EP2844716A1 - Argiles organophiles biodégradables pour fluides de forage - Google Patents

Argiles organophiles biodégradables pour fluides de forage

Info

Publication number
EP2844716A1
EP2844716A1 EP13731559.4A EP13731559A EP2844716A1 EP 2844716 A1 EP2844716 A1 EP 2844716A1 EP 13731559 A EP13731559 A EP 13731559A EP 2844716 A1 EP2844716 A1 EP 2844716A1
Authority
EP
European Patent Office
Prior art keywords
biodegradable
quaternary ammonium
surfactant
drilling fluid
ammonium surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13731559.4A
Other languages
German (de)
English (en)
Other versions
EP2844716B1 (fr
Inventor
Eric Benjamin FRANTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of EP2844716A1 publication Critical patent/EP2844716A1/fr
Application granted granted Critical
Publication of EP2844716B1 publication Critical patent/EP2844716B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/32Non-aqueous well-drilling compositions, e.g. oil-based
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/32Non-aqueous well-drilling compositions, e.g. oil-based
    • C09K8/36Water-in-oil emulsions

Definitions

  • the present invention relates to biodegradable organophilic clays for use in drilling fluids, the biodegradable organophilic clays treated with a surfactant system that includes biodegradable quaternary ammonium surfactants and nonbiodegradable quaternary ammonium surfactants.
  • Organophilic clays are commonly used in conjunction with oil- based drilling fluids to increase the viscosity and enhance solids suspension, e.g., the suspension of drill cuttings.
  • Bentonite is a commonly used example.
  • Organophilic clays suitable for oilfield use are typically produced by treating a hydrophilic clay having anionic surface charges, e.g., bentonite, with a cationic surfactant. It is believed that the cationic surfactant becomes tightly bound to the clay surface through electrostatic charges, which causes the surfactant tail groups to extend into the solvent, thereby yielding an organophilic surface.
  • quaternary ammonium compounds are the most commonly used cationic surfactants.
  • many of the most commonly used quaternary ammonium compounds are not biodegradable and often require expensive and time-consuming cleanup procedures.
  • organophilic clays based on biodegradable quaternary ammonium surfactants have been utilized to reduce the cost and time associated with cleanup procedures and reduce environmental impact, especially to the marine environment and groundwater.
  • the rheological properties of the drilling fluids made with such organophilic clays treated with biodegradable quaternary ammonium surfactants do not impart the same suspension properties as compared to drilling fluids that include organophilic clays treated with nonbiodegradable quaternary ammonium surfactants.
  • biodegradable quaternary ammonium surfactants can be expensive. In some instances, as much as five times more expensive.
  • the present invention relates to biodegradable organophilic clays for use in drilling fluids, the biodegradable organophilic clays treated with a surfactant system that includes biodegradable quaternary ammonium surfactants and nonbiodegradable quaternary ammonium surfactants.
  • a drilling fluid may comprise: an oil-based fluid; and an organophilic clay that comprises clay treated with a surfactant system that comprises a biodegradable quaternary ammonium surfactant and a nonbiodegradable quaternary ammonium surfactant, the biodegradable quaternary ammonium surfactant being capable of degrading by more than about 90% over 28 days as determined by Method 306 of the OECD Guidelines for the Testing of Chemical.
  • a method may comprise: drilling at least a portion of a wellbore penetrating a subterranean formation using a drilling fluid that comprises an oil-based fluid and an organophilic clay, the organophilic clay comprising clay treated with a surfactant system that comprises a biodegradable quaternary ammonium surfactant and a nonbiodegradable quaternary ammonium surfactant, the biodegradable quaternary ammonium surfactant being capable of degrading by more than about 90% over 28 days as determined by Method 306 of the OECD Guidelines for the Testing of Chemical.
  • a method may comprise: drilling at least a portion of a wellbore penetrating a subterranean formation using a drilling fluid that comprises an oil-based fluid and an organophilic clay, the organophilic clay comprising clay treated with a surfactant system that comprises a biodegradable quaternary ammonium surfactant and a nonbiodegradable quaternary ammonium surfactant, the biodegradable quaternary ammonium surfactant being capable of degrading by more than about 90% over 28 days as determined by Method 306 of the OECD Guidelines for the Testing of Chemical, and the biodegradable quaternary ammonium surfactant comprising a biodegradable linkage that comprises at least one selected from the group consisting of an ester and an amide.
  • the present invention relates to biodegradable organophilic clays for use in drilling fluids, the biodegradable organophilic clays treated with a surfactant system that includes biodegradable quaternary ammonium surfactants and nonbiodegradable quaternary ammonium surfactants.
  • the surfactant systems described herein advantageously provide for, in some embodiments, the production of organophilic clays that are both biodegradable and less costly than known organophilic clays that use only biodegradable quaternary ammonium surfactants.
  • the biodegradable organophilic clays of the present invention utilize surfactant systems that comprise biodegradable quaternary ammonium surfactants, thereby imparting desirable degradation qualities to the biodegradable organophilic clays as a whole.
  • the biodegradable organophilic clays have been shown, in some embodiments, to increase the viscosity of drilling fluids, thereby enhancing particle suspension qualities in such drilling fluids.
  • the surfactant systems described herein may also provide for, in some embodiments, tailoring the composition of the organophilic clays, which in turn, allows for tailoring and/or optimizing based on an operators needs for performance, price, and/or level of biodegradability.
  • biodegradable organophilic clays of the present invention may comprise clay treated with a surfactant system that includes biodegradable quaternary ammonium surfactants and nonbiodegradable quaternary ammonium surfactants.
  • a surfactant system that includes biodegradable quaternary ammonium surfactants and nonbiodegradable quaternary ammonium surfactants.
  • nonbiodegradable quaternary ammonium surfactant refers to a surfactant that degrades by less than about 90% over 28 days as determined by Method 306 of the OECD Guidelines for the Testing of Chemical.
  • biodegradable quaternary ammonium surfactant refers to a surfactant that degrades by more than about 90% over 28 days, as determined by Method 306 of the OECD Guidelines for the Testing of Chemicals, in force at the time of this disclosure.
  • Clays suitable for use in conjunction with the present invention may include, but are not limited to, a member of the smectite family, a member of the i 11 i tie family, a member of the palygorskite-sepiolite phyllosilicate family, bentonite, hectorite, attapulgite, smectite, vermiculite, swellable fluoromica, montmorillonite, beidellite, saponite, sepiolite, and the like, any cation exchanged version thereof, and any combination thereof.
  • Biodegradable quaternary ammonium surfactants and/or nonbiodegradable quaternary ammonium surfactants suitable for use in conjunction with the surfactant systems described herein may, in some embodiments, include surfactants having a composition according to Formula I.
  • Ri, R 2 , R 3 , and R 4 are independently selectable C 1 -C 22 groups, optionally with at least one functional group (internal, terminal, and/or pendant to at least one carbon) selected from the group consisting of ethers, esters, anhydrides, amines, amides, alcohols, sulfates, sulfonates, thiols, alkoxides, sulfoxides, ketones, aldehydes, carboxylates, nitroalkanes, nitriles, hydroxides, halides, alkene groups, alkyne groups, aryl groups, cyclic groups, alkyl groups, acyl groups, and allyl groups; and wherein X " is fluoride, chloride, bromide, iodide, methyl sulfate, ethyl sulfate, acetate, nitrite, bicarbonate, carbonate, hydroxide, or alkoxide.
  • a biodegradable quaternary ammonium surfactant may comprise at least one tail group that comprises at least one biodegradable linkage.
  • biodegradable linkage refers to a chemical functionality capable of being decomposed by natural biological processes, e.g., a chemical functionality that undergoes aerobic biodegradation.
  • preferred biodegradable linkages may, in some embodiments, include, but are not limited to, amides and esters.
  • biodegradable quaternary ammonium surfactants may, in some embodiments, include, but are not limited to, (individually or in combination) those presented in U .S. Patent Nos. 7,521,399 entitled “Drilling Flu ids Containing Biodegradable Organophilic Clay,” 7,732,380 entitled “Drilling Flu ids Containing Biodegradable Organophilic Clay,” 7,781,379 entitled “Drilling Fluids Containing Biodegradable Organophilic Clay Treated with an Amide-Containing Quaternary Ammonium Surfactant," 7,867,953 entitled “Methods of Using Drilling Fluids Containing Biodegradable Organophilic Clay," and 7,985,717 entitled “Methods of Using Drilling Fluids Containing Biodegradable Organophilic Clay,” the entirety of which are incorporated herein by reference.
  • suitable biodegradable quaternary ammoniu m surfactants may include, but is not limited to, propalalkoniu m based amides, AMMONYX® SDBC (a stearamidopropalkoniu m chloride, available from Stepan Company) .
  • su itable nonbiodegradable quaternary ammonium surfactants may, in some embodiments, include, but are not limited to, dialkyl dihydrogenated tallow ammoniu m surfactants, bis-decyl-diethyl ammonium surfactants, myristyltrimethyl ammonium surfactants, cetyltrimethyl ammoniu m surfactants, dodecyltrimethyl ammonium su rfactants, ethylhexadecyldimethyl ammonium surfactants, decyltrimethyl ammoniu m surfactants, hexadecyltrimethyl ammonium su rfactants, didodecyldimethyl ammoniu m surfactants, and the like, with any suitable cou nter ion (e.g., chlorine, bromine, and methyl sulfate), and any combination thereof.
  • any suitable cou nter ion e.g., chlorine, bromine, and methyl
  • biodegradable organophilic clays of the present invention may comprise a weight ratio of the biodegradable quaternary ammonium surfactant to the nonbiodegradable quaternary ammoniu m surfactant ranging from a lower limit of about 1 : 10, 1 : 5, or 1 : 1 to an u pper limit of about 10 : 1, 7 : 1, 5 : 1, or 3 : 1, and wherein the weight ratio may range from any lower limit to any upper limit and encompass any subset therebetween.
  • biodegradable organophilic clays of the present invention may comprise a weight ratio of the clay to the su rfactant system described herein ranging from a lower limit of about 1 : 1, 3 : 2; or 2 : 1 to an upper limit of about 5 : 1, 4 : 1, or 3 : 1, and wherein the weight ratio may range from any lower limit to any upper limit and encompass any su bset therebetween.
  • biodegradable organophilic clays of the present invention may be produced by a wet process.
  • clay may be treated with a surfactant system described herein by first hydrating the clay in water.
  • the resulting slurry may then be filtered through a sieve to remove impurities, followed by passing the slurry through an ion exchange column to remove divalent cations.
  • the slurry may then be heated and stirred while the surfactant system described herein is added thereto. It may be heated at a temperature in the range of from about 140°F to about 155°F for a period of time effective to react the surfactants with the clay surface, so as to form an organophilic clay.
  • the organophilic clay may be dried by filtering it and heating the resulting filter cake at a temperature in a range of from about 140°F to about 150°F for a period of time effective to dry the filter cake.
  • the dried organophilic clay may then be ground to ensure that it can be easily dispersed in fluid.
  • the ground organophilic clay may optionally be filtered through a sieve to generate consistent particle sizes.
  • biodegradable organophilic clays of the present invention may be produced by a dry process.
  • clay e.g. , 200 mesh clay particles
  • molten surfactant system described herein may be added to an extruder, comingled, and compressed at high pressure against a perforated die plate.
  • the high pressure and shear at the die plate drives a low solvent melt reaction enabling binding of cationic quaternary ammonium surfactants of the molten surfactant system to the anionic surface of the clay, thereby producing organophilic clay.
  • the dried organophilic clay may then be ground to ensure that it can be easily dispersed in fluid.
  • the ground organophilic clay may optionally be filtered through a sieve to generate consistent particle sizes.
  • biodegradable organophilic clays may comprise organic content that comprises a surfactant system as described herein, the organic content having a biodegradability in seawater as determined by Method 306 of the OECD Guidelines for the Testing of Chemical ranging from a lower limit of about 10%, 20%, or 25% to an upper limit of about 40%, 35%, 30%, or 25%, and wherein the biodegradability in seawater may range from a lower limit to any upper limit and encompass any subset therebetween.
  • the term "organic content" relative to an organophilic clay refers to the organic materials of the organophilic clay and encompass, inter alia, surfactant systems described herein, polymers, other surfactants, carbon containing molecules, and the like.
  • a drilling fluid may comprise an oil-based fluid and an organophilic clay treated with a surfactant system of the present invention.
  • Suitable oil-based fluids for use in the present invention may be any oleaginous continuous phase fluid suitable for use in subterranean operations.
  • suitable oil-based fluids may include alkanes, olefins, aromatic organic compounds, cyclic alkanes, paraffins, diesel fluids, mineral oils, desulfurized hydrogenated kerosenes, and the like, and any combination thereof.
  • a drilling fluid of the present invention may include an invert emulsion with an oil-based continuous phase and an aqueous discontinuous phase.
  • Suitable invert emulsions may have an oil-to- water ratio from a lower limit of greater than about 50 : 50, 55 : 45, 60 : 40, 65 : 35, 70 : 30, 75 : 25, or 80 : 20 to an upper limit of less than about 100 : 0, 95 : 5, 90 : 10, 85 : 15, 80 : 20, 75 : 25, 70 : 30, or 65 : 35 by volume in the base treatment fluid, and wherein the ratio may range from any lower limit to any upper limit and encompass any subset therebetween.
  • organophilic clays described herein may be present in a drilling fluid of the present invention in an amount ranging from a lower limit of about 0.5 pounds per barrel ("Ib/bbl"), 1 Ib/bbl, 2 Ib/bbl, or 5 Ib/bbl, to an upper limit of about 15 Ib/bbl, 12 Ib/bbl, 10 Ib/bbl, or 5 Ib/bbl, and wherein the amount may range from any lower limit to any upper limit and encompass any subset therebetween.
  • Ib/bbl pounds per barrel
  • a drilling fluid may further comprise suitable additives.
  • suitable additives may include, but are not limited to, salts, alkali metal salts, weighting agents, inert solids, fluid loss control agents, high and low shear suspension agents, filtration aids, emulsifiers, dispersion aids, corrosion inhibitors, lubricants, emulsion thinners, emulsion thickeners, deflocculants, viscosifying agents, gelling agents, surfactants, particulates, lost circulation materials, bridging agents, pH control additives, breakers, biocides, stabilizers, scale inhibitors, gas hydrate inhibitors, mutual solvents, oxidizers, reducers, friction reducers, clay stabilizing agents, and the like, and any combination thereof.
  • preferred additives may include, but are not limited to, primary emulsifiers, secondary emulsifiers, clay stabilizers, alkali metal salts, high and low shear suspension agents, filtration aids, weighting agents, deflocculants, lost circulation materials, lubricants, and any combination thereof.
  • the drilling fluids described herein may, in some embodiments, be prepared by combining organophilic clays of the present invention with the other components, e.g. , oil-based fluids and optionally additives.
  • the drilling fluids may be prepared at an off-site location away from the wellbore drilling site.
  • drilling fluids may be prepared on-the-fly at the wellbore drilling site.
  • Some embodiments may involve drilling at least a portion of a wellbore penetrating a subterranean formation using a drilling fluid that comprises an oil-based fluid and organophilic clays of the present invention.
  • the drilling fluid may serve as a drill-in fluid designed for wellbore drilling through production zones in a subterranean formation.
  • the exemplary biodegradable organophilic clays disclosed herein may directly or indirectly affect one or more components or pieces of equipment associated with the preparation, delivery, recapture, recycling, reuse, and/or disposal of the disclosed biodegradable organophilic clays.
  • the disclosed biodegradable organophilic clays may directly or indirectly affect one or more mixers, related mixing equipment, mud pits, storage facilities or units, fluid separators, heat exchangers, sensors, gauges, pumps, compressors, and the like, used generate, store, monitor, regulate, and/or recondition the exemplary biodegradable organophilic clays.
  • the disclosed biodegradable organophilic clays may also directly or indirectly affect any transport or delivery equipment used to convey the biodegradable organophilic clays to a well site or downhole such as, for example, any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically move the biodegradable organophilic clays from one location to another, any pumps, compressors, or motors (e.g. , topside or downhole) used to drive the biodegradable organophilic clays into motion, any valves or related joints used to regulate the pressure or flow rate of the biodegradable organophilic clays, and any sensors (i.e. , pressure and temperature), gauges, and/or combinations thereof, and the like.
  • any transport or delivery equipment used to convey the biodegradable organophilic clays to a well site or downhole
  • any transport vessels, conduits, pipelines, trucks, tubulars, and/or pipes used to fluidically move the biodegradable organophilic clays from one location to another
  • the disclosed biodegradable organophilic clays may also directly or indirectly affect the various downhole equipment and tools that may come into contact with the chemicals/fluids such as, but not limited to, drill string, coiled tubing, drill pipe, drill collars, mud motors, downhole motors and/or pumps, floats, MWD/LWD tools and related telemetry equipment, drill bits (including roller cone, PDC, natural diamond, hole openers, reamers, and coring bits), sensors or distributed sensors, downhole heat exchangers, valves and corresponding actuation devices, tool seals, packers and other wellbore isolation devices or components, and the like.
  • the chemicals/fluids such as, but not limited to, drill string, coiled tubing, drill pipe, drill collars, mud motors, downhole motors and/or pumps, floats, MWD/LWD tools and related telemetry equipment, drill bits (including roller cone, PDC, natural diamond, hole openers, reamers, and coring bits), sensors or distributed sensors
  • Two organophilic clay samples were prepared by a dry method where surfactant systems of the present invention were melted and mixing 164 g of NATIONAL® PREMIUM 200 WT (bentonite, available from Halliburton Energy Services, Inc.).
  • the two surfactant systems used were (Sample 1) 29 g VARIQUAT B 343 A (a dimethyl dihydrogenated tallow ammonium chloride surfactant, available from Evonik Industries) and 127 g AGENT 4356-44 (a quaternary ammonium surfactant with detail group having a carbonyl linkage, available from Stepan Company) and (Sample 2) 38 g VARIQUAT B 343 A and 109 g AGENT 4356-44.
  • the mixture was extruded at 150°C using a laboratory scale extruder.
  • the material was then dried overnight at 105°C. After cooling for several hours, the dried material was passed through a Raymond laboratory scale hammer mill four times to yield approximately 75% of the material having sub-200 mesh size.
  • GELTONE ® II an organophilic clay viscosifier, available from Halliburton Energy Services, Inc.
  • CLAIRSOL ® NS a very low toxicity base-oil, available from Petrochem Carless Limited
  • EDC 95- 11 a biodegradable base-oil, available from Total Fluids
  • EX-MUL ® NT an invert emulsifier, available from Halliburton Energy Services, Inc.
  • DURATONE ® HT a modified lignitic, available from Halliburton Energy Services, Inc.
  • the rheology of the drilling fluid samples were tested at three time points ( 1) initially after making the drilling fluid, (2) after hot rolling ("HR") the drilling fluid at 150°F for 16 hours, and (3) after hot rolling the drilling fluid at 250°F for 16 hours.
  • the rheological testing methods utilized were API RP 13B- 2 and API RP 131 at 120°F.
  • This example demonstrates, inter alia, the ability to tailor the rheological properties of drilling fluids by tailoring the composition of the organophilic clays of the present invention (i.e. , clay having been treated with surfactant systems of the present invention).
  • the desired rheological properties of the drilling fluids can be achieved or exceeded utilizing less expensive organophilic clays (e.g., Sample 2 as compared to IDP-572) while utilizing a surfactant system comprising biodegradable quaternary ammonium surfactants.
  • compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

L'invention concerne des argiles organophiles biodégradables destinées à être utilisées dans des fluides de forage qui, dans certains exemples, peuvent comprendre une argile traitée par un système tensio-actif qui comprend des tensio-actifs ammonium quaternaire biodégradables et des tensio-actifs ammonium quaternaire non biodégradables. Le tensio-actif ammonium quaternaire biodégradable peut être apte à se dégrader de plus d'environ 90 % en l'espace de 28 jours tel que déterminé par la méthode 306 des lignes directrices de l'OCDE pour le test de produit chimique.
EP13731559.4A 2012-07-06 2013-06-06 Argiles organophiles biodégradables pour fluides de forage Not-in-force EP2844716B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/543,213 US20140011712A1 (en) 2012-07-06 2012-07-06 Biodegradable Organophilic Clays for Drilling Fluids
PCT/US2013/044425 WO2014007935A1 (fr) 2012-07-06 2013-06-06 Argiles organophiles biodégradables pour fluides de forage

Publications (2)

Publication Number Publication Date
EP2844716A1 true EP2844716A1 (fr) 2015-03-11
EP2844716B1 EP2844716B1 (fr) 2019-02-13

Family

ID=48699276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13731559.4A Not-in-force EP2844716B1 (fr) 2012-07-06 2013-06-06 Argiles organophiles biodégradables pour fluides de forage

Country Status (8)

Country Link
US (1) US20140011712A1 (fr)
EP (1) EP2844716B1 (fr)
AU (1) AU2013287160A1 (fr)
BR (1) BR112014030336A2 (fr)
CA (1) CA2875676A1 (fr)
EA (1) EA201492015A1 (fr)
MX (1) MX2014015839A (fr)
WO (1) WO2014007935A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017010384A2 (pt) 2014-12-19 2018-04-03 Halliburton Energy Services Inc método
CN106905937A (zh) * 2017-04-12 2017-06-30 中国石油化工股份有限公司 一种油基钻井液用提切剂及其制备方法
CN110835111B (zh) * 2019-12-02 2021-07-09 浙江树人学院(浙江树人大学) 油基钻井液用膨润土的制备工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429999A (en) * 1991-11-14 1995-07-04 Rheox, Inc. Organoclay compositions containing two or more cations and one or more organic anions, their preparation and use in non-aqueous systems
US5718841A (en) * 1996-03-26 1998-02-17 Rheox, Inc. Organoclay compositions manufactured with organic acid derived ester quaternary ammonium compounds
US6462096B1 (en) * 2000-03-27 2002-10-08 Elementis Specialties, Inc. Organophilic clay additives and oil well drilling fluids with less temperature dependent rheological properties containing said additives
US20070197403A1 (en) * 2006-02-22 2007-08-23 David Dino Organophilic clay additives and oil well drilling fluids with less temperature dependent rheological properties

Also Published As

Publication number Publication date
WO2014007935A1 (fr) 2014-01-09
MX2014015839A (es) 2015-03-19
US20140011712A1 (en) 2014-01-09
AU2013287160A1 (en) 2014-12-18
EA201492015A1 (ru) 2015-06-30
EP2844716B1 (fr) 2019-02-13
CA2875676A1 (fr) 2014-01-09
BR112014030336A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
US10590338B2 (en) Wrinkled capsules for treatment of subterranean formations
EP3194522B1 (fr) Composition de fluide de service de puits et procédé d'utilisation de microémulsions comme auxiliaires de reflux
EP2817381B1 (fr) Procédé der traitement d'un puits, utilisant des charges alourdissantes modifiées
AU2016413727B2 (en) Treatment fluids comprising recycled drilling cuttings and methods of use
AU2014399886B2 (en) Clay stabilizers
Ismail Improve performance of water-based drilling fluids
EP2814900B1 (fr) Utilisation de particules à densité neutre pour renforcer la résistance à l'affaissement de baryte et améliorer le transport d'une suspension fluide
EP1877511B1 (fr) Procede d'utilisation de fluides de forage contenant de l'argile organophilique biodegradable
EP1856225B1 (fr) Boues de forage contenant une argile organophile biodegradable
EA026143B1 (ru) Материал на основе графена для стабилизации сланцев и способ применения
AU2014290532B2 (en) Composition for use in conducting downhole operations in oil and gas wells
US10160898B2 (en) Diverter composition including rheologically-modified invert emulsion and method of use
EA017102B1 (ru) Понизитель водоотдачи для буровых растворов на масляной основе
US10920124B2 (en) Thermal stability of high temperature oil based system enhanced by organophilic clay
NO20161092A1 (en) Viscosifier for treatment of a subterranean formation
EP2844716B1 (fr) Argiles organophiles biodégradables pour fluides de forage
EP2912135B1 (fr) Utilisation d'activateurs pour la viscosification de fluides non aqueux
WO2014160559A1 (fr) Additifs de viscosification d'argile enrichie
CA2966170C (fr) Purification de mineraux organiquement modifies en surface par classification pneumatique
AU2015227521B2 (en) Use of neutral-density particles to enhance barite sag resistance and fluid suspension transport

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1096217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013050750

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190213

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20190524

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1096217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190403

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013050750

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013050750

Country of ref document: DE

26N No opposition filed

Effective date: 20191114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190606

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200606

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190213