JP4823750B2 - Method for producing gas-adsorbing substance - Google Patents

Method for producing gas-adsorbing substance Download PDF

Info

Publication number
JP4823750B2
JP4823750B2 JP2006115764A JP2006115764A JP4823750B2 JP 4823750 B2 JP4823750 B2 JP 4823750B2 JP 2006115764 A JP2006115764 A JP 2006115764A JP 2006115764 A JP2006115764 A JP 2006115764A JP 4823750 B2 JP4823750 B2 JP 4823750B2
Authority
JP
Japan
Prior art keywords
nitrogen
gas
adsorption
adsorbing substance
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006115764A
Other languages
Japanese (ja)
Other versions
JP2007283257A (en
Inventor
千恵 平井
一登 上門
明子 湯淺
英之 奥村
慶一 石原
英嗣 山末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Kyoto University
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Kyoto University
Priority to JP2006115764A priority Critical patent/JP4823750B2/en
Publication of JP2007283257A publication Critical patent/JP2007283257A/en
Application granted granted Critical
Publication of JP4823750B2 publication Critical patent/JP4823750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas adsorbing substance having a high gas adsorbing activity, particularly high nitrogen adsorbing activity, and a method for producing the gas adsorbing substance. <P>SOLUTION: The gas adsorbing substance includes at least a nitride and Li, and adsorbs at least nitrogen at 25&deg;C at normal or reduced pressures. The method for producing the gas adsorbing substance includes at least Li and a process of nitriding a part of the Li. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、少なくとも窒素を吸着する気体吸着性物質の製造方法に関するものである。

The present invention relates to a manufacturing method of the gas adsorbing substance that adsorbs at least nitrogen.

気体吸着性物質は、真空保持、希ガス中の微量ガスの除去、蛍光灯中のガスの除去等様々な分野で用いられている。   Gas adsorbing substances are used in various fields such as vacuum holding, removal of trace gases in rare gases, and removal of gases in fluorescent lamps.

半導体製造工業で用いられている希ガスは、希ガス中の窒素、炭化水素、一酸化炭素、二酸化炭素、酸素、水素、水蒸気などを除去し、高純度に精製することが望まれている。特に、その中でも安定な分子である窒素を除去することは困難である。   A rare gas used in the semiconductor manufacturing industry is desired to be purified to a high purity by removing nitrogen, hydrocarbon, carbon monoxide, carbon dioxide, oxygen, hydrogen, water vapor and the like in the rare gas. In particular, it is difficult to remove nitrogen, which is a stable molecule.

希ガス中の窒素、あるいは炭化水素などを取り除く従来の方法としては、例えば、ジルコニウム、バナジウム及びタングステンからなる三元合金のゲッター材と希ガスを加熱下に接触させる方法がある(例えば、特許文献1参照)。   As a conventional method for removing nitrogen or hydrocarbons in a rare gas, for example, there is a method in which a getter material of a ternary alloy composed of zirconium, vanadium and tungsten is contacted with a rare gas under heating (for example, Patent Documents). 1).

これは、合金を100〜600℃の温度で希ガスと接触させることにより、希ガスから窒素等の不純物を除去するものである。   This is to remove impurities such as nitrogen from the rare gas by bringing the alloy into contact with the rare gas at a temperature of 100 to 600 ° C.

従来の別の方法としては、ジルコニウム、鉄、マンガン、イットリウム、ランタンと、希土類元素の1種の元素を含み、窒素に対して高ガス吸着効率を備える無蒸発ゲッター合金を用いる方法がある(例えば、特許文献2参照)。   As another conventional method, there is a method using a non-evaporable getter alloy containing one element of a rare earth element such as zirconium, iron, manganese, yttrium, and lanthanum and having high gas adsorption efficiency with respect to nitrogen (for example, , See Patent Document 2).

これは、合金を300〜500℃の間の温度で10〜20分間活性化処理を行うことにより、水素、炭化水素、窒素等の吸着に対して室温でも作用することができるものである。   This can act on adsorption | suction of hydrogen, a hydrocarbon, nitrogen, etc. also at room temperature by performing an activation process for 10 to 20 minutes at the temperature between 300-500 degreeC.

従来のさらに別の方法としては、低温で窒素を吸着する性質があるBa−Li合金を用いる方法がある(例えば、特許文献3参照)。   As another conventional method, there is a method using a Ba-Li alloy having a property of adsorbing nitrogen at a low temperature (see, for example, Patent Document 3).

これは、断熱ジャケット内に真空を維持するためのデバイスであり、Ba−Li合金からなり、室温においても窒素等のガスに対して反応性を示す。   This is a device for maintaining a vacuum in a heat insulation jacket, which is made of a Ba-Li alloy and is reactive to gases such as nitrogen even at room temperature.

また、酸素吸収剤として鉄粉、酸化促進物質、フィラー、水分供与体からなるものがある(例えば、特許文献4参照)。   Moreover, there exist some which consist of iron powder, an oxidation promoter, a filler, and a water | moisture-content donor as an oxygen absorber (for example, refer patent document 4).

これは、食品、医薬品等の品質保持用途に利用される酸素吸収剤であり、酸素吸収には水分が必要である。
特開平6−135707号公報 特表2003−535218号公報 特許2627703号公報 特許3252866号公報
This is an oxygen absorbent that is used for maintaining the quality of foods, pharmaceuticals, etc., and moisture is required for oxygen absorption.
JP-A-6-135707 Special table 2003-535218 gazette Japanese Patent No. 2627703 Japanese Patent No. 3252866

しかしながら、特許文献1に記載の上記従来の技術では、300〜500℃で加熱し続けることが必要であり、高温での加熱であるためエネルギーコストが大きく環境にも悪く、また、低温でのガス吸着を望む場合は使用できない。   However, in the above-described conventional technique described in Patent Document 1, it is necessary to continue heating at 300 to 500 ° C., and since heating is performed at a high temperature, the energy cost is large and the environment is bad. Cannot be used if adsorption is desired.

特許文献2に記載の上記従来の技術では、300〜500℃の前処理が必要であり、高温での前処理が困難な場合のガス除去、例えばプラスチック袋中のガスを常温下で除去することは困難である。   The conventional technique described in Patent Document 2 requires pretreatment at 300 to 500 ° C. and gas removal when pretreatment at high temperature is difficult, for example, removing gas in a plastic bag at room temperature It is difficult.

特許文献3に記載の上記従来の技術では、活性化のための熱処理を必要とせず常温で窒素吸着可能であるが、さらなる高活性化、大容量化が望まれていると共に、Baは劇物指定物質であるため、工業的に使用するには環境や人体に対して問題のないものが望まれている。
また、作製のため合金を溶融する必要があり、製造にかかるエネルギーが大きくなる。
The conventional technique described in Patent Document 3 can adsorb nitrogen at room temperature without requiring a heat treatment for activation, but further higher activation and larger capacity are desired, and Ba is a deleterious substance. Since it is a designated substance, it is desired to use it industrially without problems with respect to the environment and the human body.
In addition, it is necessary to melt the alloy for production, which increases the energy required for production.

特許文献4に記載の上記従来の技術では、酸素吸収に水分が必要であり、微量の水分も嫌う雰囲気では使用することができない。   In the conventional technique described in Patent Document 4, moisture is required for oxygen absorption, and it cannot be used in an atmosphere where a minute amount of moisture is disliked.

本発明は、上記従来の課題を解決するもので、気体吸着活性が高く、特に窒素に対する吸着性能が高い気体吸着性物質の製造方法を提供することを目的とする。

The present invention is intended to solve the conventional problems described above, high gas adsorption activity, and to provide a manufacturing method of high adsorption performance gas adsorbing substance, especially for nitrogen.

上記目的を達成するために、本発明は、Li(リチウム)を含み25℃常圧もしくは減圧下で少なくとも窒素を吸着可能な気体吸着性物質の製造方法であって、不活性気体雰囲気中で、Liと硬度が3以上の酸化物からなる固体物質を、1重量部のLiに対して前記固体物質が2〜150重量部となる割合で、メカニカルミリングにより混合、破砕した後、Liに対して1〜20mol%が窒化するまで窒素雰囲気中の窒素を吸着させて、吸着材として使用する前にLiに一部窒化リチウムを生成させておくことを特徴とする。

In order to achieve the above object, the present invention provides a method for producing a gas adsorbing substance containing Li (lithium) and capable of adsorbing at least nitrogen under normal pressure or reduced pressure at 25 ° C. , in an inert gas atmosphere, After mixing and crushing a solid substance composed of an oxide having a hardness of Li and hardness of 3 or more by mechanical milling at a ratio of 2 to 150 parts by weight of the solid substance with respect to 1 part by weight of Li, Nitrogen in a nitrogen atmosphere is adsorbed until 1 to 20 mol% is nitrided, and a part of lithium nitride is generated in Li before using as an adsorbent .

Liは通常、常温で窒素を吸着する際、窒素の吸収開始までに時間が必要であること、あるいは低圧下では窒素吸収が起こり難いこと等、窒素吸着に対するコントロールは困難であった。   In general, when Li adsorbs nitrogen at room temperature, it is difficult to control nitrogen adsorption because it takes time to start absorption of nitrogen, or nitrogen absorption hardly occurs under low pressure.

しかしながら、Liを先に一部窒化させておくことにより、実際に吸着材として使用する際、Liの窒素に対する活性を向上させることが可能となる。すなわち、先にLiに一部窒化リチウムの核を生成させておくことにより、実際に吸着材として機能するときは、前記窒化リチウムが反応核となり窒素に対する吸着活性が高まる。   However, by partially nitriding Li first, it is possible to improve the activity of Li against nitrogen when actually used as an adsorbent. That is, by partially generating lithium nitride nuclei in Li first, when actually functioning as an adsorbent, the lithium nitride becomes a reaction nucleus and the adsorption activity for nitrogen is increased.

これにより、吸着速度のさらなる向上、あるいはより低圧領域での窒素吸着量向上といったことが可能となる。   As a result, the adsorption rate can be further improved, or the amount of nitrogen adsorption in a lower pressure region can be improved.

また、窒化によりLi表面に一部ひび割れが起こり、実際に吸着材として機能するときに内部まで速やかに気体を吸着することが可能となり、気体に対する吸着活性が高まることも考えられるので、窒素以外の気体についても吸着活性が向上すると考えられる。   In addition, some cracks occur on the Li surface due to nitriding, and when it actually functions as an adsorbent, it is possible to quickly adsorb gas to the inside, and it is also possible that the adsorption activity against gas is increased. It is thought that the adsorption activity is also improved for gases.

メカニカルミリングすることにより、Liを磨砕することができ、Liの比表面積を増大する。従って、リチウムの窒化を行う際、より均一に窒化が起こり、気体に対する吸着活性が高まる。   By mechanical milling, Li can be ground and the specific surface area of Li is increased. Therefore, when performing nitridation of lithium, nitridation occurs more uniformly and the adsorption activity for gas is enhanced.

また、メカニカルミリングすることにより、機械的エネルギーがLiや固体物質に蓄積され、出発点で有するエネルギーよりもメカニカルミリング後に有するエネルギーの方が増大し、さらに高活性化することが考えられる。   Moreover, it is considered that mechanical milling accumulates mechanical energy in Li or a solid substance, so that the energy possessed after mechanical milling is greater than the energy possessed at the starting point, resulting in higher activation.

本発明の気体吸着性物質の製造方法は、溶融等が必要なく熱エネルギーが必要でないため、環境的あるいはコスト的にも優れている。   The method for producing a gas adsorbing substance of the present invention is superior in terms of environment and cost because it does not require melting or the like and does not require heat energy.

ここで、Liと組み合わせる固体物質として酸化物を用いると、酸化物表面の酸素が擬似的にLiと仮結合を組むため、例えば破砕、混合等を行う際、酸化物の破砕と共に、Liも有効に粉砕され、Liの活性化が促進されると考える。   Here, when an oxide is used as a solid substance to be combined with Li, oxygen on the oxide surface forms a temporary bond with Li in a pseudo manner. For example, when crushing or mixing is performed, Li is also effective along with crushing of the oxide. It is considered that the activation of Li is promoted.

Liの少なくとも一部が、粒径1mm以下になっている場合は、Liの比表面積を増大し、気体に対する吸着活性が高まる。   When at least a part of Li has a particle diameter of 1 mm or less, the specific surface area of Li is increased and the adsorption activity for gas is increased.

本発明によれば、特に窒素に対する活性が高い気体吸着性物質を得ることができる。   According to the present invention, it is possible to obtain a gas adsorbing substance having particularly high activity against nitrogen.

発明の気体吸着性物質の製造方法の発明は、Liを含み25℃常圧もしくは減圧下で少なくとも窒素を吸着可能な気体吸着性物質の製造方法であって、不活性気体雰囲気中で、Liと硬度が3以上の酸化物からなる固体物質を、1重量部のLiに対して前記固体物質が2〜150重量部となる割合で、メカニカルミリングにより混合、破砕した後、Liに対して1〜20mol%が窒化するまで窒素雰囲気中の窒素を吸着させて、吸着材として使用する前にLiに一部窒化リチウムを生成させておくことを特徴とする。

Invention of the method for manufacturing the gas adsorbing material of the present invention is a manufacturing method of adsorbable gas adsorbing substance at least nitrogen at 25 ° C. under normal pressure or under reduced pressure comprises Li, in an inert gas atmosphere, Li A solid substance composed of an oxide having a hardness of 3 or more is mixed and crushed by mechanical milling at a ratio of 2 to 150 parts by weight of the solid substance with respect to 1 part by weight of Li. Nitrogen in a nitrogen atmosphere is adsorbed until ˜20 mol% is nitrided, and a part of lithium nitride is generated in Li before using as an adsorbent .

ここで、Liの一部を窒化させる方法としては、製造時にLiあるいはLiを含む気体吸着性物質を、窒素、あるいは空気、あるいは一部窒素を含む気体(特にアルゴン等の不活性ガス)と接触させるか、あるいは窒化物とLiを混合させて窒化物の窒素をLiに結合させる等の方法があるが、Liの一部が窒化する方法であれば特に指定するものではない。   Here, as a method for nitriding a part of Li, a gas adsorbing substance containing Li or Li is brought into contact with nitrogen, air, or a gas containing nitrogen (particularly an inert gas such as argon) at the time of production. However, there is no particular designation as long as it is a method in which a part of Li is nitrided.

本発明においてLiの一部とは、好ましくは50mol%以下であり、さらに好ましくは30mol%以下、さらに好ましくは10mol%以下である。最初に吸着させる量が多くなると、実際の使用時に気体を吸着する量が減少する。   In the present invention, the part of Li is preferably 50 mol% or less, more preferably 30 mol% or less, and still more preferably 10 mol% or less. When the amount to be adsorbed first increases, the amount of gas adsorbed during actual use decreases.

なお、Liに窒素を接触させる際は、Liの融点以下の温度で行うことが好ましい。   In addition, when contacting nitrogen with Li, it is preferable to carry out at the temperature below the melting point of Li.

Liの一部が窒化されているか否かは、例えばX線回折等により確認できるが、確認方法として特に指定するものではない。   Whether or not a part of Li is nitrided can be confirmed by, for example, X-ray diffraction or the like, but is not particularly specified as a confirmation method.

製造の際に、その他の成分を添加しても構わない。   Other components may be added during the production.

本発明において吸着とは、表面への吸着の他に内部への吸収、あるいは収着も含むものとする。   In the present invention, the term “adsorption” includes absorption to the inside or sorption in addition to adsorption to the surface.

本発明における気体吸着性物質は、少なくとも窒素を吸着可能とするものであるが、窒素以外の気体、例えば、酸素、空気、水素、水蒸気、一酸化炭素、二酸化炭素、窒素酸化物、硫黄酸化物、炭化水素を吸着するものであってもよく、窒素以外に吸着する気体については、特に指定するものではない。   The gas adsorbing substance in the present invention is capable of adsorbing at least nitrogen, but gas other than nitrogen, for example, oxygen, air, hydrogen, water vapor, carbon monoxide, carbon dioxide, nitrogen oxide, sulfur oxide Further, hydrocarbons may be adsorbed, and the gas adsorbed other than nitrogen is not particularly specified.

本発明における気体吸着性物質は、少なくとも25℃常圧もしくは減圧下で吸着可能であればよく、常温あるいはLiの融点以下の雰囲気にて、常圧以下、特に低圧領域での吸着が可能である。また、加圧下での吸着も当然ながら可能である。   The gas-adsorbing substance in the present invention is only required to be able to adsorb at least at 25 ° C. normal pressure or reduced pressure, and can be adsorbed at normal temperature or lower, particularly in a low pressure region, at room temperature or in an atmosphere below Li melting point. . Of course, adsorption under pressure is also possible.

固体物質は、硬度3以上のもの、さらに好ましくは5以上のものであり、また、好ましいものはLiO、Al、MgO、CaO、SiO、TiOまたはそれらの混合物等の酸化物である。 The solid material has a hardness of 3 or more, more preferably 5 or more, and preferred is an oxidation of Li 2 O, Al 2 O 3 , MgO, CaO, SiO 2 , TiO 2 or a mixture thereof. It is a thing.

固体物質は、1重量部のLiに対し、2〜150重量部程度使用するようにする。その量が多すぎると、Liが減少し気体吸着量が小さくなり、その量が少なすぎると、延性の高いLiが多くなることにより、固体物質と均一に混合しにくくなる。   The solid substance is used in an amount of about 2 to 150 parts by weight with respect to 1 part by weight of Li. If the amount is too large, the amount of Li decreases and the gas adsorption amount decreases, and if the amount is too small, the highly ductile Li increases, which makes it difficult to uniformly mix with the solid substance.

固体物質、Li、窒化物の確認方法としては、例えばX線回折にて、固体物質、Li、窒化物のピークが確認できる等の方法で行ってもよいが、特に指定するものではない。   As a method for confirming the solid substance, Li, and nitride, for example, a method for confirming the peak of the solid substance, Li, and nitride by X-ray diffraction may be used, but it is not particularly specified.

本発明においてメカニカルミリングによる混合とは、機械的に混合することを指し、特に指定するものではない。また、高活性な気体吸着性物質を作製するため、不活性気体中、例えばAr、He等の雰囲気中、あるいは真空下でメカニカルミリングを行うことが好ましい。   In the present invention, mixing by mechanical milling means mechanical mixing and is not particularly specified. In order to produce a highly active gas adsorbing substance, it is preferable to perform mechanical milling in an inert gas, for example, in an atmosphere of Ar, He, or the like, or in a vacuum.

メカニカルミリングを行う際、別にCを添加したり、冷却下で行ったり、アルコール等を少量滴下したりして、容器への付着を防いだりしても構わない。   When performing mechanical milling, it is possible to add C separately, perform under cooling, or drop a small amount of alcohol or the like to prevent adhesion to the container.

本発明により、少なくとも窒化物と、酸化物と、Liとを含み、かつ25℃常圧もしくは減圧下で少なくとも窒素を吸着可能な気体吸着性物質が製造される

According to the present invention, a gas adsorbing substance containing at least a nitride, an oxide, and Li and capable of adsorbing at least nitrogen at 25 ° C. normal pressure or reduced pressure is produced .

本発明において窒化物とは、例えば、窒化リチウム、窒化ケイ素、窒化アルミニウム、MgLiN等である。窒化物としてLiの窒化物を含むことが好ましく、該Liの窒化物は、Liの一部を窒化させるプロセス由来のものがより好ましい。

In the present invention, the nitride is, for example, lithium nitride, silicon nitride, aluminum nitride, MgLiN, or the like. Preferably comprises a nitride of Li as a nitride, a nitride of the Li, the is more preferable from process of nitriding a part of the L i.

窒化物は、Liに対して0.2〜40mol%、好ましくは1〜20mol%程度使用するようにする。その量が多すぎるとLiが少なくなることから気体吸着量が減少し、その量が少なすぎると吸着活性増大効果が少なくなる。   The nitride is used in an amount of 0.2 to 40 mol%, preferably about 1 to 20 mol% with respect to Li. If the amount is too large, the amount of gas adsorption decreases because the amount of Li decreases, and if the amount is too small, the effect of increasing the adsorption activity decreases.

気体吸着性物質の使用形態としては、粉体、圧縮成型、ペレット化、シート状、薄膜状、あるいは別容器への収容、他物質への蒸着といった使用方法をあげられるが、特に指定するものではない。   Examples of usage forms of gas-adsorbing substances include powders, compression molding, pelletization, sheet-like, thin-film, or use in separate containers, and vapor deposition on other substances. Absent.

気体吸着性物質は、Li(一部が窒化されたLiを含む)の少なくとも一部が粒径1mm以下であることが好ましい。   In the gas adsorbing substance, it is preferable that at least a part of Li (including partially nitrided Li) has a particle diameter of 1 mm or less.

本発明において粒径1mm以下とは、少なくとも一部の粒径が1mm以下となっていればよく、一般的な確認方法で確認することが可能である。また、気体吸着前の粒径であっても、吸着後の粒径であっても、特に指定するものではない。   In the present invention, the particle diameter of 1 mm or less is sufficient if at least a part of the particle diameter is 1 mm or less, and can be confirmed by a general confirmation method. Further, it is not particularly specified whether the particle diameter is before gas adsorption or the particle diameter after adsorption.

以下、本発明の実施の形態について説明する。なお、この実施の形態によって本発明が限定されるものではない。   Embodiments of the present invention will be described below. Note that the present invention is not limited to the embodiments.

(実施の形態1)
本発明の気体吸着性物質は、Liと固体物質からなる。固体物質の種類を変えた気体吸着性物質の窒素、酸素の評価結果を実施例1から3に示す。
(実施例1)
固体物質としてCaOを使用した。1molのLiと2molのCaOとを、Ar雰囲気中、ステンレス製容器・ボールによる遊星ボールミルを用いてメカニカルアロイングを行い混合して気体吸着性物質(Li−CaO)を得た。
(Embodiment 1)
The gas adsorbing substance of the present invention is composed of Li and a solid substance. Examples 1 to 3 show the evaluation results of nitrogen and oxygen of the gas adsorbing substance in which the kind of the solid substance is changed.
Example 1
CaO was used as the solid material. 1 mol of Li and 2 mol of CaO were mixed in an Ar atmosphere by mechanical alloying using a planetary ball mill with a stainless steel container / ball to obtain a gas adsorbing substance (Li—CaO).

気体吸着性物質の吸着量を測定するため、気体吸着性物質(Li−CaO)をQuantachrome社製Autosorb−1−Cにより、圧力減少が少なくなり平衡に到達したとみなす時間を5分と設定し、窒素吸着量評価を行った。   In order to measure the amount of adsorption of the gas-adsorbing substance, the time taken for the gas-adsorbing substance (Li-CaO) to reach the equilibrium by reducing the pressure decrease with Autosorb-1-C manufactured by Quantachrome was set to 5 minutes. The nitrogen adsorption amount was evaluated.

低圧側から順に窒素吸着量を評価することにより、約250Paで0.4cm/gSTP、約1300Paにて3.2cm/gSTP、常圧にて5.2cm/gSTP吸着することを確認した。 By evaluating the nitrogen adsorption amount in order from the low pressure side, it was confirmed that 0.4 cm 3 / g STP was adsorbed at about 250 Pa, 3.2 cm 3 / g STP at about 1300 Pa, and 5.2 cm 3 / g STP at normal pressure. .

また、気体吸着性物質に対し、窒素吸着量評価前に、密閉系内で窒素を常温にて約2000Paから吸着させ、約400Paとなったところで密閉系内を真空排気し、気体吸着性物質と窒素との接触を停止した。これにより、窒化リチウムを一部(Liの12mol%を窒化)生成させた。   Also, before evaluating the amount of nitrogen adsorbed on the gas adsorbing substance, nitrogen is adsorbed from about 2000 Pa in the closed system at room temperature, and when the pressure reaches about 400 Pa, the inside of the closed system is evacuated, and the gas adsorbing substance and Contact with nitrogen was stopped. Thereby, a part of lithium nitride (12 mol% of Li was nitrided) was generated.

引き続き、前述の窒素を一部吸着させた気体吸着性物質(Li−CaO)に対し、同様の窒素吸着量評価を行った。   Subsequently, the same nitrogen adsorption amount evaluation was performed on the gas adsorbing substance (Li-CaO) in which a part of the nitrogen was adsorbed.

低圧側から順に窒素吸着量を評価することにより、約250Paで2.4cm/gSTP、約1300Paにて3.2cm/gSTP、常圧にて5.0cm/gSTP吸着することを確認した。 By evaluating the nitrogen adsorption amount in order from the low pressure side, it was confirmed that 2.4 cm 3 / g STP at about 250 Pa, 3.2 cm 3 / g STP at about 1300 Pa, and 5.0 cm 3 / g STP at normal pressure were adsorbed. .

先に窒素を一部吸着させておくことにより、低圧下での窒素吸着量が向上することを確認した。   It was confirmed that the amount of nitrogen adsorbed under low pressure was improved by partially adsorbing nitrogen first.

(実施例2)
固体物質としてAlを使用した。1molのLiと1.1molのAlとを、Ar雰囲気中、ステンレス製容器・ボールによる振動ボールミルを用いてメカニカルアロイングを行い混合して、気体吸着性物質(Li−Al)を得た。
(Example 2)
Al 2 O 3 was used as the solid material. 1 mol of Li and 1.1 mol of Al 2 O 3 are mixed in an Ar atmosphere by mechanical alloying using a vibrating ball mill with a stainless steel container / ball, and mixed with a gas adsorbing substance (Li-Al 2 O 3 )

気体吸着性物質の吸着量を測定するため、気体吸着性物質(Li−Al)をQuantachrome社製Autosorb−1−Cにより、窒素吸着量評価を行った。 In order to measure the amount of adsorption of the gas adsorbing substance, the amount of adsorbing nitrogen (Li—Al 2 O 3 ) was evaluated by an autosorb-1-C manufactured by Quantachrome.

低圧側から順に窒素吸着量を評価することにより、約750Paで1.2cm/gSTP、約40000Paで30.2cm/gSTP吸着することを確認した。 By evaluating the amount of nitrogen adsorbed from the low pressure side in order, about 750Pa at 1.2 cm 3 / g STP, it was confirmed that the 30.2cm 3 / gSTP adsorption at about 40 000 Pa.

気体吸着性物質に対し、窒素吸着量評価前に、密閉系内で常温にて窒素を約58000Paから吸着させ、約55000Paとなったところで密閉系内を真空排気し、気体吸着性物質と窒素との接触を停止した。これにより、窒化リチウムを一部(Liの10mol%を窒化)生成させた。   Before evaluating the amount of nitrogen adsorbed on the gas adsorbing substance, nitrogen is adsorbed from about 58000 Pa at room temperature in the closed system, and when the internal pressure reaches about 55000 Pa, the inside of the closed system is evacuated, and the gas adsorbing substance, nitrogen and The contact was stopped. Thereby, a part of lithium nitride (10 mol% of Li was nitrided) was generated.

引き続き、前述の窒素を一部吸着させた気体吸着性物質(Li−Al)に対し、同様の窒素吸着量評価を行った。 Subsequently, the same nitrogen adsorption amount evaluation was performed on the gas adsorbing substance (Li-Al 2 O 3 ) in which nitrogen was partially adsorbed.

低圧側から順に窒素吸着量を評価することにより、約250Paで11.0cm/gSTP、約40000Paにて23.2cm/gSTP吸着することを確認した。 By evaluating the amount of nitrogen adsorbed from the low pressure side in order, about 250Pa at 11.0 cm 3 / g STP, it was confirmed that the 23.2cm 3 / gSTP adsorption at about 40 000 Pa.

先に窒素を吸着させておくことにより、低圧下での窒素吸着量が向上することを確認した。   It was confirmed that the amount of nitrogen adsorbed under low pressure was improved by previously adsorbing nitrogen.

(実施例3)
固体物質としてMgOを使用した。1molのLiと2molのMgOとを、Ar雰囲気中、ステンレス製容器・ボールによる振動ボールミルを用いてメカニカルアロイングを行い混合して、気体吸着性物質1B(Li−MgO)を得た。
(Example 3)
MgO was used as the solid material. 1 mol of Li and 2 mol of MgO were mixed in an Ar atmosphere by mechanical alloying using a stainless steel container / ball vibration ball mill to obtain a gas adsorbing substance 1B (Li-MgO).

また、目視により、Liが1mm以下の粉末になっていることを確認した。   Further, it was confirmed by visual observation that Li was a powder of 1 mm or less.

気体吸着性物質の吸着量を測定するため、気体吸着性物質(Li−MgO)をQuantachrome社製Autosorb−1−Cにより、窒素吸着量評価を行った。   In order to measure the adsorption amount of the gas adsorbing substance, the nitrogen adsorbing quantity of the gas adsorbing substance (Li-MgO) was evaluated by Autosorb-1-C manufactured by Quantachrome.

低圧側から順に窒素吸着量を評価することにより、約10Paで0.5cm/gSTP、約100Paで6.1cm/gSTP、約1000Paで12.3cm/gSTP吸着することを確認した。 By evaluating the amount of nitrogen adsorbed from the low pressure side in order, 0.5 cm 3 / g STP at about 10 Pa, about 100Pa at 6.1 cm 3 / g STP, it was confirmed 12.3 cm 3 / g STP to adsorb at about 1000 Pa.

また、気体吸着性物質1Bに対し、窒素吸着量評価前に、密閉系内で窒素を約2000Paから吸着させ、約1200Paとなったところで密閉系内を真空排気し、気体吸着性物質と窒素との接触を停止した。これにより、窒化リチウムを一部(Liの4mol%を窒化)生成させた。   Further, before the nitrogen adsorption amount is evaluated for the gas adsorbing substance 1B, nitrogen is adsorbed from about 2000 Pa in the closed system, and when the pressure reaches about 1200 Pa, the inside of the closed system is evacuated, and the gas adsorbing substance, nitrogen, The contact was stopped. Thereby, a part of lithium nitride (4 mol% of Li was nitrided) was generated.

引き続き、前述の窒素を一部吸着させた気体吸着性物質(Li−MgO)に対し、同様の窒素吸着量評価を行った。
低圧側から順に窒素吸着量を評価することにより、約10Paで4.1cm/gSTP、約100Paにて9.3cm/gSTP、約1000Paで18.0cm/gSTP吸着することを確認した。
Subsequently, the same nitrogen adsorption amount evaluation was performed on the gas adsorbing substance (Li-MgO) in which nitrogen was partially adsorbed.
By evaluating the amount of nitrogen adsorbed from the low pressure side in order, 4.1 cm 3 / g STP at about 10Pa, 9.3cm 3 / gSTP at about 100 Pa, it was confirmed 18.0 cm 3 / g STP to adsorb at about 1000 Pa.

先に窒素を吸着させておくことにより、低圧下での窒素吸着量が向上することを確認した。   It was confirmed that the amount of nitrogen adsorbed under low pressure was improved by previously adsorbing nitrogen.

同装置を用いて酸素吸着評価を行った。
気体吸着性物質1B(Li−MgO)の酸素吸着量を評価することにより、約10Paで1.7cm/gSTP、約100Paで2.0cm/gSTP、約10000Paで4.5cm/gSTP吸着することを確認した。
Oxygen adsorption evaluation was performed using the same apparatus.
By evaluating the oxygen adsorption amount of the gas adsorbing material 1B (Li-MgO), 1.7cm 3 / gSTP about 10 Pa, at about 100Pa 2.0cm 3 / gSTP, 4.5cm 3 / gSTP adsorption at about 10000Pa Confirmed to do.

また、気体吸着性物質1Bに対し、酸素吸着量評価前に、密閉系内で窒素を約2000Paから吸着させ、約1000Paとなったところで密閉系内を真空排気し、気体吸着性物質と窒素との接触を停止した。これにより、窒化リチウムを一部(Liの5mol%を窒化)生成させた。   Further, before the oxygen adsorption amount is evaluated for the gas adsorbing substance 1B, nitrogen is adsorbed from about 2000 Pa in the closed system, and when the pressure reaches about 1000 Pa, the inside of the closed system is evacuated, and the gas adsorbing substance, nitrogen, The contact was stopped. As a result, a portion of lithium nitride (5 mol% of Li was nitrided) was generated.

引き続き、前述の窒素を一部吸着させた気体吸着性物質(Li−MgO)に対し、同様の酸素吸着量評価を行った。   Subsequently, the same oxygen adsorption amount evaluation was performed on the gas adsorbing substance (Li-MgO) in which nitrogen was partially adsorbed.

酸素吸着量を評価することにより、約10Paで4.1cm/gSTP、約100Paで4.4cm/gSTP、約10000Paで4.5cm/gSTP吸着することを確認した。 By evaluating the oxygen adsorbing amount, 4.1 cm 3 / g STP at about 10 Pa, at about 100Pa 4.4cm 3 / gSTP, it was confirmed that 4.5 cm 3 / g STP adsorption at about 10000 Pa.

先に窒素を吸着させておくことにより、低圧下での酸素吸着量が向上することを確認した。   It was confirmed that the amount of adsorbed oxygen under low pressure was improved by previously adsorbing nitrogen.

次に、Ar雰囲気下で気体吸着性物質1B(Li−MgO)の吸着特性を、図1の吸着材評価装置2にて評価した。   Next, the adsorption characteristic of the gas adsorbing substance 1B (Li—MgO) was evaluated by the adsorbent evaluation apparatus 2 in FIG. 1 in an Ar atmosphere.

吸着材評価装置2は、ガスボンベ4が第一バルブ5を通じて、また、真空ポンプ6が第二バルブ7を通じて、所定容積をもつ気体供与部8に接続されている。また、気体供与部8から、第三バルブ9を経てサンプル管3に接続されている。また、サンプル管3には、圧力ゲージ10が接続されている。また、気体供与部8と、第三バルブ9との間は取り外し可能となっている。   In the adsorbent evaluation device 2, the gas cylinder 4 is connected through the first valve 5, and the vacuum pump 6 is connected through the second valve 7 to the gas supply unit 8 having a predetermined volume. Further, the gas supply unit 8 is connected to the sample tube 3 through the third valve 9. A pressure gauge 10 is connected to the sample tube 3. Moreover, it can be removed between the gas supply part 8 and the 3rd valve | bulb 9. FIG.

まず、気体吸着性物質1Bは、Ar雰囲気にて、取り外した状態のサンプル管3(図示せず)に密閉し、第三バルブ9を閉めた状態で、気体供与部8に接続した。   First, the gas adsorbing substance 1B was sealed in the removed sample tube 3 (not shown) in an Ar atmosphere and connected to the gas donating unit 8 with the third valve 9 closed.

それから、第一バルブ5は閉めた状態で、第二バルブ7、その後第三バルブ9を開け、系内を真空排気する。その後、系内が十分低圧になったところで、第三バルブ9、第二バルブ7を閉め、第一バルブ5を開け、ガスボンベ4から、気体供与部8内が所定圧になるよう、気体供与部8にガスを導入し、第一バルブ5を閉める。そして、第三バルブ9を開け、気体吸着性物質1Bに気体を暴露させることにより、気体吸着特性を評価した。   Then, with the first valve 5 closed, the second valve 7 and then the third valve 9 are opened, and the system is evacuated. Thereafter, when the system pressure is sufficiently low, the third valve 9 and the second valve 7 are closed, the first valve 5 is opened, and the gas supply unit 8 is configured so that the gas supply unit 8 has a predetermined pressure from the gas cylinder 4. Gas is introduced into 8 and the first valve 5 is closed. And the gas adsorption | suction characteristic was evaluated by opening the 3rd valve | bulb 9 and exposing gas to the gas adsorbent substance 1B.

サンプル管内が約300Paとなるよう、窒素を導入し、窒素吸着特性を評価した。その後、約50Paに達したところで再度サンプル管内を真空排気した後、サンプル管内が約250Paとなるよう、窒素を導入し、繰り返し窒素吸着特性を評価した。その結果を図2に示す。   Nitrogen was introduced so that the inside of the sample tube was about 300 Pa, and the nitrogen adsorption characteristics were evaluated. After that, after reaching about 50 Pa, the inside of the sample tube was evacuated again, and then nitrogen was introduced so that the inside of the sample tube was about 250 Pa, and the nitrogen adsorption characteristics were repeatedly evaluated. The result is shown in FIG.

窒素吸着1回目より2回目の方が、吸着速度が速くなっていることを確認した。   It was confirmed that the adsorption rate was higher in the second adsorption than in the first nitrogen adsorption.

また、図1に示す装置により、同様に約62000Paからの窒素吸着を評価したところ、圧力減少評価により41.1cc/gの窒素吸着を確認した。   Moreover, when nitrogen adsorption from about 62000 Pa was similarly evaluated with the apparatus shown in FIG. 1, 41.1 cc / g nitrogen adsorption was confirmed by pressure reduction evaluation.

以上のように、本発明の気体吸着性物質は、気体吸着活性が高く、特に窒素に対する吸着性能が高いため、蛍光灯中のガスの除去、希ガス中の微量ガスの除去等様々な分野で用いることができる。   As described above, the gas adsorbing substance of the present invention has a high gas adsorbing activity and particularly high adsorption performance for nitrogen. Therefore, the gas adsorbing substance of the present invention can be used in various fields such as gas removal from fluorescent lamps and trace gas removal from rare gases. Can be used.

吸着材評価装置の概略構成図。The schematic block diagram of an adsorbent evaluation apparatus. 本発明の気体吸着性物質による窒素の吸着特性を示す特性図。The characteristic view which shows the adsorption | suction characteristic of nitrogen by the gas adsorbent of this invention.

符号の説明Explanation of symbols

1B 気体吸着性物質
1B Gas-adsorbing substance

Claims (2)

Liを含み25℃常圧もしくは減圧下で少なくとも窒素を吸着可能な気体吸着性物質の製造方法であって、不活性気体雰囲気中で、Liと硬度が3以上の酸化物からなる固体物質を、1重量部のLiに対して前記固体物質が2〜150重量部となる割合で、メカニカルミリングにより混合、破砕した後、Liに対して1〜20mol%が窒化するまで窒素雰囲気中の窒素を吸着させて、吸着材として使用する前にLiに一部窒化リチウムを生成させておくことを特徴とする気体吸着性物質の製造方法。 A method for producing a gas-adsorbing substance containing Li and capable of adsorbing at least nitrogen under normal pressure or reduced pressure at 25 ° C. , wherein a solid substance composed of an oxide of Li and hardness of 3 or more in an inert gas atmosphere, Adsorbs nitrogen in a nitrogen atmosphere until 1 to 20 mol% of Ni is nitrided after mixing and crushing by mechanical milling at a ratio of 2 to 150 parts by weight of Li based on 1 part by weight of Li A method for producing a gas adsorbing substance, characterized in that a part of lithium nitride is generated in Li before being used as an adsorbent . 不活性気体がArである、請求項1記載の気体吸着性物質の製造方法。The method for producing a gas adsorbing substance according to claim 1, wherein the inert gas is Ar.
JP2006115764A 2006-04-19 2006-04-19 Method for producing gas-adsorbing substance Active JP4823750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115764A JP4823750B2 (en) 2006-04-19 2006-04-19 Method for producing gas-adsorbing substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115764A JP4823750B2 (en) 2006-04-19 2006-04-19 Method for producing gas-adsorbing substance

Publications (2)

Publication Number Publication Date
JP2007283257A JP2007283257A (en) 2007-11-01
JP4823750B2 true JP4823750B2 (en) 2011-11-24

Family

ID=38755513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115764A Active JP4823750B2 (en) 2006-04-19 2006-04-19 Method for producing gas-adsorbing substance

Country Status (1)

Country Link
JP (1) JP4823750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009030A1 (en) * 2012-05-05 2013-11-07 Mahle International Gmbh Arrangement of a piston and a crankcase for an internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305848A (en) * 2003-04-03 2004-11-04 Honda Motor Co Ltd Powdery hydrogen storage material
JP2006075756A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Gas adsorbent and heat insulator
JP4797614B2 (en) * 2005-04-01 2011-10-19 パナソニック株式会社 Insulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421059B2 (en) 2014-10-24 2019-09-24 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US10875009B2 (en) 2014-10-24 2020-12-29 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Also Published As

Publication number Publication date
JP2007283257A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP2893528B2 (en) Non-evaporable getter alloy
RU2260069C2 (en) Nonvaporizing getter alloys
Modibane et al. Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO2/CO containing gas mixtures
CN101068942B (en) Non-evaporable getter alloys for hydrogen sorption
JP5944512B2 (en) Non-evaporable getter composition that can be reactivated at lower temperatures after exposure to reactive gases at higher temperatures
Wang et al. Nanostructured adsorbents for hydrogen storage at ambient temperature: high-pressure measurements and factors influencing hydrogen spillover
JP2012025636A (en) Adsorption reducing agent and reducing method of carbon dioxide
WO2018037481A1 (en) Method for recovering hydrogen from biomass pyrolysis gas
CN104871284B (en) The non-evaporable getter alloys can being re-activated after being exposed to reactant gas
WO2000053971A1 (en) Method for storing natural gas by adsorption and adsorbing agent for use therein
JP4823750B2 (en) Method for producing gas-adsorbing substance
CN114749144A (en) Renewable composite getter for maintaining high vacuum environment and manufacturing method thereof
JP2006205029A (en) Hydrogen storage material and its production method
JP5061289B2 (en) Gas-adsorbing substances and gas-adsorbing materials
JP2004010391A (en) Method and apparatus for recovering and purifying nitrous oxide
CN112301264A (en) Non-evaporable low-temperature activated getter alloy and preparation method thereof
CN112410614A (en) Non-evaporable low-temperature activated zirconium-based getter alloy and preparation method thereof
US8211202B2 (en) Gas-absorbing substance, gas-absorbing alloy and gas-absorbing material
JP2003277037A (en) Porous activated carbon for hydrogen storage and manufacturing method thereof
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
JP4889947B2 (en) Gas adsorption alloy
JP2005126273A (en) Hydrogen storage material precursor and its manufacturing method
JP2009011987A (en) Method for regenerating hydrogen storage material
JP2002146449A (en) Method for regenerating hydrogen storage alloy
JP5114777B2 (en) Method for producing hydrogen storage material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350