EP2846000B1 - Vane ring of a gas turbine - Google Patents
Vane ring of a gas turbine Download PDFInfo
- Publication number
- EP2846000B1 EP2846000B1 EP14184094.2A EP14184094A EP2846000B1 EP 2846000 B1 EP2846000 B1 EP 2846000B1 EP 14184094 A EP14184094 A EP 14184094A EP 2846000 B1 EP2846000 B1 EP 2846000B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- section
- guide
- vane
- turbine
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
- F01D9/041—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/123—Fluid guiding means, e.g. vanes related to the pressure side of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/305—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the pressure side of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/711—Shape curved convex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/713—Shape curved inflexed
Definitions
- the invention relates to a turbine stator, in particular a high-pressure turbine stator of a gas turbine, in particular for use in a gas turbine engine.
- burn-back capability of the stator is to be understood to mean that during operation of the gas turbine, in particular the rear edge of the first stator of the high-pressure turbine can burn off under the extreme thermal loads that occur. This means that the guide blade, starting from the rear edge of the blade, is shortened by the burn-back. Since the first stator of a high-pressure turbine largely determines the flow through the entire turbomachine, it is crucial to maintain the flow (capacity) of the first stator so that the entire turbomachine and all individual components can continue to work at a nominal mass flow at the design point. It is therefore necessary that the flow (capacity) of the turbine does not change significantly as a result of the burn-back.
- the passage cross section within the stator upstream of the narrow cross section (i.e. in the direction of the progressive backburn of the trailing edge of the blade) must remain approximately constant, so that the then effective narrow passage cross section also remains approximately constant even when the thermally highly stressed trailing edge burns back. This ensures that the flow rate remains the same even in the event of a backburn.
- Such an embodiment is for example from the Figure 4 of the DE 10 2005 025 213 A1 known.
- turbine idlers in which the guide vanes have a convex pressure side contour on the pressure side, show the DE 10 2004 009 696 B3 and the DE 100 54 244 A1 .
- stator wheel designs known from the prior art are that the aerodynamic design cannot be designed to be loss-optimized, since the generally advantageous design with strong aerodynamic loads in the rear suction side area (“rear-loaded design”) sustainably violates the burn-back criterion. A compromise must therefore always be made in the aerodynamic design so that the burn-back capability is ensured. This in turn reduces turbine efficiency and increases the specific fuel consumption (SFC) of the turbomachine.
- SFC specific fuel consumption
- the invention has for its object to provide a turbine stator of the type mentioned, which has a high efficiency with a simple structure and simple design, while at the same time the mentioned burn-back criterion is met. Especially in the event of a backfire, the turbine capacity should remain largely unchanged so that the entire engine with its individual components can continue to be operated at the design point.
- each guide vane forms a rear area which, starting from the rear edge of the blade, extends adjacent to the constant passage section to the entry area of the passage section, and a front area which extends upstream of the rear area.
- the rear area is therefore the area of the pressure side of the guide vane that delimits the constant passage section.
- the guide vanes have a convex pressure side contour on the pressure side, which produces a transition from the rear area of the guide blade to the front area of the guide blade.
- the solution according to the invention provides a convex pressure side contour on the pressure side of the guide vane, in such a way that the convex pressure side contour creates a transition from a rear area of the guide vane, in which there is a constant passage section, to a front area of the guide vane.
- the rear area of the guide vane is thus connected to the front area of the guide vane via the convex pressure side contour.
- the convex pressure side contour or the convex curvature of the pressure side provided by this enables the passage between two guide blades to be made constant over a certain length, even if the adjacent guide blade is provided with a considerable convex curvature on the suction side in order to implement a loss-optimized turbine stator which without compensation by the convex pressure side contour - would lead to a considerable widening of the passage.
- the invention thus ensures burn-back capability even in the event that a loss-optimized turbine stator with guide vanes with considerable convex curvature on the suction side is provided in the region of the narrow cross section.
- the solution according to the invention thus provides that the wall of the pressure side of the Guide vane forms a convex pressure side contour, that is to say a convex curvature, which forms the transition between the rear region of the guide vane, which adjoins the constant passage section, and the front region, which extends upstream thereof.
- the invention produces the burn-back capability by convex contouring of the pressure side of the guide vane of the guide wheel, without the aerodynamic design of the suction side of the guide vane being influenced. According to the invention, it is therefore possible to freely define the suction side of the guide vane of the guide wheel and to make it optimal in terms of loss technology, and to implement guide vanes with a considerable convex curvature of the suction side in the region of the narrow cross section or adjacent to the narrow cross section.
- the configuration according to the invention of the pressure-side contour of the guide vane ensures that the cross-section of the passage between adjacent guide vanes remains essentially constant in the event of a burn-back, so that the flow (capacity) of the turbine and thus the efficiency of the overall engine due to a burn-back do not or only insignificantly to be influenced.
- the profile thickness of the guide blades increases or is constant in the direction of the blade rear edge in front of the rear region of the guide blades or decreases to a lesser extent than in the rear region of the guide blade.
- this embodiment provides that the profile thickness increases or is constant in the direction of the blade trailing edge in front of the entry region into the passage or decreases to a lesser extent than in the region of the constant passage section.
- the convex pressure side contour forms a maximum in the constant passage cross section at or upstream of the entry region. It can further be provided that the convex pressure side contour forms a maximum of the curvature at or upstream of the entry area in the constant passage cross section. The maximum of the curvature is close to the point furthest locally from the printing side or close to the line furthest from the printing side.
- the maximum and / or the maximum of the curvature are therefore not in the rear area of the guide vane, but in the front area of the guide vane, but preferably at a short distance from the rear area (for example at a distance that corresponds to a maximum of 10% of the length of the skeleton line ) or directly at the transition between the two areas.
- a further embodiment of the invention provides that the convex pressure side contour on the pressure side of the guide blades is predominantly or completely formed in the front area of the guide blade. It can be provided that part of the convex pressure side contour is additionally formed in the rear area of the guide vane. In principle, however, a rectilinear or even concave curvature can be provided in the rear area of the guide vane, which delimits the constant passage section, which merges into the convex pressure side contour.
- the passage cross-section there is an essentially constant passage cross-section if the passage cross-section does not deviate by more than 5% from the narrow cross-section in the region of the blade rear edge. This deviation from the narrow cross section is preferably less and is less than 2% of the narrow cross section.
- the passage cross section is exactly constant in the constant passage section. It can further be provided that the constant passage section extends over a chord length, for example in the area is between 5% and 40% of the total tendon length and is, for example, about 5%, 10%, 15%, 20%, 25%, 30%, 35% or 40% of the total tendon length.
- the convex pressure side contour extends over the entire height of the guide vane. Furthermore, it can be provided that the pressure side contour extends at least over a partial area of the blade height (for example over at least 50% or at least 70% of the blade height). It is also possible for the configuration of the curvature to vary over the blade height.
- the guide blade starting from the rear edge of the blade, is provided with a concave area after the convex area. This configuration leads in particular to an optimal surface pressure distribution on the blade surface.
- Another advantage is the mechanical stability.
- the convex pressure side contour of the guide vane results in a significantly higher wedge angle, adjacent to the trailing edge of the vane, compared to the prior art.
- the profile is therefore thicker in the rear edge area. This in turn leads to increased mechanical stability, which results in a far less deformation of the rear edge under thermal stress during operation.
- the turbine stator according to the invention also has considerable advantages with regard to cooling air consumption. Since the blade contour has a greater thickness in the trailing edge area, it is possible to expand the internal cooling geometry further in the direction of the trailing edge of the blade. This can be done, for example, by so-called pedestal banks located further back. This gives the opportunity Saving cooling air, since the length of the rear edge overhang, which is difficult to cool and has the greatest thermal load, can be reduced.
- the inventive configuration of the cross section of the guide vanes results in a longer service life.
- Another advantage is the stability of the engine properties and the turbine efficiency in long-term operation.
- the engine flow changes less in long-term operation due to the more stable and easier-to-cool blade trailing edge.
- the decrease in high pressure turbine efficiency due to the increase in trailing edge losses due to burn back is reduced.
- the gas turbine engine 10 is a generally illustrated example of a turbomachine to which the invention can be applied.
- the engine 10 is constructed in a conventional manner and comprises an air inlet 11, a fan 12 rotating in a housing, a medium-pressure compressor 13, a high-pressure compressor 14, a combustion chamber 15, a high-pressure turbine 16, a medium-pressure turbine 17 and a low-pressure turbine 18 and one in the flow direction Exhaust nozzle 19, which are all arranged around a central engine axis 1.
- the medium pressure compressor 13 and the high pressure compressor 14 each comprise a plurality of stages, each of which has a circumferential arrangement of fixed stationary guide vanes 20, which are generally referred to as stator blades, and which extend radially inward from the core engine housing 21 in an annular flow channel through the compressors 13, 14 protrude.
- the compressors also have an arrangement of compressor blades 22 which project radially outward from a rotatable drum or disk 26 which is coupled to hubs 27 of the high-pressure turbine 16 and the medium-pressure turbine 17.
- Turbine sections 16, 17, 18 have similar stages, including an array of fixed vanes 23 projecting radially inward from housing 21 into the annular flow channel through turbines 16, 17, 18 and a subsequent array of turbine blades 24 which protrude outward from a rotatable hub 27.
- the compressor drum or compressor disk 26 and the blades 22 arranged thereon as well as the turbine rotor hub 27 and the Turbine rotor blades 24 arranged thereon rotate during operation about the engine axis 1.
- the Fig. 2 shows a view of a turbine stator known from the prior art with an end view of adjacent guide vanes 23. These each have a pressure side 30 and a suction side 31 and form a passage 29 through which the hot gases emerging from the combustion chamber flow. From the representation of the Fig. 2 it follows that the passage 29 has a narrowest cross-section (narrow cross-section 36) in the region of a blade rear edge 32. This is designed with regard to the target profile shape of the guide vanes 23.
- the thermal load during operation causes the area of the blade trailing edge 32 to burn off, so that a burn-back 35 results. This means that the hatched area of the blade profile burns off.
- This results in an effective passage cross section 37 which is considerably widened compared to the narrow cross section 36 and consequently leads to a significant reduction in efficiency.
- the flow and the capacity change with the widening of the passage cross-section.
- tubular stator is designed as a loss-optimized turbine stator and for this purpose has guide vanes 23 which are provided with a considerable convex curvature on the suction side 31 in the region of the narrow cross-section 36 or adjacent to the narrow cross-section 36, which in the case of a Burnback leads to a considerable widening of passages.
- the Figure 3 shows a view of an embodiment of the invention.
- the guide vanes 23 in turn have a pressure side 30 and a suction side 31, two adjacent guide vanes 23 forming a passage 29 between the suction side 31 of one guide vane and the pressure side 30 of the other guide vane, starting from the trailing edge 32 of the blade, through which hot gases emerging from the combustion chamber stream.
- the passage 29 comprises a constant passage section 29a, in which the passage 29 has an essentially constant passage cross section 37.
- the constant passage section 29a has an entry area 38 and an exit area 36, which essentially have the same passage cross section.
- the exit area 36 is delimited by the blade rear edge 32, so that the exit area 36 corresponds to the narrow cross section of the passage 29.
- the statement that the passage cross-section 37 in the constant passage section 29a is essentially constant means that the deviation of the passage cross-section 37 from the narrow cross-section in this constant passage section 29a is below a defined value which is defined as 5% of the narrow cross-section.
- the guide vane 23 also forms a rear region 320 on the pressure side, which extends from the trailing edge 32 of the blade adjacent to the constant passage section 29a to the entry region 38 of the constant passage section 29a.
- the pressure-side rear region 320 of the guide vane is therefore the region that delimits the constant passage section 29a on the pressure side.
- a front area 310 extends upstream of the rear area 320, which basically extends to the front edge of the blade, but only the area adjacent to the rear area 320 is considered in detail for the purposes of the present invention.
- the guide vane 23 also has a convex pressure side contour 33 on the pressure side 30, which creates a transition from the rear region 320 to the front region 310.
- the convex pressure side contour 33 has a maximum M, which in the cross-sectional view of FIG Figure 3 indicates the point at which the curvature provided by the convex pressure side contour 33 locally protrudes the most from the pressure side 30.
- a certain profile of the profile thickness d of the guide vane 23 Associated with the convex pressure side contour 33 is a certain profile of the profile thickness d of the guide vane 23. If one considers the profile profile d in the direction of the blade trailing edge 32, it is the case that the profile thickness d is in front the rear area 320 (or in front of the entry area 38) increases or is constant, as is the case with the profile thicknesses d1 and d2 Figure 3 is illustrated. In contrast, in the rear region 320 of the guide vane, the profile thickness d decreases relatively strongly, as is shown by way of example using the profile thickness d3.
- the profile thickness in front of the rear region 320 does not increase or is constant, but decreases to a smaller extent (ie by a smaller value per unit length) than in the rear region 320.
- This profile profile d corresponds with the realization of a maximum M of the curvature provided by the convex pressure side contour 33 in front of or at the entry area into the constant passage section 29a.
- a convex pressure side contour 33 leads, on the one hand, to an increase in the wedge angle between the surfaces of the pressure side 30 and the suction side 31 in the region adjacent to the trailing edge 32 of the blade and, in particular, to avoid widening of the passage cross section in the event of a backburn.
- Such widening is avoided precisely by the fact that a constant passage section 29a is provided by the solution according to the invention, so that the narrow cross-section does not change in the region of this constant passage section 29a in the event of a backburn 35.
- a burn back 35 is in the Figure 3 marked very exaggerated to better explain the effectiveness of the invention. It follows that the passage cross section 37 in the constant passage cross section 29a remains essentially the same in the event of a backburn, since the narrow cross section 36 in this section is essentially the same as the passage cross section 37.
- the Figure 4 shows a further embodiment of two guide vanes 23 of a turbine stator according to the invention.
- the embodiment corresponds to the embodiment of FIG Figure 3 to which reference is made with regard to the reference symbols used.
- the rear area 320 of the guide vane 23 is given a shape which allows a constant passage section 29a with an essentially constant passage cross section 29a to be provided between an entry area 38 and to provide an exit area 36 of this constant passage section 29a.
- the corresponding curvature of the convex pressure side contour 33 means that the profile thickness d of the guide vane 23 in front of the rear area 320 increases or remains essentially constant and only decreases sharply in the rear area 320 of the guide vane (cf. profile thicknesses d1, d2 and d3) Figure 4 ).
- a difference in the design of the Figure 4 compared to the design of the Figure 3 consists in the curvature of the pressure side 30 of the guide vane in the rear region 320. While this curvature in the Figure 3 is at least approximately concave, it is in the embodiment of the Figure 4 Convex, so that the rear area 320 forms a portion of the convex pressure side contour 33 and contributes to the latter.
- the maximum M of the convex pressure side contour 33 is, however, in front of the constant passage section 29a in the front area 310.
- the convex pressure side contour 33 creates the transition from the rear area 320 of the guide vane to the front area 310 of the guide vane.
- Line 40 thus indicates the course of the pressure side of a guide vane designed according to the prior art, the wall of guide vane 23 adjacent to blade trailing edge 32 being essentially straight or having a slight, uniform curvature.
- Line 40 thus illustrates the pressure side contour of a conventional guide vane.
- the surface 50 illustrates a thickening, on the other hand, by realizing a convex pressure side contour 33.
- a thickening 50 is also in the embodiment of FIG Figure 3 in front.
- a different shape and does not run Overall convex but also has a convex section in the transition from the rear area 320 to the front area 310.
- the thickening 50 is completely formed by the convex pressure side contour 33.
- the Figure 5 shows a comparison of the configuration according to the prior art, as this in the Figure 2 is shown (left half of Figure 5 ) and an embodiment of the invention according to the Figure 4 .
- the contours of the pressure side 30 provided according to the invention result in the advantages described above. This is particularly evident from the comparative representation of the static surface pressures Figure 6 evident.
- the normalized chord length of 0.0 corresponds to the position of the blade leading edge
- the normalized chord length of 1.0 corresponds to the position of the blade trailing edge.
- the top half of the picture Fig. 6 shows the geometric design according to the prior art ( Fig. 5 left) proper surface pressure distribution.
- the lower half of the picture Fig. 6 shows the configuration according to the invention ( Fig. 5 right) proper surface distribution.
- the advantageous pressure curve resulting according to the invention on the suction side ( Fig. 6 below), which can be implemented without violating the burn-back criterion.
- the S-stroke of the pressure curve on the pressure side in the area of the blade trailing edge with the chord length 0.7 to 1.0 results from the contouring of the printing side according to the invention in order to comply with the burn-back criterion.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung bezieht sich auf ein Turbinenleitrad, insbesondere ein Hochdruckturbinenleitrad einer Gasturbine, insbesondere zur Verwendung bei einem Gasturbinentriebwerk.The invention relates to a turbine stator, in particular a high-pressure turbine stator of a gas turbine, in particular for use in a gas turbine engine.
Aus dem Stand der Technik ist es bekannt, dass die Leitschaufeln eines Turbinenleitrades insbesondere nach aerodynamischen Anforderungen ausgelegt werden müssen. Dabei spielt zum Einen die Konturierung des Schaufelquerschnitts an der Saugseite und an der Druckseite eine große Rolle. Wichtig ist dabei auch die Ausgestaltung der Schaufelpassage zwischen benachbarten Leitschaufeln, da der zur Verfügung stehende Strömungsquerschnitt durch die Passage den Wirkungsgrad des Leitrades mitbestimmt.It is known from the prior art that the guide vanes of a turbine guide wheel must be designed in particular according to aerodynamic requirements. On the one hand, the contouring of the blade cross-section on the suction side and on the pressure side plays a major role. The design of the blade passage between adjacent guide blades is also important here, since the flow cross section available through the passage also determines the efficiency of the guide wheel.
Bei der aerodynamischen Gestaltung ist jedoch insbesondere die Sicherstellung der Rückbrandfähigkeit der Leitschaufeln des Leitrades zu berücksichtigen. Unter Rückbrandfähigkeit des Leitrades ist in diesem Zusammenhang zu verstehen, dass beim Betrieb der Gasturbine insbesondere die Hinterkante des ersten Leitrades der Hochdruckturbine unter den auftretenden extremen thermischen Belastungen abbrennen kann. Dies bedeutet, dass sich die Leitschaufel, ausgehend von der Schaufelhinterkante, durch den Rückbrand verkürzt. Da das erste Leitrad einer Hochdruckturbine den Durchfluss durch die gesamte Turbomaschine maßgeblich bestimmt, ist die Einhaltung des Durchflusses (der Kapazität) des ersten Leitrades von entscheidender Bedeutung, damit die gesamte Turbomaschine und alle Einzelkomponenten weiter bei einem Nominalmassenstrom im Auslegungspunkt arbeiten können. Es ist somit erforderlich, dass der Durchfluss (Kapazität) der Turbine sich durch den Rückbrand nicht wesentlich ändert.In the aerodynamic design, however, particular attention must be paid to ensuring that the guide vanes of the guide wheel burn back. In this context, burn-back capability of the stator is to be understood to mean that during operation of the gas turbine, in particular the rear edge of the first stator of the high-pressure turbine can burn off under the extreme thermal loads that occur. This means that the guide blade, starting from the rear edge of the blade, is shortened by the burn-back. Since the first stator of a high-pressure turbine largely determines the flow through the entire turbomachine, it is crucial to maintain the flow (capacity) of the first stator so that the entire turbomachine and all individual components can continue to work at a nominal mass flow at the design point. It is therefore necessary that the flow (capacity) of the turbine does not change significantly as a result of the burn-back.
Um das Rückbrandkriterium eines Turbinenleitrades sicherzustellen, muss der Passagenquerschnitt innerhalb des Leitrades stromauf des Engquerschnittes (also in Richtung des fortschreitenden Rückbrandes der Schaufelhinterkante) annähernd konstant bleiben, damit auch bei Rückbrand der thermisch hoch belasteten Hinterkante der dann effektive Passagenengquerschnitt ebenfalls annähernd konstant bleibt. So wird sichergestellt, dass der Durchfluss auch bei Rückbrand ähnlich bleibt. Eine solche Ausgestaltung ist beispielsweise aus der
Weitere Beispiele von Turbinenleiträdern, bei denen die Leitschaufeln auf der Druckseite eine konvexe Druckseitenkontur aufweisen, zeigen die
Der Nachteil bei den aus dem Stand der Technik bekannten Leitradauslegungen ist, dass das aerodynamische Design nicht verlustoptimiert ausgelegt werden kann, da die im allgemeinen vorteilhafte Auslegung mit starker aerodynamischen Belastung im hinteren Saugseitenbereich ("Rear-Loaded-Design") das Rückbrandkriterium nachhaltig verletzt. Es muss also immer ein Kompromiss bei der aerodynamischen Auslegung eingegangen werden, damit die Rückbrandfähigkeit sichergestellt ist. Das wiederum verringert den Turbinenwirkungsgrad und erhöht den spezifischen Treibstoffverbrauch (SFC) der Turbomaschine.The disadvantage of the stator wheel designs known from the prior art is that the aerodynamic design cannot be designed to be loss-optimized, since the generally advantageous design with strong aerodynamic loads in the rear suction side area (“rear-loaded design”) sustainably violates the burn-back criterion. A compromise must therefore always be made in the aerodynamic design so that the burn-back capability is ensured. This in turn reduces turbine efficiency and increases the specific fuel consumption (SFC) of the turbomachine.
Der Erfindung liegt die Aufgabe zugrunde, ein Turbinenleitrad der eingangs genannten Art zu schaffen, welches bei einfachem Aufbau und einfacher Ausgestaltung einen hohen Wirkungsgrad aufweist, während gleichzeitig das erwähnte Rückbrandkriterium eingehalten wird. Insbesondere im Falle eines Rückbrandes soll die Turbinenkapazität weitestgehend unverändert bleiben, damit das Gesamttriebwerk mit seinen Einzelkomponenten weiter im Auslegungspunkt betrieben werden kann.The invention has for its object to provide a turbine stator of the type mentioned, which has a high efficiency with a simple structure and simple design, while at the same time the mentioned burn-back criterion is met. Especially in the event of a backfire, the turbine capacity should remain largely unchanged so that the entire engine with its individual components can continue to be operated at the design point.
Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst. Die Unteransprüche zeigen vorteilhafte Ausgestaltungen der Erfindung.According to the invention the object is achieved by the combination of features of claim 1. The subclaims show advantageous embodiments of the invention.
Danach betrachtet die erfindungsgemäße Lösung ein Turbinenleitrad, bei dem zwei benachbarte Leitschaufeln jeweils eine Passage ausbilden, welche einen konstanten Passagenabschnitt umfasst. Der konstante Passagenabschnitt zeichnet sich dadurch aus, dass er einen im Wesentlichen konstanten Passagenquerschnitt aufweist. Der konstante Passagenabschnitt weist einen Eintrittsbereich in den konstanten Passagenabschnitt und einen Austrittsbereich auf. Der Austrittsbereich befindet sich an der Schaufelhinterkante und ist identisch mit dem engsten Querschnitt (Engquerschnitt) der Passage. Jede Leitschaufel bildet druckseitig einen hinteren Bereich aus, der sich ausgehend von der Schaufelhinterkante angrenzend an den konstanten Passagenabschnitt bis zum Eintrittsbereich des Passagenabschnitts erstreckt sowie einen vorderen Bereich aus, der sich stromaufwärts des hinteren Bereichs erstreckt. Der hintere Bereich ist somit derjenige Bereich der Druckseite der Leitschaufel, der den konstanten Passagenabschnitt begrenzt.The solution according to the invention then considers a turbine stator, in which two adjacent guide blades each form a passage which comprises a constant passage section. The constant passage section is characterized in that it has an essentially constant passage cross section. The constant passage section has an entry area into the constant passage section and an exit area. The exit area is located at the rear edge of the blade and is identical to the narrowest cross section (narrow cross section) of the passage. On the pressure side, each guide vane forms a rear area which, starting from the rear edge of the blade, extends adjacent to the constant passage section to the entry area of the passage section, and a front area which extends upstream of the rear area. The rear area is therefore the area of the pressure side of the guide vane that delimits the constant passage section.
Es ist erfindungsgemäß vorgesehen, dass die Leitschaufeln auf der Druckseite eine konvexe Druckseitenkontur aufweisen, die einen Übergang vom hinteren Bereich der Leitschaufel zum vorderen Bereich der Leitschaufel herstellt.It is provided according to the invention that the guide vanes have a convex pressure side contour on the pressure side, which produces a transition from the rear area of the guide blade to the front area of the guide blade.
Die erfindungsgemäße Lösung stellt eine konvexe Druckseitenkontur auf der Druckseite der Leitschaufel bereit, und zwar derart, dass durch die konvexe Druckseitenkontur ein Übergang von einem hinteren Bereich der Leitschaufel, in dem ein konstanter Passagenabschnitt vorliegt, zu einem vorderen Bereich der Leitschaufel hergestellt wird. Der hintere Bereich der Leitschaufel ist somit über die konvexe Druckseitenkontur mit dem vorderen Bereich der Leitschaufel verbunden.The solution according to the invention provides a convex pressure side contour on the pressure side of the guide vane, in such a way that the convex pressure side contour creates a transition from a rear area of the guide vane, in which there is a constant passage section, to a front area of the guide vane. The rear area of the guide vane is thus connected to the front area of the guide vane via the convex pressure side contour.
Durch die konvexe Druckseitenkontur bzw. die durch diese bereitgestellte konvexe Wölbung der Druckseite wird ermöglicht, die Passage zwischen zwei Leitschaufeln über eine bestimmte Länge konstant auszubilden, auch wenn die benachbarte Leitschaufel zur Realisierung eines verlustoptimierten Turbinenleitrads saugseitig mit einer erheblichen konvexen Krümmung versehen ist, die - ohne eine Kompensation durch die konvexe Druckseitenkontur - zu einer erheblichen Passagenaufweitung führen würde. Durch die Erfindung wird somit eine Rückbrandfähigkeit sichergestellt auch für den Fall, dass ein verlustoptimiertes Turbinenleitrad mit Leitschaufeln mit erheblicher konvexer Krümmung der Saugseite im Bereich des Engquerschnitts vorgesehen ist.The convex pressure side contour or the convex curvature of the pressure side provided by this enables the passage between two guide blades to be made constant over a certain length, even if the adjacent guide blade is provided with a considerable convex curvature on the suction side in order to implement a loss-optimized turbine stator which without compensation by the convex pressure side contour - would lead to a considerable widening of the passage. The invention thus ensures burn-back capability even in the event that a loss-optimized turbine stator with guide vanes with considerable convex curvature on the suction side is provided in the region of the narrow cross section.
Während bei im Stand der Technik bekannten Konstruktionen die Wandungen der Saugseite und der Druckseite angrenzend an die Schaufelhinterkante im Wesentlichen geradlinig oder mit gleichmäßiger Krümmung ausgebildet sind und somit einen keilförmigen Querschnittsbereich der Leitschaufel bilden, sieht die erfindungsgemäße Lösung somit vor, dass die Wandung der Druckseite der Leitschaufel eine konvexe Druckseitenkontur, das heißt eine konvexe Wölbung ausbildet, die den Übergang zwischen dem hinteren Bereich der Leitschaufel, die an den konstanten Passagenabschnitt angrenzt, und dem sich stromauf dazu erstreckenden vorderen Bereich bildet.While in the case of constructions known in the prior art, the walls of the suction side and of the pressure side adjacent to the trailing edge of the blade are essentially rectilinear or have a uniform curvature and thus form a wedge-shaped cross-sectional area of the guide vane, the solution according to the invention thus provides that the wall of the pressure side of the Guide vane forms a convex pressure side contour, that is to say a convex curvature, which forms the transition between the rear region of the guide vane, which adjoins the constant passage section, and the front region, which extends upstream thereof.
Die Erfindung stellt durch eine konvexe Konturierung der Druckseite der Leitschaufel des Leitrades die Rückbrandfähigkeit her, ohne dass die aerodynamische Auslegung der Saugseite der Leitschaufel beeinflusst wird. Erfindungsgemäß ist es daher möglich, die Saugseite der Leitschaufel des Leitrades frei zu definieren und verlusttechnisch optimal zu gestalten und dabei Leitschaufeln mit erheblicher konvexer Krümmung der Saugseite im Bereich des Engquerschnitts oder benachbart des Engquerschnitts zu realisieren. Durch die erfindungsgemäße Ausgestaltung der druckseitigen Kontur der Leitschaufel wird sichergestellt, dass bei einem Rückbrand der Querschnitt der Passage zwischen benachbarten Leitschaufeln im Wesentlichen konstant bleibt, so dass der Durchfluss (Kapazität) der Turbine und damit die Effizienz des Gesamttriebwerks durch einen Rückbrand nicht oder nur unwesentlich beeinflusst werden.The invention produces the burn-back capability by convex contouring of the pressure side of the guide vane of the guide wheel, without the aerodynamic design of the suction side of the guide vane being influenced. According to the invention, it is therefore possible to freely define the suction side of the guide vane of the guide wheel and to make it optimal in terms of loss technology, and to implement guide vanes with a considerable convex curvature of the suction side in the region of the narrow cross section or adjacent to the narrow cross section. The configuration according to the invention of the pressure-side contour of the guide vane ensures that the cross-section of the passage between adjacent guide vanes remains essentially constant in the event of a burn-back, so that the flow (capacity) of the turbine and thus the efficiency of the overall engine due to a burn-back do not or only insignificantly to be influenced.
Gemäß einer Ausgestaltung der Erfindung ist vorgesehen, dass die Profildicke der Leitschaufeln in Richtung der Schaufelhinterkante vor dem hinteren Bereich der Leitschaufeln ansteigt oder konstant ist oder in geringerem Maße abnimmt als im hinteren Bereich der Leitschaufel. Mit anderen Worten sieht diese Ausgestaltung vor, dass die Profildicke in Richtung der Schaufelhinterkante vor dem Eintrittsbereich in die Passage ansteigt oder konstant ist oder in geringerem Maße abnimmt als im Bereich des kontanten Passagenabschnitts. Dies korrespondiert mit der Ausbildung der konvexen Druckseitenkontur auf der Druckseite der Leitschaufel, die gerade dafür sorgt, dass die Profildicke der Leitschaufeln vor dem konstanten Passagenabschnitt ansteigt, im Wesentlichen konstant ist oder nur geringfügig abnimmt, verglichen mit einer dann stärkeren Abnahme der Profildicke im hinteren Bereich der Leitschaufel bis hin zur Schaufelhinterkante.According to one embodiment of the invention, it is provided that the profile thickness of the guide blades increases or is constant in the direction of the blade rear edge in front of the rear region of the guide blades or decreases to a lesser extent than in the rear region of the guide blade. In other words, this embodiment provides that the profile thickness increases or is constant in the direction of the blade trailing edge in front of the entry region into the passage or decreases to a lesser extent than in the region of the constant passage section. This corresponds to the training of the convex pressure side contour on the pressure side of the guide vane, which just ensures that the profile thickness of the guide vanes increases in front of the constant passage section, is essentially constant or only slightly decreases, compared with a greater decrease in the profile thickness in the rear area of the guide vane up to the rear edge of the vane .
Gemäß einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass die konvexe Druckseitenkontur am oder stromaufwärts des Eintrittsbereichs in den konstanten Passagenquerschnitt ein Maximum ausbildet. Weiter kann vorgesehen sein, dass die konvexe Druckseitenkontur am oder stromauf des Eintrittsbereichs in den konstanten Passagenquerschnitt ein Maximum der Wölbung ausbildet. Das Maximum der Wölbung ist dabei nahe dem lokal am weitesten von der Druckseite abstehenden Punkt oder nahe der lokal am weitesten von der Druckseite abstehende Linie der Druckseitenkontur. Das Maximum und/oder das Maximum der Wölbung befinden sich somit nicht im hinteren Bereich der Leitschaufel, sondern im vorderen Bereich der Leitschaufel, dabei jedoch bevorzugt in geringem Abstand zum hinteren Bereich (z.B. in einem Abstand, der maximal 10% der Länge der Skelettlinie entspricht) oder unmittelbar am Übergang der beiden Bereiche.According to a further embodiment of the invention, it is provided that the convex pressure side contour forms a maximum in the constant passage cross section at or upstream of the entry region. It can further be provided that the convex pressure side contour forms a maximum of the curvature at or upstream of the entry area in the constant passage cross section. The maximum of the curvature is close to the point furthest locally from the printing side or close to the line furthest from the printing side. The maximum and / or the maximum of the curvature are therefore not in the rear area of the guide vane, but in the front area of the guide vane, but preferably at a short distance from the rear area (for example at a distance that corresponds to a maximum of 10% of the length of the skeleton line ) or directly at the transition between the two areas.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass die konvexe Druckseitenkontur auf der Druckseite der Leitschaufeln überwiegend oder vollständig im vorderen Bereich der Leitschaufel ausgebildet ist. Dabei kann vorgesehen sein, dass ein Teil der konvexen Druckseitenkontur zusätzlich im hinteren Bereich der Leitschaufel ausgebildet ist. Grundsätzlich kann im hinteren Bereich der Leitschaufel, der den konstanten Passagenabschnitt begrenzt, jedoch auch eine geradlinige oder sogar konkave Wölbung bereitgestellt sein, die in die konvexe Druckseitenkontur übergeht.A further embodiment of the invention provides that the convex pressure side contour on the pressure side of the guide blades is predominantly or completely formed in the front area of the guide blade. It can be provided that part of the convex pressure side contour is additionally formed in the rear area of the guide vane. In principle, however, a rectilinear or even concave curvature can be provided in the rear area of the guide vane, which delimits the constant passage section, which merges into the convex pressure side contour.
Im Sinne der vorliegenden Erfindung liegt ein im Wesentlichen konstanter Passagenquerschnitt vor, wenn der Passagenquerschnitt nicht mehr als 5% vom Engquerschnitt im Bereich der Schaufelhinterkante abweicht. Bevorzugt ist diese Abweichung vom Engquerschnitt geringer und liegt bei weniger als 2% des Engquerschnitts. Idealerweise ist der Passagenquerschnitt im konstanten Passagenabschnitt exakt konstant. Weiter kann vorgesehen sein, dass der konstante Passagenabschnitt sich über eine Sehnenlänge erstreckt, die beispielsweise im Bereich zwischen 5% und 40% der Gesamtsehnenlänge liegt und dabei beispielsweise bei etwa 5%, 10%, 15%, 20%, 25%, 30%, 35% oder 40% der Gesamtsehnenlänge liegt.In the sense of the present invention, there is an essentially constant passage cross-section if the passage cross-section does not deviate by more than 5% from the narrow cross-section in the region of the blade rear edge. This deviation from the narrow cross section is preferably less and is less than 2% of the narrow cross section. Ideally, the passage cross section is exactly constant in the constant passage section. It can further be provided that the constant passage section extends over a chord length, for example in the area is between 5% and 40% of the total tendon length and is, for example, about 5%, 10%, 15%, 20%, 25%, 30%, 35% or 40% of the total tendon length.
Grundsätzlich kann vorgesehen sein, dass die konvexe Druckseitenkontur sich über die gesamte Höhe der Leitschaufel erstreckt. Des Weiteren kann vorgesehen sein, dass sich die Druckseitenkontur zumindest über einen Teilbereich der Schaufelhöhe (zum Beispiel über mindestens 50 % oder mindestens 70 % der Schaufelhöhe) erstreckt. Es ist des Weiteren möglich, dass die Ausgestaltung der Wölbung über der Schaufelhöhe variiert.Basically, it can be provided that the convex pressure side contour extends over the entire height of the guide vane. Furthermore, it can be provided that the pressure side contour extends at least over a partial area of the blade height (for example over at least 50% or at least 70% of the blade height). It is also possible for the configuration of the curvature to vary over the blade height.
Besonders günstig ist es, wenn die Leitschaufel, ausgehend von der Schaufelhinterkante, anschließend an den konvexen Bereich mit einem konkaven Bereich versehen ist. Diese Ausgestaltung führt insbesondere zu einer optimalen Oberflächendruckverteilung auf der Schaufeloberfläche.It is particularly expedient if the guide blade, starting from the rear edge of the blade, is provided with a concave area after the convex area. This configuration leads in particular to an optimal surface pressure distribution on the blade surface.
Erfindungsgemäß ergibt sich eine aerodynamische Effizienzsteigerung, da gegenüber einer Ausgestaltung der Leitschaufeln gemäß dem Stand der Technik eine Erhöhung des Stufenwirkungsgrades eintritt.According to the invention, there is an increase in aerodynamic efficiency since, compared to a configuration of the guide vanes according to the prior art, there is an increase in the step efficiency.
Ein weiterer Vorteil ergibt sich hinsichtlich der mechanischen Stabilität. Durch die konvexe Druckseitenkontur der Leitschaufel ergibt sich, verglichen mit dem Stand der Technik, ein wesentlich höherer Keilwinkel, angrenzend an die Schaufelhinterkante. Somit ist das Profil im Hinterkantenbereich dicker. Dies wiederum führt zu einer erhöhten mechanischen Stabilität, aus welcher sich eine weitaus geringere Verformung der Hinterkante unter thermischer Belastung im Betrieb ergibt.Another advantage is the mechanical stability. The convex pressure side contour of the guide vane results in a significantly higher wedge angle, adjacent to the trailing edge of the vane, compared to the prior art. The profile is therefore thicker in the rear edge area. This in turn leads to increased mechanical stability, which results in a far less deformation of the rear edge under thermal stress during operation.
Auch hinsichtlich des Kühlluftverbrauchs weist das erfindungsgemäße Turbinenleitrad erhebliche Vorteile auf. Da die Schaufelkontur im Hinterkantenbereich eine größere Dicke aufweist, ist es möglich, die interne Kühlungsgeometrie weiter in Richtung der Schaufelhinterkante auszudehnen. Dies kann beispielsweise durch weiter hinten liegende sogenannte pedestal banks erfolgen. Hierdurch ergibt sich die Möglichkeit, Kühlluft einzusparen, da der schwer zu kühlende und thermisch am höchsten belastete Hinterkantenüberhang in seiner Länge reduziert werden kann.The turbine stator according to the invention also has considerable advantages with regard to cooling air consumption. Since the blade contour has a greater thickness in the trailing edge area, it is possible to expand the internal cooling geometry further in the direction of the trailing edge of the blade. This can be done, for example, by so-called pedestal banks located further back. This gives the opportunity Saving cooling air, since the length of the rear edge overhang, which is difficult to cool and has the greatest thermal load, can be reduced.
Durch den mechanisch stabileren und besser zu kühlenden Hinterkantenbereich ergibt sich bei der erfindungsgemäßen Ausgestaltung des Querschnitts der Leitschaufeln eine höhere Lebensdauer.Due to the mechanically more stable and better cooling rear edge area, the inventive configuration of the cross section of the guide vanes results in a longer service life.
Ein weiterer Vorteil ergibt sich hinsichtlich der Stabilität der Triebwerkseigenschaften und der Turbineneffizienz im langfristigen Betrieb. Der Triebwerksdurchfluss verändert sich im langfristigen Betrieb aufgrund der stabileren und besser zu kühlenden Schaufelhinterkante weniger stark. Das Absinken des Hochdruckturbinenwirkungsgrades aufgrund des Anstiegs der Hinterkantenverluste infolge des Rückbrandes verringert sich.Another advantage is the stability of the engine properties and the turbine efficiency in long-term operation. The engine flow changes less in long-term operation due to the more stable and easier-to-cool blade trailing edge. The decrease in high pressure turbine efficiency due to the increase in trailing edge losses due to burn back is reduced.
Ein weiterer, wesentlicher Vorteil ergibt sich durch Kosteneinsparungen durch die höhere Lebensdauer und durch verringerte Triebwerksentwicklungskosten. Die Triebwerksentwicklungskosten können wegen der sicheren Kapazitätsvorhersage gesenkt werden, da die Notwendigkeit der nachträglichen Kapazitätsänderung reduziert wird. Auch die Triebwerksentwicklungszeit kann verkürzt werden.Another significant advantage is the cost savings from longer life and reduced engine development costs. Engine development costs can be reduced because of the reliable capacity prediction, since the need for the subsequent capacity change is reduced. Engine development time can also be reduced.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:
- Fig. 1
- eine schematische Darstellung eines Gasturbinentriebwerks gemäß der vorliegenden Erfindung,
- Fig. 2
- eine Teilansicht eines Turbinenleitrads gemäß dem Stand der Technik,
- Fig. 3
- eine Ansicht eines ersten erfindungsgemäßen Ausführungsbeispiels,
- Fig. 4
- eine Ansicht eines zweiten erfindungsgemäßen Ausführungsbeispiels,
- Fig. 5
- eine Vergleichsansicht der Ausgestaltung gemäß dem Stand der Technik (linke Bildhälfte) und der erfindungsgemäßen Ausführungsbeispiels der
Fig. 4 (rechte Bildhälfte), und - Fig. 6
- in der oberen Bildhälfte die statischen Oberflächendrücke der Ausgestaltung gemäß dem Stand der Technik (entsprechend
Fig. 5 links) sowie in der unteren Bildhälfte die statischen Oberflächendrücke der Ausgestaltung gemäß einem erfindungsgemäßen Ausführungsbeispiel (entsprechendFig. 5 rechts).
- Fig. 1
- 1 shows a schematic illustration of a gas turbine engine according to the present invention,
- Fig. 2
- 2 shows a partial view of a turbine stator according to the prior art,
- Fig. 3
- 2 shows a view of a first exemplary embodiment according to the invention,
- Fig. 4
- 2 shows a view of a second exemplary embodiment according to the invention,
- Fig. 5
- a comparative view of the configuration according to the prior art (left half of the image) and the embodiment of the invention
Fig. 4 (right half of the picture), and - Fig. 6
- in the upper half of the picture, the static surface pressures of the design according to the prior art (corresponding
Fig. 5 left) and in the lower half of the picture the static surface pressures of the embodiment according to an embodiment of the invention (accordinglyFig. 5 right).
Das Gasturbinentriebwerk 10 gemäß
Der Mitteldruckkompressor 13 und der Hochdruckkompressor 14 umfassen jeweils mehrere Stufen, von denen jede eine in Umfangsrichtung verlaufende Anordnung fester stationärer Leitschaufeln 20 aufweist, die allgemein als Statorschaufeln bezeichnet werden und die radial nach innen vom Kerntriebwerksgehäuse 21 in einem ringförmigen Strömungskanal durch die Kompressoren 13, 14 vorstehen. Die Kompressoren weisen weiter eine Anordnung von Kompressorlaufschaufeln 22 auf, die radial nach außen von einer drehbaren Trommel oder Scheibe 26 vorstehen, die mit Naben 27 der Hochdruckturbine 16 bzw. der Mitteldruckturbine 17 gekoppelt sind.The
Die Turbinenabschnitte 16, 17, 18 weisen ähnliche Stufen auf, umfassend eine Anordnung von festen Leitschaufeln 23, die radial nach innen vom Gehäuse 21 in den ringförmigen Strömungskanal durch die Turbinen 16, 17, 18 vorstehen, und eine nachfolgende Anordnung von Turbinenlaufschaufeln 24, die nach außen von einer drehbaren Nabe 27 vorstehen. Die Kompressortrommel oder Kompressorscheibe 26 und die darauf angeordneten Schaufeln 22 sowie die Turbinenrotornabe 27 und die darauf angeordneten Turbinenlaufschaufeln 24 drehen sich im Betrieb um die Triebwerksachse 1.
Die
Die beschriebene Problematik ist umso größer, je stärker das Tubinenleitrad als verlustoptimiertes Turbinenleitrad ausgebildet ist und hierfür Leitschaufeln 23 aufweist, die auf der Saugseite 31 im Bereich des Engquerschnitts 36 oder angrenzend an den Engquerschnitt 36 mit einer erheblichen konvexen Krümmung versehen sind, was im Falle eines Rückbrandes zu einer erheblichen Passagenaufweitung führt.The problem described is all the greater, the more the tubular stator is designed as a loss-optimized turbine stator and for this purpose has
Die
Der konstante Passagenabschnitt 29a weist einen Eintrittsbereich 38 und einen Austrittsbereich 36 auf, die im Wesentlichen den gleichen Passagenquerschitt besitzen.The
Der Austrittsbereich 36 wird dabei durch die Schaufelhinterkante 32 begrenzt, so dass der Austrittsbereich 36 dem Engquerschnitt der Passage 29 entspricht.The
Die Aussage, dass der Passagenquerschnitt 37 im konstanten Passagenabschnitt 29a im Wesentlichen konstant ist, bedeutet, dass die Abweichung des Passagenquerschnitts 37 vom Engquerschnitt in diesem konstanten Passagenabschnitt 29a unterhalb eines definierten Wertes liegt, der als 5 % des Engquerschnitts definiert wird.The statement that the
Die Leitschaufel 23 bildet des Weiteren druckseitig einen hinteren Bereich 320 aus, der sich ausgehend von der Schaufelhinterkante 32 angrenzend an den konstanten Passagenabschnitt 29a bis zum Eintrittsbereich 38 des konstanten Passagenabschnitts 29a erstreckt. Der druckseitige hintere Bereich 320 der Leitschaufel ist also jener Bereich, der druckseitig den konstanten Passagenabschnitt 29a begrenzt. Stromaufwärts des hinteren Bereichs 320 erstreckt sich ein vorderer Bereich 310, der grundsätzlich bis zur Schaufelvorderkante verläuft, von dem für die Zwecke der vorliegenden Erfindung aber nur der sich an den hinteren Bereich 320 angrenzende Bereich im Einzelnen betrachtet wird.The
Die Leitschaufel 23 weist auf der Druckseite 30 des Weiteren eine konvexe Druckseitenkontur 33 auf, die einen Übergang von dem hinteren Bereich 320 zu dem vorderen Bereich 310 herstellt. Dies bedeutet, dass die konvexe Druckseitenkontur 33 im Übergangsbereich zwischen den beiden Bereichen 310 und 320 ausgebildet ist, wobei sie sich ausschließlich im vorderen Bereich 310 oder alternativ über beide Bereiche 310, 320 erstrecken kann. Die konvexe Druckseitenkontur 33 besitzt ein Maximum M, das in der Querschnittsansicht der
Einher gehend mit der konvexen Druckseitenkontur 33 ist ein bestimmter Verlauf der Profildicke d der Leitschaufel 23. Wenn man den Verlauf der Profildicke d in Richtung der Schaufelhinterkante 32 betrachtet, so verhält es sich so, dass die Profildicke d vor dem hinteren Bereich 320 (bzw. vor dem Eintrittsbereich 38) ansteigt oder konstant ist, wie anhand der Profildicken d1 und d2 der
Die Bereitstellung einer konvexen Druckseitenkontur 33 führt zum einen zu einer Erhöhung des Keilwinkels zwischen den Oberflächen der Druckseite 30 und der Saugseite 31 im angrenzenden Bereich an die Schaufelhinterkante 32 und insbesondere zu einer Vermeidung der Aufweitung des Passagenquerschnitts im Falle eines Rückbrandes. Eine solche Aufweitung wird gerade dadurch vermieden, dass durch die erfindungsgemäße Lösung ein konstanter Passagenabschnitt 29a bereitgestellt wird, so dass sich der Engquerschnitt bei einem Rückbrand 35 im Bereich dieses konstanten Passagenabschnitts 29a nicht ändert. Ein Rückbrand 35 ist in der
Die
Die entsprechende Wölbung der konvexen Druckseitenkontur 33 führt dazu, dass die Profildicke d der Leitschaufel 23 vor dem hinteren Bereich 320 ansteigt oder im Wesentlichen konstant bleibt und erst im hinteren Bereich 320 der Leitschaufel stark abnimmt (vgl. Profildicken d1, d2 und d3 der
Ein Unterschied der Ausgestaltung der
In der
Eine Aufdickung 50 liegt auch bei dem Ausführungsbeispiel der
Eine weitere Besonderheit der Ausgestaltung der
Die
Die obere Bildhälfte von
- 11
- TriebwerksachseEngine axis
- 1010th
- Gasturbinentriebwerk / KerntriebwerkGas turbine engine / core engine
- 1111
- LufteinlassAir intake
- 1212th
- Fanfan
- 1313
- MitteldruckkompressorMedium pressure compressor
- 1414
- HochdruckkompressorHigh pressure compressor
- 1515
- BrennkammerCombustion chamber
- 1616
- HochdruckturbineHigh pressure turbine
- 1717th
- MitteldruckturbineMedium pressure turbine
- 1818th
- NiederdruckturbineLow pressure turbine
- 1919th
- AbgasdüseExhaust nozzle
- 2020th
- LeitschaufelnGuide vanes
- 2121
- KerntriebwerksgehäuseCore engine housing
- 2222
- KompressorlaufschaufelnCompressor blades
- 2323
- TurbinenleitschaufelnTurbine guide vanes
- 2424th
- TurbinenlaufschaufelnTurbine blades
- 2626
- Kompressortrommel oder -scheibeCompressor drum or disk
- 2727
- TurbinenrotornabeTurbine rotor hub
- 2828
- AuslasskonusOutlet cone
- 2929
- Passagepassage
- 29a29a
- konstanter Passagenabschnittconstant passage section
- 3030th
- DruckseitePrinted page
- 310310
- vorderer druckseitiger Bereich der Druckseitefront print area of the print page
- 320320
- hinterer druckseitiger Bereich der Druckseiterear area on the print side
- 3131
- SaugseiteSuction side
- 3232
- SchaufelhinterkanteBlade trailing edge
- 3333
- konvexe Druckseitenkontur / Konvexer Bereichconvex pressure side contour / convex area
- 3434
- Konkaver BereichConcave area
- 3535
- RückbrandBurn back
- 3636
- Engquerschnitt / Austrittsbereich PassageNarrow cross section / exit area passage
- 3737
- PassagenquerschnittPassage cross section
- 3838
- Eintrittsbereich PassagePassage entrance area
- 4040
- Wandverlauf herkömmliche LeitschaufelThe wall of the conventional guide vane
- 5050
- AufdickungThickening
- dd
- ProfildickeProfile thickness
- MM
- Maximum der konvexen DruckseitenkonturMaximum of the convex pressure side contour
Claims (11)
- Turbine guide wheel of a gas turbine, having multiple guide vanes (23) arranged spaced apart around the circumference, wherein- each guide vane (23) has a suction side (31) and a pressure side (30),- two adjacent guide vanes (23) form, in each case between the suction side (31) of one guide vane (23) and the pressure side (30) of the other guide vane and proceeding from the vane trailing edge (32), a passage (29), and- each guide vane (23) has a convex pressure-side contour (33) on the pressure side (30),characterized in that- the passage comprises a constant passage section (29a) in which the passage (29) has a substantially constant passage cross section (37),- the constant passage section (29a) has an entry region (38) and, on the vane trailing edge (32), an exit region in the form of a narrow cross section (36) of the passage,- a substantially constant passage cross section (37) is present if the passage cross section (37) differs by no more than 5% from the narrow cross section (36) in the region of the vane trailing edge (32),- each guide vane (23) forms on the pressure side a rear region (320), which, proceeding from the vane trailing edge (32), extends as far as the entry region (38) of the constant passage section (29a) in a manner adjacent to the constant passage section (29a), and forms on the pressure side a front region (310), which is formed upstream of the rear region (320), and- the convex pressure-side contour (33) establishes a transition from the rear region (320) of the guide vane (23) to the front region (310) of the guide vane (23).
- Turbine guide wheel according to Claim 1, characterized in that, in the direction of the vane trailing edge (32) prior the rear region (320) of the guide vane (23), the profile thickness (d) of the guide vanes (23) increases, is constant, or decreases to a lesser extent than in the rear region (320) of the guide vane (23).
- Turbine guide wheel according to Claim 1 or 2, characterized in that the convex pressure-side contour (33), at or upstream of the entry region (38), forms a maximum (M) in the constant passage cross section (29a).
- Turbine guide wheel according to one of the preceding claims, characterized in that the convex pressure-side contour (33) on the pressure side (30) of the guide vanes (23) is formed predominantly or completely in the front region (310) of the guide vane (23).
- Turbine guide wheel according to one of the preceding claims, characterized in that the convex pressure-side contour (33) is also formed partly in the rear region (320) of the guide vane (23).
- Turbine guide wheel according to one of the preceding claims, characterized in that, proceeding from the vane trailing edge (32), the guide vane (23) is provided with a concave region (34) adjacent to the convex pressure-side contour (33).
- Turbine guide wheel according to one of the preceding claims, characterized in that the guide vanes (23) have the convex pressure-side contour (33) at least over a sub-region of the vane height.
- Turbine guide wheel according to one of the preceding claims, characterized in that the turbine guide wheel is formed in a manner optimized with respect to loss, and the guide vanes (23) have on the suction side (31) a highly convex curvature in the region of the narrow cross section and/or adjacent to the narrow cross section.
- Turbine guide wheel according to one of the preceding claims, characterized in that the constant passage section (29a) extends over a chord length which lies in the range between 5% and 40% of the total chord length.
- Turbine guide wheel according to one of the preceding claims, characterized in that this is a high-pressure turbine guide wheel.
- Use of the turbine guide wheel according to one of the preceding claims in a gas turbine engine (10).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013217997 | 2013-09-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2846000A2 EP2846000A2 (en) | 2015-03-11 |
EP2846000A3 EP2846000A3 (en) | 2015-04-29 |
EP2846000B1 true EP2846000B1 (en) | 2020-04-08 |
Family
ID=51492253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14184094.2A Active EP2846000B1 (en) | 2013-09-09 | 2014-09-09 | Vane ring of a gas turbine |
Country Status (2)
Country | Link |
---|---|
US (1) | US9896950B2 (en) |
EP (1) | EP2846000B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150050673A (en) * | 2013-10-30 | 2015-05-11 | 현대자동차주식회사 | Variable geometry turbo system |
EP2987956A1 (en) * | 2014-08-18 | 2016-02-24 | Siemens Aktiengesellschaft | Compressor aerofoil |
JP6873888B2 (en) * | 2017-11-09 | 2021-05-19 | 株式会社東芝 | Guide vanes and fluid machinery |
CN108757508A (en) * | 2018-05-03 | 2018-11-06 | 西北工业大学 | A kind of compressor with shrouded rotor blade guide vane |
BE1026579B1 (en) * | 2018-08-31 | 2020-03-30 | Safran Aero Boosters Sa | PROTUBERANCE VANE FOR TURBOMACHINE COMPRESSOR |
US11021966B2 (en) * | 2019-04-24 | 2021-06-01 | Raytheon Technologies Corporation | Vane core assemblies and methods |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2169234A (en) * | 1937-11-27 | 1939-08-15 | Westinghouse Electric & Mfg Co | Blower apparatus |
US2831653A (en) * | 1952-03-08 | 1958-04-22 | Gen Electric | Cooling structure for turbine wheels |
US3302397A (en) * | 1958-09-02 | 1967-02-07 | Davidovic Vlastimir | Regeneratively cooled gas turbines |
US3475108A (en) * | 1968-02-14 | 1969-10-28 | Siemens Ag | Blade structure for turbines |
US5562405A (en) * | 1994-03-10 | 1996-10-08 | Weir Pumps Limited | Multistage axial flow pumps and compressors |
EP1086298B1 (en) | 1998-06-12 | 2004-10-20 | Ebara Corporation | Turbine nozzle vane |
US6241467B1 (en) * | 1999-08-02 | 2001-06-05 | United Technologies Corporation | Stator vane for a rotary machine |
US6254333B1 (en) * | 1999-08-02 | 2001-07-03 | United Technologies Corporation | Method for forming a cooling passage and for cooling a turbine section of a rotary machine |
US6358012B1 (en) | 2000-05-01 | 2002-03-19 | United Technologies Corporation | High efficiency turbomachinery blade |
DE10054244C2 (en) | 2000-11-02 | 2002-10-10 | Honda Motor Co Ltd | Turbine blade arrangement and turbine blade for an axial turbine |
JP4484396B2 (en) | 2001-05-18 | 2010-06-16 | 株式会社日立製作所 | Turbine blade |
US6769879B1 (en) * | 2003-07-11 | 2004-08-03 | General Electric Company | Airfoil shape for a turbine bucket |
GB0323909D0 (en) | 2003-10-11 | 2003-11-12 | Rolls Royce Plc | Turbine blades |
DE102004009696B3 (en) | 2004-02-27 | 2005-08-18 | Honda Motor Co., Ltd. | Turbine blade profile for an axial turbine comprises an inner curve formed between a front edge and a rear edge, and an outer curve producing a negative pressure |
EP1710397B1 (en) | 2005-03-31 | 2014-06-11 | Kabushiki Kaisha Toshiba | Bowed nozzle vane |
DE102005025213B4 (en) * | 2005-06-01 | 2014-05-15 | Honda Motor Co., Ltd. | Blade of an axial flow machine |
US7685713B2 (en) * | 2005-08-09 | 2010-03-30 | Honeywell International Inc. | Process to minimize turbine airfoil downstream shock induced flowfield disturbance |
EP1975373A1 (en) * | 2007-03-06 | 2008-10-01 | Siemens Aktiengesellschaft | Guide vane duct element for a guide vane assembly of a gas turbine engine |
GB0704426D0 (en) | 2007-03-08 | 2007-04-18 | Rolls Royce Plc | Aerofoil members for a turbomachine |
US7857588B2 (en) * | 2007-07-06 | 2010-12-28 | United Technologies Corporation | Reinforced airfoils |
DE102009036406A1 (en) | 2009-08-06 | 2011-02-10 | Mtu Aero Engines Gmbh | airfoil |
US8374999B2 (en) * | 2010-07-04 | 2013-02-12 | International Business Machines Corporation | Deduplication of data object over multiple passes |
GB201011854D0 (en) | 2010-07-14 | 2010-09-01 | Isis Innovation | Vane assembly for an axial flow turbine |
US8727716B2 (en) * | 2010-08-31 | 2014-05-20 | General Electric Company | Turbine nozzle with contoured band |
US8807930B2 (en) * | 2011-11-01 | 2014-08-19 | United Technologies Corporation | Non axis-symmetric stator vane endwall contour |
-
2014
- 2014-09-08 US US14/479,978 patent/US9896950B2/en active Active
- 2014-09-09 EP EP14184094.2A patent/EP2846000B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20150071777A1 (en) | 2015-03-12 |
EP2846000A3 (en) | 2015-04-29 |
EP2846000A2 (en) | 2015-03-11 |
US9896950B2 (en) | 2018-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2846000B1 (en) | Vane ring of a gas turbine | |
EP2725194B1 (en) | Turbine rotor blade of a gas turbine | |
EP2025945B1 (en) | Flow working machine with ring canal wall fitting | |
EP2179143B1 (en) | Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation | |
EP2132414B1 (en) | Shiplap arrangement | |
EP2496794B1 (en) | Turbomachine with axial compression or expansion | |
EP1609999A2 (en) | Turbo machine | |
DE102007020025A1 (en) | Shape of a gas channel in an axial flow gas turbine engine | |
EP2003292A2 (en) | Blade shroud with overhang | |
EP2808559B1 (en) | Structure assembly for a turbomachine | |
DE102008052401A1 (en) | Turbine working machine with running column feeder | |
EP3431708B1 (en) | Flow assembly, corresponding turbomachine and use | |
EP3428393B1 (en) | Rotor of a turbomachine | |
EP3495639B1 (en) | Compressor module for a turbomachine reducing the boundary layer in an intermediate compressor case | |
EP2808557A1 (en) | Structure assembly for a turbomachine | |
EP3236011A1 (en) | Rotor with overhang on rotor blades for a securing element | |
DE102011054307A1 (en) | Tail for turbine blade shroud | |
EP3492701B1 (en) | Turbomachine flow channel | |
WO2021083442A1 (en) | Turbomachine guide vane assembly | |
EP3498972B1 (en) | Turbine module for a turbomachine | |
DE102014005852A1 (en) | turbine blade | |
EP2808558B1 (en) | Structure assembly for a turbomachine | |
DE102010044819A1 (en) | Axial turbine and a method for removing a flow from an axial turbine | |
DE102014206217A1 (en) | Compaction grating for an axial compressor | |
DE102012021400A1 (en) | Turbine rotor blade of gas turbine engine, has overhang which is provided at stagnation point, when intersection point is zero, so that maximum value of barrel length of suction-side overhang is at about specific percentage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20140909 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/14 20060101AFI20150323BHEP |
|
R17P | Request for examination filed (corrected) |
Effective date: 20151029 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191104 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: AMTSFELD, PHILIPP Inventor name: LEHMANN, KNUT Inventor name: WILLER, LARS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1254639 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014013929 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200808 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200709 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014013929 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200909 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200909 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210927 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1254639 Country of ref document: AT Kind code of ref document: T Effective date: 20200909 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210929 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502014013929 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230401 |