EP2855228A1 - Procede de detection d'une acceleration intempestive d'un vehicule automobile - Google Patents

Procede de detection d'une acceleration intempestive d'un vehicule automobile

Info

Publication number
EP2855228A1
EP2855228A1 EP13723837.4A EP13723837A EP2855228A1 EP 2855228 A1 EP2855228 A1 EP 2855228A1 EP 13723837 A EP13723837 A EP 13723837A EP 2855228 A1 EP2855228 A1 EP 2855228A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
acceleration
block
slope
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13723837.4A
Other languages
German (de)
English (en)
Inventor
Vincent DE FLAUGERGUES
Stephane Camp
Cecile Thenegal
Marco Pengov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2855228A1 publication Critical patent/EP2855228A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction

Definitions

  • the present invention relates to the safety of motor vehicles.
  • the invention relates more particularly to a method for detecting inadvertent acceleration of a motor vehicle.
  • Untimely acceleration on a motor vehicle is a dreaded event that can jeopardize the safety of the occupants of the vehicle if it occurs. Being able to monitor and identify the occurrence of such an event is therefore essential.
  • An acceleration is considered untimely when the vehicle accelerates while the driver does not press the pedal, or more generally, when the vehicle accelerates more than the driver has requested.
  • the known methods of determining whether an acceleration is untimely consist in detecting an over-acceleration by one of the following monitoring means: monitoring of an engine torque in a situation of raised foot or more generally in situation without a request for torque engine: it is then necessary to check that there is no injection during this situation;
  • Carrying out only engine torque monitoring in situations without requested engine torque is limited: it is limited to certain vehicle life situations.
  • detecting an injection in a situation without engine torque required, for example, in a so-called "stand-by" situation is not symptomatic of a defect: this situation can occur in a normal mode of operation such as, for example, injections for heating a catalyst.
  • An object of the present invention is to solve one or more of these disadvantages.
  • the invention thus relates to a method for detecting an inadvertent acceleration of a motor vehicle in which a difference between a theoretical acceleration and a real acceleration is determined and an alert information is sent if the difference is greater than one.
  • detection threshold characterized in that the method comprises a resetting phase of at least one parameter taking place when the vehicle is in an operating situation without requested engine torque. Indeed, this operating situation makes it possible to make reliable readjustments and thus to improve the accuracy of the estimate of the difference
  • the registration phase of at least one parameter comprises the registration of the vehicle mass and / or the coefficient of friction of the brake pads of the vehicle. More preferably, the registration of the mass of the vehicle is performed for additional registration conditions comprising: no support on the brake pedal, a substantially zero slope. Preferably again the registration of the coefficient of friction of the brake pads is carried out for additional registration conditions comprising: a pressure on the brake pedal, a substantially zero slope.
  • the additional resetting conditions include a time required in the operating situation without requested motor torque, between a minimum duration and a maximum duration.
  • the time required in operating situation without motor torque requested is between 300 milliseconds and 2 seconds.
  • the vehicle mass and / or the coefficient of friction is averaged over the required time.
  • the deviation is determined when the vehicle is in an operating situation with requested engine torque.
  • the injection parameters are monitored and a warning signal is emitted in the event of detection of an abnormal injection of fuel.
  • the invention also relates to a vehicle comprising at least one computer configured to implement the method of the invention.
  • FIG. 1 is a schematic representation of the logical structure of the method for detecting an inadvertent acceleration of the invention.
  • FIG. 2 is a schematic representation of the calculation of the difference between theoretical acceleration and actual acceleration.
  • FIG. 3 is a schematic representation of the calculation of the registration of the vehicle mass or coefficient of friction of the brake pads.
  • - Figure 4 is a schematic representation of the calculation of the mass of the vehicle.
  • FIG. 5 is a schematic representation of the calculation of the coefficient of friction of the brake pads.
  • FIG. 1 presents, in the form of a functional block, the method of detecting an inadvertent acceleration of the invention.
  • the method can be implemented by at least one motor vehicle computer, the computer receiving the appropriate information from sensors or estimators that includes the vehicle.
  • the block 1 executes when the vehicle is in a situation where the requested engine torque is zero while the block 2 runs when the requested engine torque is non-zero.
  • the execution of the appropriate block 1 or 2 is decided for example by the receipt of a logical information t taking for example the value 1 in the situation of engine torque demanded zero and 0 in the other situation.
  • Blocks 1 and 2 use information from various sources:
  • a first group of signals, a originating from the sensors and motor control designated A, such as, for example, the speed sensor.
  • Parameters c relate to the mass of the vehicle and the coefficient of friction of the brake pads
  • a second group of parameters, d coming from a memory D accessible in read-only mode.
  • the signals of the different groups a, b, c, d are made distinct by an index.
  • Block 1 comprises a monitoring block 10 of the injection parameters and a readjustment block 1 1 of the parameters C for reading and writing: the mass of the vehicle and the coefficient of friction of the brake pads.
  • Block 1 emits a warning signal w1 if an abnormal injection of fuel is detected by block 10. Indeed, such an abnormal injection of fuel could be the cause of untimely acceleration of the vehicle.
  • injection parameters such as data can be monitored. injection angles, injection time, engine speed to check the plausibility of a motor torque of about zero.
  • Block 2 includes:
  • C mof is the specified motor torque requested. More specifically, the motor torque indicated requested corresponds to the engine torque from the calculation chain of the setpoint (or request) of torque beginning with the Interpretation Willing Conductor which determines the torque at the crankshaft requested by the driver, modulated to take in account the motor losses (belt drive, pumping %), the external demands of torque (eg esp, speed regulator, gearbox), the approval requirements ...
  • C losses word is the couple of motor losses including, for example, pump losses, drive losses of the alternator belts and accessories, (corresponding to the difference between the indicated engine torque and the actual engine torque)
  • m veh is the mass of the vehicle
  • r wheel is the wheel radius
  • Jiot m v e ra hr u e 2 + trans-r, 2 rans -Jmot is the total inertia of the vehicle, with J word, motor inertia.
  • the actual acceleration can be advantageously calculated by deriving the measured speed of the vehicle, v veh :
  • Block 2 still includes:
  • a calculation block 22 of a detection threshold, s which varies according to the gearbox ratio of the vehicle
  • the detection threshold, s is the tolerated difference between the theoretical acceleration ⁇ i3 ⁇ 4 and the real acceleration r of the vehicle.
  • the detection threshold, s by application of the Fundamental Principle of Dynamics is expressed in function of the report of box engaged by the relation:
  • the detection threshold, s can be chosen so as to detect an engine over-torque of 25 Nm.
  • the block 21 comprises:
  • the block 210 uses in input data the engine speed a2.
  • a block 21 1 for estimating the torque transmitted to the wheels taking as input the motor loss torque, C word determined at block 210, the requested torque, C word designated a1 on FIG. 2, and additional parameters such as the gear ratio b BV designated b5 in FIG. 2 or the position of the clutch pedal b6.
  • a block 214 for estimating the aerodynamic drag force, F aero taking as input the speed of the vehicle, v veh , designated b1 in FIG. 2.
  • a slope calculation block 216, 9 slope by comparison of the longitudinal acceleration, b2 and the real acceleration, ⁇ ⁇ , calculated at block 215.
  • the slope slope can be estimated using the relation
  • Block 21 further includes:
  • a block 217 for calculating the theoretical acceleration, th by applying the Fundamental Principle of Dynamics detailed above, taking as input the results of the blocks 21 1, 212, 213, 214, 216 as well as the mass of the vehicle, m veh designated c1 in FIG.
  • a block 218 for comparing the theoretical acceleration, th , obtained at block 217 and the real acceleration, ⁇ ⁇ , calculated at block 215, and determining at output the difference e between the two computed accelerations.
  • This block 1 10 also takes parameters such as the slope slope estimate 9, the gear ratio b BV designated b5 in FIG. 3, the position of the clutch pedal b6, the position of the pedal of brake b7, the logical information t of torque requested.
  • a calculation block 1 12 either of the vehicle mass m3 ⁇ 4 or of the coefficient of friction ⁇ ⁇ of the brake pads.
  • Block 1 1 may also comprise a block 1 13 of calculating an average over the duration T is the mass m ve3 ⁇ 4 of the vehicle or the coefficient of friction ⁇ ⁇ brake pads, from the average change in the acceleration over the entire duration T. This makes it possible to filter the estimate of the parameter).
  • Block 13 may also include a validation step of the value coherence calculated during this registration phase with respect to their assumed value range and an outlier estimate, for example a mass less than the empty mass, can be discarded which reinforces the reliability of the process.
  • an outlier estimate for example a mass less than the empty mass
  • a duration T required in a requested torque situation of zero greater than a minimum threshold, t min , which corresponds to a minimum duration allowing stabilization and confirmation of the zero demand torque situation.
  • the minimum threshold, t min is approximately 300 ms.
  • a duration T required in a requested torque situation of zero, less than a maximum threshold, t max a duration T required in a requested torque situation of zero, less than a maximum threshold, t max .
  • This maximum threshold corresponds to a compromise to be found between the number of points to be recorded, having enough deceleration and at the same time having a small variation in the rolling friction, which depends on the speed.
  • the maximum threshold, t max is for example 2 seconds.
  • a duration in the requested torque situation of zero, greater than a minimum duration, t min , for example of 300 ms,
  • a duration in a requested torque situation of zero, less than a maximum duration, tmax, for example 2 seconds.
  • Figures 4 and 5 respectively show the calculations carried out by the block 1 12 for determining the mass of the vehicle, m veh designated c1 in said figures and the coefficient of friction of the brake pads, p brake , designated c2 in said figures.
  • the block 1 12 comprises:
  • a block 1 120 for estimating the motor loss torque, C losses, word may include a map of losses by pumps and losses due to the drive of accessory and alternator belts.
  • the block 1 120 uses as input the engine speed a2.
  • Block 1 120 is equivalent to block 210.
  • Block 1 121 for estimating the motor loss torque, C word losses , transmitted to the wheels.
  • Block 1 121 uses as input the transmission ratio / gear ratio b BV designated b5 in Figure 4 or the position of the clutch pedal b6 (input not shown).
  • Block 1 121 is equivalent to block 21 1).
  • the rolling friction can be expressed in the form:
  • a block 1 124 for estimating the aerodynamic drag force, F aero taking as input the speed of the vehicle, v veh , designated b1 in FIG. 4.
  • the aerodynamic drag force can be expressed in the form:
  • Faero -P - ⁇ - C x .V yeh with: p density of the air, S reference surface of the vehicle, Cx coefficient of drag.
  • a block 1 126 for calculating the real acceleration, r obtained by deriving the vehicle speed, v veh , designated b1 in FIG. 4.
  • F X bearing depending on the vehicle mass m veh .
  • the rolling friction can be expressed in the form: F x r0U
  • the block 1 12 repeats the blocks 1 120, 1 121, 1 124, 1 125 described in the presentation of FIG. 4. As FIG. 5 again shows, the block 1 12 furthermore comprises:
  • 1 123 takes as input the brake torque, c determined at block 1 127 'and the brake pressure, p brake (not shown).
  • the invention has the advantage of allowing exploiting the situation in which no torque is required, for example because the driver does not press the accelerator pedal:
  • the invention allows a simpler calibration of the estimators and a transversality of the process, that is, the process can be easily adapted from one vehicle to another.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un procédé de détection d'une accélération intempestive d'un véhicule automobile dans lequel on détermine un écart (e) entre une accélération théorique et une accélération réelle et on envoie une information d'alerte (w2) si l'écart (e) est supérieur à un seuil de détection (s), caractérisé en ce que le procédé comprend une phase de recalage d'au moins un paramètre s'effectuant lorsque le véhicule est dans une situation de fonctionnement sans couple moteur demandé. L'invention porte aussi sur un véhicule comprenant au moins un calculateur configuré pour mettre en œuvre le procédé de l'invention.

Description

PROCEDE DE DETECTION D'UNE ACCELERATION INTEMPESTIVE D'UN
VEHICULE AUTOMOBILE
Domaine technique de l'invention
La présente invention se rapporte à la sécurité des véhicules automobiles.
L'invention concerne plus particulièrement un procédé de détection d'une accélération intempestive d'un véhicule automobile.
Arrière-plan technologique
Une accélération intempestive sur un véhicule automobile constitue un événement redouté qui peut mettre en cause la sécurité des occupants du véhicule s'il elle survient. Pouvoir surveiller et identifier l'occurrence d'un tel événement est donc essentiel.
Une accélération est considérée comme intempestive lorsque le véhicule accélère alors que le conducteur n'appuie pas sur la pédale, ou de façon plus générale, quand le véhicule accélère plus que le conducteur ne l'a demandé. Les méthodes connues consistant à déterminer si une accélération est intempestive consistent à détecter une sur-accélération par l'un des moyens de surveillance suivants : - La surveillance d'un couple moteur en situation de pied levé ou plus généralement en situation sans demande de couple moteur : il s'agit alors de vérifier qu'il n'y a pas d'injection au cours de cette situation;
- La surveillance continue du couple moteur: il s'agit alors de comparer le couple demandé au couple réalisé;
- La surveillance continue de l'accélération véhicule: il s'agit ici de comparer l'accélération théorique du véhicule, estimée à partir du couple moteur demandé par le conducteur à l'accélération réelle, calculée par exemple par dérivation de la vitesse mesurée du véhicule.
Cependant ces moyens de surveillance présentent certains inconvénients :
Faire uniquement une surveillance de couple moteur en situation sans couple moteur demandé est limité : on se limite à certaines situations de vie du véhicule. De plus, détecter une injection en situation sans couple moteur demandé par exemple en situation dit de pied levé n'est pas symptomatique d'un défaut : cette situation peut se produire dans un mode normal de fonctionnement tel que par exemple des injections destinées à la chauffe d'un catalyseur.
La surveillance continue du couple moteur est de plus délicate pour certains types de moteurs, comme les moteurs essence en charge stratifiée, l'estimation du couple est dans de cas difficile.
La surveillance de continue de l'accélération véhicule peut s'appliquer sur tout type de véhicule. Cependant, l'efficacité de cette méthode dépend notamment de la précision de l'estimation des écarts:
- entre la masse réelle du véhicule, qui est inconnue, et la masse prise pour référence,
- entre le coefficient réel de friction des plaquettes de freins, qui est inconnu, et le coefficient de friction pris pour référence.
Plus ces écarts sont grands, plus l'estimation de l'accélération théorique est faussée. Le cas échéant, il y a des risques soit de non détection, si l'accélération théorique est surestimée, soit de fausse alarme, si l'accélération théorique est sous-estimée.
Un but de la présente invention est de résoudre un ou plusieurs de ces inconvénients.
L'invention porte ainsi sur un procédé de détection d'une accélération intempestive d'un véhicule automobile dans lequel on détermine un écart entre une accélération théorique et une accélération réelle et on envoie une information d'alerte si l'écart est supérieur à un seuil de détection, caractérisé en ce que le procédé comprend une phase de recalage d'au moins un paramètre s'effectuant lorsque le véhicule est dans une situation de fonctionnement sans couple moteur demandé. En effet, cette situation de fonctionnement permet de faire des recalages fiables et donc d'améliorer la précision de l'estimation de l'écart
De préférence, la phase de recalage d'au moins un paramètre comprend le recalage de la masse du véhicule et/ ou du coefficient de friction des plaquettes de frein du véhicule. De préférence encore, le recalage de la masse du véhicule est effectué pour des conditions de recalage supplémentaires comprenant : pas d'appui sur la pédale de frein, une pente sensiblement nulle. De préférence encore le recalage du coefficient de friction des plaquettes de frein est effectué pour des conditions de recalage supplémentaires comprenant : un appui sur la pédale de frein, une pente sensiblement nulle.
Dans une variante, les conditions de recalage supplémentaires comprennent une durée requise en situation de fonctionnement sans couple moteur demandé, comprise entre une durée minimum et une durée maximum. De préférence, la durée requise en situation de fonctionnement sans couple moteur demandé est comprise entre 300 millisecondes et 2 secondes.
De préférence, la masse de véhicule et/ou le coefficient de friction est moyenné sur la durée requise.
De préférence, la détermination de l'écart s'effectue lorsque le véhicule est dans une situation de fonctionnement avec couple moteur demandé.
Dans une variante, lorsque le véhicule est dans la situation de fonctionnement sans couple moteur demandé, on surveille les paramètres d'injection et on émet un signal d'alerte en cas de détection d'une injection anormale de carburant.
L'invention a aussi pour objet un véhicule comprenant au moins un calculateur configuré pour mettre en œuvre le procédé de l'invention.
Brève description des dessins
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après d'un mode particulier de réalisation, non limitatif de l'invention, faite en référence aux figures dans lesquelles :
- La figure 1 est une représentation schématique de la structure logique du procédé de détection d'un d'accélération intempestive de l'invention.
- La figure 2 est une représentation schématique du calcul de l'écart entre accélération théorique et accélération réelle.
- La figure 3 est une représentation schématique du calcul du recalage de la masse du véhicule ou de coefficient de friction des plaquettes de frein. - La figure 4 est une représentation schématique du calcul de la masse du véhicule.
- La figure 5 est une représentation schématique du calcul du coefficient de friction des plaquettes de frein.
Description détaillée
La figure 1 présente sous forme de bloc fonctionnel le procédé de détection d'une accélération intempestive de l'invention. Le procédé peut être mis en œuvre par au moins un calculateur de véhicule automobile, le calculateur recevant les informations appropriées en provenance de capteurs ou d'estimateurs que comprend le véhicule. Dans ce procédé, le bloc 1 s'exécute lorsque le véhicule est dans une situation où le couple moteur demandé est nul tandis que le bloc 2 s'exécute lorsque le couple moteur demandé est non nul. L'exécution du bloc adéquat 1 ou 2 est décidée par exemple par la réception d'une information logique t prenant par exemple la valeur 1 en situation de couple moteur demandé nul et 0 dans l'autre situation.
Les blocs 1 et 2 utilisent des informations en provenance de diverses sources :
- un premier groupe de signaux, a, en provenance des capteurs et du contrôle moteur désignés A tel que par exemple le capteur de régime.
- un second groupe de signaux, b, en provenance des capteurs véhicule et liaison au sol désignés B,
- un premier groupe de paramètres, c, en provenance d'une mémoire C accessible en lecture et en écriture. Les paramètres c concernent la masse du véhicule et le coefficient de friction des plaquettes de frein,
- un second groupe de paramètres, d, en provenance d'une mémoire D accessible en lecture seule.
Dans la suite du mémoire et dans les figures 2 à 5 les signaux des différents groupes a, b, c, d sont rendus distincts par un indice.
Le bloc 1 comprend un bloc de surveillance 10 des paramètres d'injection et un bloc de recalage 1 1 des paramètres C en lecture et en écriture : la masse du véhicule et le coefficient de friction des plaquettes de frein. Le bloc 1 émet un signal d'alerte w1 en cas de détection d'une injection anormale de carburant par le bloc 10. En effet une telle injection anormale de carburant pourrait être la cause d'une accélération intempestive du véhicule. On peut par exemple surveiller les paramètres d'injection tels que les données d'angles d'injection, de durée d'injection, le régime moteur pour vérifier la plausibilité d'un couple moteur environ nul.
Le bloc 2 comprend :
- un bloc de calcul 21 de l'écart, e, entre l'accélération théorique, γΛ , et l'accélération réelle γτ .
L'accélération théorique peut être estimée en application du Principe Fondamental de la Dynamique (ou par acronyme PFD) par la relation principale suivante :
<V -
J th
Et où :
Cmof est le couple moteur indiqué demandé. Plus précisément, le couple moteur indiqué demandé correspond au couple moteur issu de la chaîne de calcul de la consigne (ou demande) de couple débutant par l'Interprétation Volonté Conducteur qui permet de déterminer le couple au vilebrequin demandé par le conducteur, modulé pour prendre en compte les pertes moteurs (entraînement des courroies, pompage...), les demandes externes de couple (par exemple esp, régulateur de vitesse, boite de vitesse), les exigences d'agrément ... Cpertes mot est le couple des pertes moteurs comprenant par exemple les pertes par pompage, les pertes d'entraînement des courroies de l'alternateur et des accessoires, (correspondant à la différence entre le couple moteur indiqué et le couple moteur effectif) mveh est la masse du véhicule,
6pente est la pente,
ritmns = JJporJJBv est le rendement de puissance de la transmission comprenant un pont différentiel et une boite de vitesse de rendement respectif ηροηί et ηΒν . rtmnS = r PonfrBv est le apport de transmission , produit du rapport de pont, rpont , et du rapport de boite de vitesse, rBV .
rroue est le rayon de roue,
Fx, roulement ' F aero sont les forces extérieures résistantes, respectivement, le frottement de roulement et la traînée aérodynamique, Cfrein = Pfrein■ μ,Γβίη■ Sfrein■ Rfrein est le couple frein, produit de la pression de freinage, pfrein , de la surface des plaquettes, s du rayon au centre des plaquettes, Rfrein et d'un coefficient de friction μ{ηίη des plaquettes de frein.
Jiot = mveh-rraue 2 + trans-r,rans2 -Jmot est l'inertie totale du véhicule, avec Jmot , l'inertie du moteur.
L'accélération réelle yr es\, quant à elle, calculée à partir d'au moins une mesure de la dynamique du véhicule. Par exemple, l'accélération réelle peut être avantageusement calculée par dérivation de la vitesse mesurée du véhicule, vveh :
Le bloc 2 comprend encore :
- un bloc de calcul 22 d'un seuil de détection, s, variable selon le rapport de boite de vitesse du véhicule,
- un bloc de comparaison 20 de l'écart, e, au seuil de détection, s, émettant un signal d'alerte w2 dans le cas où l'écart e est supérieur au seuil de détection s.
Le seuil de détection, s, est l'écart toléré entre l'accélération théorique ^ et l'accélération réelle r du véhicule. Dans le cas où l'on souhaite détecter un écart d'accélération dû à un sur-couple, autrement dit un dépassement de couple moteur AC , le seuil de détection, s, par application du Principe Fondamental de la Dynamique s'exprime en fonction du rapport de boite engagé par la relation :
g n Itrans r trans. r roue
Le seuil de détection, s, peut être choisi de sorte à détecter un sur-couple moteur de 25Nm.
Comme le montre plus précisément la figure 2, le bloc 21 comprend:
- un bloc 210 d'estimation du couple de perte moteur Cpertes _mot . Le bloc 210 utilise en donnée d'entrée le régime moteur a2.
- un bloc 21 1 d'estimation du couple transmis aux roues, prenant en entrée le couple de perte moteur, C mot déterminé au bloc 210, le couple demandé, Cmot désigné a1 sur la figure 2, et des paramètres supplémentaires comme le rapport de boite rBV désigné b5 sur la figure 2 ou la position de la pédale d'embrayage b6.
- un bloc 212 d'estimation du frottement de roulement, FX roulement , à partir de la masse du véhicule, mveh désigné c1 sur la figure 2.
- un bloc 213 d'estimation du couple frein, ra> à partir du coefficient de friction des plaquettes de frein et de la pression de freinage, pfrein , désignés respectivement c2 et b4 sur la figure 2.
- un bloc 214 d'estimation de la force de traînée aérodynamique, Faero , prenant en entrée la vitesse du véhicule, vveh , désignée b1 sur la figure 2.
- un bloc 215 de calcul de l'accélération réelle, γτ , prenant en entrée la vitesse du véhicule, vveh , désignée b1 sur la figure 2.
- un bloc 216 de calcul de la pente, 9pente , par comparaison de l'accélération longitudinale, b2 et de l'accélération réelle, γΓ , calculée au bloc 215. La pente 9pente peut être estimée en utilisant la relation
g. sin(0pente + 6assiette ) = ¾inertiene - ε(ννθη ).γΓ - acentrifuge
Avec :
ainertieiie '■ l'accélération longitudinale, désignée b2 sur la figure 2.
Θ assiette '■ ' angle d'assiette approximé à partir de l'accélération réelle, γτ , du véhicule et un coefficient k de proportionnalité :
® assiette
acentrifuge '■ l'accélération centrifuge qui peut être par exemple calculée à partir de l'angle volant 9volant el de caractéristiques géométriques telles que l'empattement, E , le coefficient de démultiplication angle roues/ angle volant, Dvolant , la position en x du capteur x ur , (avec x=0 sur les roues arrières) par une relation de la forme :
, _ v veh . °volant
centrifuge ^2 capteur
V ^ volant J
On peut aussi calculer cette accélération centrifuge à partir d'un capteur de vitesse de lacet d'un dispositif de contrôle de trajectoire (communément nommé ESP). Cette estimation de la pente peut être désactivée dans certains cas tels que des signaux instables, la détection d'un glissement, un freinage. La pente 9pente est alors gelée à sa dernière valeur. Le bloc 21 comprend encore :
- un bloc 217 de calcul de l'accélération théorique, th , par application du Principe Fondamental de la Dynamique détaillé plus haut, prenant en entrée les résultats des blocs 21 1 , 212, 213, 214, 216 ainsi que la masse du véhicule, mveh désignée c1 sur la figure 2.
- un bloc 218 de comparaison de l'accélération théorique, th , obtenue au bloc 217 et de l'accélération réelle, γτ , calculée au bloc 215, et déterminant en sortie l'écart e entre les deux accélérations calculées.
Concernant le bloc 1 1 de recalage, comme le montre plus précisément la figure 3, celui-ci comprend :
- un bloc 1 10 de vérification que les conditions pour opérer le recalage, de la masse mveh du véhicule, désigné c1 sur la figure 3 ou du coefficient de friction μ{τήη des plaquettes de frein sont réunies. Ce bloc 1 10 prend aussi en entrée des paramètres tels que l'estimation de la pente 9pente , le rapport de boite rBV désigné b5 sur la figure 3, la position de la pédale d'embrayage b6, la position de la pédale de frein b7, l'information logique t de couple demandé.
- un bloc 1 1 1 de comptage d'une durée T pendant laquelle des conditions pour opérer le recalage sont réunies. Pendant cette durée T la variation d'accélération réelle, γτ , est enregistrée.
- un bloc 1 12 de calcul soit de la masse mve¾ du véhicule, soit du coefficient de friction μ{ηίη des plaquettes de frein.
Le bloc 1 1 peut aussi comprendre un bloc 1 13 de calcul d'une moyenne sur la durée T soit de la masse mve¾ du véhicule, soit du coefficient de friction μ{ηίη des plaquettes de frein, à partir de la variation moyenne de l'accélération sur toute la durée T. Cela permet de filtrer l'estimation du paramètre). Le bloc 1 13 peut aussi comprendre une étape de validation de la cohérence de valeur calculée au cours de cette phase de recalage par rapport à leur plage de valeur supposée ainsi, une estimation aberrante, par exemple une masse inférieure à la masse à vide, peut être écartée ce qui renforce la fiabilité du procédé. Ainsi on peut considérer que l'estimation du coefficient de friction, μ{ηίη , est valide si celui-ci est compris dans un intervalle compris entre 0,1 et 0,55. De même on peut considérer que l'estimation de la masse mveh est valide si celle-ci est bien supérieure à la masse à vide.
Concernant les conditions à réunir pour opérer le recalage de la masse de véhicule mveh , celui-ci est effectué lorsque le véhicule est en situation de couple demandé nul, et sous les conditions supplémentaires suivantes :
- pas d'appui sur la pédale de frein,
- la pente 9pente sensiblement nulle, de préférence inférieure à 1 ° en valeur absolue.
- une durée T requise en situation de couple demandé nul, supérieure à un seuil minimum, tmin, qui correspond à une durée minimum permettant une stabilisation et une confirmation de la situation de couple demandé nul. Avantageusement, le seuil minimum, tmin, est d'environ de 300 ms.
- une durée T requise en situation de couple demandé nul, inférieure à un seuil maximum, tmax. Ce seuil maximum correspond à un compromis à trouver entre le nombre de points à enregistrer, le fait d'avoir suffisamment de décélération et en même temps d'avoir une petite variation du frottement de roulement, qui dépend de la vitesse. Avantageusement, le seuil maximum, tmax, est par exemple de 2 secondes.
Concernant les conditions à réunir pour opérer le recalage du coefficient de friction μ{τήη des plaquettes de frein, celui-ci est effectué lorsque le véhicule est en situation de couple demandé nul, et sous les conditions supplémentaires suivantes :
- appui sur la pédale de frein,
- pente 9pente sensiblement nulle,
- une durée en situation de couple demandé nul, supérieure à une durée minimum, tmin, par exemple de 300 ms,
- une durée en situation de couple demandé nul, inférieure à une durée maximum, tmax, par exemple 2 secondes.
Connaissant la valeur de l'accélération sur la durée T donnée, ici comprise entre la durée minimum tmin et la durée maximum, tmax, et à partir du Principe Fondamental de la Dynamique, on en déduit alors soit la masse du véhicule, mveh (dans ces conditions, le couple moteur, Cmot , le couple frein, c > Ia pente, 9pente , sont nuls) , soit le couple frein, C et donc le coefficient de friction, pfrein (dans ces conditions, le couple moteur, Cmot , la pente, 9pente , sont nuls). La masse du véhicule, mveh , ou le coefficient de friction, pfrein peuvent ensuite être moyennée sur la durée T (bloc 1 13) .
Les figures 4 et 5 présentent respectivement les calculs menés par le bloc 1 12 pour la détermination la masse du véhicule, mveh désignée c1 sur les dites figures et le coefficient de friction des plaquettes de frein, pfrein , désigné c2 sur lesdites figures.
Sur la figure 4, le bloc 1 12 comprend :
- un bloc 1 120 d'estimation du couple de pertes moteurs, Cpertes_mot . Le bloc 1 120 peut comprendre une cartographie des pertes par pompes et des pertes dues à l'entraînement des courroies accessoires et alternateur. Le bloc 1 120 utilise en entrée le régime moteur a2. Le bloc 1 120 est équivalent au bloc 210.
- un bloc 1 121 d'estimation du couple de pertes moteurs, Cpertes_mot , transmis aux roues. Le bloc 1 121 utilise en entrée le rapport de transmission / le rapport de boite rBV désigné b5 sur la figure 4 ou la position de la pédale d'embrayage b6 (entrée non représentée). Le bloc 1 121 est équivalent au bloc 21 1 ).
- Un bloc 1 122 d'estimation du frottement de roulement, FX roulement , en fonction de la masse du véhicule mveh . Le frottement de roulement peut s'exprimer sous la forme :
Fx.roulement = (& + b.Vyeh ).ΓΠνθη
, avec a et b des constantes.
- un bloc 1 124 d'estimation de la force de traînée aérodynamique, Faero , prenant en entrée la vitesse du véhicule, vveh , désignée b1 sur la figure 4. La force de traînée aérodynamique peut s'exprimer sous la forme :
1 2
Faero = -P-^-Cx .Vyeh avec : p masse volumique de l'air, S surface de référence du véhicule, Cx coefficient de traînée. - un bloc 1 126 de calcul de l'accélération réelle, r , obtenue par dérivation de la vitesse du véhicule, vveh , désignée b1 sur la figure 4.
- un bloc 1 125 de calcul d'estimation de la pente, 9pente , par application de la relation déjà détaillée :
g.sin(6pente + 6assiette ) = ainertieNe - e(vveh ).Yr - acentrifuge
- un bloc 1 127 de calcul de la masse du véhicule mveh , désigné c1 sur la figure 4, à partir du Principe Fondamental de la Dynamique et des entrées des blocs 1 121 , 1 124, 1 125, 1 126 qui s'exprime alors sous la forme : -(rroue2 -Yr + (a + b.vveh ) + g. sin(9pente )) =
Avec une estimation du frottement de roulement, FX roulement , en fonction de la masse du véhicule mveh . Le frottement de roulement peut s'exprimer sous la forme : Fx r0U|ement - (a + b. v veh ) .m veh
, avec a et b des constantes.
Sur la figure 5, le bloc 1 12 reprend les blocs 1 120, 1 121 , 1 124, 1 125 décrit dans la présentation de la figure 4. Comme le montre encore la figure 5, le bloc 1 12 comprend de plus :
- un bloc 1 127' de calcul du couple frein, ra> à partir du Principe Fondamental de la
Dynamique et des entrées des blocs 1 121 , 1 122, 1 124, 1 125, 1 126.
- un bloc de calcul du coefficient de friction, μ{τήη , désigné c2 sur la figure 5. Le bloc
1 123 prend en entrée le couple frein, c déterminée au bloc 1 127' et la pression de freinage, pfrein (entrée non représentée).
L'invention a pour avantage de permettre en exploitant la situation dans lequel il n'est demandé aucun couple, par exemple parce que le conducteur n'appuie pas sur la pédale d'accélération :
- de faire une surveillance continue de l'accélération du véhicule, - de diminuer ces incertitudes paramétriques et donc de diminuer le risque de fausse détection et de non-détection.
- de garantir les exigences de sûreté de fonctionnement pour un événement redouté d'accélération intempestive.
L'invention permet une calibration plus simple des estimateurs et une transversalité du procédé, autrement dit qui le procédé peut être aisément être adapté d'un véhicule à un autre.

Claims

Revendications
1 . Procédé de détection d'une accélération intempestive d'un véhicule automobile dans lequel on détermine un écart (e) entre une accélération théorique ( th ) et une accélération réelle ( γΓ ) et on envoie une information d'alerte (w2) si l'écart (e) est supérieur à un seuil de détection (s), caractérisé en ce que le procédé comprend une phase de recalage d'au moins un paramètre s'effectuant lorsque le véhicule est dans une situation de fonctionnement sans couple moteur demandé.
2. Procédé de détection selon la revendication 1 , caractérisé en ce que la phase de recalage d'au moins un paramètre comprend le recalage de la masse du véhicule ( mveh ) et/ ou du coefficient de friction { μίΓβίη ) des plaquettes de frein du véhicule.
3. Procédé selon la revendication 2, caractérisé en ce que le recalage de la masse du véhicule ( mveh ) est effectué pour des conditions de recalage supplémentaires comprenant : pas d'appui sur la pédale de frein, une pente { 9pente ) sensiblement nulle.
4. Procédé selon la revendication 2 ou la revendication 3, caractérisé en ce que le recalage du coefficient de friction { μίΓβίη ) des plaquettes de frein est effectué pour des conditions de recalage supplémentaires comprenant : un appui sur la pédale de frein, une pente ( 0pente ) sensiblement nulle.
5. Procédé selon la revendication 3 ou la revendication 4, caractérisé en ce que les conditions de recalage supplémentaires comprennent une durée (T) requise en situation de fonctionnement sans couple moteur demandé, comprise entre une durée minimum (tmin) et une durée maximum (tmax).
6. Procédé selon la revendication 5, caractérisé en ce que la durée (T) requise en situation de fonctionnement sans couple moteur demandé est comprise entre 300 millisecondes et 2 secondes.
7. Procédé selon la revendication 5 ou la revendication 6, caractérisé en ce que la masse de véhicule ( mveh ) et/ou le coefficient de friction { μίΓβίη ) est moyenné sur la durée
(T) requise.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la détermination de l'écart (e) s'effectue lorsque le véhicule est dans une situation de fonctionnement avec couple moteur demandé.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que lorsque le véhicule est dans la situation de fonctionnement sans couple moteur demandé, on surveille (10) les paramètres d'injection et on émet un signal d'alerte (w1 ) en cas de détection d'une injection anormale de carburant.
10. Véhicule comprenant au moins un calculateur configuré pour mettre en œuvre un procédé selon l'une quelconque des revendications précédentes.
EP13723837.4A 2012-05-24 2013-04-19 Procede de detection d'une acceleration intempestive d'un vehicule automobile Withdrawn EP2855228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254742A FR2990916B1 (fr) 2012-05-24 2012-05-24 Procede de detection d'une acceleration intempestive d'un vehicule automobile
PCT/FR2013/050873 WO2013175093A1 (fr) 2012-05-24 2013-04-19 Procede de detection d'une acceleration intempestive d'un vehicule automobile

Publications (1)

Publication Number Publication Date
EP2855228A1 true EP2855228A1 (fr) 2015-04-08

Family

ID=47080609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13723837.4A Withdrawn EP2855228A1 (fr) 2012-05-24 2013-04-19 Procede de detection d'une acceleration intempestive d'un vehicule automobile

Country Status (4)

Country Link
EP (1) EP2855228A1 (fr)
CN (1) CN104470783B (fr)
FR (1) FR2990916B1 (fr)
WO (1) WO2013175093A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104149788B (zh) * 2014-07-25 2016-06-01 湖南大学 一种电动汽车防止驾驶员误操作的方法
DE102014223001B4 (de) * 2014-11-11 2018-04-19 Robert Bosch Gmbh Verfahren und Vorrichtung zum Feststellen, ob in einem Kraftfahrzeug ein Fehlerzustand vorliegt oder nicht
KR102286352B1 (ko) * 2017-08-11 2021-08-05 현대모비스 주식회사 전방 충돌 방지보조 시스템의 제어 장치 및 방법
CN110422153B (zh) * 2019-07-18 2021-07-27 浙江吉利新能源商用车集团有限公司 一种车辆坡道传感器的坡度信号优化方法、系统及汽车
US11407413B2 (en) 2020-06-04 2022-08-09 Fca Us Llc Techniques for monitoring powertrain cruise control propulsive torque in electrified vehicles
CN112731055B (zh) * 2020-12-21 2023-01-06 潍柴动力股份有限公司 起动机线路故障检测方法、装置及发动机电控设备、介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19960782A1 (de) * 1999-12-16 2001-06-21 Mannesmann Vdo Ag Verfahren zur Beschleunigungsüberwachung für eine Längsdynamiksteuerung oder -regelung in Kraftfahrzeugen
DE102004047925B4 (de) * 2004-10-01 2016-09-15 Bayerische Motoren Werke Aktiengesellschaft Längsdynamiksteuervorrichtung für Kraftfahrzeuge
DE102005021952A1 (de) * 2005-05-12 2006-11-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
DE102006018790A1 (de) * 2006-04-22 2007-10-25 Zf Friedrichshafen Ag Verfahren zum Betreiben von Komponenten eines Antriebsstrangs
DE102008028264B3 (de) * 2008-06-13 2009-12-17 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren zur Überwachung wenigstens eines das Betriebsverhalten von Fahrzeugen oder Fahrzeugzügen beeinflussenden Systemparameters
DE102009055044A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Verfahren und Vorrichtung zur Unterbindung einer ungewollten Beschleunigung eines Fahrzeuges

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013175093A1 *

Also Published As

Publication number Publication date
WO2013175093A1 (fr) 2013-11-28
CN104470783B (zh) 2017-11-24
CN104470783A (zh) 2015-03-25
FR2990916A1 (fr) 2013-11-29
FR2990916B1 (fr) 2015-01-02

Similar Documents

Publication Publication Date Title
EP2855228A1 (fr) Procede de detection d&#39;une acceleration intempestive d&#39;un vehicule automobile
EP3030449B1 (fr) Controle du freinage regeneratif dans un vehicule electrique ou hybride
EP2895826B1 (fr) Dispositif et procede d&#39;estimation de la charge d&#39;un vehicule automobile
EP2183500A1 (fr) Dispositif et procede de determination d&#39;une cartographie du couple transmis par un embrayage equipant un vehicule automobile et systeme d&#39;assistance a un demarrage en cote d&#39;un vehicule automobile equipe d&#39;un tel dispositif
EP3010746B1 (fr) Systeme et procede de surveillance du couple fourni par le moteur d&#39;un vehicule automobile electrique ou hybride
WO2020169919A1 (fr) Procede et systeme de pilotage d&#39;un essieu electrique d&#39;une remorque ou semi-remorque
FR2980573A1 (fr) Procede d&#39;estimation de la resistance au roulement d&#39;une roue de vehicule
FR3044625B1 (fr) Procede d&#39;assistance a la conduite
EP2307253B1 (fr) Dispositif d&#39;evaluation de l&#39;acceleration transversale d&#39;un vehicule automobile et procede correspondant
FR2915802A1 (fr) Procede et systeme de determination d&#39;adherence pour vehicule automobile
EP2082939B1 (fr) Procédé et système d&#39;estimation d&#39;adhérence dans un véhicule automobile
FR2902048A1 (fr) Systeme et procede de commande des efforts appliques aux trains avant et arriere d&#39;un vehicule automobile hybride a quatre roues motrices
EP2176110B1 (fr) Procede d&#39;estimation d&#39;une vitesse longitudinale d&#39;un vehicule, dispositif pour sa mise en oeuvre
EP2528788B1 (fr) Systeme et procede de suivi de la trajectoire d&#39;un vehicule
EP2176111B1 (fr) Procede d&#39;estimation du glissement des roues d&#39;un vehicule et dispositif pour sa mise en oeuvre
EP2621779B1 (fr) Procede de freinage automatique d&#39;un vehicule automobile
FR2945122A1 (fr) Procede et dispositif d&#39;evaluation de l&#39;usure d&#39;un pneu
FR2932878A1 (fr) Dispositif et procede de l&#39;estimation de la pente du terrain pour le roulage d&#39;un vehicule automobile.
FR2920393A1 (fr) Procede de mise a jour de la valeur de decalage entre l&#39;angle volant relatif et l&#39;angle volant absolu d&#39;un vehicule automobile
EP1911648A2 (fr) Procédé et système d&#39;assistance hydraulique au freinage
FR3000930A1 (fr) Procede de detection de lever de roue arriere de vehicule automobile en virage
FR2906518A1 (fr) Procede de detection de reprise d&#39;adherence d&#39;une roue de vehicule automobile.
FR2903063A1 (fr) Procede de detection du glissement d&#39;une roue de vehicule automobile.
FR3100778A1 (fr) Procede de pilotage d’un vehicule automobile
FR2916401A1 (fr) Procede et systeme pour la mise en pression d&#39;un circuit hydraulique de freinage automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PSA AUTOMOBILES SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103