EP2862979B1 - Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße - Google Patents

Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße Download PDF

Info

Publication number
EP2862979B1
EP2862979B1 EP14185929.8A EP14185929A EP2862979B1 EP 2862979 B1 EP2862979 B1 EP 2862979B1 EP 14185929 A EP14185929 A EP 14185929A EP 2862979 B1 EP2862979 B1 EP 2862979B1
Authority
EP
European Patent Office
Prior art keywords
contact
compacted
detection
compactor roller
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14185929.8A
Other languages
English (en)
French (fr)
Other versions
EP2862979A1 (de
Inventor
Sebastian Villwock
Werner VÖLKEL
Fritz Kopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamm AG
Original Assignee
Hamm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamm AG filed Critical Hamm AG
Publication of EP2862979A1 publication Critical patent/EP2862979A1/de
Application granted granted Critical
Publication of EP2862979B1 publication Critical patent/EP2862979B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/236Construction of the rolling elements, e.g. surface configuration, rolling surface formed by endless track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/026Improving by compacting by rolling with rollers usable only for or specially adapted for soil compaction, e.g. sheepsfoot rollers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/026Improving by compacting by rolling with rollers usable only for or specially adapted for soil compaction, e.g. sheepsfoot rollers
    • E02D3/0265Wheels specially adapted therefor; Cleats for said wheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/026Improving by compacting by rolling with rollers usable only for or specially adapted for soil compaction, e.g. sheepsfoot rollers
    • E02D3/039Slope rollers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/10Miscellaneous comprising sensor means

Definitions

  • the present invention relates to a device and to a method for determining a contact state of a compactor roller with a base to be compacted representing a rump.
  • this object is achieved solved by a device for determining a contact state between a compacting roller and a compacting subsurface representing Aufstandsteil, comprising at least one detection peripheral region of a compacting roller rotational axis rotatable compressor roller at least one contact signal generating a contact sensor, wherein the contact signal is a contact start and a contact end of a detection scope with the compacted underground.
  • information is provided which, for example, based on a complete revolution of the compressor roller, in association with a detection circumferential region, represents that portion in which a detection peripheral region is in contact with the substrate to be compacted.
  • This proportion ie the greater the distance between contact start and contact end, the greater the extent of contact between the compactor roller and the substrate to be compacted, which indicates that the compactor roller penetrates comparatively deep into the material of the substrate to be compacted and this Therefore, it is relatively compact.
  • the compactor roller penetrates less deeply into the building material of the substrate to be compacted, which means that, relative to an entire revolution or the entire circumference of the compactor roller, that portion in which contact with the substrate to be compacted decreases.
  • the contact patch to be determined with the device according to the invention therefore permits a conclusion as to the degree of compaction of the substrate to be compacted and can thus be used to define further compaction or machining measures on the substrate to be compacted.
  • a plurality of detection peripheral areas each having at least one contact sensor distributed around the roller axis of the compressor preferably in the same axial area of the compactor roller is provided. It is particularly advantageous if the detection peripheral areas are arranged with substantially the same circumferential distance, preferably about 90 ° to each other. By a uniform spacing of the detection perimeter areas, a periodic detection pattern of the various detection perimeter areas can be provided with a defined time offset and used for the evaluation.
  • sensors which, with a comparatively simple structure, reliably permit a conclusion as to whether or not the region in which a respective contact sensor is positioned, that is to say a respective detection peripheral region, is in contact with the substrate to be compacted.
  • a rotational positioning detection arrangement for detecting a rotational positioning of the compressor roller is provided.
  • the provision of information about the rotational positioning of the compressor roller in relation to the output from a respective contact sensor contact signal can be used in a particularly advantageous manner, information about an asymmetric contact behavior of the compactor roller with the substrate to be compacted, in particular the emergence of a by the Voranterrorism In general, the compressor roller generated generated bow wave in the underground to be compacted.
  • the rotational positioning detection arrangement comprises at least one contact sensor and at least one rotation positioning reference region which is in detection interaction with the at least one contact sensor and can not rotate with the compressor roller about the compressor roller rotational axis.
  • the pedestal size can be combined with the substrate to be compacted Contact represent standing peripheral portion of the compressor roller.
  • This peripheral region can be represented by a length dimension, that is, for example, circumferential length region, or an angular segment.
  • the above object is achieved by a method for determining a contact patch representing a contact state of a compacting roller with a substrate to be compacted, preferably by means of a device constructed according to the invention, comprising detecting a contact between at least one detection peripheral region of the compactor roller and to be compacted Subsurface during rotation of the compactor roll around a compactor roll axis of rotation.
  • this method according to the invention is advantageously the contact between a compactor roller and the substrate to be compacted or contact size representing this contact based on the occurring during the rotation of the compactor contact between at least one detection range and the scope compacting ground and the contact end.
  • a respective detection peripheral area is in contact with the substrate to be compacted, while after the contact end until the next contact start, the detection peripheral area is not in contact with the substrate to be compacted.
  • the contact patch be further determined based on a speed of movement of the compactor roller and / or a radius of the compactor roller ,
  • the contact patch size is based on a ratio between a first movement duration indicative of contact of at least one detection scope with the substrate to be compacted and a second movement duration indicative of no contact Rotation of the compressor roller to the compressor roller axis of rotation or / and a one revolution of the compressor roller indicating second movement time is determined.
  • that duration during which a respective detection peripheral area moves in contact with the substrate to be compacted is set in relation to the time period in which such a contact does not exist or at the time of one complete revolution of the compactor roller.
  • the contact patch is composed of a first contact patch part between the start of contact of at least one detection peripheral area with the ground to be compacted and a contact reference position and a second contact patch part between the contact reference position and the contact end.
  • this contact reference position may represent a deepest positioning of the detection peripheral area in the course of the circumferential movement of a detection peripheral area with respect to a perpendicularly orthogonal to the substrate to be compacted, where the first footprint is a bow-sided part of the barrier and the second pad is a rear-side part of the pad.
  • a contact reference position may comprise a contact region located substantially directly below the axis of rotation of the compactor roller in the vertical direction.
  • the preceding part in the direction of movement is considered to be bow-side and will generally have a greater extension than the trailing rear-side part due to the presence of the above-mentioned bow wave.
  • the contact reference position is determined based on at least one Wheelposition istsreferenz.
  • a rotational positioning reference may be generated, for example, by interaction of at least one detection perimeter area with a rotational positioning reference area.
  • a first detection coverage area essentially generates a rotational positioning reference by interaction with a rotational positioning reference area when a second detection peripheral area is in the contact reference position.
  • the contact patch which can be determined by the method according to the invention, can represent a peripheral region of the compactor roller that is in contact with the substrate to be compacted. From this peripheral area can then be determined for example by orthogonal projection onto a plane defined by the substrate to be compacted a contact patch of the compactor on the substrate to be compacted, which in turn can be used by mathematical operations information about various physical variables such.
  • the Fig. 1 shows a schematic side view and cross-sectional view relative to a compressor roller axis of rotation D a generally designated 10 device with which a reproduced in the example shown in angular scale Aufstandsteil a compressor roller 12 can be determined on to be compacted substrate 14.
  • the device 10 comprises four contact sensors 1, 2, 3, 4 in the inner space 16 enclosed by a roll shell 13 of the compressor roll 12.
  • the contact sensor 1 is arranged in a detection peripheral region 18 of the compacting roll 12.
  • the contact sensor 2 is disposed in a detection peripheral area 20. Of the Contact sensor 3 is disposed in a detection peripheral region 22, while the contact sensor 4 is disposed in a detection peripheral region 24.
  • Each of these contact sensors 1, 2, 3, 4 provides a contact signal S1, S2, S3, S4 which varies depending on whether a respective detection perimeter area 18, 20, 22, 24 is in contact with the building material of the substrate 14 to be compacted, which is the case in the illustrated example only for the detection scope 22 or the contact sensor 3, or is not in contact with the building material of the substrate to be compacted 14, which in the example shown for the detection scope areas 18, 20 and 24 and the contact sensors provided therein 1, 2, 4 is the case.
  • the four contact sensors 1, 2, 3, 4 to each other at the same angular distance of 90 °. That is, the contact sensor 1 is diametrically opposed to the contact sensor 3 with respect to the compressor roller rotational axis D while the contact sensor 2 is diametrically opposed to the contact sensor 4 with respect to the compressor roller rotational axis D.
  • a rotational positioning reference region 30 formed, for example, as a reference wheel 28 abutting the outer circumference of the roll mantle 13 can be used in the manner described below to generate a rotational positioning reference for the compactor roll 12 in cooperation with the contact sensors 1, 2, 3, 4. Whenever one of these contact sensors 1, 2, 3, 4 moves past the rotation positioning reference area 30, a change indicating this movement will occur in the contact signal S1, S2, S3, S4 of the respective contact sensor 1, 2, 3, 4, which indicates that at this time, this contact sensor generating a respective contact signal has moved past the rotation positioning reference area 30. It should be noted that this rotational positioning reference region 30 need not necessarily be formed as a reference wheel.
  • a proximity switch moving past projections on the compressor roller 12 can be used to determine a respective rotational positioning of the compactor roller 12.
  • the rotational positioning reference can also be generated with the inclusion of the Konaktsensoren 1, 2, 3, 4, is particularly advantageous due to the structurally simple design, which requires no additional sensors.
  • the rotational positioning reference region 30 is positioned in a height direction directly above the rotational axis D of the compacting roller 12. This means that on the spanned by the substrate to be compacted 14 level, z. B. a horizontal plane, orthogonal vertical S on the one hand, the Drehposition réellesreferenz Scheme 30 and on the other hand, the compactor roller rotational axis D intersects.
  • This vertical S defined in the lying between the lines A and E peripheral region, so that peripheral region in which the compressor roller 12 is in contact with the substrate to be compacted 14, a contact reference position K.
  • This contact reference position K divides the between the two lines A and E.
  • the Fig. 2 shows the time course of the generated by the contact sensors 1, 2, 3, 4 contact signals S1, S2, S3, S4.
  • These contact signals S1, S2, S3, S4 are only examples of a variety of waveforms, which respectively indicate whether one of the detection scope in question 18, 20, 22, 24 in contact with the substrate 14 to be compacted or, for example, past the rotational positioning reference 30 moved or not.
  • the signal level decreases, whereas if no material is opposed to a respective detection peripheral region, the signal level is at a high level.
  • the mode of operation of the device 10 or the procedure for determining a contact patch representing the contact between the compactor roller 12 and the substrate 14 to be compacted for example, represented by the angle ⁇ , explained.
  • the detection peripheral region 22 moves with its contact sensor 3 in the region of the line A, ie at a point in time t A in FIG Fig. 2 , in contact with the substrate 14 to be compacted.
  • the signal level of the contact signal S3 drops significantly.
  • the point in time at which the contact signal S3 assumes its minimum value can be selected as the time for the contact to occur.
  • the detection scope 22 reaches the area or to the line E, so that at the time t E of the detection peripheral area 22 out of contact with the substrate to be compacted 14 occurs and consequently the signal level increases again.
  • the timing of the rise of the signal level may be taken as the timing of the termination of the contact between the detection scope 22 and the ground 14 to be compacted. This means that between the two times t A and t E, the detection perimeter area 22 was in contact with the material to be compacted.
  • the time t 1 indicates the state of Fig. 1 again.
  • the circumferential length or the angular range ⁇ , in which the compressor roller 12 is in contact with the substrate 14 to be compacted can therefore be calculated in a simple manner by the ratio of the length of the interval t 0 between the times t E and t A to the length of the total Umwindug U are determined.
  • the angle ⁇ which ultimately represents a fraction or an angle segment of the total angle of 360 °, can be determined in a simple manner without further mathematical operations.
  • the circumferential length in which the compressor roller 12 is in contact with the substrate 14 to be compacted can be determined.
  • the extent of the contact area between the compacting roller 12 and the substrate to be compacted can be determined.
  • a more precise division of the angle ⁇ that is to say of the entire circumferential region of the compressor roller 12 in contact with the substrate 14 to be compacted, can take place in the two parts ⁇ bow and ⁇ tail .
  • the Fig. 2 shows that between times t E and t A , when the detection scope 22 moves over the contact reference position K, the detection peripheral area 18 with its contact sensor 1 moves past the rotation positioning reference area 30. That is, when the detection scope 22 moves past the contact reference position K, the contact signal S1 of the contact sensor 1 will spontaneously vary, for example, fall to a low level.
  • the time at which this drop of the contact signal S1 occurs or this is, for example, to a minimum level can be used as Drehpositionierungsfrequenz to assign to the contact signal S3 of the contact sensor 3, a division of the interval t 0 in the two in Fig. 1 in the two units also indexed, namely, the bow-end, or the precedent first occurring in temporal terms, part ⁇ bow and the stern trailing part ⁇ make.
  • Fig. 1 and 2 illustrated operating principle can also be used when a different number of detection scope and a different relative positioning of the same is selected.
  • three detection perimeter areas could be provided with an angular spacing of 120 °. It would also be possible to work with, for example, only two detection perimeter ranges which have an arbitrary circumferential distance from each other. It should be noted in each case that, advantageously, when one of the detection perimeter areas is in the contact reference position K, another detection perimeter area cooperates with the rotational positioning reference area 30 to generate the rotational positioning reference. Also, a single detection perimeter area could result in the desired result by interacting with a rotational positioning reference area.
  • the rotational positioning reference area 30 about the compressor roller rotational axis D can be shifted forwards or backwards by 90 ° so that, for example, the contact signal S4 or S2 of the contact sensor 4 or of the contact sensor 2 could be used in association with the detection circumference area 22 or the contact sensor 3.
  • the Fig. 3 illustrates a simplified example that, or as in the case of a represented by the angle ⁇ Aufstands conducting a riot width b can be determined.
  • no bow wave 26 is present, so that the two in Fig. 1 mentioned shares ⁇ Bug and ⁇ Heck would be basically the same.
  • the circumferential length range represented by the angle ⁇ can be converted into the contact width b by orthogonal projection onto a plane spanned by the substrate 14 to be compacted.
  • the proportions ⁇ Bug and ⁇ tail are the same size and the total angle ⁇ corresponds to twice the contact distance 2b.
  • the riot width b in turn can be found in the Fig.
  • the Fig. 5 to 8 show various examples of contact sensors used in the Fig. 1 generally shown device 10 can be used. That's how it shows Fig. 5 a known as a pipe sensor acoustic contact sensor 1. this is fed via an air line 30 with air L, which generates a whistling sound in the contact sensor 1. This in turn can be picked up by a microphone 32.
  • the contact sensor 1 is open to the environment via an opening 34 in the roll shell 14, so that depending on whether the opening 34 is covered or not, different frequencies of the sound generated in the contact sensor 1 will adjust, whereby a passing of the detection scope 18, for example on Rotational positioning reference region 30 or can be detected on the substrate 14 to be compacted.
  • the Fig. 6 shows the configuration of the contact sensor 1 as an ultrasonic sensor. This generates an ultrasonic signal which, depending on whether or not the detection peripheral region 18 is covered with material, is reflected differently and received in a corresponding receiver, for example also provided in the contact sensor 1, at a different level.
  • the Fig. 7 shows a constructed as a mechanical tact sensor contact sensor 1. This has an opening 34 in the roll shell 14 passing through the push-button 36, which, when the detection peripheral region 18 is covered by material, is displaced inwards.
  • the probe 36 may be formed, for example, as a plunger, so that its displacement in the contact sensor 1 leads to the generation of a corresponding signal.
  • the Fig. 8 shows a trained as a pressure sensor contact sensor 1. Via a compressed air line 38 compressed air L is supplied. This compressed air L can escape via a, for example, a throttling function unfolding opening 34 in the roll shell 14, as long as the opening 34 is not covered. If the material is covered by the detection scope 18, which prevents or impedes the outflow of the compressed air L through the opening 34, this is detected by a pressure sensor provided in the contact sensor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Agronomy & Crop Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Road Paving Machines (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung sowie ein Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße.
  • Zur Verdichtung von Untergrund, beispielsweise Erdreich, unterschiedliche Gesteinsarten oder auch Asphalt im Straßenbau, werden im Allgemeinen , so wie in der WO 2013/087783 A1 gezeigt, selbstfahrende Bodenverdichter eingesetzt, die mit einer oder ggf. mehreren Verdichterwalzen den zu verdichtenden Untergrund überfahren und durch Druckbelastung, ggf. in Verbindung mit Oszillations- oder Vibrationsbewegungen zu einer Kompaktierung des Aufbaumaterials des zu verdichtenden Untergrunds führen. Aufgrund der auf den Untergrund ausgeübten Druckbelastung wird eine im Vergleich zu dem zu verdichtenden Untergrund im Allgemeinen wesentlich steifere Verdichterwalze in dem zu verdichtenden Untergrund eine Setzungsmulde erzeugen. Je steifer bzw. bereits mehr kompaktiert derartiger Untergrund ist, desto weniger tief wird die Verdichterwalze sich in das Aufbaumaterial des Untergrunds einsetzen, was zur Folge hat, dass mit zunehmender Steifigkeit bzw. zunehmendem Ausmaß der Kompaktierung eine Aufstandsbreite der Verdichterwalze auf dem zu verdichtenden Untergrund abnimmt.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße vorzusehen, welche in einfacher und zuverlässiger Art und Weise einen Rückschluss auf den Verdichtungszustand des Aufbaumaterials des zu verdichtenden Untergrunds zulassen.
  • Gemäß einem ersten Aspekt der vorliegenden Erfindung wird diese Aufgabe gelöst durch eine Vorrichtung zur Ermittlung einer einen Kontaktzustand zwischen einer Verdichterwalze und zu verdichtendem Untergrund repräsentierenden Aufstandsgröße, umfassend an wenigstens einem Erfassungsumfangsbereich einer um eine Verdichterwalzendrehachse drehbaren Verdichterwalze wenigstens einen ein Kontaktsignal generierenden Kontaktsensor, wobei das Kontaktsignal einen Kontaktbeginn und ein Kontaktende eines Erfassungsumfangsbereichs mit dem zu verdichtenden Untergrund indiziert.
  • Durch die erfindungsgemäß aufgebaute Vorrichtung wird Information bereitgestellt, welche, beispielsweise bezogen auf eine ganze Umdrehung der Verdichterwalze, in Zuordnung zu einem Erfassungsumfangsbereich denjenigen Anteil repräsentiert, in welchem ein Erfassungsumfangsbereich in Kontakt mit dem zu verdichtenden Untergrund steht. Je größer dieser Anteil, also je größer der Abstand zwischen Kontaktbeginn und Kontaktende, desto größer ist das Ausmaß des Kontakts zwischen der Verdichterwalze und dem zu verdichtenden Untergrund, was darauf hindeutet, dass die Verdichterwalze vergleichsweise tief in das Material des zu verdichtenden Untergrunds eindringt und dieses daher vergleichsweise wenig verdichtet ist. Mit zunehmendem Verdichtungsgrad dringt die Verdichterwalze weniger tief in das Aufbaumaterial des zu verdichtenden Untergrunds ein, was bedeutet, dass, wieder bezogen auf eine gesamte Umdrehung oder den gesamten Umfang der Verdichterwalze, derjenige Anteil, in welchem Kontakt mit dem zu verdichtenden Untergrund besteht, abnimmt. Die mit der erfindungsgemäßen Vorrichtung zu ermittelnde Aufstandsgröße lässt also einen Rückschluss auf den Kompaktierungsgrad des zu verdichtenden Untergrunds zu und kann somit dazu genutzt werden, weitergehende Verdichtungs- bzw. Bearbeitungsmaßnahmen an dem zu verdichtenden Untergrund festzulegen.
  • Um mit der erfindungsgemäßen Vorrichtung die Aufstandsgröße genauer bzw. öfter im Verlaufe der Verdichterwalzenbewegung ermitteln zu können, wird vorgeschlagen, dass eine Mehrzahl von Erfassungsumfangsbereichen mit jeweils wenigstens einem Kontaktsensor um die Verdichterwalzendrehachse verteilt vorzugsweise im gleichen Axialbereich der Verdichterwalze vorgesehen ist. Dabei ist es besonders vorteilhaft, wenn die Erfassungsumfangsbereiche mit im Wesentlichen gleichem Umfangsabstand, vorzugsweise etwa 90°, zueinander angeordnet sind. Durch eine gleichmäßige Beabstandung der Erfassungsumfangsbereiche kann ein periodisches Erfassungsmuster der verschiedenen Erfassungsumfangsbereiche mit definiertem zeitlichem Versatz bereitgestellt und zur Auswertung herangezogen werden.
  • Eine Beeinträchtigung von Kontaktsensoren während des Verdichtungsbetriebs kann dadurch vermieden werden, dass in wenigstens einem, vorzugsweise jedem Erfassungsumfangsbereich wenigstens ein Kontaktsensor an einer Innenseite eines Walzenmantels der Verdichterwalze vorgesehen ist. Beispielsweise kann ein derartiger Kontaktsensor ausgebildet sein als:
    • akustischer Sensor, vorzugsweise Ultraschallsensor oder Pfeifensensor, oder
    • Tastsensor, oder
    • Drucksensor.
  • Dies sind Sensoren, die bei vergleichsweise einfachem Aufbau in zuverlässiger Art und Weise einen Rückschluss darauf zulassen, ob derjenige Bereich, in welchem ein jeweiliger Kontaktsensor positioniert ist, also ein jeweiliger Erfassungsumfangsbereich, in Kontakt mit dem zu verdichtenden Untergrund ist, oder nicht.
  • Um eine detailliertere Auswertung eines von einem Kontaktsensor gelieferten Signals bereitstellen zu können, wird ferner vorgeschlagen, dass eine Drehpositionierungserfassungsanordnung zur Erfassung einer Drehpositionierung der Verdichterwalze vorgesehen ist. Die Bereitstellung von Information über die Drehpositionierung der Verdichterwalze im Verhältnis zu dem von einem jeweiligen Kontaktsensor ausgegebenen Kontaktsignal kann in besonders vorteilhafter Weise dazu genutzt werden, Information über ein unsymmetrisches Kontaktverhalten der Verdichterwalze mit dem zu verdichtenden Untergrund, insbesondere das Entstehen einer durch die Voranbewegung der Verdichterwalze im Allgemeinen generierten Bugwelle in dem zu verdichtenden Untergrund zu erhalten.
  • Hierzu kann beispielsweise vorgesehen sein, dass die Drehpositionierungserfassungsanordnung wenigstens einen Kontaktsensor und wenigstens einen in Erfassungswechselwirkung mit dem wenigstens einen Kontaktsensor tretenden, nicht mit der Verdichterwalze um die Verdichterwalzendrehachse drehbaren Drehpositionierungsreferenzbereich umfasst.
  • Da die vorliegende Erfindung die Rotation der Verdichterwalze um ihre Verdichterwalzendrehachse ausnutzt, um im Verlaufe einer derartigen Rotationsbewegung Information über das Inkontakttreten bzw. das Beenden des Kontakts eines jeweiligen Erfassungsumfangsbereichs zu ermitteln, kann gemäß einer besonders vorteilhaften Variante die Aufstandsgröße einen mit dem zu verdichtenden Untergrund in Kontakt stehenden Umfangsbereich der Verdichterwalze repräsentieren. Dieser Umfangsbereich kann durch ein Längenmaß, also beispielsweise Umfangslängenbereich, oder ein Winkelsegment repräsentiert sein.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird die voranstehende Aufgabe gelöst durch ein Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße, vorzugsweise vermittels einer erfindungsgemäß aufgebauten Vorrichtung, umfassend das Erfassen eines Kontakts zwischen wenigstens einem Erfassungsumfangsbereich der Verdichterwalze und zu verdichtendem Untergrund während der Rotation der Verdichterwalze um eine Verdichterwalzendrehachse.
  • Auch bei diesem erfindungsgemäßen Verfahren wird vorteilhafterweise der Kontakt zwischen einer Verdichterwalze und dem zu verdichtenden Untergrund bzw. die diesen Kontakt repräsentierende Aufstandsgröße beruhend auf dem im Verlauf der Rotation der Verdichterwalze auftretenden Kontaktbeginn zwischen wenigstens einem Erfassungsumfangsbereich und dem zu verdichtenden Untergrund und dem Kontaktende ermittelt. In der Zeitdauer zwischen dem Kontaktbeginn und dem Kontaktende ist ein jeweiliger Erfassungsumfangsbereich in Kontakt mit dem zu verdichtenden Untergrund, während nach dem Kontaktende bis zum nächstfolgenden Kontaktbeginn der Erfassungsumfangsbereich nicht in Kontakt mit dem zu verdichtenden Untergrund ist.
  • Um in einfacher Art und Weise beruhend auf dem Kontaktbeginn und dem Kontaktende bzw. der Zeitdauer dazwischen eine den Kontaktzustand repräsentierende geometrische Größe ermitteln zu können, wird vorgeschlagen, dass die Aufstandsgröße ferner beruhend auf einer Bewegungsgeschwindigkeit der Verdichterwalze oder/und eines Radius der Verdichterwalze ermittelt wird.
  • Bei einer insbesondere auch mit nur einem einzigen Kontaktsensor funktionsfähigen Variante des erfindungsgemäßen Verfahrens kann vorgesehen sein, dass die Aufstandsgröße beruhend auf einem Verhältnis zwischen einer einen Kontakt wenigstens eines Erfassungsumfangsbereichs mit dem zu verdichtenden Untergrund indizierenden ersten Bewegungsdauer und einer keinen Kontakt indizierenden zweiten Bewegungsdauer im Verlaufe einer Umdrehung der Verdichterwalze um die Verdichterwalzendrehachse oder/und einer eine Umdrehung der Verdichterwalze indizierenden zweiten Bewegungsdauer ermittelt wird. Bei dieser Vorgehensweise wird also diejenige Dauer, während welcher ein jeweiliger Erfassungsumfangsbereich sich in Kontakt mit dem zu verdichtenden Untergrund bewegt, ins Verhältnis gesetzt zu derjenigen Zeitdauer, in welcher ein derartiger Kontakt nicht besteht oder zu der Zeitdauer einer gesamten Umdrehung der Verdichterwalze. Beide Möglichkeiten führen in einfacher Art und Weise zur Information, welcher Winkelanteil der Verdichterwalze tatsächlich in Kontakt mit dem zu verdichtenden Untergrund steht, was, wie bereits ausgeführt, einen Rückschluss darauf zulässt, wie tief die Verdichterwalze in das Material des zu verdichtenden Untergrunds eindringt.
  • Auch die im Verlaufe der Voranbewegung eines Bodenverdichters bzw. einer Verdichterwalze eines Bodenverdichters entstehende Bugwelle, also die in der Bewegungsrichtung eines Bodenverdichters vor einer jeweiligen Verdichterwalze entstehende Anhäufung von zu verdichtendem Material, lässt einen Rückschluss auf den Zustand des zu verdichtenden Untergrunds zu. Das Entstehen einer derartigen Bugwelle führt grundsätzlich dazu, dass der Kontakt einer Verdichterwalze mit dem zu verdichtenden Untergrund unsymmetrisch ist, da in dem in der Bewegungsrichtung der Verdichterwalze hinter derselben liegenden Bereich eine derartige Bugwelle bzw. Anhäufung von Material des zu verdichtenden Untergrunds in diesem Ausmaß nicht entsteht. Diesen Aspekt nutzt die vorliegende Erfindung dadurch aus, dass die Aufstandsgröße sich zusammensetzt aus einem ersten Aufstandsgrößenteil zwischen dem Kontaktbeginn wenigstens eines Erfassungsumfangsbereichs mit dem zu verdichtenden Untergrund und einer Kontaktreferenzposition und einem zweiten Aufstandsgrößenteil zwischen der Kontaktreferenzposition und dem Kontaktende.
  • Diese Kontaktreferenzposition kann beispielsweise eine im Verlaufe der Umfangsbewegung eines Erfassungsumfangsbereichs bezüglich einer zu dem zu verdichtenden Untergrund im Wesentlichen orthogonal stehenden Senkrechten tiefste Positionierung des Erfassungsumfangsbereichs repräsentieren, wobei der erste Aufstandsgrößenteil ein bugseitiger Teil der Aufstandsgröße und der zweite Aufstandsgrößenteil ein heckseitiger Teil der Aufstandsgröße ist. Bei im Wesentlichen horizontal orientiertem zu verdichtendem Untergrund und entsprechend horizontal sich bewegender Verdichterwalze kann also eine derartige Kontaktreferenzpositon einen in Vertikalrichtung im Wesentlichen direkt unter der Drehachse der Verdichterwalze liegenden Kontaktbereich umfassen. Der in der Bewegungsrichtung vorangehende Teil wird als bugseitig betrachtet und wird im Allgemeinen aufgrund des Vorhandenseins der vorangehend angesprochenen Bugwelle eine größere Ausdehnung aufweisen, als der nachlaufende, heckseitige Teil.
  • Um bei dem erfindungsgemäßen Verfahren Information darüber zu erlangen, in welcher Drehpositionierung die Verdichterwalze bzw. ein jeweiliger Erfasungsumfangsbereich ist, wird vorgeschlagen, dass die Kontaktreferenzposition beruhend auf wenigstens einer Drehpositionierungsreferenz ermittelt wird. Eine derartige Drehpositionierungsreferenz kann beispielsweise durch Wechselwirkung wenigstens eines Erfassungsumfangsbereichs mit einem Drehpositionierungsreferenzbereich generiert werden.
  • Bei Einsatz mehrerer Erfassungsumfangsbereiche kann vorteilhafterweise so vorgegangen werden, dass ein erster Erfassungsumfangsbereich im Wesentlichen dann durch Wechselwirkung mit einem Drehpositionierungsreferenzbereich eine Drehpositionierungsreferenz generiert, wenn ein zweiter Erfassungsumfangsbereich in der Kontaktreferenzposition ist.
  • Die Aufstandsgröße, welche mit dem erfindungsgemäße Verfahren ermittelt werden kann, kann einen mit dem zu verdichtenden Untergrund in Kontakt stehenden Umfangsbereich der Verdichterwalze repräsentierten. Aus diesem Umfangsbereich kann dann beispielsweise durch orthogonale Projektion auf eine durch den zu verdichtenden Untergrund aufgespannte Ebene eine Aufstandsbreite der Verdichterwalze auf dem zu verdichtenden Untergrund ermittelt werden, welche wiederum dazu genutzt werden kann, durch mathematische Operationen Information über verschiedene physikalische Größen, wie z. B. den Elastizitätsmodul oder die Querdehnzahl des zu verdichtenden Untergrunds, zu ermitteln.
  • Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
  • Fig. 1
    in prinzipieller Darstellung eine Verdichterwalze auf zu verdichtendem Untergrund während der Bewegung der Verdichterwalze auf dem Untergrund;
    Fig. 2
    ein Zeitdiagramm, welches von vier bei der Verdichterwalze der Fig. 1 vorgesehenen Kontaktsensoren gelieferte Kontaktsignale darstellt;
    Fig. 3
    in vereinfachter Art und Weise die Ermittlung einer Aufstandsbreite einer Verdichterwalze auf dem zu verdichtenden Untergrund;
    Fig. 4
    die Hertzsche Formel, welche den Zusammenhang zwischen einer Aufstandsbreite und der Materialsteifigkeit von zu verdichtendem Material wiedergibt;
    Fig. 5
    in prinzipartiger Darstellung einen an der Innenseite eines Walzenmantels einer Verdichterwalze vorgesehenen und in Form eines Pfeifensensors aufgebauten Kontaktsensors;
    Fig. 6
    eine der Fig. 5 entsprechende Darstellung eines als Ultraschallsensor aufgebauten Kontaktsensors;
    Fig. 7
    eine der Fig. 5 entsprechende Darstellung eines als Tastsensor aufgebauten Kontaktsensors;
    Fig. 8
    eine der Fig. 5 entsprechende Darstellung eines als Drucksensor aufgebauten Kontaktsensors.
  • Die Fig. 1 zeigt in prinzipieller Seiten- bzw. Querschnittsansicht bezüglich einer Verdichterwalzendrehachse D eine allgemein mit 10 bezeichnete Vorrichtung, mit welcher eine im dargestellten Beispiel im Winkelmaß wiedergegebene Aufstandsgröße α einer Verdichterwalze 12 auf zu verdichtendem Untergrund 14 ermittelt werden kann. Die Vorrichtung 10 umfasst in dem von einem Walzenmantel 13 der Verdichterwalze 12 umschlossenen Innenraum 16 vier Kontaktsensoren 1, 2, 3, 4. Der Kontaktsensor 1 ist dabei in einem Erfassungsumfangsbereich 18 der Verdichterwalze 12 angeordnet. Der Kontaktsensor 2 ist in einem Erfassungsumfangsbereich 20 angeordnet. Der Kontaktsensor 3 ist in einem Erfassungsumfangsbereich 22 angeordnet, während der Kontaktsensor 4 in einem Erfassungsumfangsbereich 24 angeordnet ist. Jeder dieser Kontaktsensoren 1, 2, 3, 4 liefert ein Kontaktsignal S1, S2, S3, S4, welches in Abhängigkeit davon variiert, ob ein jeweiliger Erfassungsumfangsbereich 18, 20, 22, 24 in Kontakt mit dem Aufbaumaterial des zu verdichtenden Untergrunds 14 ist, was im dargestellten Beispiel nur für den Erfassungsumfangsbereich 22 bzw. den Kontaktsensor 3 der Fall ist, oder nicht in Kontakt ist mit dem Aufbaumaterial des zu verdichtenden Untergrunds 14, was im dargestellten Beispiel für die Erfassungsumfangsbereiche 18, 20 und 24 bzw. die darin vorgesehenen Kontaktsensoren 1, 2, 4 der Fall ist.
  • In dem in Fig. 1 dargestellten Ausgestaltungsbeispiel sind die vier Kontaktsensoren 1, 2, 3, 4 zueinander in gleichem Winkelabstand von 90° angeordnet. Dies bedeutet, dass der Kontaktsensor 1 bezüglich der Verdichterwalzendrehachse D dem Kontaktsensor 3 diametral gegenüberliegt, während der Kontaktsensor 2 bezüglich der Verdichterwalzendrehachse D dem Kontaktsensor 4 diametral gegenüberliegt.
  • Bei der Bewegung eines eine derartige Verdichterwalze 12 aufweisenden Bodenverdichters in der Bewegungsrichtung V und der damit einhergehenden Rotation der Verdichterwalze 12 um die Verdichterwalzendrehachse D in der Richtung R entsteht in Bewegungsrichtung V vor der Verdichterwalze 12 eine allgemein als Bugwelle 26 bezeichnete Anhäufung von Material. Im Bereich dieser Bugwelle 26 beginnt der Kontakt des Walzenmantels 13 mit dem Aufbaumaterial des zu verdichtenden Untergrunds 14. Dieser Bereich ist in Fig. 1 repräsentiert durch eine Strichlinie A. In einem durch eine Strichlinie E angedeuteten Bereich endet der Kontakt des Walzenmantels 13 mit dem zu verdichtenden Untergrund 14. Nur in dem zwischen den Linien A und E liegenden Bereich, hier definiert durch den Winkel α, besteht Kontakt zwischen der Verdichterwalze 12 und dem zu verdichtenden Untergrund 14.
  • Ein beispielsweise als am Außenumfang des Walzenmantels 13 anliegendes Referenzrad 28 ausgebildeter Drehpositionierungsreferenzbereich 30 kann in nachfolgend beschriebener Art und Weise genutzt werden, um in Zusammenwirkung mit den Kontaktsensoren 1, 2, 3, 4 eine Drehpositionierungsreferenz für die Verdichterwalze 12 zu generieren. Immer dann, wenn einer dieser Kontaktsensoren 1, 2, 3, 4 sich an dem Drehpositionierungsreferenzbereich 30 vorbei bewegt, wird eine diese Vorbeibewegung indizierende Veränderung im Kontaktsignal S1, S2, S3, S4 des jeweiligen Kontaktsensors 1, 2, 3, 4 auftreten, was indiziert, dass zu diesem Zeitpunkt dieser ein jeweiliges Kontaktsignal generierende Kontaktsensor sich am Drehpositionierungsreferenzbereich 30 vorbei bewegt hat. Es ist darauf hinzuweisen, dass dieser Drehpositionierungsreferenzbereich 30 nicht notwendigerweise als Referenzrad ausgebildet sein muss. Auch an einem Näherungsschalter sich vorbei bewegende Vorsprünge an der Verdichterwalze 12 können zur Ermittlung einer jeweiligen Drehpositionierung der Verdichterwalze 12 herangezogen werden. Die in Fig. 1 dargestellte Variante, bei welcher die Drehpositionierungsreferenz auch unter Miteinbeziehung der Konaktsensoren 1, 2, 3, 4 erzeugt werden kann, ist aufgrund der baulich einfachen Ausgestaltung, welche keine zusätzlichen Sensoren erfordert, besonders vorteilhaft.
  • Man erkennt in Fig. 1 weiter, dass im dargestellten Beispiel der Drehpositionierungsreferenzbereich 30 in einer Höhenrichtung direkt über der Drehachse D der Verdichterwalze 12 positioniert ist. Dies bedeutet, dass eine auf der durch den zu verdichtenden Untergrund 14 aufgespannten Ebene, z. B. einer horizontalen Ebene, orthogonal stehende Senkrechte S einerseits den Drehpositionierungsreferenzbereich 30 und andererseits die Verdichterwalzendrehachse D schneidet. Diese Senkrechte S definiert in dem zwischen den Linien A und E liegenden Umfangsbereich, also demjenigen Umfangsbereich, in welchem die Verdichterwalze 12 in Kontakt mit dem zu verdichtenden Untergrund 14 ist, eine Kontaktreferenzposition K. Diese Kontaktreferenzposition K teilt den zwischen den beiden Linien A und E aufgespannten Winkel α auf in einen Winkel αBug, welcher sich zwischen der Linie A, also dem Kontaktbeginn, und der Kontaktreferenzposition K erstreckt, und einen Winkel αHeck, welcher sich zwischen der Kontaktreferenzposition K und der Linie E, also dem Kontaktende, erstreckt. Aufgrund des Umstandes, dass bei der Voranbewegung der Verdichterwalze 12 in der Richtung V die Bugwelle 26 entsteht, wird im Allgemeinen der Teil αBug des Winkels α größer sein, als der nachlaufende Teil αHeck. Nur in einem Zustand, in welchem eine derartige Bugwelle nicht vorhanden wäre, würden diese beiden Teile αBug und αHeck zueinander im Wesentlichen gleich sein, also der Kontakt der Verdichterwalze 12 mit dem zu verdichtenden Untergrund 14 bezüglich der Kontaktreferenzposition K symmetrisch sein. Es sei in diesem Zusammenhang darauf hingewiesen, dass selbstverständlich die Verdichterwalze 12 in einer zur Zeichenebene der Fig. 1 orthogonalen Längsrichtung eine Längserstreckung I aufweisen wird, und insofern die Kontaktreferenzposition K ebenso wie die durch die Strichlinien A und E definierten Positionen als jeweilige Linien zu betrachten sind, welche sich im Wesentlichen parallel zur Verdichterwalzendrehachse D entlang der Verdichterwalze 12 erstrecken.
  • Die Fig. 2 zeigt den zeitlichen Verlauf der durch die Kontaktsensoren 1, 2, 3, 4 generierten Kontaktsignale S1, S2, S3, S4. Diese Kontaktsignale S1, S2, S3, S4 stehen nur beispielhaft für verschiedenste Signalverläufe, welche jeweils indizieren, ob einer der in Frage stehenden Erfassungsumfangsbereiche 18, 20, 22, 24 in Kontakt mit zu verdichtendem Untergrund 14 ist oder sich beispielsweise an dem Drehpositionierungsreferenzbereich 30 vorbei bewegt oder nicht. Im dargestellten Beispiel sinkt immer dann, wenn einem jeweiligen Erfassungsumfangsbereich Material gegenüberliegt, der Signalpegel ab, während dann, wenn einem jeweiligen Erfassungsumfangsbereich kein Material gegenüberliegt, der Signalpegel auf hohem Niveau ist.
  • Im Folgenden sei anhand der durch die beiden Kontaktsensoren 1 und 3 in den Erfassungsumfangsbereichen 18 und 22 generierten Kontaktsignale S1 und S3 die Funktionsweise der Vorrichtung 10 bzw. die Vorgehensweise zur Ermittlung einer den Kontakt zwischen der Verdichterwalze 12 und dem zu verdichtenden Untergrund 14 repräsentierenden Aufstandsgröße, beispielsweise repräsentiert durch den Winkel α, erläutert.
  • Im Verlaufe einer durch den Pfeil U repräsentierten vollständigen Umdrehung der Verdichterwalze 12 um ihre Verdichterwalzendrehachse D bewegt sich der Erfassungsumfangsbereich 22 mit seinem Kontaktsensor 3 im Bereich der Linie A, also zu einem Zeitpunkt tA in Fig. 2, in Kontakt mit dem zu verdichtenden Untergrund 14. Zu diesem Zeitpunkt fällt der Signalpegel des Kontaktsignals S3 deutlich ab. Als Zeitpunkt für das Inkontakttreten kann beispielsweise derjenige Zeitpunkt gewählt werden, zu welchem das Kontaktsignal S3 seinen Minimalwert annimmt. Im Verlaufe der weitergehenden Bewegung gelangt der Erfassungsumfangsbereich 22 zum Bereich bzw. zur Linie E, so dass zum Zeitpunkt tE der Erfassungsumfangsbereich 22 außer Kontakt mit dem zu verdichtenden Untergrund 14 tritt und infolgedessen der Signalpegel wieder ansteigt. Hier kann beispielsweise der Zeitpunkt des Wiederanstiegs des Signalpegels als Zeitpunkt des Beendens des Kontakts zwischen dem Erfassungsumfangsbereich 22 und dem zu verdichtenden Untergrund 14 herangezogen werden. Dies bedeutet, dass zwischen den beiden Zeitpunkten tA und tE der Erfassungsumfangsbereich 22 in Kontakt mit dem zu verdichtenden Material war. Der Zeitpunkt t1 gibt den Zustand der Fig. 1 wieder.
  • Die Umfangslänge bzw. der Winkelbereich α, in welchem die Verdichterwalze 12 in Kontakt mit dem zu verdichtenden Untergrund 14 ist, kann also in einfacher Art und Weise durch das Verhältnis der Länge des Intervalls t0 zwischen den Zeitpunkten tE und tA zur Länge der gesamten Umdrehug U ermittelt werden. Durch dieses Verhältnis kann in einfacher Art und Weise ohne weitere mathematische Operationen der Winkel α, welcher letztendlich einen Bruchteil bzw. ein Winkelsegment des Gesamtwinkels von 360° repräsentiert, ermittelt werden. Unter Mitberücksichtigung eines Radius r der Verdichterwalze 12 und des so berechenbaren Gesamtumfangs derselben kann die Umfangslänge ermittelt werden, in welcher die Verdichterwalze 12 in Kontakt mit dem zu verdichtenden Untergrund 14 steht. Um Variationen in der Bewegungsgeschwindigkeit in Richtung V und daraus auch resultierende Variationen in der Rotationsgeschwindigkeit in der Drehrichtung R kompensieren zu können, kann des Weiteren auch noch die Bewegungsgeschwindigkeit bzw. die Winkelgeschwindigkeit in der Bewegung der Verdichterwalze 12 berücksichtigt werden. Unter der vereinfachten Annahme, dass während einer Umdrehung U der Verdichterwalze 12 diese sich mit im Wesentlichen konstanter Geschwindigkeit bewegt, ist eine derartige Geschwindigkeitskompensation grundsätzlich jedoch nicht erforderlich.
  • In der vorangehend beschriebenen Art und Weise kann die Ausdehnung des Kontaktbereichs zwischen der Verdichterwalze 12 und dem zu verdichtenden Untergrund ermittelt werden. Unter weitergehender Berücksichtigung der bereits angesprochenen Kontaktreferenzposition K kann des weiteren eine präzisierende Aufteilung des Winkels α, also des gesamten in Kontakt mit dem zu verdichtenden Untergrund 14 stehenden Umfangsbereichs der Verdichterwalze 12, in die beiden Teile αBug und αHeck erfolgen. Die Fig. 2 zeigt, dass zwischen den Zeitpunkten tE und tA exakt dann, wenn der Erfassungsumfangsbereich 22 sich über die Kontaktreferenzposition K hinweg bewegt, der Erfassungsumfangsbereich 18 mit seinem Kontaktsensor 1 sich am Drehpositionierungsreferenzbereich 30 vorbei bewegt. Dies bedeutet, dass dann, wenn der Erfassungsumfangsbereich 22 sich an der Kontaktreferenzposition K vorbei bewegt, das Kontaktsignal S1 des Kontaktsensors 1 spontan variieren wird, also beispielsweise auf einen niederen Pegel abfallen wird. Der Zeitpunkt, zu welchem dieser Abfall des Kontaktsignals S1 auftritt bzw. dieses beispielsweise auf minimalem Niveau ist, kann als Drehpositionierungsfrequenz dazu genutzt werden, um in Zuordnung zum Kontaktsignal S3 des Kontaktsensors 3 eine Aufteilung des Intervalls t0 in die beiden in Fig. 1 in die beiden auch indizierten Anteile, nämlich den bugseitigen, voranlaufenden bzw. in zeitlicher Hinsicht zuerst auftretenden Teil αBug und den nachlaufenden Teil αHeck, vorzunehmen.
  • Unter Einsatz der vorangehend beschriebenen Vorrichtung ist es also nicht nur möglich, die Umfangslänge bzw. das Winkelsegment zu ermitteln, in welchem die Verdichterwalze 12 mit dem zu verdichtenden Untergrund 14 in Kontakt steht, sondern es kann auch eine Asymmetrie des Kontakts bezogen auf die Kontaktreferenzposition K ermittelt werden, welche wiederum einen Rückschluss auf die vor der Verdichterwalze 12 sich ausbildende Bugwelle 26 zulässt.
  • Man erkennt in Fig. 2, dass in entsprechender Art und Weise auch dann, wenn der Erfassungsumfangsbereich 18 in Kontakt mit dem zu verdichtenden Untergrund 14 ist, die Vorbeibewegung des Kontaktsensors 3 am Drehpositionierungsreferenzbereich 30 das Erreichen der Kontaktreferenzposition K indiziert. Entsprechendes tritt im Verhältnis der beiden Kontaktsensoren 2 und 4 bzw. der dadurch generierten Kontaktsignale S2 und S4 auf. Dies bedeutet, dass im Verlaufe einer einzigen Umdrehung U der Verdichterwalze 12 um ihre Verdichterwalzendrehachse D vier Erfassungen des Winkels α bzw. der Anteile αBug und αHeck entstehen, was die Erfassung dieser Größen mit hoher Präzision bzw. hoher Wiederholungsrate und dementsprechend auch eine entsprechend häufige Berücksichtigung dieser Größen bei durchzuführenden Verdichtungsvorgängen ermöglicht.
  • Es sei in diesem Zusammenhang darauf hingewiesen, dass selbstverständlich das vorangehend mit Bezug auf die Fig. 1 und 2 dargestellte Arbeitsprinzip auch dann zum Einsatz gelangen kann, wenn eine andere Anzahl an Erfassungsumfangsbereichen und auch eine andere Relativpositionierung derselben gewählt ist. Beispielsweise könnten drei Erfassungsumfangsbereiche mit einem Winkelabstand von 120° vorgesehen sein. Auch könnte mit beispielsweise nur zwei Erfassungsumfangsbereichen gearbeitet werden, die einen beliebigen Umfangsabstand zueinander aufweisen. Zu berücksichtigen ist jeweils, dass vorteilhafterweise dann, wenn einer der Erfassungsumfangsbereiche sich in der Kontaktreferenzposition K befindet, ein anderer Erfassungsumfangsbereich mit dem Drehpositionierungsreferenzbereich 30 zur Erzeugung der Drehpositionierungsreferenz zusammenwirkt. Auch ein einziger Erfassungsumfangsbereich könnte durch Zusammenwirkung mit einem Drehpositionierungsreferenzbereich zu dem gewünschten Ergebnis führen. In diesem Falle müsste jedoch zusätzlich noch die Bewegungsgeschwindigkeit bzw. Winkelgeschwindigkeit der Verdichterwalze 12 berücksichtigt werden, um zu ermitteln, wann ein an dem Drehpositionierungsreferenzbereich sich vorbei bewegender Erfassungsumfangsbereich in der Kontaktreferenzposition ist. Unabhängig davon, wie viele Erfassungsumfangsbereiche bzw. Kontaktsensoren eingesetzt werden, besteht grundsätzlich die Möglichkeit, den Drehpositionierungsreferenzbereich an beliebiger Stelle in einem Bodenverdichter dort zu positionieren, wo dies aus baulichen Gründen möglich oder vorteilhaft ist. So könnte beispielsweise in dem in Fig. 1 dargestellten Beispiel der Drehpositionierungsreferenzbereich 30 um die Verdichterwalzendrehachse D um 90° nach vorne oder nach hinten verschoben werden, so dass in Zuordnung zum Erfassungsumfangsbereich 22 bzw. zum Kontaktsensor 3 dann beispielsweise das Kontaktsignal S4 oder S2 des Kontaktsensors 4 oder des Kontaktsensors 2 genutzt werden könnte.
  • Die Fig. 3 veranschaulicht an einem vereinfachten Beispiel, dass bzw. wie im Falle einer durch den Winkel α repräsentierten Aufstandsgröße eine Aufstandsbreite b ermittelt werden kann. In dem in Fig. 3 dargestellten Fall ist keine Bugwelle 26 vorhanden, so dass die beiden in Fig. 1 angesprochenen Anteile αBug und αHeck grundsätzlich gleich wären. Der durch den Winkel α repräsentierte Umfangslängenbereich kann durch orthogonale Projektion auf eine durch den zu verdichtenden Untergrund 14 aufgespannte Ebene in die Aufstandsbreite b umgerechnet werden. Bei dem in Fig. 3 dargestellten idealisierten, symmetrischen Fall ohne Bugwelle sind die Anteile αBug und αHeck gleich groß und der gesamte Winkel α entspricht der doppelten Aufstandsbreite 2b. Die Aufstandsbreite b wiederum kann in der in Fig. 4 dargestellten Hertzschen Formel dazu genutzt werden, unter Mitberücksichtigung der an sich bekannten Größen r, also Radius der Verdichterwalze 12, I, also Länge der Verdichterwalze 12 in Richtung der Verdichterwalzendrehachse D, sowie F, also der durch die Verdichterwalze 12 ausgeübten Gewichtskraft, einen Rückschluss auf Materialeigenschaften, wie den Elastizitätsmodul E bzw. die Querdehnzahl v zu erhalten. Es sei darauf hingewiesen, dass insbesondere im Falle des Auftretens einer Bugwelle und einer bezüglich der Kontaktreferenzposition K unsymmetrischen Kontaktierung des zu verdichtenden Untergrunds 14 für die beiden Teile αBug und αHeck beispielsweise unter Verwendung einer Vektorzerlegung jeweils separate Berechnungen der Aufstandsbreiten vorzunehmen sind. Grundsätzlich besteht aber auch die Möglichkeit, durch Versuche einen Zusammenhang zwischen den physikalischen Eigenschaften von zu verdichtendem Material und den dabei sich einstellenden Kontaktverhältnissen, diese repräsentiert durch die vorangehend beschriebenen Aufstandsgrößen, zu ermitteln und diesen Zusammenhang beispielsweise tabellarisch oder in einer Datenbank abzulegen, so dass im Verlaufe eines Verdichtungsvorgangs durch Vergleich der unter Ausnutzung der Kontaktsignale ermittelbaren Aufstandsgröße mit entsprechenden im Versuch ermittelten Werten auf den Verdichtungszustand des Untergrunds 14 geschlossen werden kann.
  • Die Fig. 5 bis 8 zeigen verschiedene Beispiele von Kontaktsensoren, die bei der in Fig. 1 allgemein dargestellten Vorrichtung 10 eingesetzt werden können. So zeigt die Fig. 5 einen auch als Pfeifensensor bekannten akustischen Kontaktsensor 1. dieser wird über eine Luftleitung 30 mit Luft L gespeist, die in dem Kontaktsensor 1 einen Pfeifton erzeugt. Dieser wiederum kann durch ein Mikrofon 32 aufgenommen werden. Der Kontaktsensor 1 ist über eine Öffnung 34 im Walzenmantel 14 zur Umgebung hin offen, so dass je nachdem, ob die Öffnung 34 überdeckt ist oder nicht, sich unterschiedliche Frequenzen des im Kontaktsensor 1 entstehenden Tons einstellen werden, wodurch ein Vorbeibewegen des Erfassungsumfangsbereichs 18 beispielsweise am Drehpositionierungsreferenzbereich 30 oder an dem zu verdichtenden Untergrund 14 erkannt werden kann.
  • Die Fig. 6 zeigt die Ausgestaltung des Kontaktsensors 1 als Ultraschallsensor. Dieser generiert ein Ultraschallsignal, das, je nachdem, ob der Erfassungsumfangsbereich 18 mit Material überdeckt ist oder nicht, unterschiedlich reflektiert wird und in einem entsprechenden Empfänger, beispielsweise auch bereitgestellt im Kontaktsensor 1, mit unterschiedlichem Pegel empfangen wird.
  • Die Fig. 7 zeigt einen als mechanischen Tastsensor aufgebauten Kontaktsensor 1. Dieser weist einen eine Öffnung 34 im Walzenmantel 14 durchsetzenden Taster 36 auf, welcher dann, wenn der Erfassungsumfangsbereich 18 von Material überdeckt ist, nach innen verschoben ist. Der Taster 36 kann beispielsweise als Tauchanker ausgebildet sein, so dass dessen Verschiebung im Kontaktsensor 1 zur Erzeugung eines entsprechenden Signals führt.
  • Die Fig. 8 zeigt einen als Drucksensor ausgebildeten Kontaktsensor 1. Über eine Druckluftleitung 38 wird Druckluft L zugeführt. Diese Druckluft L kann über eine beispielsweise auch eine Drosselfunktion entfaltende Öffnung 34 im Walzenmantel 14 entweichen, so lange die Öffnung 34 nicht überdeckt ist. Liegt dem Erfassungsumfangbereich 18 Material gegenüber, welches das Abströmen der Druckluft L über die Öffnung 34 verhindert oder erschwert, wird dies von einem im Kontaktsensor 1 vorgesehenen Drucksensor erfasst.
  • Es sei darauf hingewiesen, dass selbstverständlich auch die in Fig. 1 dargestellten Kontaktsensoren 2 bis 4 entsprechend aufgebaut sein können. Auch ist darauf hinzuweisen, dass in der Vorrichtung 10 auch Kontaktsensoren verschiedener Bauart kombiniert werden können.

Claims (19)

  1. Vorrichtung zur Ermittlung einer einen Kontaktzustand zwischen einer Verdichterwalze und zu verdichtendem Untergrund repräsentierenden Aufstandsgröße (α), umfassend wenigstens einen ein Kontaktsignal (S1, S2, S3, S4) generierenden Kontaktsensor (1, 2, 3, 4), welcher an wenigstens einem Erfassungsumfangsbereich (18, 20, 22, 24) einer um eine Verdichterwalzendrehachse (D) drehbaren Verdichterwalze (12) angeordnet ist und wobei das Kontaktsignal (S1, S2, S3, S4) einen Kontaktbeginn (A) und ein Kontaktende (E) eines Erfassungsumfangsbereichs (18, 20, 22, 24) mit dem zu verdichtenden Untergrund (14) indiziert.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass eine Mehrzahl von Erfassungsumfangsbereichen (18, 20, 22, 24) mit jeweils wenigstens einem Kontaktsensor (1, 2, 3, 4) um die Verdichterwalzendrehachse (D) verteilt vorzugsweise im gleichen Axialbereich der Verdichterwalze (12) vorgesehen ist.
  3. Vorrichtung nach Anspruch 2,
    dadurch gekennzeichnet, dass die Erfassungsumfangsbereiche (18, 20, 21, 22) mit im Wesentlichen gleichem Umfangsabstand, vorzugsweise etwa 90°, zueinander angeordnet sind.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass in wenigstens einem, vorzugsweise jedem Erfassungsumfangsbereich (18, 20, 22, 24) wenigstens ein Kontaktsensor (1, 2, 3, 4) an einer Innenseite eines Walzenmantels (13) der Verdichterwalze (12) vorgesehen ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass wenigstens ein Kontaktsensor (1, 2, 3, 4) ausgebildet ist als:
    - akustischer Sensor, vorzugsweise Ultraschallsensor oder Pfeifensensor, oder
    - Tastsensor, oder
    - Drucksensor.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass eine Drehpositionierungserfassungsanordnung (1, 2, 3, 4, 30) zur Erfassung einer Drehpositionierung der Verdichterwalze (12) vorgesehen ist.
  7. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet, dass die Drehpositionierungserfassungsanordnung (1, 2, 3, 4, 30) wenigstens einen Kontaktsensor (1, 2, 3, 4) und wenigstens einen in Erfassungswechselwirkung mit dem wenigstens einen Kontaktsensor (1, 2, 3, 4) tretenden, nicht mit der Verdichterwalze (12) um die Verdichterwalzendrehachse (D) drehbaren Drehpositionierungsreferenzbereich (30) umfasst.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass die Aufstandsgröße (α) einen mit dem zu verdichtenden Untergrund (14) in Kontakt stehenden Umfangsbereich, vorzugsweise Umfangslängenbereich oder Winkelsegment, der Verdichterwalze (12) repräsentiert.
  9. Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze (12) mit zu verdichtendem Untergrund (14) repräsentierenden Aufstandsgröße (α), vorzugsweise vermittels einer Vorrichtung nach einem der vorhergehenden Ansprüche, umfassend das Erfassen eines Kontakts zwischen wenigstens einem Erfassungsumfangsbereich (18, 20, 22, 24) der Verdichterwalze (12) und zu verdichtendem Untergrund (14) während der Rotation der Verdichterwalze (12) um eine Verdichterwalzendrehachse (D).
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet, dass die Aufstandsgröße (α) beruhend auf dem im Verlauf der Rotation der Verdichterwalze (12) auftretenden Kontaktbeginn (A) zwischen wenigstens einem Erfassungsumfangsbereich (18, 20, 22, 24) und dem zu verdichtenden Untergrund (14) und dem Kontaktende (E) ermittelt wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, dass die Aufstandsgröße (α) ferner beruhend auf einer Bewegungsgeschwindigkeit der Verdichterwalze (12) oder/und eines Radius (r) der Verdichterwalze (12) ermittelt wird.
  12. Verfahren nach Anspruch 10 oder 11,
    dadurch gekennzeichnet, dass die Aufstandsgröße (α) beruhend auf einem Verhältnis zwischen einer einen Kontakt wenigstens eines Erfassungsumfangsbereichs (18, 20, 22, 24) mit dem zu verdichtenden Untergrund (12) indizierenden ersten Bewegungsdauer (t0) und einer keinen Kontakt indizierenden zweiten Bewegungsdauer im Verlaufe einer Umdrehung der Verdichterwalze (12) um die Verdichterwalzendrehachse (D) oder/und einer eine Umdrehung (U) der Verdichterwalze (12) indizierenden zweiten Bewegungsdauer ermittelt wird.
  13. Verfahren nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet, dass die Aufstandsgröße (α) sich zusammensetzt aus einem ersten Aufstandsgrößenteil (αBug) zwischen dem Kontaktbeginn (A) wenigstens eines Erfassungsumfangsbereichs (18, 20, 22, 24) mit dem zu verdichtenden Untergrund (14) und einer Kontaktreferenzposition (K) und einem zweiten Aufstandsgrößenteil (αHeck) zwischen der Kontaktreferenzposition (K) und dem Kontaktende (E).
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet, dass die Kontaktreferenzposition (K) eine im Verlaufe der Umfangsbewegung eines Erfassungsumfangsbereichs (18, 20, 22, 24) bezüglich einer zu dem zu verdichtenden Untergrund (14) im Wesentlichen orthogonal stehenden Senkrechten (S) tiefste Positionierung des Erfassungsumfangsbereichs (18, 20, 22, 24) repräsentiert, wobei der erste Aufstandsgrößenteil (αBug) ein bugseitiger Teil der Aufstandsgröße (α) und der zweite Aufstandsgrößenteil (αHeck) ein heckseitiger Teil der Aufstandsgröße (α) ist.
  15. Verfahren nach Anspruch 13 oder 14,
    dadurch gekennzeichnet, dass die Kontaktreferenzposition (K) beruhend auf wenigstens einer Drehpositionierungsreferenz ermittelt wird.
  16. Verfahren nach Anspruch 15,
    dadurch gekennzeichnet, dass die Drehpositionierungsreferenz durch Wechselwirkung wenigstens eines Erfassungsumfangsbereichs (18, 20, 22, 24) mit einem Drehpositionierungsreferenzbereich (30) generiert wird.
  17. Verfahren nach Anspruch 16,
    dadurch gekennzeichnet, dass ein erster Erfassungsumfangsbereich (18, 20, 22, 24) im Wesentlichen dann durch Wechselwirkung mit einem Drehpositionierungsreferenzbereich (30) eine Drehpositionierungsreferenz generiert, wenn ein zweiter Erfassungsumfangsbereich (22, 24, 18, 20) in der Kontaktreferenzposition (K) ist.
  18. Verfahren nach einem der Ansprüche 9 bis 17,
    dadurch gekennzeichnet, dass die Aufstandsgröße (α) einen mit dem zu verdichtenden Untergrund in Kontakt stehenden Umfangsbereich, vorzugsweise Umfangslängenbereich oder Winkelsegment, der Verdichterwalze (12) repräsentiert.
  19. Verfahren nach einem der Ansprüche 9 bis 18,
    dadurch gekennzeichnet, dass beruhend auf der Aufstandsgröße (α) eine Aufstandsbreite (b) der Verdichterwalze (12) auf dem zu verdichtenden Untergrund (14) ermittelt wird.
EP14185929.8A 2013-10-16 2014-09-23 Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße Active EP2862979B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310220962 DE102013220962A1 (de) 2013-10-16 2013-10-16 Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße

Publications (2)

Publication Number Publication Date
EP2862979A1 EP2862979A1 (de) 2015-04-22
EP2862979B1 true EP2862979B1 (de) 2016-03-30

Family

ID=51627972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14185929.8A Active EP2862979B1 (de) 2013-10-16 2014-09-23 Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße

Country Status (4)

Country Link
US (1) US9650747B2 (de)
EP (1) EP2862979B1 (de)
CN (2) CN204174508U (de)
DE (1) DE102013220962A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011088567A1 (de) * 2011-12-14 2013-06-20 Hamm Ag Vorrichtung zur Erfassung der Bewegung einer Verdichterwalze eines Bodenverdichters
DE102013220962A1 (de) * 2013-10-16 2015-04-30 Hamm Ag Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße
JP2017101486A (ja) * 2015-12-03 2017-06-08 鹿島建設株式会社 締固め評価方法及び締固め評価装置
JP6735088B2 (ja) * 2015-12-03 2020-08-05 鹿島建設株式会社 地盤締固め管理装置及び地盤締固め管理方法
DE102016124341A1 (de) * 2016-12-14 2018-06-14 Hamm Ag Baumaschine
DE102017006844B4 (de) * 2017-07-18 2019-04-11 Bomag Gmbh Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
DE102017122371A1 (de) * 2017-09-27 2019-03-28 Hamm Ag Verdichterwalze
JP7246039B2 (ja) * 2018-10-22 2023-03-27 大成建設株式会社 地面の密度または水分の計測機能を有する移動体および地面計測方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551305C3 (de) * 1974-11-18 1981-03-26 Leningradskij politechničeskij institut imeni M.I. Kalinina, St. Petersburg Straßenwalze zum Verdichten von Straßendecken
GB9504345D0 (en) 1995-03-03 1995-04-19 Compaction Tech Soil Ltd Method and apparatus for monitoring soil compaction
US5821433A (en) * 1997-06-10 1998-10-13 Breed Automotive Technology, Inc. Thin tactile sensors for nip width measurement
US6973821B2 (en) 2004-02-19 2005-12-13 Caterpillar Inc. Compaction quality assurance based upon quantifying compactor interaction with base material
US7392715B2 (en) * 2004-10-29 2008-07-01 Stowe Woodward Ag Wireless sensors in roll covers
US8281671B2 (en) * 2007-01-17 2012-10-09 Metso Paper, Inc. Load measuring device, manufacturing method for the device and control method using the device
US8276468B2 (en) * 2011-01-18 2012-10-02 Xerox Corporation Piezoelectric sensors for automatic measurement of NIP width for fuser member control
CA2836484C (en) * 2011-06-02 2017-01-03 Stowe Woodward Licensco, Llc Nip width sensing method and system for industrial rolls
DE102011088567A1 (de) 2011-12-14 2013-06-20 Hamm Ag Vorrichtung zur Erfassung der Bewegung einer Verdichterwalze eines Bodenverdichters
CN102587264B (zh) * 2012-02-29 2014-06-18 长安大学 沥青路面真空压路机及其路面压实方法
CA2900299C (en) * 2013-04-19 2017-10-24 Stowe Woodward Licensco, Llc Industrial roll with triggering system for sensors for operational parameters
JP6217127B2 (ja) * 2013-05-10 2017-10-25 横浜ゴム株式会社 コンベヤベルトの支持ローラ接触状態測定装置
DE102013220962A1 (de) * 2013-10-16 2015-04-30 Hamm Ag Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße

Also Published As

Publication number Publication date
US9650747B2 (en) 2017-05-16
US20150101424A1 (en) 2015-04-16
CN104562898B (zh) 2018-01-09
CN204174508U (zh) 2015-02-25
CN104562898A (zh) 2015-04-29
DE102013220962A1 (de) 2015-04-30
EP2862979A1 (de) 2015-04-22

Similar Documents

Publication Publication Date Title
EP2862979B1 (de) Vorrichtung und Verfahren zur Ermittlung einer einen Kontaktzustand einer Verdichterwalze mit zu verdichtendem Untergrund repräsentierenden Aufstandsgröße
EP2924394B1 (de) Verfahren zur Korrektur eines Messwerteverlaufs durch das Eliminieren periodisch auftretender Messartefakte bei einem Bodenverdichter
DE102017006844B4 (de) Bodenverdichter und Verfahren zur Bestimmung von Untergrundeigenschaften mittels eines Bodenverdichters
DE102012210277B3 (de) Kapazitiver Sensor zur Erfassung der Bewegung eines Objekts
DE19613861C2 (de) Landwirtschaftliche Ballenpresse
EP3651908B1 (de) Verfahren zum betrieb einer anlage, anlage und computerprogrammprodukt
DE102013222122A1 (de) Verfahren zum Ermitteln einer einen Bodencharakterisierenden Größe, sowie Bodenverdichtungs- oderVerdichtungsprüfgerät
DE102007022196A1 (de) Drehwinkel-Detektorgerät, welches eine Messung von Graden einer Drehung einer Welle ermöglicht, die 360° überschreitet
DE3308476A1 (de) Verfahren und vorrichtung zum optimieren der schwingungsamplitude bei vibrationswalzen
DE3318275A1 (de) Verfahren zum ueberwachen der neigung eines kraftfahrzeuges
DE3107699A1 (de) Verfahren und vorrichtung zum untersuchen eines luftreifens
WO2017108150A1 (de) Verfahren und vorrichtung zum regeln der arbeitsweise einer abstreifvorrichtung an einem förderband
EP2913436B1 (de) Verfahren zur Bestimmung eines durch eine Oszillationsbewegung einer Verdichterwalze hervorgerufenen Schlupfzustandes der Verdichterwalze eines Bodenverdichters
DE102015120874A1 (de) Verfahren zur Ermittlung des Verdichtungszustandes eines Untergrunds
DE102018006128B3 (de) Landwirtschaftliche Erfassungsvorrichtung und Erfassungsverfahren zur Erfassung von landwirtschaftlichen Objekten
EP3428342B1 (de) Verfahren zur konstanthaltung einer von einer strassenmarkiermaschine aufzubringenden markierungslinie und strassenmarkiermaschine
DE102012200783A1 (de) Wälzkörper und Wälzlager
DE10130507A1 (de) Luftfeder mit einem verformbarer Sensorelement
EP3246671A1 (de) Kapazitiver sensor und verfahren zur bestimmung der permittivitätsverteilung in einem objekt
DE102012103853A1 (de) Verfahren für die parallele Ausrichtung von wenigstens zwei Zylindern zueinander
DE102014103441B4 (de) Kraftmessplatte
EP3390251B1 (de) Verfahren und vorrichtung zur überwachung von laufverhalten, zustand und/oder beladung von gurtbandförderern während ihres betriebs
EP3189722B1 (de) Automatisierte pendelfahrt bei rundballenpressen
DE102019125590A1 (de) Überwachungsvorrichtung für einen Gleitschalungsfertiger zur Überwachung der Verdichtung von Beton und Verfahren zur Überwachung der Verdichtung von Beton während des Betriebs eines Gleitschalungsfertigers
DE2538900C3 (de) Matrize

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150413

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000531

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000531

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

26N No opposition filed

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014000531

Country of ref document: DE

Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL PATENT- U, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014000531

Country of ref document: DE

Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180923

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 785557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230918

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230920

Year of fee payment: 10

Ref country code: DE

Payment date: 20230920

Year of fee payment: 10