EP2864505B1 - Method for press hardening of steel - Google Patents

Method for press hardening of steel Download PDF

Info

Publication number
EP2864505B1
EP2864505B1 EP13732131.1A EP13732131A EP2864505B1 EP 2864505 B1 EP2864505 B1 EP 2864505B1 EP 13732131 A EP13732131 A EP 13732131A EP 2864505 B1 EP2864505 B1 EP 2864505B1
Authority
EP
European Patent Office
Prior art keywords
hardening
press
steel
cooling rate
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13732131.1A
Other languages
German (de)
French (fr)
Other versions
EP2864505A1 (en
Inventor
Thomas Kurz
Andreas Pichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2864505A1 publication Critical patent/EP2864505A1/en
Application granted granted Critical
Publication of EP2864505B1 publication Critical patent/EP2864505B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for press hardening steel according to the upper handles of claims 1 and 2.
  • Press hardening of steel is a technique that has been known since the 1970s.
  • a steel blank with an alloy composition matched to the press hardening is raised to a temperature which enables austenitization, preferably complete austenitization.
  • Complete austenitization usually takes place above the so-called AC 3 point, which can be read from corresponding multi-substance state diagrams and which also depends in particular on the composition.
  • the strength of such a press-hardened steel is essentially determined by the carbon content, since this determines the martensite hardness.
  • press hardening is to provide the corresponding press-hardening steel as a sheet, cut a board out of this sheet and either deep-draw this board in the cold state and then heat it up, insert it into a tool and cool it there by all-round contact of the cooling tool or heat the board and to form hot in one tool while cooling at the appropriate speed.
  • the cooling rates are determined by the tool or the contact of the press-hardening steel with the tool.
  • a low thermal conductivity, a low heat capacity, the heat transfer, the contact pressure and the percentage contact area, but also the flow temperature of a cooling medium such as water, can influence and in particular reduce the achievable cooling rates.
  • the object of the invention is to provide a method for press hardening of steels which facilitates, improves and makes the process control during press hardening more comprehensible.
  • certain system parameters can be predetermined for an existing desired steel, and in particular the cooling rate in the tool.
  • the system parameters can also be taken into account depending on the degree of deformation.
  • high degrees of deformation mean that martensite is formed to a lesser extent.
  • the steel used is suitable for the indirect press hardening process or also for the direct press hardening process at given cooling rates.
  • the steel is formed before the press hardening, so that no pressing takes place during the press hardening, even when heated.
  • Such a process therefore requires a lower press hardness number than For example, a direct press hardening process, in which hot forming is also carried out.
  • a press hardness number is created for this.
  • the press hardness number is a tool with which you can easily estimate from the chemical composition and the cooling rate in the tool whether the desired fully martensitic structure can be achieved.
  • Fully martensitic structure in the sense of this disclosure corresponds to a structure fraction of> 90 vol.%, In particular> 95 vol.% Martensite and residual austenite, remainder ferrite and / or bainite.
  • the number of press hardnesses can be used to estimate which alloy is necessary to become fully martensitic at a given degree of deformation.
  • V and Ti are not listed separately in the table and are added in the range of ⁇ 0.5%, in particular ⁇ 0.2%.
  • Ti only serves to bind the N, whereby values of Ti / N (in at%) of approximately 3.4 should be sufficient. All other information is in mass%.
  • the theoretical press hardness cooling rates can deviate from the measured press hardness cooling rates, since certain safety factors, for example to compensate for the measurement uncertainties, are built in and a sensible generalization has been carried out.
  • PHZ press hardness number
  • the press hardness number or the theoretical press hardness cooling rate can thus be used to determine a steel material for an existing system which is hardened with sufficient certainty either in an indirect process or even has a high press hardness number such that effective direct press hardening, i.e. Forming in the warm state is possible.
  • the theoretical press cooling rate (PHK) must be determined according to the formula and the cooling rate (PHW) achievable in continuous operation must be determined for the respective forming tool.
  • the press hardness number can be determined and then the effective cooling rate can be determined in a simple manner by changing the formula given above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Presshärten von Stahl nach den Obergriffen der Ansprüche 1 und 2.The invention relates to a method for press hardening steel according to the upper handles of claims 1 and 2.

Das Presshärten von Stahl ist eine Technik, die seit den 70-iger Jahren des 20. Jahrhunderts bekannt ist. Bei diesem Verfahren wird eine Stahlplatine mit einer auf das Presshärten abgestimmten Legierungszusammensetzung auf eine Temperatur erhöht, die eine Austenitisierung und zwar vorzugsweise eine vollständige Austenitisierung ermöglicht. Eine vollständige Austenitisierung erfolgt üblicherweise oberhalb des sogenannten AC3-Punktes, welche sich aus entsprechenden Mehrstoffzustandsdiagrammen ablesen lässt und welche insbesondere auch von der Zusammensetzung abhängt.Press hardening of steel is a technique that has been known since the 1970s. In this method, a steel blank with an alloy composition matched to the press hardening is raised to a temperature which enables austenitization, preferably complete austenitization. Complete austenitization usually takes place above the so-called AC 3 point, which can be read from corresponding multi-substance state diagrams and which also depends in particular on the composition.

Ein solcher Stahl wird nach dem Aufheizen und vollständigem Austenitisieren mit einer Geschwindigkeit abgekühlt, die über der sogenannten kritischen Härtegeschwindigkeit liegt. Dabei ergibt sich ein vollmartensitisches Gefüge, welches dem Stahl eine hohe Härte, insbesondere bis 1500 MPa und darüber verleiht.After heating and complete austenitizing, such a steel is cooled at a rate which is above the so-called critical hardening rate. This results in a fully martensitic structure, which gives the steel a high hardness, in particular up to 1500 MPa and above.

Die Festigkeit eines solchen pressgehärteten Stahls bestimmt sich im Wesentlichen durch den Kohlenstoffgehalt, da dieser die Martensithärte bestimmt.The strength of such a press-hardened steel is essentially determined by the carbon content, since this determines the martensite hardness.

Andere Legierungselemente in der Zusammensetzung bestimmen im Wesentlichen mit dem Kohlenstoff die Härtbarkeit, wobei gewisse Elemente, darunter insbesondere Bor das Umwandlungsverhalten beeinflussen und insbesondere als sogenannte Umwandlungsverzögerer wirken. Diese Umwandlungsverzögerer senken die Temperatur, unterhalb derer auch mit dem Abkühlen über der kritischen Härtegeschwindigkeit kein vollmartensitisches Gefüge mehr erreichbar wäre, signifikant ab und können daher teilweise eingesetzt werden, um bestimmte Prozessparameter günstig zu beeinflussen.Other alloy elements in the composition essentially determine the hardenability with the carbon, with certain elements, including in particular boron, influencing the conversion behavior and in particular acting as so-called conversion retarders. These conversion retarders lower the temperature, below which the cooling also exceeds the critical one Hardness speed would no longer be achievable, a fully martensitic structure significantly and can therefore be used in part to favorably influence certain process parameters.

Der Einfluss einiger Legierungselemente auf die Härtbarkeit wird in " Influence of the Alloying Elements on Phase Transition of High Strength Steels" (Neugebauer et al., Materials Processing Technology, 2011 ) beschrieben. Kohlenstoff und Bor, insbesondere in Kombination mit Mangan, Molybdän oder Chrom wirken als Umwandlungsverzögerer. Gleichzeitige Verwendung von Kohlenstoff und Mangan kann zu einer Erhöhung der Härte bei vergleichsweise langsamer Abkühlrate führen.The influence of some alloying elements on hardenability is discussed in " Influence of the Alloying Elements on Phase Transition of High Strength Steels "(Neugebauer et al., Materials Processing Technology, 2011 ) described. Carbon and boron, especially in combination with manganese, molybdenum or chromium, act as retarders for conversion. Simultaneous use of carbon and manganese can lead to an increase in hardness with a comparatively slow cooling rate.

Das übliche Vorgehen beim Presshärten ist hierbei den entsprechenden presshärtenden Stahl als Blech vorzusehen, aus diesem Blech eine Platine auszuschneiden und entweder diese Platine in kaltem Zustand tiefzuziehen und dann aufzuheizen, in ein Werkzeug einzulegen und dort durch allseitiges Anliegen des Kühlwerkzeuges entsprechend abzukühlen oder die Platine aufzuheizen und in einem Werkzeug warm umzuformen und gleichzeitig mit der entsprechenden Geschwindigkeit abzukühlen.The usual procedure for press hardening is to provide the corresponding press-hardening steel as a sheet, cut a board out of this sheet and either deep-draw this board in the cold state and then heat it up, insert it into a tool and cool it there by all-round contact of the cooling tool or heat the board and to form hot in one tool while cooling at the appropriate speed.

Bei diesem an sich bekannten Verfahren werden die Abkühlraten durch das Werkzeug bzw. den Kontakt des presshärtenden Stahls mit dem Werkzeug bestimmt. Hierbei können eine geringe Wärmeleitfähigkeit, eine geringe Wärmekapazität, der Wärmeübergang, der Anpressdruck und die prozentuale Anpressfläche aber auch die Vorlaufstemperatur eines Kühlmediums wie Wasser, die erreichbaren Abkühlraten beeinflussen und insbesondere reduzieren.In this method known per se, the cooling rates are determined by the tool or the contact of the press-hardening steel with the tool. A low thermal conductivity, a low heat capacity, the heat transfer, the contact pressure and the percentage contact area, but also the flow temperature of a cooling medium such as water, can influence and in particular reduce the achievable cooling rates.

Es ist bekannt, die Parameter für das Presshärten mittels numerischer Methoden zu optimieren. " Determination of Material and Process Characteristics for Hot Stamping Processes of Quenchenable Ultra High Strength Steels with Respect to a FE_based Process Design" (Merklein et al., SAE Int. Mater. Manuf., 2018, Vol. 1 (1) p 411 ) beschreibt ein numerisches Verfahren, das das thermo-mechanische Fließverhalten eines 22MnB5-Stahls darstellt, um die wichtigsten Parameter für Presshärten zu ermitteln.It is known to optimize the parameters for press hardening using numerical methods. " Determination of Material and Process Characteristics for Hot Stamping Processes of Quenchenable Ultra High Strength Steels with Respect to a FE_based Process Design "(Merklein et al., SAE Int. Materuf., 2018, Vol. 1 (1) p 411 ) describes a numerical process that shows the thermo-mechanical flow behavior of a 22MnB 5 steel in order to determine the most important parameters for press hardness.

Zudem hat sich in der Praxis gezeigt, dass bei den Presshärteverfahren durch den Transfer des heißen Blechs aus dem Ofen zur Presse und insbesondere auf hohe Emissivitäten (hohes Wärmeabstrahlverhalten) des Bleches bzw. der Blechplatine unerwünschte diffusionsgesteuerte Umwandlungen bei hohen Temperaturen (Ferrit) stattfinden können.In addition, it has been shown in practice that in the press hardening process, undesired diffusion-controlled conversions can take place at high temperatures (ferrite) due to the transfer of the hot sheet from the furnace to the press and, in particular, to high emissivities (high heat radiation behavior) of the sheet or sheet metal plate.

Ferner konnte festgestellt werden, dass das Tiefziehen dieser Bleche im warmen Zustand die Umwandlung beschleunigt, so dass in diesem Fall vor der Martensitbildung eher Ferrit und Bainit gebildet werden.It was also found that the deep-drawing of these sheets in the hot state accelerates the transformation, so that in this case ferrite and bainite are more likely to be formed before the formation of martensite.

Aufgabe der Erfindung ist es, ein Verfahren zum Presshärten von Stählen zu schaffen, welches die Prozesssteuerung beim Presshärten erleichtert, verbessert und nachvollziehbarer macht.The object of the invention is to provide a method for press hardening of steels which facilitates, improves and makes the process control during press hardening more comprehensible.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen der Ansprüche 1 und 2 gelöst.The object is achieved with a method having the features of claims 1 and 2.

Während insbesondere in der Anfangszeit des Presshärtens nur relativ wenig Stähle zur Verfügung standen und somit die Anlagengeometrie auf diese Stähle abgestimmt wurde, sind viele Anlagen zum Presshärten von Stahl mittlerweile im Einsatz. Derartige bestehende Anlagen haben Eigenschaften, die bestimmte Prozessparameter wie Temperatur, Handlingszeit, etc bestimmen. Erfindungsgemäß kann nun mittels Kennzahlen eine einfache Klassifizierung des presshärtenden Stahls vorgenommen werden, so dass mit Hilfe der Klassifizierung abgeschätzt werden kann, ob dieser Stahl in einer bestehenden Anlage oder bei bestehenden vorgegebenen Prozessparametern für das Presshärten geeignet ist oder nicht.While only relatively few steels were available, particularly in the early days of press hardening, and thus the system geometry was adapted to these steels, many plants for press hardening steel are now in use. Such existing systems have properties that determine certain process parameters such as temperature, handling time, etc. According to the invention, a simple classification of the press-hardening steel can now be carried out using key figures, so that the classification can be used to estimate whether or not this steel is suitable for press hardening in an existing system or given existing process parameters.

Umgekehrt können für einen bestehenden gewünschten Stahl bestimmte Anlagenparameter vorbestimmt werden und insbesondere die Kühlrate im Werkzeug.Conversely, certain system parameters can be predetermined for an existing desired steel, and in particular the cooling rate in the tool.

Hierbei können mit den vorgegebenen Kennzahlen und deren Bereichen die Anlagenparameter auch abhängig vom Umformgrad berücksichtigt werden.With the given key figures and their ranges, the system parameters can also be taken into account depending on the degree of deformation.

Grundsätzlich führen hohe Umformgrade dazu, dass in verringertem Maße Martensit gebildet wird. Um also einen gewünschten Martensitgehalt zu erreichen, kann abgeschätzt werden, ob bei vorgegebenem Umformgrad noch die entsprechende Härte erreicht wird.In principle, high degrees of deformation mean that martensite is formed to a lesser extent. In order to achieve a desired martensite content, it can be estimated whether the corresponding hardness is still achieved with a given degree of deformation.

Insbesondere kann z.B. abgeschätzt werden, ob bei gegebenen Abkühlraten der verwendete Stahl für das indirekte Presshärteverfahren oder auch für das direkte Presshärteverfahren geeignet ist. Beim indirekten Presshärteverfahren wird der Stahl vor dem Presshärten umgeformt, so dass beim Presshärten selbst im erhitzten Zustand keinerlei Umformung stattfindet. Ein solcher Prozess bedingt daher eine geringere Presshärtezahl als z.B. ein direkter Presshärteprozess, bei dem im heißen Zustand auch noch eine Umformung durchgeführt wird.In particular, it can be estimated, for example, whether the steel used is suitable for the indirect press hardening process or also for the direct press hardening process at given cooling rates. In the indirect press hardening process, the steel is formed before the press hardening, so that no pressing takes place during the press hardening, even when heated. Such a process therefore requires a lower press hardness number than For example, a direct press hardening process, in which hot forming is also carried out.

Hiermit kann die Anzahl der Versuche bis zur Lauffähigkeit der Anlage mit dem speziellen Stahl verringert und insbesondere auch der Ausschuss abgesenkt werden. Insbesondere kann man erkennen, ob ein Stahl bei den gegebenen Prozessparametern in einem Grenzbereich pressgehärtet wird, bei dem nicht jedes Bauteil zuverlässig die geforderten Eigenschaften erzielt, so dass von vorne herein hierdurch in günstiger Weise eine Vielzahl von möglichen Fehlerquellen ausgeschlossen werden kann.This can reduce the number of attempts until the system can run with the special steel and, in particular, also reduce the scrap. In particular, it can be seen whether a steel is press hardened in the given process parameters in a limit range in which not every component reliably achieves the required properties, so that a large number of possible sources of error can be excluded in a favorable manner from the outset.

Erfindungsgemäß wird hierfür eine Presshärtezahl geschaffen. Die Presshärtezahl (PHZ) ist ein Werkzeug mit dem man einfach aus der chemischen Zusammensetzung und der Abkühlrate im Werkzeug abschätzen kann, ob das gewünschte vollmartensitische Gefüge erreicht werden kann. Vollmartensitisches Gefüge im Sinne dieser Offenbarung entspricht einem Gefügeanteil von > 90 Vol.- %, insbesondere > 95 Vol.-% Martensit und Restaustenit, Rest Ferrit und/oder Bainit.According to the invention, a press hardness number is created for this. The press hardness number (PHZ) is a tool with which you can easily estimate from the chemical composition and the cooling rate in the tool whether the desired fully martensitic structure can be achieved. Fully martensitic structure in the sense of this disclosure corresponds to a structure fraction of> 90 vol.%, In particular> 95 vol.% Martensite and residual austenite, remainder ferrite and / or bainite.

Durch die Presshärtezahl kann mit abgeschätzt werden, ob die vorhandene Werkzeugtechnologie im Zusammenhang mit der Blechdicke (= Kühlrate) ausreicht, um ein vollständiges martensitisches Gefüge zu erhalten. So kann beispielsweise ermittelt werden, ob in einem Werkzeug eine Legierung A Martensit erzeugt, jedoch die Legierung B zu Ferrit und Martensit führt.The number of press hardnesses can be used to estimate whether the existing tool technology in connection with the sheet thickness (= cooling rate) is sufficient to obtain a complete martensitic structure. For example, it can be determined whether alloy A produces martensite in a tool, but alloy B leads to ferrite and martensite.

Zudem kann durch die Presshärtezahl abgeschätzt werden, welche Legierung notwendig ist, um bei einem gegebenen Umformgrad noch vollmartensitisch zu werden.In addition, the number of press hardnesses can be used to estimate which alloy is necessary to become fully martensitic at a given degree of deformation.

Die Erfindung wird beispielhaft anhand einer Zeichnung erläutert. Es zeigen dabei:

Figur 1:
eine Tabelle mit mehreren Stahlzusammensetzungen aus denen sich die jeweilige Presshärtezahl ergibt;
Figur 2:
qualitativ die Abhängigkeit der Martensitbildung vom Umformgrad;
Figur 3:
der kritische Umformgrad in Abhängigkeit der Press-härtezahl.
The invention is explained by way of example with reference to a drawing. It shows:
Figure 1:
a table with several steel compositions from which the respective press hardness number results;
Figure 2:
qualitatively the dependence of the formation of martensite on the degree of deformation;
Figure 3:
the critical degree of forming depending on the number of press hardnesses.

Aus der Figur 1 ergeben sich für die unterschiedlichsten Stahlsorten die zunächst gemessenen Presshärtekühlraten.From the Figure 1 The press hardness cooling rates measured initially result for the most varied types of steel.

Hierbei sind P,S, N nur als übliche unvermeidbare Verunreinigungen enthalten .V und Ti sind nicht extra in der Tabelle aufgeführt und sind im Bereich von < 0,5%, insbesondere < 0,2 % zulegiert.Here P, S, N are only contained as usual unavoidable impurities. V and Ti are not listed separately in the table and are added in the range of <0.5%, in particular <0.2%.

Hierbei dient Ti nur zur Abbindung des N wobei Werte von Ti / N (in at%) von ca. 3,4 ausreichend sein sollten. Alle weiteren Angaben sind in Masse-%.Here, Ti only serves to bind the N, whereby values of Ti / N (in at%) of approximately 3.4 should be sufficient. All other information is in mass%.

Von den gemessenen Presshärtekühlraten (PHM) aus sind erfindungsgemäß zwei unterschiedlichen Formeln zur Ermittlung der theoretischen Presshärtekühlrate (PHK) notwendig. Hierbei muss unterschieden werden, für Stahlmaterialien, deren gelöster Borgehalt im Ausgangsmaterial ≥ 5 ppm ist und der theoretischen Presshärtekühlrate (PHK) für Stahlmaterialien deren gelöster Borgehalt im Ausgangsmaterial < 5 ppm beträgt.From the measured press hardness cooling rates (PHM), two different formulas are necessary according to the invention for determining the theoretical press hardness cooling rate (PHK). A distinction must be made here for steel materials whose dissolved boron content in the starting material is ≥ 5 ppm and the theoretical press hardness cooling rate (PHK) for steel materials whose dissolved boron content in the starting material is <5 ppm.

Die Formel für die theoretische Presshärtekühlraten für Material dessen Borgehalt gelöst im Ausgangsmaterial ≥ 5 ppm beträgt ist: PHK K / s = 1750 / 28,5 * C m % + 3,5 * Si m % + 2,3 * Mn m % 2 * Al m % + 4 * Cr m % + 3 * Ni m % + 25 * Mo m % 20 * Nb m % 6,3 2,7

Figure imgb0001
The formula for the theoretical press hardness cooling rates for material whose boron content in the starting material is ≥ 5 ppm is: PHK K / s = 1750 / 28.5 * C. m % + 3.5 * Si m % + 2.3 * Mn m % - 2nd * Al m % + 4th * Cr m % + 3rd * Ni m % + 25th * Mon m % - 20th * Nb m % - 6.3 2.7
Figure imgb0001

Für Borgehalte, die im Ausgangsmaterial gelöst sind < 5 ppm ergibt sich die nachfolgende Formel für die theoretische Presshärtekühlrate: PHK K / s = 2750 / 28,5 * C m % + 3,5 * Si m % + 2,3 * Mn m % 2 * Al m % + 4 * Cr m % + 3 * Ni m % + 25 * Mo m % 20 * Nb m % 7,0 1,8 .

Figure imgb0002
For boron contents dissolved in the starting material <5 ppm, the following formula for the theoretical press hardness cooling rate results: PHK K / s = 2750 / 28.5 * C. m % + 3.5 * Si m % + 2.3 * Mn m % - 2nd * Al m % + 4th * Cr m % + 3rd * Ni m % + 25th * Mon m % - 20th * Nb m % - 7.0 1.8 .
Figure imgb0002

Alle Prozentzahlen sind generell Masseprozent.All percentages are generally mass percent.

Die theoretischen Presshärtekühlraten können von den gemessenen Presshärtekühlraten abweichen, da hier gewisse Sicherheitsfaktoren, beispielsweise zum Ausgleich der Messunsicherheiten eingebaut sind und eine sinnvolle Generalisierung vorgenommen wurde.The theoretical press hardness cooling rates can deviate from the measured press hardness cooling rates, since certain safety factors, for example to compensate for the measurement uncertainties, are built in and a sensible generalization has been carried out.

Die Presshärtezahl (PHZ) ergibt sich aus diesen ermittelten Formeln bzw. Formelwerte wie folgt: PHZ = Kühlrate im Werkzeug PHW / theoretische PH _ Kühlrate PHK .

Figure imgb0003
The press hardness number (PHZ) results from these determined formulas or formula values as follows: PHZ = Cooling rate in the Tool PHW / theoretical PH _ Cooling rate PHK .
Figure imgb0003

Hierbei ergibt sich erfindungsgemäß die folgende Gesetzmäßigkeit:

PHZ < 1:
keine vollständige Härtung durch Martensit gewährleistet
PHZ= 1:
eine unverformte oder vorgeformte Platine kann gehärtet werden = indirekter Prozess
PHZ > 1:
eine Platine kann warm verformt werden bzw. steigende Sicherheit gegen plastische Umformung beim Härten (Warmumformeignung)
According to the invention, this results in the following regularity:
PHZ <1:
no complete hardening guaranteed by martensite
PHZ = 1:
an undeformed or preformed board can be hardened = indirect process
PHZ> 1:
a blank can be thermoformed or increasing security against plastic deformation during hardening (hot stamping suitability)

Aus Figur 2 ergibt sich hierbei qualitativ der Zusammenhang zwischen dem kritischen logarithmischen Umformgrad und der Härte, unabhängig davon ob diese im % Martensit oder Härte HV gemessen wird.Out Figure 2 This results qualitatively in the relationship between the critical logarithmic degree of deformation and the hardness, regardless of whether this is measured in% martensite or hardness HV.

Der kritische logarithmische Umformgrad für den eindimensionalen Fall ergibt sich dabei wie folgt: ϕ = ln l 1 l 0

Figure imgb0004
The critical logarithmic degree of deformation for the one-dimensional case is as follows: ϕ = ln l 1 l 0
Figure imgb0004

Aus Figur 3 ersieht man hierbei die Presshärtezahl gegen den kritischen logarithmischen Umformgrad. Hierbei zeigt der schraffierte Bereich unter der Geraden ab der Presshärtezahl 1 den Bereich an, in dem eine sichere Warmumformung möglich sein sollte. Die gestrichelten Kurven um die Gerade herum geben mögliche Kurvenverläufe an, da diese Anstieg nicht zwingend linear erfolgen muss.Out Figure 3 you can see the press hardness number against the critical logarithmic degree of deformation. The hatched area below the straight line from the press hardness number 1 indicates the area in which safe hot forming should be possible. The dashed curves around the straight line indicate possible curves, since this increase does not necessarily have to be linear.

Durch die Presshärtezahl bzw. die theoretische Presshärtekühlrate lässt sich somit für eine bestehende Anlage ein Stahlmaterial ermitteln, welches mit hinreichender Sicherheit entweder im indirekten Verfahren gehärtet wird oder sogar eine so hohe Presshärtezahl besitzt, dass eine effektive direkte Presshärtung, d.h. Umformung im warmen Zustand möglich ist.The press hardness number or the theoretical press hardness cooling rate can thus be used to determine a steel material for an existing system which is hardened with sufficient certainty either in an indirect process or even has a high press hardness number such that effective direct press hardening, i.e. Forming in the warm state is possible.

Hierzu muss die theoretische Presskühlrate (PHK) entsprechend der Formel ermittelt werden und für das jeweilige Umformwerkzeug die im Dauerbetrieb erzielbare Abkühlrate (PHW) ermittelt werden.For this purpose, the theoretical press cooling rate (PHK) must be determined according to the formula and the cooling rate (PHW) achievable in continuous operation must be determined for the respective forming tool.

Umgekehrt kann bei einem gegebenen gewünschten Stahlmaterial und dem gegebenen gewünschten Prozess, also im direkten oder indirekten Verfahren sowie einen gewünschten Sicherheitsfaktor die Presshärtezahl festgelegt werden und anschließend in einfacher Weise durch die Umstellung der oben angegebenen Formel die effektive Kühlrate ermittelt werden.Conversely, for a given desired steel material and the given desired process, i.e. in the direct or indirect process as well as a desired safety factor, the press hardness number can be determined and then the effective cooling rate can be determined in a simple manner by changing the formula given above.

Die formelmäßigen Zusammenhänge in der theoretischen Presshärtekühlrate sind dabei so gewählt, dass sie übliche kleinere Einflussfaktoren, wie z.B. unterschiedliche Vorlauftemperatur des Kühlwassers für das Werkzeug abhängig von der Jahreszeit noch mit umfasst sind.The formal relationships in the theoretical press hardness cooling rate are chosen so that they usually include smaller influencing factors, e.g. different flow temperature of the cooling water for the tool depending on the season are still included.

Claims (2)

  1. Method for press hardening of steel, wherein a steel sheet is either pre-formed cold from a hardenable steel alloy, subsequently transferred into a tool that substantially has the contour of the preformed component, and is cooled there following a preceding heating step that effects a complete austenitisation at a speed that lies above the critical hardening speed, so that a quench hardening of the preformed component is realised, or a plate made of a steel with a composition that allows press hardening is heated to a temperature above the austenitisation temperature and subsequently hot-formed in a tool and simultaneously cooled at a speed that lies above the critical hardening speed, so that hardening is brought about, wherein the hardening is effected in that the austenitic structure is transferred into a martensitic structure with > 90 vol. %, in particular > 95 vol. % martensite and residual austenite, residual ferrite and/or bainite, characterised in that
    the press hardness value is calculated for adjusting a desired tool to a given steel type, wherein the press hardness value PHZ is calculated from the equation PHZ press hardness value = cooling rate in the tool PHW / theoretic PH _ cooling rate PHK
    Figure imgb0011
    wherein the cooling rate in the tool is predetermined for a desired sheet metal thickness or is measured and the theoretic PH_cooling rate PHK for steel material, the dissolved boron content in its starting material of which is > 5 ppm, is calculated as follows: PHK K / s = 1750 / 28.5 C m % + 3.5 Si m % + 2.3 Mn m % 2 Al m % + 4 Cr m % + 3 Ni m % + 25 Mo m % 20 Nb m % 6.3 2.7
    Figure imgb0012
    and for which the boron content dissolved in the starting material of < 5 ppm results as follows: PHK K / s = 2750 / 28.5 C m % + 3.5 Si m % + 2.3 Mn m % 2 Al m % + 4 Cr m % + 3 Ni m % + 25 Mo m % 20 Nb m % 7.0 1.8 ,
    Figure imgb0013
    wherein P, S, N are included as unavoidable contamination,

    wherein V m% and Ti m% are being alloyed to the same within a range of < 0.5 m%,
    wherein all percentage information is listed in percent by weight,
    wherein the following applies:
    PHZ < 1: no complete hardening through martensite formation guaranteed
    PHZ = 1: a non-deformed or pre-deformed plate can be hardened = indirect process
    PHZ > 1: a plate can be hot-formed in addition to the indirect process or greater resistance against plastic deformation during hardening (hot-forming suitability),
    wherein the reliably realisable cooling rate in the tool (PHW) is measured with a desired steel composition and a desired metal sheet thickness for this metal sheet thickness, and the press hardening value (PHZ) is calculated from the theoretic press hardening cooling rate (PHK) here, wherein the desired steel composition and the given system are suitable for an indirect press hardening process at a press hardening value of 1, and the heat-deformation can be carried out with greater safety as the press hardening value increases to a press hardening value of > 1.
  2. Method for press hardening steel, wherein a steel sheet is either preformed cold from a hardenable steel alloy, subsequently transferred into a tool that substantially has the contour of the preformed component, and is cooled there following a preceding heating step that effects a complete austenitisation at a speed that lies above the critical hardening speed, so that a quench hardening of the preformed component is realised, or a plate made of a steel with a composition that allows press hardening is heated to a temperature above the austenitisation temperature and subsequently hot-formed in a tool and simultaneously cooled at a speed that lies above the critical hardening speed, so that hardening is brought about, wherein the hardening is effected in that the austenitic structure is transferred into a martensitic structure with > 90 vol. %, in particular > 95 vol. % martensite and residual austenite, residual ferrite and/or bainite, characterised in that
    the press hardness value is calculated for adjusting the suitable steel alloy to an existing system geometry,
    where the press hardness value PHZ is calculated from the equation PHZ press hardness value = cooling rate in the tool PHW / theoretic PH _ cooling rate PHK ,
    Figure imgb0014
    wherein the cooling rate in the tool is predetermined for a desired sheet metal thickness or is measured and the theoretic PH_cooling rate PHK for steel material, the dissolved boron content in its starting material of which is > 5 ppm, is calculated as follows: PHK K / s = 1750 / 28.5 C m % + 3.5 Si m % + 2.3 Mn m % 2 Al m % + 4 Cr m % + 3 Ni m % + 25 Mo m % 20 Nb m % 6.3 2.7
    Figure imgb0015
    and for which the boron content dissolved in the starting material of < 5 ppm results as follows: PHK K / s = 2750 / 28.5 C m % + 3.5 Si m % + 2.3 Mn m % 2 Al m % + 4 Cr m % + 3 Ni m % + 25 Mo m % 20 Nb m % 7.0 1.8 ,
    Figure imgb0016
    wherein P, S, N are included as unavoidable contamination,
    wherein V m% and Ti m% are being alloyed to the same within a range of < 0.5 m%,
    wherein all percentage information is listed in percent by weight,
    wherein the following applies:
    PHZ < 1: no complete hardening through martensite formation guaranteed
    PHZ = 1: a non-deformed or pre-deformed plate can be hardened = indirect process
    PHZ > 1: a plate can be hot-formed in addition to the indirect process or greater resistance against plastic deformation during hardening (hot-forming suitability),
    wherein a suitable steel alloy is selected by means of the press hardening value at a known cooling rate in the tool PHW, wherein a steel, the PH_cooling rate of which PHK is set in such a way that at least one press hardening value of 1 is reached for an indirect press hardening process for this, and a press hardening value of > 1, preferably > 2 is reached for a hot-forming process.
EP13732131.1A 2012-06-26 2013-06-25 Method for press hardening of steel Active EP2864505B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012105580A DE102012105580B3 (en) 2012-06-26 2012-06-26 Press hardening of steel, comprises e.g. cold pre-forming steel sheet, heating and cooling, where press hardness number is determined e.g. for adjusting steel alloy, and which is equal to cooling rate in mold/theoretical press cooling rate
PCT/EP2013/063282 WO2014001336A1 (en) 2012-06-26 2013-06-25 Method for press hardening steel

Publications (2)

Publication Number Publication Date
EP2864505A1 EP2864505A1 (en) 2015-04-29
EP2864505B1 true EP2864505B1 (en) 2020-05-06

Family

ID=48051538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13732131.1A Active EP2864505B1 (en) 2012-06-26 2013-06-25 Method for press hardening of steel

Country Status (6)

Country Link
US (1) US9982319B2 (en)
EP (1) EP2864505B1 (en)
CN (1) CN104487599B (en)
DE (1) DE102012105580B3 (en)
ES (1) ES2791713T3 (en)
WO (1) WO2014001336A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110761B4 (en) 2013-09-27 2016-08-11 Voit Tph Gmbh Method for producing a metal composite component and composite metal component
MX2019003841A (en) * 2016-10-03 2019-09-26 Ak Steel Properties Inc High elongation press hardened steel manufacture of the same.
DE102021110702A1 (en) 2021-04-27 2022-10-27 Voestalpine Metal Forming Gmbh Process and device for manufacturing hardened steel components with different ductile areas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076247A1 (en) * 2008-12-19 2010-07-08 Voestalpine Automotive Gmbh Method for producing partially hardened components from sheet steel
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009030489A1 (en) * 2009-06-24 2010-12-30 Thyssenkrupp Nirosta Gmbh A method of producing a hot press hardened component, using a steel product for the manufacture of a hot press hardened component, and hot press hardened component
DE102010048209C5 (en) * 2010-10-15 2016-05-25 Benteler Automobiltechnik Gmbh Method for producing a hot-formed press-hardened metal component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MERKLEIN ET AL: "Determination of Material and Process Characteristics for Hot Stamping Processes of Quenchenable Ultra High Strength Steels with Respect to a FE-based Process Design", vol. 1, no. 1, 15 April 2009 (2009-04-15), pages 411 - 426, XP009505257, ISSN: 0096-736X, Retrieved from the Internet <URL:http://www.jstor.org/stable/26282671> DOI: 10.4271/2008-01-0853 *

Also Published As

Publication number Publication date
CN104487599A (en) 2015-04-01
CN104487599B (en) 2016-08-31
ES2791713T3 (en) 2020-11-05
EP2864505A1 (en) 2015-04-29
US9982319B2 (en) 2018-05-29
DE102012105580B3 (en) 2013-04-25
WO2014001336A1 (en) 2014-01-03
US20150152517A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
EP2446064B1 (en) Method for producing a hot press hardened component and use of a steel product for producing a hot press hardened component
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
DE102013010946B3 (en) Method and plant for producing a press-hardened sheet steel component
DE102008022399A1 (en) Process for producing a steel molding having a predominantly ferritic-bainitic structure
DE102008051992A1 (en) Producing workpiece by press-hardening semi-finished product, comprises heating semi-finished product consisting of steel in a state, in which steel structure is partially austenitized, and subjecting semi-finished product to an air cooler
EP3797176A1 (en) Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof
DE102011053939A1 (en) Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
WO2018210574A1 (en) Three-layer high-strength steel or ballistic steel, method for producing a component, and use thereof
WO2020127561A1 (en) Method for producing conventionally hot-rolled profiled strip products
EP3541966B1 (en) Method for producing chassis parts from micro-alloyed steel with improved cold workability
EP2864505B1 (en) Method for press hardening of steel
DE102014112448A1 (en) Production method for Al-Si coated sheet steel parts and Al-Si coated steel sheet strip
DE102010056264A1 (en) Producing steel element comprising zinc alloy coating, comprises stamping out blank from sheet metal coated with zinc alloy, heating stamped-out blank to temperature, and holding blank at this temperature for predetermined time
DE102006052834A1 (en) Method for producing a roller bearing ring and roller bearing ring
DE102008022401A1 (en) Method for the production of steel mold part e.g. automobile body with predominantly bainitic structure, comprises providing starting material in the form of a steel plate or a preformed steel part and through-heating the starting material
DE102017110851B3 (en) Method for producing steel composite materials
DE102009008285A1 (en) steel alloy
EP3899060A1 (en) Method for producing conventionally hot-rolled strip products
WO2020187419A1 (en) Method for producing a hot-rolled flat steel product with different properties, a correspondingly hot-rolled flat steel product, and a corresponding use
WO2017133725A1 (en) Method for making a rolling bearing component from austenitic steel
WO2024110306A1 (en) Method of hot press forming, with improved process window
DE102020200808A1 (en) Method for producing a sheet metal component hardened at least partially from steel and an at least partially hardened sheet metal component made from steel
EP3978634A1 (en) An at least partially press-hardened steel sheet component and method of producing an at least partially press-hardened steel sheet component
DE102020115345A1 (en) Process for the production of a component as well as a component
DE102019115165A1 (en) Method for producing a steel composite material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180518

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/02 20060101ALI20191203BHEP

Ipc: C21D 6/00 20060101ALI20191203BHEP

Ipc: C22C 38/54 20060101ALI20191203BHEP

Ipc: C22C 38/04 20060101ALI20191203BHEP

Ipc: C21D 1/673 20060101AFI20191203BHEP

Ipc: C22C 38/06 20060101ALI20191203BHEP

Ipc: C22C 38/58 20060101ALI20191203BHEP

Ipc: C22C 38/46 20060101ALI20191203BHEP

Ipc: C21D 11/00 20060101ALI20191203BHEP

Ipc: C21D 1/18 20060101ALI20191203BHEP

Ipc: C21D 8/00 20060101ALI20191203BHEP

Ipc: C22C 38/44 20060101ALI20191203BHEP

Ipc: C22C 38/50 20060101ALI20191203BHEP

Ipc: C22C 38/48 20060101ALI20191203BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1266802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014689

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2791713

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014689

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

26N No opposition filed

Effective date: 20210209

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1266802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230626

Year of fee payment: 11

Ref country code: DE

Payment date: 20230626

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230703

Year of fee payment: 11