Legierungen sind zahlreich bekannt. Dazu gehören bspw. LBE (eutektische Bismut-Blei-Legierung, Schmp. 124°C), Roses Metall (50 Gew.-% Bismut, 28 Gew.-% Blei und 22 Gew.-% Zinn, Schmp. 98°C), Orionmetall (42 Gew.-% Bismut, 42 Gew.-% Blei und 16 Gew.-% Zinn, Schmp. 108°C); Schnelllot (52 Gew.-% Bismut, 32 Gew.-% Blei und 16 Gew.-% Zinn, Schmp. 96°C), d'Arcets- Metall (50 Gew.-% Bismut, 25 Gew.-% Blei und 25 Gew.-% Zinn), Woodsches Metall (50 Gew.-% Bismut, 25 Gew.-% Blei, 12,5 Gew.-% Zinn und 12,5 Gew.-% Cadmium, Schmp. 71 °C), Lipowitzmetall (50 Gew.-% Bismut, 27 Gew.-% Blei, 13 Gew.-% Zinn und 10 Gew.-% Cadmium, Schmp. 70°C), Harpers Metall (44 Gew.-% Bismut, 25 Gew.-% Blei, 25 Gew.-% Zinn und 6 Gew.-% Cadmium, Schmp. 75°C), Cerrolow 117 (44,7 Gew.-% Bismut, 22,6 Gew.-% Blei, 19,1 Gew.-% Indium, 8,3 Gew.-% Zinn und 5,3 Gew.-% Cadmium, Schmp. 47°C); Cerrolow 174 (57 Gew.-% Bismut, 26 Gew.-% Indium, 17 Gew.-% Zinn, Schmp. 78,9°C), Fields Metall (32 Gew.-% Bismut, 51 Gew.-% Indium, 17 Gew.-% Zinn, Schmp. 62°C) sowie die Walkerlegierung (45 Gew.-% Bismut, 28 Gew.-% Blei, 22 Gew.-% Zinn und 5 Gew.-% Antimon). Galinstan® alloys are gallium, indium and tin alloy systems that are liquid at room temperature. These alloys consist of 65 wt% to 95 wt% gallium, 5 wt% to 26 wt% indium and 0 wt% to 16 wt% tin. Preferred alloys are, for example, those with 68% by weight to 69% by weight of gallium, 21% by weight to 22% by weight of indium and 9.5% by weight to 10.5% by weight of tin ( Mp -19 ° C), 62% by weight of gallium, 22% by weight of indium and 16% by weight of tin (mp 10.7 ° C.) and 59.6% by weight of gallium, 26% by weight. % Indium and 14.4% by weight tin (ternary eutectic, mp 11 ° C). Low melting bismuth alloys are well known. These include, for example, LBE (eutectic bismuth-lead alloy, mp. 124 ° C), Roses metal (50 wt .-% bismuth, 28 wt .-% lead and 22 wt .-% tin, mp. 98 ° C) Orion metal (42 wt% bismuth, 42 wt% lead and 16 wt% tin, mp 108 ° C); Quick solder (52 weight percent bismuth, 32 weight percent lead and 16 weight percent tin, mp 96 ° C), d'Arcets metal (50 weight percent bismuth, 25 weight percent lead and 25 wt% tin), Wood's metal (50 wt% bismuth, 25 wt% lead, 12.5 wt% tin and 12.5 wt% cadmium, mp 71 ° C), Lipowitz metal (50 wt% bismuth, 27 wt% lead, 13 wt% tin and 10 wt% cadmium, mp 70 ° C), Harper's metal (44 wt% bismuth, 25 wt%). -% lead, 25 wt .-% tin and 6 wt .-% cadmium, mp. 75 ° C), Cerrolow 117 (44.7 wt .-% bismuth, 22.6 wt .-% lead, 19.1 wt Indium, 8.3 wt% tin, and 5.3 wt% cadmium, mp 47 ° C); Cerrolow 174 (57 wt% bismuth, 26 wt% indium, 17 wt% tin, mp 78.9 ° C), Fields metal (32 wt% bismuth, 51 wt% indium, 17 wt .-% tin, mp 62 ° C) and the Walker alloy (45 wt .-% bismuth, 28 wt .-% lead, 22 wt .-% tin and 5 wt .-% antimony).
Geeignete Natrium-Kalium-Legierungen können 40 Gew.-% bis 90 Gew.-% Kalium enthalten. Besonders geeignet ist die eutektische Legierung NaK mit 78 Gew.-% Kalium und 22 Gew.- Natrium (Schmp. -12,6°C). Suitable sodium-potassium alloys may contain from 40% to 90% by weight of potassium. Particularly suitable is the eutectic alloy NaK with 78 wt .-% potassium and 22% by weight of sodium (mp. -12.6 ° C).
Das Kühlmittel kann zusätzlich Lithium und/oder Lithiumnitrid enthalten. Falls beim Befüllen Stickstoff als Schutzgas verwendet wird, kann dieses mit dem Lithium zu Lithiumnitrid abreagieren und auf diese Weise aus dem Kühlkanal entfernt werden. The coolant may additionally contain lithium and / or lithium nitride. If nitrogen is used as a protective gas during filling, this can react with the lithium to lithium nitride and be removed in this way from the cooling channel.
Das Kühlmittel kann ferner Natriumoxide und/oder Kaliumoxide enthalten, falls während des Befüllens ggf. vorhandene trockene Luft mit dem Kühlmittel reagiert hat. The coolant may further contain sodium oxides and / or potassium oxides if, during filling, any existing dry air has reacted with the coolant.
Vorzugsweise sind vier Bohrungen vorgesehen, die zwischen einer Lauffläche und einer Nabenbohrung angeordnet sind, um eine besonders gleichmäßige Temperaturverteilung im Kolben zu erreichen. Preferably, four holes are provided, which are arranged between a running surface and a hub bore in order to achieve a particularly uniform temperature distribution in the piston.
Die Menge des im Kühlkanal bzw. in der mindestens einen Bohrung aufgenommenen Kühlmittels hängt von seiner Wärmeleitfähigkeit und dem Grad der gewünschten Temperatursteuerung ab. Vorzugsweise weist das Kühlmittel eine Füllhöhe bis zur halben Höhe des Kühlkanals auf, um einen Shaker-Effekt und damit eine besonders wirksame Wärmeverteilung im Kolben zu erzielen. The amount of coolant received in the cooling channel or in the at least one bore depends on its thermal conductivity and the degree of the desired Temperature control off. Preferably, the coolant has a filling level up to half the height of the cooling channel in order to achieve a shaker effect and thus a particularly effective heat distribution in the piston.
Die Erwärmung des Kolbens und damit seine thermische Ausdehnung kann auch mit der Menge an eingefülltem Kühlmittel gesteuert werden. Es hat sich gezeigt, dass mitunter bereits eine Füllung von 3% bis 10% des Kühlkanalvolumens mit dem Kühlmittel ausreicht, um die Funktion des erfindungsgemäß vorgesehenen Kolbens im Zusammenwirken mit dem erfindungsgemäß vorgesehenen Kurbelgehäuse sicherzustellen. The heating of the piston and thus its thermal expansion can also be controlled with the amount of filled coolant. It has been shown that sometimes even a filling of 3% to 10% of the cooling passage volume with the coolant is sufficient to ensure the function of the piston provided according to the invention in cooperation with the inventively provided crankcase.
Ausführungsbeispiele der vorliegenden Erfindung werden im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen in einer schematischen, nicht maßstabsgetreuen Darstellung: Embodiments of the present invention are explained in more detail below with reference to the accompanying drawings. In a schematic, not to scale representation:
Fig. 1 ein Ausführungsbeispiel eines Kolbens für eine erfindungsgemäße Anordnung, teilweise im Schnitt; 1 shows an embodiment of a piston for an inventive arrangement, partly in section.
Fig. 2 einen Schnitt entlang der Linie II - II in Figur 1; Figure 2 is a section along the line II - II in Figure 1.
Fig. 3 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Anordnung im Fig. 3 shows a first embodiment of an inventive arrangement in
Schnitt;  Cut;
Fig. 4 eine vergrößerte Teildarstellung aus Figur 3; Fig. 4 is an enlarged partial view of Figure 3;
Fig. 5 ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Anordnung im Schnitt. Fig. 5 shows another embodiment of an inventive arrangement in section.
Die Figuren 1 und 2 zeigen ein Ausführungsbeispiel eines Kolbens 10 für eine erfindungsgemäße Anordnung. Der Kolben 10 kann ein einteiliger oder mehrteiliger Kolben sein. Der Kolben 10 ist aus einem Werkstoff auf der Basis von Stahl hergestellt. Die Figuren 1 und 2 zeigen beispielhaft einen Kolben 10 in Form eines einteiligen Kastenkolbens. Der Kolben 10 weist einen Kolbenkopf 11 mit einem eine Verbren- nungsmulde 13 aufweisenden Kolbenboden 12, einem umlaufenden Feuersteg 14 und einer Ringpartie 15 zur Aufnahme von Kolbenringen (nicht dargestellt) auf. In Höhe der Ringpartie 15 ist ein umlaufender Kühlkanal 23 vorgesehen. Der Kolben 10 weist ferner einen Kolbenschaft 16 mit Kolbennaben 17 und Nabenbohrungen 18 zur Aufnahme eines Kolbenbolzens (nicht dargestellt) auf. Die Kolbennaben 17 sind über Nabenanbindungen 19 mit der Unterseite 11a des Kolbenkopfes 11 verbunden. Die Kolbennaben 17 sind über Laufflächen 21 , 22 miteinander verbunden (vgl. insbesondere Figur 2). Im Ausführungsbeispiel ist die Kontur der Laufflächen 21 , 22 in axialer Richtung gerade ausgebildet. Es sind aber auch gewölbt ausgebildete Konturen denkbar. Der Kolbendurchmesser zur Bestimmung des Spiels wird immer an seiner größten Stelle gemessen. Figures 1 and 2 show an embodiment of a piston 10 for an inventive arrangement. The piston 10 may be a one-piece or multi-piece piston. The piston 10 is made of a steel-based material. Figures 1 and 2 show an example of a piston 10 in the form of a one-piece box piston. The piston 10 has a piston head 11 with a combustion tion recess 13 having the piston head 12, a peripheral land 14 and a ring portion 15 for receiving piston rings (not shown). In the amount of the ring section 15, a circumferential cooling channel 23 is provided. The piston 10 further includes a piston stem 16 with piston bosses 17 and hub bores 18 for receiving a piston pin (not shown). The piston hubs 17 are connected via hub connections 19 with the underside 11 a of the piston head 11. The piston hubs 17 are connected to one another via running surfaces 21, 22 (cf., in particular, FIG. In the exemplary embodiment, the contour of the running surfaces 21, 22 is straight in the axial direction. But there are also arched contours conceivable. The piston diameter for determining the clearance is always measured at its largest point.
Der Kolbenschaft 16 weist im Ausführungsbeispiel vier Bohrungen 24a, 24b, 24c, 24d auf. Die Bohrungen 24a-d verlaufen im Ausführungsbeispiel in etwa axial und parallel zur Kolbenmittelachse M. Die Bohrungen 24a-d können aber auch geneigt unter einem Winkel zur Kolbenmittelachse M verlaufen. Die Bohrungen 24a-d sind zwischen einer Lauffläche 21 , 22 und einer Nabenbohrung 18 angeordnet. Die Bohrungen 24a-d münden in den Kühlkanal 23. The piston shaft 16 has four holes 24a, 24b, 24c, 24d in the exemplary embodiment. The bores 24a-d in the exemplary embodiment extend approximately axially and parallel to the piston center axis M. The bores 24a-d may, however, also extend inclined at an angle to the piston center axis M. The bores 24a-d are arranged between a running surface 21, 22 and a hub bore 18. The bores 24a-d open into the cooling channel 23rd
Im Ausführungsbeispiel kann der Kolbens 10 bspw. in an sich bekannter Weise gegossen sein, wobei der Kühlkanal 23 und die Bohrungen 24a-d in an sich bekannter Weise mittels eines Salzkerns eingebracht werden können. In the exemplary embodiment, the piston 10 may for example be cast in a conventional manner, wherein the cooling channel 23 and the bores 24a-d can be introduced in a conventional manner by means of a salt core.
Der Kühlkanal 23 und die Bohrungen 24a-d sind mit einem Kühlmittel gefüllt. Auf die Darstellung des Kühlmittels wurde in den Figuren 1 und 2 aus Gründen der Übersichtlichkeit verzichtet. Hierzu wird auf die Figuren 3 bis 5 verwiesen. The cooling channel 23 and the bores 24a-d are filled with a coolant. On the representation of the coolant was omitted in Figures 1 and 2 for reasons of clarity. Reference is made to FIGS. 3 to 5.
Figur 3 zeigt ein erstes Ausführungsbeispiel einer erfindungsgemäßen Anordnung 100 mit einem Kolben 110 aus einem martensitisch härtenden Stahl mit der Bezeichnung 42CrMo4 mit einem Wärmeausdehnungskoeffizienten von 12 E-6 1/K. Der Kolben 110 ist in diesem Ausführungsbeispiel in einer Zylinderlaufbuchse 130 aufgenommen, die wiederum in einem Kurbelgehäuse 140 aufgenommen ist. Die Zylinderlaufbuchse 130 kann in an sich bekannter Weise aus einem Gusseisenwerkstoff be- stehen. Das Kurbelgehäuse 140 besteht im Ausführungsbeispiel aus einer Aluminium-Silizium-Legierung vom Typ AISi9 mit einem Wärmeausdehnungskoeffizienten von 23 E-6 1/K. Figure 3 shows a first embodiment of an inventive arrangement 100 with a piston 110 made of a martensitic hardening steel with the name 42CrMo4 with a thermal expansion coefficient of 12 E-6 1 / K. The piston 110 is received in this embodiment in a cylinder liner 130, which in turn is accommodated in a crankcase 140. The cylinder liner 130 can be made of a cast iron material in a manner known per se. stand. The crankcase 140 is in the embodiment of an aluminum-silicon alloy of the type AISi9 with a thermal expansion coefficient of 23 E-6 1 / K.
Der Kolben 110 gleicht in seinem Aufbau im Wesentlichen dem Kolben 10 gemäß den Figuren 1 und 2, so dass gleiche Strukturelemente mit denselben Bezugszeichen versehen sind und hinsichtlich der Beschreibung auf die Figuren 1 und 2 verwiesen wird. Im Kühlkanal 23 und in den Bohrungen 24a-d des Kolbens 110 gemäß Figur 3 ist ferner ein Kühlmittel 127 aufgenommen. The piston 110 is substantially similar in construction to the piston 10 according to Figures 1 and 2, so that the same structural elements are provided with the same reference numerals and reference is made to the description of Figures 1 and 2. In the cooling channel 23 and in the bores 24a-d of the piston 110 according to FIG. 3, a coolant 127 is also accommodated.
Figur 4 zeigt eine vergrößerte Teildarstellung aus Figur 3, welche am Beispiel der Bohrung 24a ein Detail der Bohrungen 24a-d im unteren Bereich der Kolbennaben 17 illustriert. Zumindest eine der Bohrungen 24a-d, im Ausführungsbeispiel die Bohrung 24a, weist eine Öffnung 125 nach außen auf. Das Kühlmittel 127, nämlich ein niedrig schmelzendes Metall oder eine niedrig schmelzende Metalllegierung, wie sie weiter oben beispielhaft aufgezählt sind, wird durch die Öffnung 125 in die Bohrung 24a gefüllt. Von dort aus verteilt sich das Kühlmittel 127 im Kühlkanal 23 sowie in den weiteren Bohrungen 24b-d. Die Öffnung 125 wird anschließend dicht verschlossen, im Ausführungsbeispiel mittels einer eingepressten Stahlkugel 126. Die Öffnung 125 kann auch bspw. durch Aufschweißen eines Deckels oder Einpressen einer Kappe verschlossen werden (nicht dargestellt). Figure 4 shows an enlarged partial view of Figure 3, which illustrates a detail of the bores 24a-d in the lower region of the piston bosses 17 on the example of the bore 24a. At least one of the holes 24a-d, in the embodiment, the bore 24a, has an opening 125 to the outside. The coolant 127, namely a low-melting metal or a low-melting metal alloy, as exemplified above, is filled through the opening 125 in the bore 24 a. From there, the coolant 127 is distributed in the cooling channel 23 and in the further holes 24b-d. The opening 125 is then sealed, in the embodiment by means of a pressed-steel ball 126. The opening 125 can also be closed, for example, by welding a lid or pressing a cap (not shown).
Die Größe der Bohrungen 24a-d und die Füllmenge des Kühlmittels 127 richten sich im Wesentlichen nach der Größe des Kolbens 110 und nach der gewünschten Kühlleistung. Durchschnittlich werden etwa. 10 g bis 40 g Kühlmittel 127 pro Kolben 110 benötigt. Die Kühlleistung kann über die Menge des zugegebenen Kühlmittels 127 unter Berücksichtigung seines Wärmeleitfähigkeitskoeffizienten gesteuert werden. Bspw. ist ein Füllstand im Kühlkanal 23 geeignet, der in etwa der halben Höhe des Kühlkanals 23 entspricht. In diesem Fall kann im Betrieb der an sich bekannte Sha- ker-Effekt für eine besonders wirksame Wärmeverteilung zugunsten der Laufflächen 21 , 22 zusätzlich genutzt werden. Für Natrium als Kühlmittel 127 mit einer Temperatur im Betrieb von 220°C ergibt sich bei einer Kühlleistung von 350kW/m2 eine maximale Oberflächentemperatur des Kolbens 110 von etwa 260°C. Zusätzlich kann die Unterseite 11a des Kolbenkopfes 11 durch Anspritzen mit Kühlöl gekühlt werden. The size of the bores 24a-d and the filling amount of the coolant 127 depend essentially on the size of the piston 110 and the desired cooling capacity. On average, about. 10 g to 40 g coolant 127 per piston 110 required. The cooling capacity can be controlled by the amount of added refrigerant 127 taking into account its thermal conductivity coefficient. For example. is a level in the cooling channel 23 suitable, which corresponds approximately to half the height of the cooling channel 23. In this case, during operation, the known sha ker effect can additionally be used for a particularly effective heat distribution in favor of the running surfaces 21, 22. For sodium as coolant 127 with a temperature in operation of 220 ° C results in a cooling capacity of 350kW / m 2, a maximum surface temperature of the piston 110 of about 260 ° C. In addition, the underside 11a of the piston head 11 can be cooled by injection with cooling oil.
Zum Befüllen der Bohrung 24a wird durch die Öffnung 125 eine Lanze eingeführt und mittels Stickstoff oder mittels eines anderen geeigneten Inertgases oder mittels trockener Luft gespült. Zur Einführung des Kühlmittels 127 wird dieses unter Schutzgas (bspw. Stickstoff, Inertgas oder trockene Luft) durch die Öffnung 125 geleitet, so dass das Kühlmittel 127 in die Bohrung 24a bzw. den Kühlkanal 23 aufgenommen wird. To fill the bore 24a, a lance is inserted through the opening 125 and purged by nitrogen or other suitable inert gas or by dry air. To introduce the coolant 127, it is passed through the opening 125 under protective gas (for example nitrogen, inert gas or dry air), so that the coolant 127 is received in the bore 24a or the cooling channel 23.
Ein weiteres Verfahren zum Befüllen der Bohrung 24a zeichnet sich dadurch aus, dass nach dem Spülen mit Stickstoff, Inertgas oder trockener Luft die Bohrungen 24a-d und der Kühlkanal 23 evakuiert werden und das Kühlmittel 127 im Vakuum eingebracht wird. Damit kann sich das Kühlmittel 127 leichter im Kühlkanal 23 hin und her und in den Bohrungen 24a-d hinein und hinaus bewegen, da es nicht durch vorhandenes Schutzgas behindert wird. Another method for filling the bore 24a is characterized in that after flushing with nitrogen, inert gas or dry air, the bores 24a-d and the cooling channel 23 are evacuated and the coolant 127 is introduced in a vacuum. Thus, the coolant 127 can more easily move in and out of the cooling channel 23 and into and out of the holes 24a-d since it is not hindered by the presence of shielding gas.
Eine andere Möglichkeit, das Schutzgas aus dem Kühlkanal 23 bzw. den Bohrungen 24a-d zu entfernen, besteht darin, dass Stickstoff oder trockene Luft (d.h. im Wesentlichen eine Mischung aus Stickstoff und Sauerstoff) als Schutzgas zu verwenden und dem Kühlmittel 127 eine kleine Menge Lithium zuzusetzen, erfahrungsgemäß etwa 1,8 mg bis 2,0 mg Lithium pro Kubikzentimeter Gasraum (d.h. Volumen des Kühlkanal 23 plus Volumen der Bohrungen 24a-d). Während bspw. Natrium und Kalium mit Sauerstoff zu Oxiden reagieren, reagiert das Lithium mit Stickstoff zu Lithiumnitrid. Das Schutzgas wird somit praktisch vollständig als Feststoff im Kühlmittel 127 gebunden. Another possibility for removing the protective gas from the cooling channel 23 or the bores 24a-d is to use nitrogen or dry air (ie essentially a mixture of nitrogen and oxygen) as protective gas and a small amount of the coolant 127 Lithium, according to experience about 1.8 mg to 2.0 mg of lithium per cubic centimeter gas space (ie volume of the cooling channel 23 plus volume of the holes 24a-d). While, for example, sodium and potassium react with oxygen to form oxides, the lithium reacts with nitrogen to form lithium nitride. The protective gas is thus almost completely bound as a solid in the coolant 127.
Figur 5 zeigt ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Anordnung 200 mit einem Kolben 210 aus einem martensitisch härtenden Stahl mit der Bezeichnung 42CrMo4 mit einem Wärmeausdehnungskoeffizienten von 12 E-6 1/K. Der Kolben 210 ist in diesem Ausführungsbeispiel in einer Zylinderbohrung 241 eines Kurbelgehäuses 240 aufgenommen. Die Zylinderbohrung 241 ist in an sich bekannter Weise mit einer Beschichtung 242 auf der Basis eines Eisenwerkstoffs mit einem Wärmeausdehnungskoeffizienten von 20 E-6 1/K versehen. Die Beschichtung 242 weist typischerweise eine Dicke von 100 μητι bis 200 μητι auf. Das Kurbelgehäuse 240 besteht im Ausführungsbeispiel aus einer Aluminium-Silizium-Legierung vom Typ Al- Si9 mit einem Wärmeausdehnungskoeffizienten von 23 E-6 1/K. FIG. 5 shows a further exemplary embodiment of an arrangement 200 according to the invention with a martensitic hardening steel piston 210 with the designation 42CrMo4 with a thermal expansion coefficient of 12 E-6 1 / K. The piston 210 is received in this embodiment in a cylinder bore 241 of a crankcase 240. The cylinder bore 241 is in a conventional manner with a coating 242 based on a ferrous material with a Thermal expansion coefficient of 20 E-6 1 / K provided. The coating 242 typically has a thickness of 100 μητι to 200 μητι. The crankcase 240 is in the embodiment of an aluminum-silicon alloy of the type Al-Si9 with a thermal expansion coefficient of 23 E-6 1 / K.
Der Kolben 210 gleicht in seinem Aufbau im Wesentlichen dem Kolben 10 gemäß den Figuren 1 und 2, so dass gleiche Strukturelemente mit denselben Bezugszeichen versehen sind und hinsichtlich der Beschreibung auf die Figuren 1 und 2 verwiesen wird. Im Kühlkanal 23 und in den Bohrungen 24a-d des Kolbens 210 gemäß Figur 3 ist ferner ein Kühlmittel 227 aufgenommen. The piston 210 is substantially similar in construction to the piston 10 according to FIGS. 1 and 2, so that identical structural elements are given the same reference numerals and reference is made to FIGS. 1 and 2 for the description. In the cooling channel 23 and in the bores 24a-d of the piston 210 according to FIG. 3, a coolant 227 is also received.
Tabelle 1 zeigt beispielhaft die beiden Ausführungsbeispiele einer erfindungsgemäßen Anordnung gemäß den Figuren 3 bis 5 (Nummern 1 und 2) im Vergleich zu Ausführungsbeispielen gemäß dem Stand der Technik (Nummern 3 bis 8). Bei der erfindungsgemäßen Anordnung war der verwendete Kolben mit reinem Natrium mit einer Wärmeleitfähigkeit von 140W/(mK) gefüllt. Die Füllmenge betrug 5 % des addierten Volumens des Kühlkanals 23 und der Bohrungen 24a-d. Es ist deutlich zu erkennen, dass das jeweilige Kolbenspiel, also die Veränderung des in allen Fällen gleichen Einbauspiels von 50 μητι sowohl bei niedrigen Temperaturen als auch bei höchsten Belastungen bei der erfindungsgemäßen Anordnung am geringsten ist. Table 1 shows by way of example the two embodiments of an inventive arrangement according to Figures 3 to 5 (numbers 1 and 2) compared to embodiments of the prior art (numbers 3 to 8). In the arrangement according to the invention, the piston used was filled with pure sodium with a thermal conductivity of 140W / (mK). The filling amount was 5% of the added volume of the cooling channel 23 and the bores 24a-d. It can be clearly seen that the respective piston clearance, ie the change of the same in all cases installation clearance of 50 μητι both at low temperatures and at the highest loads in the inventive arrangement is the lowest.
Tabelle 1 Table 1

Claims

Patentansprüche claims
1. Anordnung (100, 200) aus einem Kolben (10, 110, 210) aus einem Werkstoff auf der Basis von Stahl und einem Kurbelgehäuse (140, 240) für einen Verbrennungsmotor aus einem Werkstoff auf der Basis von Aluminium, wobei der Kolben (10, 110, 210) einen Kolbenkopf (11) und einen Kolbenschaft (16) aufweist, wobei der Kolbenkopf (11) eine umlaufende Ringpartie (15) sowie im Bereich der Ringpartie (15) einen umlaufenden Kühlkanal (23) aufweist, wobei der Kolbenschaft (16) mit Nabenbohrungen (18) versehene Kolbennaben (17) aufweist, die über Nabenanbindungen (19) an der Unterseite (11 a) des Kolbenkopfes (11) angeordnet sind, wobei die Kolbennaben (17) über Laufflächen (21 , 22) miteinander verbunden sind, dadurch gekennzeichnet, dass im Kolben (10, 110, 210) mindestens eine nach außen verschlossene Bohrung (24a, 24b, 24c, 24d) vorgesehen ist, die zwischen einer Lauffläche (21 , 22) und einer Nabenbohrung (18) angeordnet ist, dass die mindestens eine Bohrung (24a, 24b, 24c, 24d) in den Kühlkanal (23) mündet, und dass der Kühlkanal (23) und die mindestens eine Bohrung (24a, 24b, 24c, 24d) ein Kühlmittel (127, 227) in Form eines niedrig schmelzenden Metalls oder einer niedrig schmelzenden Metalllegierung enthalten. An assembly (100, 200) of a piston (10, 110, 210) made of a steel-based material and a crankcase (140, 240) for an internal combustion engine made of a material based on aluminum, wherein the piston ( 10, 110, 210) has a piston head (11) and a piston shaft (16), the piston head (11) having a circumferential annular portion (15) and in the region of the annular portion (15) a circumferential cooling channel (23), wherein the piston shaft (16) with hub bores (18) provided with piston hubs (17) which are arranged via hub connections (19) on the underside (11 a) of the piston head (11), wherein the piston hubs (17) via running surfaces (21, 22) with each other are connected, characterized in that in the piston (10, 110, 210) at least one outwardly closed bore (24a, 24b, 24c, 24d) is provided, which arranged between a running surface (21, 22) and a hub bore (18) is that the at least one bore (24a, 24b, 24c, 24d) in the Cooling channel (23) opens, and that the cooling channel (23) and the at least one bore (24 a, 24 b, 24 c, 24 d) containing a coolant (127, 227) in the form of a low-melting metal or a low-melting metal alloy.
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Wärmeausdehnungskoeffizient WKO des Werkstoffs des Kolbens (10, 110, 210) und der Wärmeausdehnungskoeffizient WKu des Werkstoffs des Kurbelgehäuses (140, 240) ein Verhältnis von WKo / WKu = 0,4 - 0,7 bilden. 2. Arrangement according to claim 1, characterized in that the coefficient of thermal expansion WK O of the material of the piston (10, 110, 210) and the thermal expansion coefficient WK u of the material of the crankcase (140, 240) has a ratio of W Ko / W Ku = 0 , 4 - 0.7 form.
3. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Kolben (10, 1 10, 210) aus einem Werkstoff besteht, der ausgewählt ist aus der Gruppe umfassend ausscheidungshärtende ferritisch-perlitische Stähle sowie martensitisch härtende Stähle mit Kohlenstoffgehalten zwischen 0,3 und 0,8 Gew.-%. 3. Arrangement according to claim 1, characterized in that the piston (10, 1 10, 210) consists of a material which is selected from the group consisting of precipitation-hardening ferritic-pearlitic steels and martensitic hardening steels with carbon contents between 0.3 and 0 , 8% by weight.
4. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kurbelgehäuse (140, 240) aus einem Aluminium-Silizium-Gusswerkstoff besteht. 4. Arrangement according to claim 1, characterized in that the crankcase (140, 240) consists of an aluminum-silicon casting material.
5. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kurbelgehäuse (140, 240) aus einem Werkstoff besteht, der ausgewählt ist aus der Gruppe umfassend untereutektische Aluminium-Silizium-Legierungen (AISi7 bis AISi9) sowie Aluminium-Silizium-Legierungen mit einem Siliziumgehalt bis zu AISM7. 5. Arrangement according to claim 1, characterized in that the crankcase (140, 240) consists of a material which is selected from the group comprising hypoeutectic aluminum-silicon alloys (AISi7 to AISi9) and aluminum-silicon alloys having a silicon content up to AISM7.
6. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kurbelgehäuse (140) mit mindestens einer Zylinderlaufbuchs (130) aus einem Gusseisenwerkstoff versehen ist. 6. Arrangement according to claim 1, characterized in that the crankcase (140) is provided with at least one cylinder liner (130) made of a cast iron material.
7. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kurbelgehäuse (240) mindestens eine Zylinderbohrung (241) aufweist, die mit einer Be- schichtung (242) auf der Basis eines Eisenwerkstoffs versehen ist. 7. Arrangement according to claim 1, characterized in that the crankcase (240) has at least one cylinder bore (241) which is provided with a coating (242) on the basis of a ferrous material.
8. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Kolben (10, 110, 210) als Kühlmittel (27, 127, 227) Natrium oder Kalium enthält. 8. Arrangement according to claim 1, characterized in that the piston (10, 110, 210) as coolant (27, 127, 227) contains sodium or potassium.
9. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Kolben (10, 110, 210) als Kühlmittel (127, 227) eine schmelzende Metalllegierung aus der Gruppe umfassend Galinstan®-Legierungen, niedrig schmelzende Bismut- Legierungen und Natrium-Kalium-Legierungen enthält. 9. Arrangement according to claim 1, characterized in that the piston (10, 110, 210) as coolant (127, 227) a melting metal alloy from the group comprising Galinstan® alloys, low melting bismuth alloys and sodium-potassium alloys contains.
10. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kühlmittel (127, 227) im Kolben (10, 110, 210) Lithium und/oder Lithiumnitrid enthält. 10. Arrangement according to claim 1, characterized in that the coolant (127, 227) in the piston (10, 110, 210) contains lithium and / or lithium nitride.
11. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass das Kühlmittel (127, 227) im Kolben (10, 110, 210) Natriumoxide und/oder Kaliumoxide enthält. 11. Arrangement according to claim 1, characterized in that the coolant (127, 227) in the piston (10, 110, 210) contains sodium oxides and / or potassium oxides.
12. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Kolben (10, 110, 210) eine Füllhöhe des Kühlmittels (127, 227) bis zur halben Höhe des Kühlkanals (23) aufweist. 12. Arrangement according to claim 1, characterized in that the piston (10, 110, 210) has a filling level of the coolant (127, 227) to half the height of the cooling channel (23).
13. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Kolben (10, 110, 210) eine Füllmenge des Kühlmittels (127, 227) von 3% bis 10% des Volumens des Kühlkanals (23) aufweist. 13. Arrangement according to claim 1, characterized in that the piston (10, 110, 210) has a filling amount of the coolant (127, 227) of 3% to 10% of the volume of the cooling channel (23).
14. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Kolben (10, 110, 210) vier Bohrungen (24a, 24b, 24c, 24d) aufweist, die zwischen einer Lauffläche (21 , 22) und einer Nabenbohrung (18) angeordnet sind. 14. Arrangement according to claim 1, characterized in that the piston (10, 110, 210) has four bores (24a, 24b, 24c, 24d) which are arranged between a running surface (21, 22) and a hub bore (18) ,
EP13744418.8A 2012-05-05 2013-05-03 Piston and crankcase assembly for an internal combustion engine Not-in-force EP2864617B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012009030A DE102012009030A1 (en) 2012-05-05 2012-05-05 Arrangement of a piston and a crankcase for an internal combustion engine
PCT/DE2013/000238 WO2013167102A2 (en) 2012-05-05 2013-05-03 Piston and crankcase assembly for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2864617A2 true EP2864617A2 (en) 2015-04-29
EP2864617B1 EP2864617B1 (en) 2017-01-04

Family

ID=48914020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13744418.8A Not-in-force EP2864617B1 (en) 2012-05-05 2013-05-03 Piston and crankcase assembly for an internal combustion engine

Country Status (4)

Country Link
EP (1) EP2864617B1 (en)
JP (1) JP6246187B2 (en)
DE (1) DE102012009030A1 (en)
WO (1) WO2013167102A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202936B2 (en) 2015-04-09 2019-02-12 Tenneco Inc. Zero oil cooled (ZOC) piston incorporating heat pipe technology
US11022065B2 (en) 2015-12-03 2021-06-01 Tenneco Inc. Piston with sealed cooling gallery containing a thermally conductive composition

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1841796A (en) * 1929-02-04 1932-01-19 Packard Motor Car Co Internal combustion engine
US1953109A (en) * 1931-11-07 1934-04-03 Sam D Heron Piston
GB517713A (en) * 1939-03-17 1940-02-07 Arthur Villeneuve Nicolle Improvements in or relating to the cylinders and pistons of internal combustion engines
DE726685C (en) * 1939-09-01 1942-10-19 Versuchsanstalt Fuer Luftfahrt Pistons for internal combustion engines
DE762820C (en) * 1943-04-25 1952-11-04 Richard Holzaepfel Fa Process for the manufacture of flasks with a temperature-compensating filling
JPS5266126A (en) * 1975-12-01 1977-06-01 Kyoritsu Kk Piston for engine
DE2613059A1 (en) * 1975-12-01 1977-06-08 Kioritz Corp PISTONS FOR COMBUSTION ENGINES
DE3205173A1 (en) * 1982-02-13 1983-08-25 Karl Schmidt Gmbh, 7107 Neckarsulm PISTON FOR COMBUSTION ENGINES USED WITH HEAVY OIL
DE4024381C2 (en) * 1990-08-01 1999-01-28 Mahle Gmbh Pistons for internal combustion engines with forged areas made of steel
JPH04265451A (en) * 1991-02-19 1992-09-21 Suzuki Motor Corp Two cycle engine piston
EP0704613A1 (en) * 1994-09-28 1996-04-03 KS Aluminium Technologie Aktiengesellschaft Compositely cast cylinder or cylinderblock
DE10244513A1 (en) * 2002-09-25 2004-04-08 Mahle Gmbh Multi-part cooled piston for an internal combustion engine and method for its production
KR101087562B1 (en) * 2003-03-31 2011-11-28 히노 지도샤 가부시키가이샤 Piston for internal combustion engine and producing method thereof
KR20050039320A (en) * 2003-10-24 2005-04-29 현대자동차주식회사 Piston for internal combustion engine
JP4381341B2 (en) * 2005-04-21 2009-12-09 三菱重工業株式会社 Piston cooling system
JP4823750B2 (en) * 2006-04-19 2011-11-24 パナソニック株式会社 Method for producing gas-adsorbing substance
FR2901577A3 (en) * 2006-05-29 2007-11-30 Renault Sas Internal combustion engine`s piston, has transverse wall with internal cavity containing refrigerant fluid, and including annular part that extends skirt continuously on assembly of its circumference, in plan normal to translation axis
DE102008038325A1 (en) * 2007-12-20 2009-06-25 Mahle International Gmbh Method for attaching a ring element on a piston for an internal combustion engine
DE102007061601A1 (en) * 2007-12-20 2009-06-25 Mahle International Gmbh Piston for an internal combustion engine and method for its production
DE102009018981A1 (en) 2009-04-25 2010-10-28 Daimler Ag Piston for internal combustion engine, has hub for bearing gudgeon pin and piston skirt and spaced from piston skirt by recesses of piston skirt, where piston skirt is formed by two circular cylinder segments
DE102009048124A1 (en) * 2009-10-02 2011-04-07 Daimler Ag Steel pistons for internal combustion engines
DE102009049323B4 (en) * 2009-10-14 2011-11-10 Bayerische Motoren Werke Aktiengesellschaft Internal combustion engine with a crankcase and method for producing a crankcase
JP2010133424A (en) * 2010-02-22 2010-06-17 Toyota Motor Corp Method of manufacturing cylinder liner
DE102010045221B4 (en) * 2010-09-13 2017-10-05 Daimler Ag Steel pistons for internal combustion engines

Also Published As

Publication number Publication date
DE102012009030A1 (en) 2013-11-07
JP2015522738A (en) 2015-08-06
JP6246187B2 (en) 2017-12-13
WO2013167102A3 (en) 2014-01-16
WO2013167102A2 (en) 2013-11-14
EP2864617B1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
EP2758651B1 (en) Piston for an internal combustion engine and method for producing same
EP2652302B1 (en) Piston for an internal combustion engine and method for the production thereof
EP2864618B1 (en) Piston for an internal combustion engine
DE3134768C2 (en) Piston-cylinder unit for internal combustion piston machines, in particular for gasoline and diesel engines
WO2013029592A1 (en) Piston for an internal combustion engine
EP2920448A2 (en) Piston for an internal combustion engine
EP0106935B1 (en) Piston rod connection for an internal-combustion engine, e.g. a diesel engine
DE2253961A1 (en) PISTON ASSEMBLY
EP2542771B1 (en) Piston for an internal combustion engine
DE102009048124A1 (en) Steel pistons for internal combustion engines
WO2006056315A1 (en) Piston with a lightweight construction that is subjected to high thermal stress
DE2651727A1 (en) CROSS-HEAD PISTON FOR COMBUSTION MACHINERY
DE102012014200A1 (en) Piston for internal combustion engine, has cavity that is made of low melting metal or metal alloy and is provided adjacent to combustion bowl, for receiving coolant in circulating cooling passage of piston head
DE4010805A1 (en) REINFORCED PISTON
EP2864617B1 (en) Piston and crankcase assembly for an internal combustion engine
DE102012008690B4 (en) Arrangement of a piston and a piston pin for a passenger car diesel engine
WO2013131937A1 (en) Cast light metal piston, in particular an aluminium piston
DE102005022469B4 (en) Internal combustion engine with a cylinder crankcase
DE102012022906A1 (en) Piston for internal combustion engine, has piston head, which has circumferential ring section with piston rings, where running surfaces of piston rings are partially provided with coating based on chromium nitride
DE1476049A1 (en) piston
DE102010039208B4 (en) Piston ring with non-metallic core
DE102014010156A1 (en) Arrangement of a piston in a cylinder of a reciprocating internal combustion engine and piston for a reciprocating internal combustion engine
DE102012017218A1 (en) Piston for internal combustion engine, comprises piston head with piston top and annular portion, where outer wall of cavity adjacent to annular portion is formed inclined partially to piston central axis in direction of piston top
WO2003037551A1 (en) Cylinder crankcase having a cylinder sleeve, and casting tool
DE2158646A1 (en) LIGHT ALLOY PISTONS, IN PARTICULAR FOR DIESEL ENGINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160304

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160929

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 859476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005989

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170404

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170504

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005989

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

26N No opposition filed

Effective date: 20171005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 859476

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013005989

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201