EP2859931B1 - Grease filter - Google Patents

Grease filter Download PDF

Info

Publication number
EP2859931B1
EP2859931B1 EP14188502.0A EP14188502A EP2859931B1 EP 2859931 B1 EP2859931 B1 EP 2859931B1 EP 14188502 A EP14188502 A EP 14188502A EP 2859931 B1 EP2859931 B1 EP 2859931B1
Authority
EP
European Patent Office
Prior art keywords
guide
plate
channel
direction change
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14188502.0A
Other languages
German (de)
French (fr)
Other versions
EP2859931A1 (en
Inventor
Byeong Cheol Yoon
Sang Young So
Kyu Ho Shin
Hee Soo Jeong
Seok Man Hong
Hyun Jung Kim
Ji Yeon Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140101496A external-priority patent/KR102273280B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to EP19159067.8A priority Critical patent/EP3520877A1/en
Publication of EP2859931A1 publication Critical patent/EP2859931A1/en
Application granted granted Critical
Publication of EP2859931B1 publication Critical patent/EP2859931B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • B01D46/0041Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding
    • B01D46/0045Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding by using vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/06Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by reversal of direction of flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0087Bypass or safety valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2035Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2078Removing cooking fumes movable
    • F24C15/2092Removing cooking fumes movable extendable or pivotable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the plurality of upper guides may be arranged spaced apart at predetermined intervals, and the at least one upper channel and the at least one lower channel may be press-fit together so that the plurality of respective lower guides are arranged between the plurality of upper guides.
  • the plurality of channels may be provided so that the opening is formed by the press forming and the guide units are formed by the press forming to have the same width as the opening.
  • the grease filter 10 is provided to filter pollutants or air containing the oil particles.
  • the channel unit 20 may include a first channel 100 and a second channel 200.
  • the first channel 100 may be arranged upstream from the flow of air.
  • the first channel 100 may include an inlet portion 102 in an opening shape provided to allow oil particles to flow in therethrough, and a first guide unit 110 to guide an air current containing the oil particles flowing in through the inlet portion 102.
  • the first channel 100 and the second channel 200 may further include a first frame 120 and a second frame 220, respectively, both of which are in a case shape, and at least ends of the first guide unit 110 and the second guide unit 210 may be fixed in the first frame 120 and the second frame 220, respectively.
  • the first guide unit 110 and the second guide unit 210 may be provided so that both ends of the first guide unit 110 and the second guide unit 210 are fixed in the first frame 120 and the second frame 220, respectively.
  • the first guide unit 110 may include a first support unit 112, an inlet guide 114, and a first direction change guide 116.
  • the inlet guide 114 is provided to filter some of pollutants or air containing oil particles flowing in through the inlet portion 102 while guiding the oil particles or pollutants into the channel unit 20.
  • the inlet guide 114 may be provided to be curved and extend from the first support unit 112.
  • the inlet guide 114 may be provided to be inclined obliquely toward the second channel 200 so that the inlet guide 114 guides an air current flowing in through inlet portion 102.
  • the shape of the second guide unit 210 is not limited. According to one embodiment of the present disclosure, the second guide unit 210 may be provided to have an S-letter shape.
  • the second support unit 212 may be provided so that at least one end of the second support unit 212 is supported by the first frame 120 to fix the first guide unit 110. According to one embodiment of the present disclosure, both ends of the second support unit 212 are supported by the second frame 22 to fix the second guide unit 210.
  • the collection efficiency of the oil particles or pollutants may be further improved as the number of guides forming the path 30 increases, but flow noise or vibration noise may get loud due to a significant pressure drop of an air current caused by the pollutants or air containing the oil particles.
  • the flow or vibration noise may be reduced as the number of the guides forming the path 30 decreases, but the collection efficiency of the oil particles or pollutants may be lowered.
  • the plurality of first support units 112 function to fix the first guide unit 110 of the first channel 100, and also function to disperse the air flowing in through the grease filter 10 through the plurality of inlet portions 102.
  • the air passing through the inlet portion 102 may dividedly flow through the direction change path 32 and the guide path 34.
  • the collection efficiency may be improved, and vibrations and noise caused by the pressure drop may be prevented.
  • the first frame 120 and the second frame 220 are configured to be formed integrally with the first guide unit 110 and the second guide unit 210, respectively.
  • at least some of the first guide unit 110 and the second guide unit 210 are provided to be spaced apart from the first frame 120 and the second frame 220, respectively.
  • FIG. 12 is a block diagram showing the control of the grease filter according to the first embodiment of the present disclosure.
  • the display device 56 displays information on the grease filter to correspond to the control commands input by a user.
  • the display device 56 may display an operation state of the grease filter.
  • the grease filter may include a filtering mode P1, a ventilation mode P2, and a release mode P3.
  • the first channel 100 and the second channel 200 are arranged so that the direction change path 32 can have a narrower width than the guide path 34, compared to the filtering mode P1.
  • the first channel 100 and the second channel 200 are arranged so that the plurality of first guide units 110 and the plurality of second guide units 210 closely adhere to each other. More particularly, the first channel 100 and the second channel 200 are arranged so that the first direction change guide 116 and the second direction change guide 216 closely adhere to each other, as described above.
  • the grease filter 300 includes an inlet portion 302 through which oil particles and an air current flow in, and a channel 301 provided with an outlet portion 304 to discharge the oil particles and the air current flowing in through the inlet portion 302 to the outside.
  • the guide unit 310 may include a first guide 331 formed to extend from the inlet guide 312, and a second guide 332 formed to extend from the outlet guide 314.
  • connection guide 435 may be formed so that one end of the connection guide 435 is coupled to the inlet guide 412 and a second angle ⁇ 2 is formed between the connection guide 435 and the inlet guide 412.
  • the third angle ⁇ 3 is preferably formed as an angle of 135° or an obtuse angle
  • the fourth angle ⁇ 4 is preferably formed as an angle of 90°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Ventilation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Description

  • The present invention relates to a grease filter, and, more particularly, to a grease filter having improved oil collection efficiency.
  • In general, a ventilating system is installed in the kitchen. The ventilating system serves to discharge polluted air (noxious gases) generated in a process of cooking foods to the outside and introduce fresh air into the interior, thereby making the residential environment more comfortable.
  • The ventilating system is provided with a filter configured to remove noxious gases and a grease filter configured to prevent oil particles from accumulating in a duct so that the noxious gases generated in a kitchen cannot be directly discharged into the air and pollutants such as oils can be collected to discharge purified air into the air.
  • Such a grease filter serves to collect fine oil particles generated while cooking so as to prevent the duct and other driving devices of the ventilating system from being polluted by the fine oil particles. To effectively collect the oil particles, the oil particles should flow and collide to a filter present in the flow field while flowing so that the flow of the oil particles is interrupted by the filter. As a result, the fine particles should lump with each other to be collected.
  • However, interrupting the flow of the oil particles or allowing the oil particles to adhere to the filter may cause the pressure drop in the flow field, resulting in degraded energy efficiency of the ventilating system and an increase in flow noise and vibration noise.
  • Also, when the oil particles accumulate on the grease filter, the grease filter cannot be easily cleaned, which makes it difficult to continuously maintain the filter efficiency.
  • WO 2009/106804 discloses a grease filter that is easily cleaned.
  • DE 8307964 discloses a cyclone filter fitted with a grease and dirt trapping grid that is simple and easily cleaned.
  • Therefore, it is an aspect of the present disclosure to provide a grease filter capable of continuously maintaining performance of a filter and reducing the pressure drop caused while air including oil particles passes through the grease filter.
  • Therefore, it is an aspect of the present disclosure to provide a grease filter capable of enhancing oil collection efficiency.
  • Additional aspects of the disclosure will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
  • According to an aspect of the present invention, there is provided a grease filter according to claim 1.
  • Optional features are set out in the dependent claims.
  • The plurality of first guide units and the plurality of second guide units may be alternately arranged.
  • The plurality of first guide units and the plurality of second guide units may be arranged in plural numbers to be spaced apart at predetermined intervals.
  • Each of the first channel and the second channel may include a stopper to prevent the first channel and the second channel from being separated beyond predetermined bounds.
  • The first channel coupled to the second channel may move within a guide gap that is a gap between one of the plurality of first guide units and another first guide unit adjacent to the one first guide unit, and then may be separated in a direction opposite to a facing direction of the second channel with respect to the guide gap.
  • The first direction change guide and the second direction change guide may be formed spaced apart to face each other.
  • The at least one first channel and the at least one second channel may further include a first frame and a second frame, respectively. Here, the first frame and the second frame may be in a case shape, and the first guide unit and the second guide unit may be fixed in the first frame and the second frame, respectively. Also, the at least one first guide unit may include a first support unit formed to extend from the inlet guide and fixed in the first frame, and the at least one second guide unit may include a second support unit formed to extend from the outlet guide and fixed in the second frame.
  • The first guide unit and the second guide unit may be provided in S-letter shapes, respectively.
  • The first support unit may be provided to form an obtuse angle with a first inlet surface that is one plane of the inlet guide, and the first direction change guide may be provided to form an obtuse angle with a second inlet plane that is the other surface of the first inlet plane.
  • The second support unit may be provided to form an obtuse angle with a first outlet surface of the outlet guide, and the second direction change guide may be provided to form an obtuse angle with a second outlet surface that is a surface opposite to the first outlet plane.
  • Each of the first channel and the second channel may be formed by press processing.
  • The at least one first channel may include a plurality of first channels, respectively. Here, the plurality of first channels may be coupled to overlap each other with respect to a guide gap that is a gap between one of the plurality of first guide units and another first guide unit adjacent to the one first guide unit, so that the first guide unit of one of the plurality of first channels is arranged between other guide gaps.
  • The at least one first channel and the at least one second channel may include a plurality of first channels and a plurality of second channels, respectively. Here, the first channels may be provided to overlap so that a first support unit of one of the plurality of first channels is arranged on an inlet portion of another of the plurality of first channels, and the second channels may be provided to overlap so that a second support unit of one of the plurality of second channels is arranged on an outlet portion of another of the plurality of second channels.
  • The first channel and the second channel may be formed of a metal material.
  • Each of the first channel and the second channel may include a filtering mode operated to enable the flow of an air current through the direction change path and the guide path, and a ventilation mode operated to allow the first direction change guide and the second direction change guide to closely adhere to each other so as to close the direction change path.
  • Each of the first channel and the second channel may further include a release mode operated to allow the inlet guide and the outlet guide to closely adhere to each other so that the first channel and the second channel are spaced apart in a facing direction.
  • According to another aspect of the present disclosure, a manufacturing method of a grease filter includes forming at least one upper channel having an upper frame forming a case and a plurality of upper guides formed integrally with the upper frame and arranged in first direction, forming at least one lower channel having a lower frame forming a case and a plurality of lower guides formed integrally with the lower frame and arranged in a second direction opposite to the first direction, and detachably coupling the at least one upper channel and the at least one lower channel in the first direction and the second direction, respectively.
  • The plurality of upper guides may be arranged spaced apart at predetermined intervals, and the at least one upper channel and the at least one lower channel may be press-fit together so that the plurality of respective lower guides are arranged between the plurality of upper guides.
  • The upper guides and the lower guides may be formed by press processing so that the upper guides and the lower guides are at least partially separated from the upper frame and the lower frame, respectively.
  • The at least one upper channel and the at least one lower channel may include a plurality of upper channels and a plurality of lower channels, respectively, and the plurality of upper channels and the plurality of lower channels may be formed so that the plurality of upper channels and the plurality of lower channels can overlap each other.
  • According to still another aspect of the present disclosure, a cooking device includes a main body provided at an upper portion of a cooking apparatus and having a suction unit formed at a lower portion thereof to suck an air current and oil particles generated in a cooking process, and a grease filter provided to collect the oil particles sucked through the suction unit. Here, the grease filter includes a plurality of upper channels having an upper support unit forming an inlet portion through which the oil particles flow in, and a plurality of lower channels having a lower support unit forming an outlet portion configured to discharge the oil particles flowing in through the inlet portion to the outside, the plurality of upper channels are provided to overlap so that an upper support unit of one of the plurality of upper channels is arranged on an inlet portion of another of the plurality of upper channels, and the plurality of lower channels are provided to overlap so that a lower support unit of one of the plurality of lower channels is arranged on an outlet portion of another of the plurality of lower channels.
  • The upper support unit may be formed in a first direction, the lower support unit may be formed in a second direction opposite to the first direction, and the plurality of upper channels and the plurality of lower channels may be detachably provided in the first direction and the second direction, respectively.
  • According to still another aspect of the present disclosure, a grease filter includes an opening, a path through which an air current flowing in or out through the opening floats, and a plurality of channels having a plurality of guide units forming the path. Here, the plurality of channels are stacked so that the plurality of guide units of one of the plurality of channels are arranged on the path of another channel.
  • The plurality of guide units of the one channel may be arranged side by side with the plurality of guide units of the another channel.
  • The plurality of channels may include a plurality of first channels stacked with each other, and a plurality of second channels configured to face the plurality of first channels and stacked with each other, and the plurality of guide units may include a plurality of first guide units provided at the plurality of first channels, and a plurality of second guide units provided at the plurality of second channels and arranged alternately with the plurality of first guide units.
  • The plurality of first guide units may be formed in a first direction that is a longitudinal direction, the plurality of second guide units may be formed in a second direction opposite to the first direction, and the plurality of first channels and the plurality of second channels may move in the first direction and the second direction, respectively, so that the plurality of first channels and the plurality of second channels are provided to be at least partially spaced apart from each other.
  • The plurality of first channels may include a first stopper, and the plurality of second channels may include a second stopper provided to limit the movement thereof within predetermined bounds by the first stopper while moving in the second direction.
  • The plurality of first guide may include a plurality of inlet guides inclined obliquely toward the second channels, and a plurality of first direction change guides curved from the plurality of inlet guides, and the plurality of second guide units may include a plurality of outlet guides inclined obliquely toward the first channels, and a plurality of second direction change guides curved from the plurality of outlet guides.
  • The plurality of inlet guides and the plurality of outlet guides may be arranged side by side with each other.
  • The plurality of first direction change guides and the plurality of second direction change guides may be formed spaced apart to face each other.
  • The path may include a direction change path spanning between the plurality of first direction change guides and the plurality of second direction change guides, and a guide path spanning between the inlet guides and the outlet guides to bypass the direction change guide.
  • The direction change path may be formed to have a longer course than the guide path.
  • The plurality of channels may be formed by press forming.
  • The plurality of channels may be provided so that the opening is formed by the press forming and the guide units are formed by the press forming to have the same width as the opening.
  • According to still another aspect of the present disclosure, a grease filter includes an opening, a path through which oil particles flowing in or out through the opening floats, and a plurality of channels having a plurality of guide units forming the path. Here, the plurality of channels are stacked so that the plurality of guide units of one of the plurality of channels are arranged between the plurality of guide units of another channel.
  • According to still another aspect of the present disclosure, a grease filter includes a first channel having a first guide unit formed in a first direction that is a longitudinal direction, and a second channel having a second guide unit formed in a second direction perpendicular to the first direction to form a path with the first guide unit and provided to face the first channel. Here, the first channel and the second channel are provided so that the first channel and the second channel are at least partially spaced apart in the first direction or the second direction, respectively.
  • According to still another aspect of the present disclosure, a grease filter includes a first channel having a plurality of first guide units, and a second channel having a plurality of second guide units arranged alternately with the plurality of first guide units and arranged to face the first channel. Here, each of the first channel and the second channel includes a first mode operated so that the plurality of first guide units and the plurality of second guide units is arranged spaced apart from each other, and a second mode operated so that the plurality of first guide units and the plurality of second guide units are arranged closely with each other.
  • One channel of the first channel and the second channel may move relative to the other channel in the first mode and the second mode.
  • The plurality of first guide units may include a plurality of inlet guides inclined obliquely toward the second channel, and a plurality of first direction change guides curved from the plurality of inlet guides, and the plurality of second guide units may include a plurality of outlet guide inclined obliquely toward the first channel, and a plurality of second direction change guides curved from the plurality of outlet guides.
  • The grease filter may include a path formed by the plurality of first guide units and the plurality of second guide units. Here, the path may include a direction change path spanning between the plurality of first direction change guides and the plurality of second direction change guides, and a guide path spanning between the inlet guides and the outlet guides to bypass the direction change guide.
  • The first channel and the second channel may be operated in the first mode to enable the flow of an air current through the direction change path and the guide path, and may be operated in the second mode to allow the first direction change guide and the second direction change guide to closely adhere to each other so as to close the direction change path.
  • The second mode may be formed so that the direction change path can have a narrower width than the guide path, compared to the first mode.
  • Each of the first channel and the second channel may further include a third mode operated to allow the inlet guides and the outlet guides to closely adhere to each other so that the first channel and the second channel are spaced apart in a facing direction.
  • Each of the first channel and the second channel may include an inlet port and an outlet port formed between the plurality of first guide units and the plurality of second guide units to allow an air current to flow in and out therethrough, and the path is formed to span from the inlet port to the outlet port.
  • According to yet another aspect of the present disclosure, a grease filter includes a first channel having a plurality of first guide units, and a second channel having a plurality of second guide units arranged alternately with the plurality of first guide units to form a path with the plurality of first guide units and arranged to face the first channel. Here, the plurality of first guide units includes a plurality of first direction change guides formed to be curved at a lateral end of the second channel, the plurality of second guide unit includes a plurality of second direction change guides formed to be curved at a lateral end of the first channel, and the path includes a direction change path spanning between the plurality of first direction change guides and the plurality of second direction change guides; and a guide path bypassing the plurality of first direction change guides and the plurality of second direction change guides and spanning between the plurality of first guide units and the plurality of second guide unit.
  • These and/or other aspects of the disclosure will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
    • FIG. 1 is a diagram schematically showing the installation of a cooking device according to a first embodiment;
    • FIG. 2 is a perspective view schematically showing a cooking device provided with a grease filter according to a first embodiment;
    • FIG. 3 is a perspective view of the grease filter according to the first embodiment;
    • FIG. 4 is an exploded perspective view of the grease filter according to the first embodiment;
    • FIG. 5 is a cross-sectional view taken along line A-A' of FIG. 3;
    • FIG. 6 is a diagram showing the disassembly of the grease filter according to the first embodiment;
    • FIG. 7 is a diagram showing the flow of an air current including oil particles passing through the grease filter according to the first embodiment;
    • FIG. 8 is a diagram showing the separation of the grease filter according to the first embodiment;
    • FIG. 9A is a diagram showing the separation of the grease filter according to the first embodiment;
    • FIG. 9B is a cross-sectional view taken along line B-B' of FIG. 9A;
    • FIGS. 10A and 10B are diagrams showing the separation of the grease filter according to the first embodiment of the present disclosure;
    • FIG. 11, parts (a)-(c), is a diagram showing the manufacture of the grease filter according to the first embodiment of the present disclosure;
    • FIG. 12 is a block diagram showing the control of the grease filter according to the first embodiment of the present disclosure;
    • FIG. 13 is a diagram showing a ventilation mode of the grease filter according to the first embodiment of the present disclosure;
    • FIG. 14 is a perspective view schematically showing a grease filter according to a second embodiment of the present disclosure;
    • FIG. 15 is a cross-sectional view taken along line C-C' of FIG. 14;
    • FIG. 16 is a view showing a simulation for testing the velocity of a fluid passing through the grease filter according to the second embodiment of the present disclosure;
    • FIG. 17 is a cross-sectional view schematically showing a grease filter according to a third embodiment of the present disclosure;
    • FIG. 18 is a view showing a simulation for testing the velocity of a fluid passing through the grease filter according to the third embodiment of the present disclosure;
    • FIG. 19 is a cross-sectional view schematically showing a grease filter according to a fourth embodiment of the present disclosure;
    • FIG. 20 is a view showing a simulation for testing the velocity of a fluid passing through the grease filter according to the fourth embodiment of the present disclosure;
    • FIG. 21 is a graph showing the collection efficiencies of the grease filters according to the second, third and fourth embodiments of the present disclosure, depending on the particle size; and
    • FIG. 22 is a graph showing the pressure drops of the grease filters according to the second, third and fourth embodiments of the present disclosure, depending on the flow rate.
  • As shown in FIGS. 1 and 2, a hood-combined microwave oven 1 (hereinafter referred to as a 'cooking device') according to this embodiment is installed above a cooking apparatus 2 used in a kitchen, such as an oven range or a gas range.
    The cooking device 1 has typical functions of the microwave oven, and also serves to suck smoke generated in a process of cooking foods in the cooking apparatus 2 and discharge the smoke to the outside or purify smoke sucked through a filter and discharge the smoke indoors.
  • According to this embodiment, the cooking apparatus 2 is formed to have a flat upper surface, and thus a gas range 2a mounted on the cooking apparatus 2 is shown, but an electric range, or other apparatuses for heating and cooking food may be used herein
  • The cooking device 1 may be configured to include a main body 3 forming the appearance thereof and a suction unit 5 provided at the bottom of the main body 3.
  • The main body 3 is formed so that a front surface of the main body 3 has an opening opened to accommodate dishes carrying food, and has a door 4 installed thereto to open and close the opening.
  • The suction unit 5 installed at the bottom of the main body 3 is provided to suck smoke generated in the cooking apparatus 2 mounted under the cooking device 1.
  • Although not shown, the main body 3 may be provided with a ventilation unit to suck polluted air, smoke or smells through the suction unit 5, and an exhaust duct or exhaust port to enable the flow of air sucked by the ventilation unit.
  • A large amount of oil particles generated upon cooking are included in polluting gases sucked through the suction unit 5 in this way.
  • A grease filter 10 is mounted to prevent such oil particles from accumulating in filters and ventilation paths.
  • The suction unit 5 may be formed at the bottom of the main body 3, and a bracket 6 may be provided to install the grease filter 10. According to this embodiment, a case in which the front surface of the bracket 6 is opened and slid to install the grease filter 10 into bracket 6 is shown in by way of example, but aspects of the present disclosure are not limited thereto. For example, the grease filter 10 may be detachably provided from a lower portion to an upper portion of the bracket 6 using separate coupling members such as screws.
  • The grease filter 10 may be installed at the suction unit 5 to pass the sucked polluted air, smoke or smells.
  • As described above, the grease filter 10 is provided to filter pollutants or air containing the oil particles.
  • The grease filter 10 may include a channel unit 20.
  • The channel unit 20 is provided to filter the oil particle or pollutants by interrupting the flow of air or colliding to the air. A material of the channel unit 20 is not limited, but, in this embodiment of the present disclosure, a material of a metal material is used for the channel unit 20. The grease filter 10 is generally provided to pass hot air therethrough, and thus may be formed of a metal material, thereby improving a flame retardant grade.
  • The channel unit 20 may include a first channel 100 and a second channel 200. The first channel 100 may be arranged upstream from the flow of air. The first channel 100 may include an inlet portion 102 in an opening shape provided to allow oil particles to flow in therethrough, and a first guide unit 110 to guide an air current containing the oil particles flowing in through the inlet portion 102.
  • The second channel 200 may be arranged downstream from the flow of air. The second channel 200 may include an outlet portion 202 in an opening shape provided to discharge the air current containing the oil particles flowing in through the inlet portion 102 to the outside, and a second guide unit 210 to guide the air current so as to discharge the air current through the outlet portion 202.
  • The first channel 100 and the second channel 200 may be coupled to face each other. Also, the first channel 100 and the second channel 200 may be arranged so that the first guide unit 110 and the second guide unit 210 are arranged to cross each other. The first channel 100 and the second channel 200 may be provided with one or more first channels 100a and 100b and one or more second channels 200a and 200b, respectively.
  • The first channel 100 and the second channel 200 may be provided so that the first channel 100 and the second channel 200 are at least partially separated from each other in a direction parallel to the respective guide units 110 and 210, as will be described later. Also, the first channel 100 and the second channel 200 may be provided so that the first channel 100 and the second channel 200 are released in a direction perpendicular to the same plane.
  • The first guide unit 110 and the second guide unit 210 may guide the flow of air. The first guide unit 110 and the second guide unit 210 may be provided with one or more first guide units 110a and 110b and one or more second guide units 210a and 210b, respectively.
  • The first guide unit 110 may be formed in a first direction W1, and the second guide unit 210 may be formed in a second direction W2 that is a direction opposite to the first direction W1. The first channel 100 and the second channel 200 may be provided so that the first channel 100 and the second channel 200 are at least separated in the first direction W1 and the second direction W2, respectively.
  • The first channel 100 and the second channel 200 may further include a first frame 120 and a second frame 220, respectively, both of which are in a case shape, and at least ends of the first guide unit 110 and the second guide unit 210 may be fixed in the first frame 120 and the second frame 220, respectively. According to one embodiment of the present disclosure, the first guide unit 110 and the second guide unit 210 may be provided so that both ends of the first guide unit 110 and the second guide unit 210 are fixed in the first frame 120 and the second frame 220, respectively.
  • The first guide unit 110 may be provided at the first channel 100 in a plural number, and the first guide units 110 may be provided side by side to be spaced apart at predetermined intervals. Also, the second guide unit 210 may be provided at the second channel 200 in a plural number, and the second guide units 210 may be provided side by side to be spaced apart at predetermined intervals.
  • The coupling of the first channel 100 to the second channel 200 is not limited. According to one embodiment of the present disclosure, however, the first channel 100 is coupled to the second channel 200 so that the plurality of second guide units 210 are arranged between the plurality of respective first guide unit 110.
  • The shape of the first guide unit 110 is not limited. According to one embodiment of the present disclosure, however, the first guide unit 110 may be provided to have an S-letter shape.
  • The first guide unit 110 may include a first support unit 112, an inlet guide 114, and a first direction change guide 116.
  • The first support unit 112 may form the inlet portion 102 of the channel unit 20. Since the first support unit 112 may be provided in a plural number to be spaced apart at predetermined intervals, the plurality of first support units 112 may form the inlet portion 102, through which pollutants or air containing oil particles flow in, between the plurality of first support units 112.
  • The first support unit 112 may be provided so that at least one end of the first support unit 112 is supported by the first frame 120 to fix the first guide unit 110. According to one embodiment of the present disclosure, both ends of the first support unit 112 are supported by the first frame 120 to fix the first guide unit 110.
  • The inlet guide 114 is provided to filter some of pollutants or air containing oil particles flowing in through the inlet portion 102 while guiding the oil particles or pollutants into the channel unit 20. The inlet guide 114 may be provided to be curved and extend from the first support unit 112. The inlet guide 114 may be provided to be inclined obliquely toward the second channel 200 so that the inlet guide 114 guides an air current flowing in through inlet portion 102.
  • The first direction change guide 116 is provided to filter the oil particles or pollutants by interrupting the flow of pollutants or air containing oil particles guided by the inlet guide 114 or colliding to the oil particles or pollutants. The first direction change guide 116 may be provided to be curved and extend from the inlet guide 114. More particularly, the first direction change guide 116 may be provided to be curved at a lateral end of the second channel 200 of the first guide unit 110.
  • When it is assumed that an angle formed between the first support unit 112 and the inlet guide 114 is set to α, α may be formed as an obtuse angle between greater than or equal to 90° and less than or equal to 180°. Also, when it is assumed that an angle formed between the inlet guide 114 and the first direction change guide 116 is set to β, β may be formed as an obtuse angle between greater than or equal to 90° and less than or equal to 180°.
  • More particularly, the first support unit 112 may be provided to form an obtuse angle with a first inlet plane 115a that is one lateral plane of the first support unit 112 of the inlet guide 114, and the first direction change guide 116 may be provided to form an obtuse angle with a second inlet plane 115b that is the other lateral plane of the first inlet plane 115a. However, the angles α and β are not limited, and may be formed as an acute angle or a right angle.
  • The shape of the second guide unit 210 is not limited. According to one embodiment of the present disclosure, the second guide unit 210 may be provided to have an S-letter shape.
  • The second guide unit 210 may include a second support unit 212, an outlet guide 214, and a second direction change guide 216.
  • The second support unit 212 may form the outlet portion 202 of the channel unit 20. Since the second support unit 212 may be provided in a plural number to be spaced apart at predetermined intervals, the plurality of second support units may form the outlet portion 202, through which the pollutants or air containing oil particles partially filtered through the channel unit 20 are discharged, between the plurality of second support unit 212.
  • The second support unit 212 may be provided so that at least one end of the second support unit 212 is supported by the first frame 120 to fix the first guide unit 110. According to one embodiment of the present disclosure, both ends of the second support unit 212 are supported by the second frame 22 to fix the second guide unit 210.
  • The outlet guide 214 is provided to filter some of the pollutants or air containing oil particles discharged through the outlet portion 202 while guiding the oil particles or pollutants into the channel unit 20. The outlet guide 214 may be provided to be curved and extend from the second support unit 212. The outlet guide 214 may be provided to be inclined obliquely toward the first channel 100 to guide the air current discharged through the outlet portion 202.
  • The second direction change guide 216 is provided to filter the oil particles or pollutants by interrupting the flow of the pollutants or air containing oil particles or colliding to the oil particles or pollutants. The second direction change guide 216 may be provided to be curved and extend from the outlet guide 214. Specifically, the second direction change guide 216 may be provided to be curved at a lateral end of the second channel 200 of the second guide unit 210.
  • When it is assumed that an angle formed between the second support unit 212 and the outlet guide 214 is set to α, α may be formed as an obtuse angle between greater than or equal to 90° and less than or equal to 180°. Also, when it is assumed that an angle formed between the outlet guide 214 and the second direction change guide 216 is set to β, β may be formed as an obtuse angle between greater than or equal to 90° and less than or equal to 180°.
  • Specifically, the second support unit 212 may be provided to form an obtuse angle with a second outlet surface 215a that is one lateral surface of the second support unit 212 of the outlet guide 214, and the second direction change guide 216 may be provided to form an obtuse angle with a second outlet surface 215b that is a surface opposite to the second outlet surface 215a. However, the angles α and β are not limited, and may be formed as an acute angle or a right angle.
  • The first direction change guide 116 and the second direction change guide 216 may be formed to face each other, and may also be arranged spaced apart with each other. As the first direction change guide 116 and the second direction change guide 216 are spaced apart with each other, a direction change path 32 to be described later may be formed between the first direction change guide 116 and the second direction change guide 216. The inlet guide 114 and the outlet guide 214 may be arranged side by side with each other. The inlet guide 114 and the outlet guide 214 may form a guide path 34 to be described later.
  • The first guide unit 110 and the second guide unit 210 may not be the same. According to one embodiment of the present disclosure, however, the first guide unit 110 and the second guide unit 210 may be provided to have the same shape, and provided so that the first guide unit 110 and the second guide unit 210 can be symmetrical for a point at an angle of 180°. When this is explained in view of a different point of view, the at least one first guide unit 110 and the at least one second guide unit 210 may include a plurality of first guide units 110 and a plurality of second guide units 210, respectively. In this case, the plurality of first guide units 110 and the plurality of second guide units 210 may be alternately arranged. That is, the plurality of first guide units 110 and the plurality of second guide units 210 may be arranged to cross each other. Each of the plurality of first guide units 110 and the plurality of second guide units 210 arranged thus may be arranged spaced apart at predetermined intervals.
  • The channel unit 20 may include a path 30 through pollutants or air containing oil particles float.
  • The path 30 may be formed by the first channel 100 and the second channel 200. The path 30 may include a direction change path 32 formed to span between the first direction change guide 116 and the second direction change guide 216, and a guide path 34 bypassing the first direction change guide 116 and the second direction change guide 216 and formed between the inlet guide 114 and the outlet guide 214.
  • The air containing the oil particles or the pollutants flowing in through the inlet portion 102 may be passed through the direction change path 32 or the guide path 34, and discharged through the outlet portion 202.
  • The guide path 34 may be provided so that the guide path 34 has a longer path length than the direction change path 32. That is, although the direction change path 32 is formed to have a shorter course than the guide path 34, the oil particles included in the air current passing through the direction change path 32 may be collected at a larger amount than the air current passing through the guide path 34.
  • For the path 30 spanning from the inlet portion 102 to the outlet portion 202, the collection efficiency of the oil particles or pollutants may be further improved as the number of guides forming the path 30 increases, but flow noise or vibration noise may get loud due to a significant pressure drop of an air current caused by the pollutants or air containing the oil particles. On the other hand, the flow or vibration noise may be reduced as the number of the guides forming the path 30 decreases, but the collection efficiency of the oil particles or pollutants may be lowered.
  • According to one embodiment of the present disclosure, since the oil particles or pollutants pass through the direction change path 32 provided to interrupt the flow of an air current or collide to the air current while making a change of direction, and the guide path 34 formed so that the guide path 34 has a longer length than the direction change path 32 without making a change of direction, the pressure drop may be decreased, and the collection efficiency may be improved.
  • As shown in FIG. 6, each of the first channel 100 and the second channel 200 may be provided in a plural number. The plurality of first channels 100a and 100b and the plurality of second channels 200a and 200b may be formed to overlap with each other to narrow the gaps between the plurality of first guide units 110a and 110b and the plurality of second guide units 210a and 210b, thereby improving the collection efficiency.
  • Also, since the durability of the air current against a pressure may be improved by narrowing the gaps between the plurality of first guide units 110a and 110b and the plurality of second guide units 210a and 210b, the guide units 110a, 110b, 210a and 210b may be manufactured in a small thickness, thereby cutting the manufacturing costs.
  • A gap between one of the plurality of first guide units 110a and 110b and the other first guide unit may be referred to as a guide gap G1. In this case, the plurality of first channels 100a and 100b may be coupled to overlap each other so that the first guide unit 110a of one of the plurality of first channels 100a and 100b is arranged between other guide gaps G1. In the case of the second channels 200a and 200b, the same can be applied thereto.
  • When this is explained in view of a different point of view, the plurality of first channels 100a and 100b may be provided to overlap each other so that an first support unit 112b of one of the plurality of first channels 100a and 100b is arranged on an inlet portion 102a of another of the plurality of first channels 100a and 100b, and the second channels 200 may be provided to overlap each other so that the second support unit 212b of one second channel 200b of the plurality of second channels 200a and 200b is arranged on the outlet portion 202a of the other second channel 200a of the plurality of second channels 200a and 200b, and vice versa.
  • This is explained in view of a different point of view. The plurality of first channels 100a and 100b are provided to be stacked so that the guide unit 110a of one first channel 100a of the plurality of first channels 100a and 100b is arranged on the path 30 of the other first channel 100b. Through such a configuration, the guide unit 110a of the one first channel 100a may be arranged side by side with the guide unit 110b of the other first channel 100b. Although the plurality of first channels 100a and 100b have been described, the plurality of second channels 200a and 200b may also be applicable in the same manner. The plurality of first channels 100a and 100b and the plurality of second channels 200a and 200b stacked thus may be arranged to alternate the plurality of first guide units 110a and 110b and the plurality of second guide units 210a and 210b. Since the plurality of first channels 100a and 100b move in a first direction W1, and the plurality of second channels 200a and 200b move in a second direction W2, the plurality of first channels and the plurality of second channels may be provided so that the plurality of first channels and the plurality of second channels are at least partially spaced apart with each other.
  • Also, each of the plurality of first channels 100a and 100b may include a first stopper, and each of the plurality of second channels 200a and 200b may include a second stopper. Thus, the first stopper and the second stopper may be provided to limit the relative movement of the plurality of first channels 100a and 100b and the plurality of second channels 200a and 200b within predetermined bounds. When the plurality of first channels 100a and 100b and the plurality of second channels 200a and 200b move in a direction in which the plurality of first channels 100a and 100b and the plurality of second channels 200a and 200b are separated from each other, the first stopper and the second stopper are formed to come in contact with each other, thereby limiting the separation bounds. The first channel 100 and the second channel 200 may be completely separated as in a separation method of FIG. 8 to be described later, but the first channel 100 and the second channel 200 may be provided with the stopper so that the first channel 100 and the second channel 200 are separated only within predetermined bounds, as in a separation method of FIG. 9A.
  • Reference numerals 120a and 120b, and 220a and 220b not shown herein represent a plurality of first frames 120a and 120b, and a plurality of second frames 220a and 220b, respectively. Also, reference numerals 102b, 112a, 202b and 212a represent an inlet portion 102b, a first support unit 112a, an outlet portion 202b, and a second support unit 212b.
  • Although a case in which the two first channels 100 and the two second channels 200 are provided is described above for the sake of convenience of description, but the first channel 100 and the second channel 200 may be provided in two or more numbers.
  • As shown in FIG. 7, the pollutants or the air containing oil particles collide to a plane of each of the first channel 100 and the second channel 200 while passing through the grease filter 10. At the same time, the oil particles or pollutants may be filtered through the grease filter 10.
  • The plurality of first support units 112 function to fix the first guide unit 110 of the first channel 100, and also function to disperse the air flowing in through the grease filter 10 through the plurality of inlet portions 102.
  • The air passing through the inlet portion 102 may dividedly flow through the direction change path 32 and the guide path 34.
  • The air flowing in through the direction change path 32 may be passed through the inlet guide 114, the first direction change guide 116, the second direction change guide 216, and the outlet guide 214, and then discharged to the outside through the outlet portion 202.
  • The air flowing in through the guide path 34 may be passed through the inlet guide 114, the outlet guide 214, and the second support unit 212, and then discharged to the outside through the outlet portion 202.
  • The direction change path 32 has improved collection efficiency since the flow of an air current from the inlet portion 102 and the flow of air flowing through the guide path 34 formed to be cured are achieved at a higher level than the collision of the air current, and the guide path 34 has improved collection efficiency since the guide path 34 has a smaller area colliding to the air than the direction change path 32, but is formed to have a larger length than the direction change path 32.
  • As a result, the collection efficiency may be improved, and vibrations and noise caused by the pressure drop may be prevented.
  • FIG. 8 shows a first method of separating the grease filter according to the first embodiment of the present disclosure. The first channel 100 and the second channel 200 may be arranged upstream and downstream of an air flow phase, respectively, and thus may be detachably provided.
  • Specifically, the first guide unit 110 may be formed in a first direction W1, and the second guide unit 210 may be formed in a second direction W2 opposite to the first direction W1. In this case, the first channel 100 and the second channel 200 may be provided to be separable in the first direction W1 and the second direction W2, respectively.
  • The first channel 100 and the second channel 200 may be provided to be completely separable, but may also be provided to be completely separable only within predetermined bounds.
  • Specifically, a stopper to limit a movement of the first channel 100 and the second channel 200 beyond predetermined bounds may be provided at each of the first channel 100 and the second channel 200. The stopper includes a first stopper 122 provided at the first channel 100, and a second stopper 222 provided at the second channel 200. Here, the first stopper 122 and the second stopper 222 may be provided to correspond to each other, and thus may be arranged, respectively, on the first channel 100 and the second channel 200 upon the separation of the first channel 100 and the second channel 200 to limit the separation of the first channel 100 and the second channel 200 beyond the predetermined bounds.
  • The arrangements of the first stopper 122 and the second stopper 222 are not limited. According to one embodiment of the present disclosure, however, the first stopper 122 and the second stopper 222 may be arranged on a first frame 120 and a second frame 220 to be described later so as to interrupt the flow of air.
  • The first channel 100 and the second channel 200 may be provided to be separable in the first direction W1 and the second direction W2, respectively, but may be separated in a direction opposite to the facing direction.
  • The first guide unit 110 may be provided in a plural number. In this case, a gap between one of the plurality of first guide units 110 and another first guide unit adjacent to the one first guide unit is referred to as a guide gap G1.
  • As shown in FIG. 10A, the first channel 100 coupled to the second channel 200 moves within the guide gap G1. This is to allow the unit of first direction change guides 116 and the unit of second direction change guides 216 to move so that the unit of first direction change guides 116 and the unit of second direction change guides 216 do not overlap each other in a vertical direction.
  • In a state in which the unit of first direction change guides 116 and the unit of second direction change guides 216 do not overlap each other in a vertical direction, the first channel 100 and the second channel 200 may be separated from each other when the first channel 100 and the second channel 200 are spaced apart in a direction opposite to the facing direction, that is, a vertical direction relative to the first channel 100 and the second channel 200, as shown in FIG. 10B.
  • When the first channel 100 and the second channel 200 are provided to be separable as described above, the oil particles and pollutants accumulated between the guides forming the path 30 may be easily removed, thereby maintaining collection efficiency and semi-permanently employing the grease filter 10.
    By way of example, although some cases of separation of the grease filter 10 are as described above, but the present disclosure is not limited thereto. For example, the first channel 100 and the second channel 200 may be configured to be separable from each other.
  • As shown in FIG. 11, part (a), at least one plate 40 formed of a metal material is provided. The first channel 100 or second channel 200 is formed by press-processing the plate 40, as shown in FIG. 11, part (b).
  • Using this process, the first frame 120 and the second frame 220 are configured to be formed integrally with the first guide unit 110 and the second guide unit 210, respectively. In this case, at least some of the first guide unit 110 and the second guide unit 210 are provided to be spaced apart from the first frame 120 and the second frame 220, respectively.
  • That is, the inlet guide 114 and the unit of first direction change guides 116 are provided to be spaced apart from the first frame 120 by means of press processing, and the outlet guide 214 and the unit of second direction change guides 216 are provided to be spaced apart from the second frame 220 by means of press processing.
  • As the first and second guide units 110 and 210 are formed at the first channel 100 and the second channel 200, respectively, by means of press forming, openings such as an inlet portion 102 and an outlet portion 202 corresponding to the first and second guide units 110 and 210 are formed. Therefore, the first and second guide units 110 and 210 may be formed so that the first and second guide units 110 and 210 have the same width as the inlet portion 102 and the outlet portion 202.
  • As shown in FIG. 11, part (c), the first channel 100 and the second channel 200 formed by the press processing may be provided in plural numbers, and thus may be formed to overlap each other in a vertical direction. That is, the plurality of first channels 100 may be provided to be coupled to each other to overlap, and the plurality of second channels 200 may also be provided in the same manner as in the plurality of first channels 100.
  • When it is assumed that the first guide unit 110 and the second guide unit 210 are provided at the first channel 100 and the second channel 200 in the first direction W1 and the first direction W1, respectively, the first channel 100 and the second channel 200 may be detachably coupled in the first direction W1 and the second direction W2, respectively.
  • That is, the first channel 100 and the second channel 200 may be coupled to each other by press fitting so that the first guide unit 110 and the second guide unit 210 overlap each other while forming the path 30.
  • In the description, the first channel 100, the first frame 120, the first guide unit 110, the first support unit 112, the first direction change guide 116, the second channel 200, the second frame 220, the second guide unit 210, the second support unit 212, and the second direction change guide 216 may be used interchangeably with an upper channel, an upper frame, an upper guide unit, an upper support unit, an upper direction change guide, a lower channel, a lower frame, a lower guide unit, a lower support unit, and a lower direction change guide, respectively.
  • Hereinafter, a grease filter according to a first embodiment, and control of the cooking device having the same will be described in detail.
  • FIG. 12 is a block diagram showing the control of the grease filter according to the first embodiment of the present disclosure.
  • The grease filter and the cooking device having the same may include a control unit 50, an input unit 52, a sensor unit 54, a display device 56, a storage unit 58, a first channel driving unit 60, and a second channel driving unit 62.
  • The input unit 52 may include a power button to drive the grease filter 10, and the like. The input unit 52 may be provided with a push switch to sense an application of pressure by a user, a membrane switch, or a touch switch to sense some contact by a user.
  • The sensor unit 54 is provided to sense generation of oil particles when the oil particle generated during a cooking process using a cooking device, and an air current flows in the grease filter 10. More particularly, the sensor unit 54 senses a degree of generation of the oil particles, the temperature of the oil particles, the temperature of the air current, or the like, and inputs such information into the control unit 50.
  • The control unit 50 performs operations to control the first channel driving unit 60 and the second channel driving unit 62, based on commands or information input through the input unit 52 and the sensor unit 54. The control unit 50 may be provided to directly receive the commands through the input unit 52 to perform the operations, and may also be provided to perform the operations when some requirements are satisfied based on the information input through the sensor unit 54. More particularly, the control unit 50 may instruct a filtering mode P1, a ventilation mode P2, and a release mode P3 through the input unit 52, and thus may perform the operations so as to execute the corresponding commands. After the control unit 50 performs the operations, the control unit 50 sends operating signals corresponding to the corresponding commands to the first channel driving unit 60 and the second channel driving unit 62 as will be described later.
  • The display device 56 displays information on the grease filter to correspond to the control commands input by a user. For example, the display device 56 may display an operation state of the grease filter.
  • A light emitting diode (LED) and an organic light emitting diode (OLED), both of which emit light autonomously, or a liquid crystal display device 56 provided with a separate light source may be used as the display device 56.
  • Although not shown in the drawings, the display device 56 may include a touch screen panel (TSP) to receive control commands from a user through the input unit 52 and display operation information corresponding to the control commands input through the input unit 52 according to embodiments of the present disclosure.
  • The touch screen panel may include a display device 56 to display operation information and control commands which may be input by a user, a touch panel to detect the coordinates of a position with which a body part of the user comes contact, and a touch screen controller to judge the control commands input by the user, based on the contact coordinates detected by the touch panel.
  • The storage unit 58 is provided to interact with the control unit 50. When the information obtained from the sensor unit 54 in input into the control unit 50 to judge whether some requirements are satisfied, the storage unit 58 is provided to store the predetermined parameters corresponding to the information.
  • The first channel driving unit 60 and the second channel driving unit 62 are provided to drive the first channel 100 and the second channel 200, based on the operating signals received from the control unit 50.
  • The first channel driving unit 60 and the second channel driving unit 62 satisfy the predetermined parameters as long as they are configured to enable movements of the first channel 100 and the second channel 200. According to this embodiment, the first embodiment is configured to drive the first channel 100 and the second channel 200 using a motor 12, and a pinion gear 14 and a rack gear 16 which are driven in engagement with rotation of the motor 12.
  • Specifically, the pinion gear 14 rotates with rotation of the motor 12, and a rotary motion of the pinion gear 14 is converted into a rectilinear motion of the rack gear 16 as the pinion gear 14 and the rack gear 16 are driven while being engaged with each other. The rack gear 16 is provided to be coupled to the first channel 100 or the second channel 200, so that the first channel 100 and the second channel 200 are driven in a rectilinear motion. Thus, the first channel 100 and the second channel 200 are provided to execute a filtering mode P1, a ventilation mode P2 and a release mode P3 as will be described later.
  • The embodiments of the first channel driving unit 60 and the second channel driving unit 62 are not limited. The first channel driving unit 60 and the second channel driving unit 62 satisfy the predetermined parameters as long as they are configured to enable movements of the first channel and the second channel.
  • Hereinafter, a grease filter according to the first embodiment of the present disclosure, and an operating mode of the cooking device having the same will be described in detail.
  • The grease filter may include a filtering mode P1, a ventilation mode P2, and a release mode P3.
  • The filtering mode P1 is an operating mode in which the first channel 100 and the second channel 200 are arranged to enable the flow of an air current through the direction change path 32 and the guide path 34. In this case, the arrangement of the first channel 100 and the second channel 200 is the same as shown in FIG. 5. In the filtering mode P1, the direction change path 32 and the guide path 34 are provided to collect the oil particles while allowing the air current containing the oil particles to flow through both of the direction change path 32 and the guide path 34. In the filtering mode P1, the first channel 100 and the second channel 200 are arranged so that the plurality of first guide units 110 and the plurality of second guide units 210 are spaced apart.
  • The ventilation mode P2 is an operating mode in which the first channel 100 and the second channel 200 are arranged to allow the first direction change guide 116 and the second direction change guide 216 to closely adhere to each other in order to close the direction change path 32. FIG. 13 is a diagram showing the ventilation mode of the grease filter according to the first embodiment of the present disclosure. The arrangement of the first channel 100 and the second channel 200 is the same as shown in FIG. 13. In the ventilation mode P2, since the air current flows only through the guide path 34 having a smaller contact area with channels than the direction change path 32, the pressure drop of the air current may be low, and a larger amount of the air current may flow, compared to the filtering mode P1. That is, in the ventilation mode P2, the first channel 100 and the second channel 200 are arranged so that the direction change path 32 can have a narrower width than the guide path 34, compared to the filtering mode P1. In the ventilation mode P2, the first channel 100 and the second channel 200 are arranged so that the plurality of first guide units 110 and the plurality of second guide units 210 closely adhere to each other. More particularly, the first channel 100 and the second channel 200 are arranged so that the first direction change guide 116 and the second direction change guide 216 closely adhere to each other, as described above.
  • The release mode P3 is an operating mode in which the inlet guide 114 and the outlet guide 214 are arranged so that the first channel 100 and the second channel 200 are spaced apart in a facing direction. That is, the first channel 100 and the second channel 200 are driven in a direction opposite to the direction from the filtering mode P1 to the ventilation mode P2. The arrangement of the first channel 100 and the second channel 200 is the same as shown in FIG. 10A. In the release mode P3, as the inlet guide 114 and the outlet guide 214 adhere to each other and the first direction change guide 116 and the second direction change guide 216 are spaced apart from each other, the first channel 100 and the second channel 200 are provided to be released in a direction perpendicular to the same surface.
  • The filtering mode P1, the ventilation mode P2 and the release mode P3 may be designated as a first mode, a second mode, and a third mode, respectively. However, the first mode, the second mode, and the third mode are designated for the sake of convenience, and thus may be designated interchangeably, when necessary.
  • Hereinafter, a grease filter according to a second embodiment of the present disclosure, and a manufacturing method thereof, and a cooking device having the same will be described in detail, with reference to FIG. 14 to FIG. 16.
  • In the description, when the configuration of this embodiment overlaps the configurations of the embodiments, a detailed description thereof is omitted for clarity.
  • The grease filter 300 includes an inlet portion 302 through which oil particles and an air current flow in, and a channel 301 provided with an outlet portion 304 to discharge the oil particles and the air current flowing in through the inlet portion 302 to the outside.
  • The channel 301 may include an inlet guide 312 arranged spaced apart at predetermined intervals to form an inlet portion 302, an outlet guide 314 arranged spaced apart at predetermined intervals to form an outlet portion 304, and a guide unit 310 provided to change a direction of the oil particles and the air current flowing in through the inlet portion 302.
  • The guide unit 310 may include a first guide 331 formed to extend from the inlet guide 312, and a second guide 332 formed to extend from the outlet guide 314.
  • The first guide 331 and the second guide 332 are curved and extend from the inlet guide 312 and the outlet guide 314, respectively, and the first guide 331 and the second guide 332 are arranged to form first angles θ1 with the inlet guide 312 and the outlet guide 314, respectively.
  • In this case, the first angle θ1 is preferably greater than or equal to 90°.
  • However, the first guide 331 formed to be curved at the first angle θ1 with respect to the inlet guide 312, and the second guide 332 formed to be curved at the first angle θ1 with respect to the outlet guide 314 are arranged to face each other, and thus the first guide 331 and the second guide 332 are preferably arranged parallel to each other.
  • Therefore, the oil particles and the air current flowing in through the inlet portion 302 are changed in direction in the channel 301, and come in contact with the first guide 331, the second guide 332, and the outlet guide 314 while moving through the guide unit 310, thereby realizing high collection efficiency.
  • In this way, the collection efficiency of the oil particles may be improved by maximizing the contact area of the oil particles.
  • According to this embodiment, the guide unit 310 is in a shape in which 'L' letters are inclined at a predetermined angle (approximately 45°) to face each other.
  • According to this embodiment, a case in which the grease filter 300 includes an edge 21 and a channel 301 provided at an inner portion of the edge 21 is shown by way of example, but aspects of the present disclosure are not limited thereto.
  • Hereinafter, a grease filter according to a third embodiment of the present disclosure, a manufacturing method thereof, and a cooking device having the same will be described in detail.
  • In the description, when the configuration of this embodiment overlaps the configurations of the embodiments, a detailed description thereof is omitted for clarity.
  • As shown in FIGS. 17 and 18, the grease filter 400 according to another embodiment of the present disclosure includes an inlet guide 412 forming an inlet portion 402, an outlet guide 414 forming an outlet portion 404, and a guide unit 410.
  • The guide unit 410 may include a connection guide 435 to connect the inlet guide 412 to the outlet guide 414.
  • The connection guide 435 may be formed so that one end of the connection guide 435 is coupled to the inlet guide 412 and a second angle θ2 is formed between the connection guide 435 and the inlet guide 412.
  • One end of the outlet guide 414 is coupled to the connection guide 435. In this case, the outlet guide 414 may be formed so that a second angle θ2 the outlet guide 414 is formed between the outlet guide 414 and the connection guide 435.
    In this case, the second angle θ2 is preferably formed as an obtuse angle of approximately 120° or more.
  • Therefore, the oil particles and the air current flowing in through the inlet portion 402 formed by the inlet guides 412 are changed in direction by the guide unit 410 between the connection guide 435 and the outlet guide 414, and discharged through the outlet portion 404 while moving along the channel 401.
  • The oil particles come in contact with the guide unit 410 of the connection guide 435, thereby realizing high collection efficiency.
    According to other embodiments of the present disclosure, the guide unit 410 is formed in a branched shape.
  • Since the specific operations and effects of the grease filter configured thus are sufficiently predictable from the contents as described above, a redundant description thereof is omitted for clarity.
  • Hereinafter, a grease filter according to a fourth embodiment of the present disclosure, a manufacturing method thereof, and a cooking device having the same will be described in detail, with reference to FIG. 19 and FIG. 20.
  • In the description, when the configuration of this embodiment overlaps the configurations of the embodiments, a detailed description thereof is omitted for clarity.
  • As shown in FIGS. 19 and 20, the grease filter 500 according to still another embodiment of the present disclosure may include a channel 501 provided with an inlet portion 502 and an outlet portion 504, and the channel 501 includes a guide unit 510 provided to change a direction of oil particles and an air current flowing in through the inlet portion 502.
  • The guide unit 510 includes an inlet guide 512 forming an inlet portion 502, an outlet guide 514 forming an outlet portion 504, a first guide 531 formed to extend from the inlet guide 512, a second guide 532 formed to extend from the outlet guide 514, a third guide 533 formed to extend from the first guide 531, and a fourth guide 534 formed to extend from the second guide 532.
  • In this case, the inlet guide 512 and the outlet guide 514 may be formed horizontally with respect to the inlet portion 502 and the outlet portion 504.
  • Also, the first guide 531 is preferably arranged to form a third angle θ3 with the inlet guide 512, and the first guide 531 and the third guide 533 are preferably arranged to form a fourth angle θ4 with each other.
  • Further, the second guide 532 is preferably arranged to form a third angle θ3 with the outlet guide 514, and the second guide 532 and the fourth guide 534 are preferably arranged to form a fourth angle θ4 with each other.
  • In this case, the third angle θ3 is preferably formed as an angle of 135° or an obtuse angle, and the fourth angle θ4 is preferably formed as an angle of 90°.
  • Therefore, the oil particles and the air current flowing in through the inlet portion 502 formed by the inlet guides 512 are changed in direction by the inlet guide 512, the outlet guide 514, and the first to fourth guides 534 formed between the inlet guide 512 and the outlet guide 514, and then discharged through the outlet portion 504 while moving along the channel 501.
  • The oil particles come in contact with the guide unit 510 including the first to fourth guides 531, 532, 533 and 534, thereby realizing high collection efficiency.
    Since the specific operations and effects of the grease filter configured thus are sufficiently predictable from the contents as described above, a redundant description thereof is omitted for clarity.
  • FIG. 21 is a graph showing the collection efficiencies of the grease filters according to the second, third and fourth embodiments of the present disclosure, depending on the particle size, and FIG. 22 is a graph showing the pressure drops of the grease filters according to the second, third and fourth embodiments of the present disclosure, depending on the flow rate.
  • For the collection efficiency, the air current is analyzed in this simulation for the conventional Mesh Type (A), and the second embodiment (B), the third embodiment (C), and the fourth embodiment (D) of the present disclosure.
  • The second embodiment of the present disclosure is directed to the grease filter 300 including the guide unit 310 formed in an 'L' shape inclined at an angle of 45° (see FIG. 15), the third embodiment is directed to the grease filter 400 including the guide unit 410 formed in a 'branched' shape (see FIG. 17), and the fourth embodiment (D) is directed to the grease filter 500 including the guide unit 510 formed in a 'G' shape (see FIG. 19).
  • As a result, it was revealed that the collection efficiency of fine oil mist is approximately 82.9%, and the pressure drop is approximately 3.0 mmAq (based on 120CFM) in the case of the second embodiment (B), the collection efficiency of fine oil mist is approximately 75.1%, and the pressure drop is approximately 4.2 mmAq (based on 120CFM) in the case of the third embodiment (C), and the collection efficiency of fine oil mist is approximately 81.9%, and the pressure drop is approximately 5.6 mmAq (based on 120CFM) in the case of fourth embodiment (D), indicating that the second to fourth embodiments show higher collection efficiencies than the conventional Mesh Type (A).
  • As shown in FIG. 21, the pressure drop is also analyzed for the conventional Baffle (A), and the second embodiment (B), the third embodiment (C), and the fourth embodiment (D) of the present disclosure.
  • As a result, it was revealed that the second embodiment (B) of the present disclosure shows the lowest pressure drop.
  • As are seen from the graphs of FIGS. 21 and 22, it was revealed that the structures (B, C and D) including the guide unit according to the embodiments exhibit superior performance to the conventional structure (A).
  • The grease filter according to one embodiment of the present disclosure can be useful in reducing the pressure drop caused by the flow of air including oil particles and improving oil collection efficiency. Also, filtering efficiency may be continuously maintained due to the improved structure of the grease filter.
  • Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles of the invention, the scope of which is defined in the claims.

Claims (11)

  1. A grease filter (10) comprising:
    a first plate (100a);
    a second plate (100b) arranged on the first plate (100a);
    a third plate (200b) arranged to face the second plate (100b);
    a fourth plate (200a) arranged on the third plate (200b);
    the first plate (100a) and the second plate (100b) having overlapping inlet portions (102) through which an air current flows in, and wherein each of the first plate (100a) and the second plate (100b) comprise a plurality of first guide units (110, 110a, 110b) protruding towards the third plate (200b) and the fourth plate (200a), the first guide units (110, 110a, 110b) configured to guide the air current flowing in through the inlet portions (102);
    the third plate (200b) and the fourth plate (200a) having overlapping outlet portions (202) through which the air current flowing in through the inlet portions (102) is discharged to the outside, and wherein each of the third plate (200b) and the fourth plate (200a) comprise a plurality of second guide units (210, 210a, 210b) protruding towards the first plate (100a) and the second plate (100b), the second guide units (210, 210a, 210b) configured to guide the air current to discharge the air current through the outlet portions (202),
    wherein the plurality of first guide units (110, 110a, 110b) each comprise:
    an inlet guide (114) inclined obliquely from the first plate (100a) and the second plate (100b) toward the third plate (200b) and the fourth plate (200a); and
    a first direction change guide (116) curved from the inlet guide (114), and
    the plurality of second guide units (210, 210a, 210b) each comprise:
    an outlet guide (214) inclined obliquely from the third plate (200b) and the fourth plate (200a) toward the first plate (100a) and the second plate (100b); and
    a second direction change guide (216) curved from the outlet guide (214);
    wherein the first (110, 110a, 110b) and second (210, 210a, 210b) guide units cross each other and together form a direction change path (32) and a guide path (34) for guiding the air current in the filter (10) from the same inlet portion (102) to different outlet portions (202) and for filtering oil particles by colliding with the air current, wherein the direction change path (32) spans between the first direction change guide (116) and the second direction change guide (216) and is configured to change the direction of the air current flowing in through the inlet portion (102) to interrupt the flow of the air current, and the guide path (34) is formed between the first guide unit (110, 110a, 110b) and the second guide unit (210, 210a, 210b) and is configured to bypass the first direction change guide (116) and the second direction change guide (216) and configured to have a longer path length than the direction change path (32), and
    wherein the first plate (100a) and the second plate (100b) are detachable from the third plate (200b) and the fourth plate (200a).
  2. The grease filter (10) of claim 1, wherein:
    the plurality of first guide units (110, 110a, 110b) and the plurality of second guide units (210, 210a, 210b) are alternately arranged.
  3. The grease filter (10) of claim 2, wherein the plurality of first guide units (110, 110a, 110b) and the plurality of second guide units (210, 210a, 210b) are arranged to be spaced apart at predetermined intervals.
  4. The grease filter (10) of any one of the preceding claims, wherein the first plate (100a), the second plate (100b), the third plate (200b) and the fourth plate (200a) are formed so that the first plate (100a) and the second plate (100b) can be separated from the third plate (200b) and the fourth plate (200a) in a direction parallel to the first (110, 110a, 110b) and second (210, 210a, 210b) guide units.
  5. The grease filter (10) of any one of the preceding claims, wherein each of the first plate (100a), the second plate (100b), the third plate (200b) and the fourth plate (200a) comprises a stopper (122, 222) to prevent the first plate (100a) and the second plate (100b) from being separated from the third plate (200b) and the fourth plate (200a) beyond predetermined bounds in a direction parallel to the first, second, third and fourth plates.
  6. The grease filter (10) of any one of the preceding claims, wherein:
    the first plate (100a) and the second plate (100b) are coupled to the third plate (200b) and the fourth plate (200a) and the first plate (100a) and the second plate (100b) are configured to move within a guide gap (G1) that is a gap between one of the plurality of first guide units (110, 110a, 110b) and another first guide unit (110, 110a, 110b) adjacent to the one first guide unit (110, 110a, 110b), and then are separable in a direction away from the third plate (200b) and the fourth plate (200a).
  7. The grease filter (10) of claim 1, wherein the first direction change guide (116) and the second direction change (216) guide are formed spaced apart to face each other.
  8. The grease filter (10) of claim 1, wherein:
    the first plate (100a) and the second plate (100b) further comprise a first frame (120) and the third plate (200b) and the fourth plate (200a) further comprise a second frame (220), the first frame (120) and the second frame (220) being in a case shape, and the first guide units (110, 110a, 110b) and the second guide units (210, 210a, 210b) being fixed in the first frame (120) and the second frame (220), respectively,
    each of the plurality of first guide units (110, 110a, 110b) comprise a first support unit (112, 112a, 112b) formed to extend from the inlet guide (114) and fixed in the first frame (120), and
    each of the plurality of second guide units (210, 210a, 210b) comprise a second support unit (212, 212a, 212b) formed to extend from the outlet guide (214) and fixed in the second frame (220).
  9. The grease filter (10) of any one of the preceding claims, wherein the first guide units (110, 110a, 110b) and the second guide units (210, 210a, 210b) are provided in S-letter shapes, respectively.
  10. The grease filter (10) of claim 8, wherein:
    the first support unit (112) is provided to form an obtuse angle with a first inlet plane (115a) that is one surface of the obliquely inclined portion of each of the first guide units (110, 110a, 110b), and
    the first direction change guide (116) is provided to form an obtuse angle with a second inlet plane (115b) that is the other surface of the first inlet plane (115a).
  11. The grease filter (10) of claim 8, wherein:
    the second support unit (212) is provided to form an obtuse angle with a first outlet surface (215a) of the obliquely inclined portion of each of the second guide units (210, 210a, 210b), and
    the second direction change guide (216) is provided to form an obtuse angle with a second outlet surface (215b) that is a surface opposite to the first outlet plane (215a).
EP14188502.0A 2013-10-11 2014-10-10 Grease filter Active EP2859931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19159067.8A EP3520877A1 (en) 2013-10-11 2014-10-10 Grease filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130121148 2013-10-11
KR1020140101496A KR102273280B1 (en) 2013-10-11 2014-08-07 Grease Filter, Manufacturing method thereof and Cooking Device having the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP19159067.8A Division EP3520877A1 (en) 2013-10-11 2014-10-10 Grease filter
EP19159067.8A Division-Into EP3520877A1 (en) 2013-10-11 2014-10-10 Grease filter

Publications (2)

Publication Number Publication Date
EP2859931A1 EP2859931A1 (en) 2015-04-15
EP2859931B1 true EP2859931B1 (en) 2023-06-28

Family

ID=51842341

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14188502.0A Active EP2859931B1 (en) 2013-10-11 2014-10-10 Grease filter
EP19159067.8A Pending EP3520877A1 (en) 2013-10-11 2014-10-10 Grease filter

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19159067.8A Pending EP3520877A1 (en) 2013-10-11 2014-10-10 Grease filter

Country Status (3)

Country Link
US (2) US10137395B2 (en)
EP (2) EP2859931B1 (en)
ES (1) ES2957471T3 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403106B2 (en) * 2012-06-08 2016-08-02 Petrus Marthinus Oosthuizen Inertial filter
US10137395B2 (en) * 2013-10-11 2018-11-27 Samsung Electronics Co., Ltd. Grease filter, manufacturing method thereof and cooking device having the same
US20150362196A1 (en) * 2014-06-16 2015-12-17 Foremost Groups, Inc. Baffle assembly for ventilator hood
JP2016014381A (en) * 2014-07-03 2016-01-28 ナブテスコ株式会社 Vehicular air compression device
DE202015102560U1 (en) * 2015-05-19 2016-08-22 Woco Industrietechnik Gmbh Device for separating particles from a gas stream
CN108204617B (en) * 2016-12-17 2024-01-16 宁波方太厨具有限公司 Oil filter screen and range hood provided with same
CN108006748B (en) * 2017-06-19 2024-01-16 宁波方太厨具有限公司 Filter screen mounting structure of range hood
CN108061318B (en) * 2017-07-20 2024-01-16 宁波方太厨具有限公司 Oil smoke filter equipment and applied this filter equipment's range hood
CN108072070B (en) * 2017-07-28 2024-01-16 宁波方太厨具有限公司 Oil smoke filtering component and range hood with same
KR102457139B1 (en) * 2017-08-09 2022-10-21 삼성전자주식회사 Oil mist filter and air cleaner having the same
CN107345680A (en) * 2017-08-30 2017-11-14 绵阳飞远科技有限公司 Environment-protecting kitchen ventilator with self-cleaning function
KR101853839B1 (en) * 2018-01-25 2018-06-08 (주) 아시안룩스 Grease filter embedding cleaning function and kitchen exhaust system with said Grease filter
DE102018116526A1 (en) * 2018-03-15 2019-09-19 Dürr Systems Ag Separation stage and separation unit with at least one separation stage
US11285421B2 (en) 2018-04-12 2022-03-29 Electrolux Home Products, Inc. Filter media for filtration of cooking fumes
WO2021179105A1 (en) * 2020-03-08 2021-09-16 深圳市迪尔安科技有限公司 Oil removing device for kitchen range hood
WO2022035103A1 (en) * 2020-08-13 2022-02-17 Samsung Electronics Co., Ltd. Range hood
US11988392B2 (en) 2021-05-19 2024-05-21 Haier Us Appliance Solutions, Inc. Removable heating element cover for an oven appliance and methods of detecting same
US11828230B2 (en) * 2021-10-04 2023-11-28 General Electric Company System and method for mitigating particulate intrusion to an air intake system of a gas turbine system with intrusion protective coatings tailored to locale of operation
CN114832532A (en) * 2022-06-06 2022-08-02 苏州艾斯特环境科技有限公司 Reinforced oil stain removal filter

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE138674C (en) * 1902-03-30 1903-02-11 Gebrüder Israel Dust collector with broken dust air paths and with adjustable roof-shaped baffles.
US3945812A (en) * 1973-01-24 1976-03-23 Doane Dewitt H Method of filtering grease-laden air
US3910782A (en) * 1973-09-27 1975-10-07 Buildex Inc Baffle type grease filter
JPS54100577A (en) 1978-01-25 1979-08-08 Tsukiboshi Kougiyou Kk Baffleetype grease filter
DE8307964U1 (en) 1983-03-18 1983-09-08 Eurocomexim Est., 9494 Schaan Vortex flow filter with grease and dirt trap grille
DE3542358A1 (en) 1985-06-19 1987-01-02 Sen Paul Gutermuth Separator for gaseous fluids
JPH0537313A (en) 1991-07-26 1993-02-12 Asahi Glass Co Ltd Photodetecting circuit
US5302174A (en) * 1993-07-07 1994-04-12 Research Products Corporation Multi-unit grease filter
US6041772A (en) * 1998-11-13 2000-03-28 Evs, Inc. Overhead ventilation system incorporating a fixed blade diffuser with opposed pivoting blades for use with a cooking appliance
KR200214339Y1 (en) * 2000-09-14 2001-02-15 이학주 Kitchen for hood
US20110005507A9 (en) * 2001-01-23 2011-01-13 Rick Bagwell Real-time control of exhaust flow
US6454825B1 (en) * 2001-03-27 2002-09-24 Alex Cheimets Exhaust baffle filter
JP2003144824A (en) * 2001-11-06 2003-05-20 Mitsubishi Heavy Ind Ltd Moisture separator and steam generator
US20050000199A1 (en) 2003-05-27 2005-01-06 Caddy Corporation Baffle filter
US7166140B2 (en) * 2003-10-22 2007-01-23 Phillips Plastics Corporation High capture efficiency baffle
US20060157048A1 (en) * 2004-12-17 2006-07-20 Heilman Nikolaus J Grease extraction system, particulate extractor, and method
DE102005019831A1 (en) * 2005-04-28 2006-11-02 BSH Bosch und Siemens Hausgeräte GmbH Filter assembly used in cooker extraction hood, comprises spaced sheet metal shells including mutually-offset, nozzle-shaped openings
US7585345B2 (en) * 2006-01-19 2009-09-08 Phillips Plastics Corporation Baffle filter
DE102006023236B4 (en) * 2006-05-18 2015-03-12 Hans Schmalhofer aerosol
US7947123B2 (en) * 2006-11-10 2011-05-24 Illinois Tool Works Inc. Impact filter with grease trap
US20080202083A1 (en) * 2007-02-23 2008-08-28 Thomas Graham Grease filter
US8917646B2 (en) * 2007-10-19 2014-12-23 International Business Machines Corporation Detecting and processing corrupted video recordings
US7581539B2 (en) * 2008-01-31 2009-09-01 Franklin Machine Products Baffle-type grease filters for kitchen ventilators
GB0803458D0 (en) 2008-02-26 2008-04-02 Shaw Michael L A Grease filter and a ventilation arrangement incorporating such a filter
PL2141382T3 (en) * 2008-07-02 2012-11-30 Koni Bv Damper valve
US8852307B2 (en) * 2010-09-10 2014-10-07 Blissfield Manufacturing Company Filter unit, filtration method and system
US9372004B2 (en) * 2010-09-10 2016-06-21 Blissfield Manufacturing Company Filter units, filtration methods, and filtration systems
US9182131B1 (en) * 2010-09-10 2015-11-10 Aqua Filters, Llc Systems and methods for heat recovery
US20120079946A1 (en) * 2010-10-04 2012-04-05 Jeffrey Bennett Dold Self-cleaning vapor-condensing grease baffle filter
KR20130058117A (en) * 2011-11-25 2013-06-04 삼성전자주식회사 Grease filter
US9089802B2 (en) * 2012-12-13 2015-07-28 Gregory S. Antoun Collection system for liquid suspended in a gas
BR112015031270B1 (en) * 2013-06-14 2021-03-23 Jordan Salpietra FAT FILTER FOR INSTALLATION WITHIN AN OPENING OF EXHAUST COIL COMMERCIAL KITCHEN EQUIPMENT
US10137395B2 (en) * 2013-10-11 2018-11-27 Samsung Electronics Co., Ltd. Grease filter, manufacturing method thereof and cooking device having the same

Also Published As

Publication number Publication date
EP3520877A1 (en) 2019-08-07
US10137395B2 (en) 2018-11-27
ES2957471T3 (en) 2024-01-19
US11135539B2 (en) 2021-10-05
US20150101588A1 (en) 2015-04-16
US20190039007A1 (en) 2019-02-07
EP2859931A1 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
EP2859931B1 (en) Grease filter
JP7441604B2 (en) Exhaust fan device for discharging cooking steam downwards and hob system for cooking
CN109386951B (en) Oil mist filter and air purifier with same
AU2007319352B2 (en) Impact filter with grease trap
AU2012239215A1 (en) Wet scrubber having a compact demister that requires reduced energy demand
EP1757865B1 (en) Exhaust hood
KR102273280B1 (en) Grease Filter, Manufacturing method thereof and Cooking Device having the same
WO2017089925A1 (en) A hood for domestic use
KR20130058117A (en) Grease filter
RU2325251C2 (en) Table for thermal cutting of sheet material
CN101517334B (en) Air conditioner
CN110425617B (en) Range hood and control method thereof
KR102149319B1 (en) Grease Filter
CN211411299U (en) Air purifying device
JP2017070936A (en) Aerial floating matter capturing device and aerial floating matter separation device
JP2001017811A (en) Dust collector
WO2001037972A2 (en) Modular filtration device for extractor and/or filtering hoods
CN216557273U (en) Fume exhaust fan
CN2766164Y (en) Cooking fume purifier
CN109373385B (en) Oil smoke filter with first effect filtering capability
JP2015210066A (en) Exhaust system
JP6168109B2 (en) Air purifier
CN217978952U (en) Fume exhaust fan
CN220453748U (en) Tobacco gathering mechanism and range hood
KR102621059B1 (en) Exhaust assembly for kitchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151015

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190722

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014087447

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230628

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1582206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2957471

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231110

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014087447

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT