EP2840331A1 - Method for stagnation detection and stagnation prevention in heat exchangers - Google Patents

Method for stagnation detection and stagnation prevention in heat exchangers Download PDF

Info

Publication number
EP2840331A1
EP2840331A1 EP14179617.7A EP14179617A EP2840331A1 EP 2840331 A1 EP2840331 A1 EP 2840331A1 EP 14179617 A EP14179617 A EP 14179617A EP 2840331 A1 EP2840331 A1 EP 2840331A1
Authority
EP
European Patent Office
Prior art keywords
transfer medium
boiling
heat transfer
heated
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14179617.7A
Other languages
German (de)
French (fr)
Other versions
EP2840331B1 (en
Inventor
Jochen Wriske
Christian Fischer
Andreas Ruf
Andreas Hübert
René Fahr
Adrien Roger
Christophe Couraud
Miroslav Petrovic
Catherine Blanchet
Sylvail Benoit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP2840331A1 publication Critical patent/EP2840331A1/en
Application granted granted Critical
Publication of EP2840331B1 publication Critical patent/EP2840331B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/36Control of heat-generating means in heaters of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/325Control of valves of by-pass valves

Definitions

  • the invention relates to a method for detecting and avoiding stagnation in heat exchangers, in particular in primary heat exchangers in heaters, in particular in condensing heaters, which transfer the heat of the fuel to the water to be heated and in which a flow is carried out by a plurality of parallel pipes
  • Stagnation in the context of heat exchangers is understood to mean a local or global boiling of the heat transfer medium. This can lead to partial overheating and damage to the heat exchanger in one or more of the parallel connected tubes. Therefore, it is important to avoid stagnation and, in the event that it occurs, to recognize reliably in order to be able to initiate countermeasures in good time. While it is known that a heat exchanger with a large volume of heat transfer medium is less prone to stagnation, this is in conflict with the desire to make heaters compact and light in weight.
  • a characteristic process variable is detected for the occurrence of micro-boiling, which precedes the boiling effecting the stagnation, and is compared with a threshold value. If the threshold is exceeded, a threat of boiling and thus stagnation is detected and at least one operating parameter is changed so that the stagnation is counteracted.
  • the variance of the pressure of the heat transfer medium to be heated is detected and compared with a threshold value.
  • This process step takes advantage of the fact that boiling is preceded by so-called micro-boiling, in which small gas bubbles are formed in the region of the boundary layer of the flow, and after a short time collapse again in colder regions. This mechanism leads to an increase of the noise value on the pressure signal of the system pressure sensor.
  • the variance about the mean value is determined in each case over time segments, for example over 1 s. If the variance exceeds a threshold, for example 3000 mbar 2 , microsilking is diagnosed. To avoid a false alarm, for example, in the case of diagnosed microsolvency, a counter may be incremented, for example by 10, the counter for undiagnosed microsilking is decremented by the same or a smaller value, for example by 5. If the counter exceeds a predetermined counter reading, for example 250, then this is an indication that repeated microsyring has occurred over a relatively long period of time.
  • a threshold for example 3000 mbar 2
  • a counter may be incremented, for example by 10
  • the counter for undiagnosed microsilking is decremented by the same or a smaller value, for example by 5. If the counter exceeds a predetermined counter reading, for example 250, then this is an indication that repeated microsyring has occurred over a relatively long period of time.
  • microsilking is detected.
  • frequencies above 20 Hz or preferably above 100 Hz can be detected.
  • the signal power or the signal level of the high-frequency component is compared with a threshold value.
  • the ratio to the quasi-static fraction is formed and compared with a threshold value.
  • the characteristic process variable is the negative gradient of the temperature spread between input and output for the heat transfer medium of the heat carrier to be heated. In order to measure the temperature spread reliably, this is done in quasi-stationary operation.
  • the design makes use of the fact that, when stagnation occurs, the heat transfer to the heat transfer medium is impaired, since no or a significantly reduced circulation occurs in one or more of the pipes connected in parallel. This leads with respect to the total volume flow to the Verteill. Mixing points in the heat exchanger to a lower temperature spread, which is detected according to the invention and compared with a threshold value.
  • Another effect is that under quasi-steady-state operating conditions, ie with a constant burner load and constant water circulation, the stagnation with several pipes connected in parallel leads to an increase in the volume flow of the pipes not affected by the boiling. This means that the temperature difference between the inlet and outlet of the heat exchanger drops in the remaining pipes. If the negative gradient of the temperature spread exceeds the threshold value, either the stagnation is detected and a measure initiated or another operating parameter is used.
  • the embodiment described above is also suitable for detecting local boiling.
  • the mass flow of the heat transfer medium to be heated is briefly increased before starting the burner of the heater.
  • gas bubbles present in the water circuit are optionally expelled from the heat exchanger and divided into smaller bubbles by means of the turbulent flow conditions present in the pump, which have a markedly reduced tendency to stagnate due to the lower buoyancy forces.
  • FIG. 1 schematically shows a heater for performing the method according to the invention.
  • the heater 1 comprises a burner 3 with a heat exchanger 2, with which the heat obtained from the burner 3 is transferred to a heat transfer medium.
  • the heat transfer medium is usually water, which is circulated in a circuit by a pump 4.
  • the heater 1 is connected to a heat sink 5 provided by the heater 1 is supplied with heat. In the heat exchanger 2, stagnation due to boiling water may occur.
  • a control device 11 is provided, which is connected to temperature sensors 6, 7 and / or a pressure sensor 8.
  • control unit recognizes on the basis of the method according to the invention the entering or announcing stagnation and avoids the occurrence of stagnation by intervention in the rotational speed of the pump 4, in the operation of the burner 3 and / or in the position of the valve. 9 ,
  • FIG. 2 shows in the course of temperature 20, the time course of the temperatures 21, 22 at the output and input of the heat exchanger 2 from FIG. 1 , which was recorded with the temperature sensors 6 and 7, and in the pressure curve 30, the time course of the with the pressure sensor 8 from FIG. 1 measured system pressure 32, the variance 33 and the measured directly at the heat exchanger 2 pressure 31st
  • the course of the pressure 31 at the heat exchanger 2 has at 478 s an onset of high-frequency content. This weakens at 480 s, then rises sharply at 498 s. This is due to the onset of 478 s microsilusion, which then boils at 498 s.
  • the pressure fluctuations are due to the formation and in particular to the collapse of vapor bubbles.
  • the course of the system pressure 32 has these high-frequency components also, but in a lower amplitude. This is due to the fact that the pressure sensor 8 is provided for the system pressure at a certain distance from the heat exchanger.
  • the course of the pressure can be clearly recognized.
  • this threshold can be set so that the micro-boiling is already detected.
  • the course of the pressure can be used as a further criterion. In any case, when a higher threshold is exceeded, the boiling, as occurs in the range from 498 s, and thus the stagnation certainly recognizable.
  • the temperature profile 22 at the entrance of the heat exchanger 2 is almost constant, can be seen from the temperature profile 21 at the output of the heat exchanger microsolutions and boiling.
  • the gradient between the temperatures at the output side of the heat exchanger and the input side is negative. This is monitored according to the invention by comparing the negative gradient in the quasi-stationary operation with a threshold value, and used for the detection of stagnation.
  • the sudden temperature increase at 500 s is due to a vapor bubble formation, through which the heated water is pushed out. In principle, it is also possible to evaluate such curves for detecting the stagnation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erkennung und Vermeidung von Sieden in Primär-Wärmeübertragern 2 in Heizgeräten 1, insbesondere Brennwert-Heizgeräten. Es werden eine oder mehrere das Sieden oder Mikrosieden charakterisierende Prozessgrößen 21, 22, 32, 33 erfasst und mit einem Schwellenwert verglichen. Bei Überschreiten des Schwellenwerts wird zumindest ein Betriebsparameter geändert wird, der einem Sieden entgegenwirkt.The invention relates to a method for detecting and avoiding boiling in primary heat exchangers 2 in heaters 1, in particular condensing heaters. One or more of the boiling or micro-boiling characterizing process variables 21, 22, 32, 33 are detected and compared with a threshold value. When the threshold is exceeded, at least one operating parameter is changed, which counteracts boiling.

Description

Die Erfindung betrifft ein Verfahren zur Erkennung und Vermeidung von Stagnation in Wärmeübertragern, insbesondere in Primär-Wärmeübertragern in Heizgeräten, insbesondere in Brennwert-Heizgeräten, die die Wärme des Brennstoffs auf das zu heizende Wasser übertragen und in denen eine Strömungsführung durch mehrere parallel geschaltete Rohre erfolgt. Unter Stagnation im Zusammenhang mit Wärmetauschern wird ein lokales oder globales Sieden des Wärmeübertragermediums verstanden. Dies kann zu einer partiellen Überhitzung und Beschädigung des Wärmeübertragers in einem oder mehreren der parallel geschalteten Rohre führen. Daher ist es wichtig, Stagnation zu vermeiden und für den Fall, dass sie auftritt, zuverlässig zu erkennen, um rechtzeitig Gegenmaßnahmen einleiten zu können. Es ist zwar bekannt, dass ein Wärmetauscher mit einem großen Wärmeübertragermedium-Volumen weniger zur Stagnation neigt, jedoch steht dies in einem Zielkonflikt zu dem Bestreben, Heizgeräte kompakt und mit geringem Gewicht aufzubauen.The invention relates to a method for detecting and avoiding stagnation in heat exchangers, in particular in primary heat exchangers in heaters, in particular in condensing heaters, which transfer the heat of the fuel to the water to be heated and in which a flow is carried out by a plurality of parallel pipes , Stagnation in the context of heat exchangers is understood to mean a local or global boiling of the heat transfer medium. This can lead to partial overheating and damage to the heat exchanger in one or more of the parallel connected tubes. Therefore, it is important to avoid stagnation and, in the event that it occurs, to recognize reliably in order to be able to initiate countermeasures in good time. While it is known that a heat exchanger with a large volume of heat transfer medium is less prone to stagnation, this is in conflict with the desire to make heaters compact and light in weight.

Daher ist es bekannt, Geräte mit einem Überströmventil auszustatten, das bei Vorliegen eines zu geringen Volumenstroms durch die Anlage einen Teilstrom direkt zwischen Vor- und Rücklauf vorsieht.Therefore, it is known to equip devices with an overflow valve, which provides a partial flow directly between the flow and return in the presence of too low a flow rate through the system.

Da hohe Volumenströme mit einer hohen elektrischen Stromaufnahme für die Umwälzpumpe verbunden sind, ist dies energetisch ungünstig. Zudem führen Überströmventile zu einer Beimischung von Wärmeträgermedium aus dem Vorlauf in den Rücklauf und schmälern somit bei Brennwertgeräten die Kondensationsrate, was zu einer verringerten Effizienz führt.Since high volume flows are associated with a high electrical current consumption for the circulation pump, this is energetically unfavorable. In addition, overflow valves lead to a Admixture of heat transfer medium from the flow in the return and thus reduce the condensing rate in condensing units, resulting in a reduced efficiency.

Es ist daher Aufgabe der Erfindung, ein Verfahren zur Stagnationserkennung und Stagnationsvermeidung bereitzustellen, das diese Nachteile nicht aufweist.It is therefore an object of the invention to provide a method for stagnation detection and stagnation avoidance, which does not have these disadvantages.

Diese Aufgabe wird gemäß den Merkmalen des Anspruchs 1 dadurch gelöst, dass eine für das Auftreten Mikrosieden, welches dem die Stagnation bewirkenden Sieden vorausgeht, charakteristische Prozessgröße erfasst und mit einem Schwellenwert verglichen wird. Bei Überschreiten des Schwellenwerts wird ein drohendes Sieden und somit eine Stagnation erkannt und zumindest ein Betriebsparameter so geändert, dass der Stagnation entgegengewirkt wird. Dies hat den Vorteil, dass die Nachteile eines höheren Energieverbrauchs der Pumpe oder einer schlechteren Effizienz des Heizgeräts nur dann auftreten, wenn eine Stagnation droht. Im Normalbetrieb hingegen kann das Heizgerät effizient betrieben werden.This object is achieved in accordance with the features of claim 1 in that a characteristic process variable is detected for the occurrence of micro-boiling, which precedes the boiling effecting the stagnation, and is compared with a threshold value. If the threshold is exceeded, a threat of boiling and thus stagnation is detected and at least one operating parameter is changed so that the stagnation is counteracted. This has the advantage that the disadvantages of a higher energy consumption of the pump or a poorer efficiency of the heater only occur when stagnation threatens. In normal operation, however, the heater can be operated efficiently.

In einer vorteilhaften Ausführung des erfindungsgemäßen Verfahrens wird die Varianz des Drucks des zu erwärmenden Wärmeträgermediums erfasst und mit einem Schwellenwert verglichen. Dieser Verfahrensschritt macht sich die Tatsache zu Nutze, dass dem Sieden ein so genanntes Mikrosieden vorausgeht, bei dem im Bereich der Grenzschicht der Strömung kleine Gasblasen gebildet werden, die nach kurzer Zeit in kälteren Regionen wieder kollabieren. Dieser Mechanismus führt zu einer Erhöhung des Rauschwerts auf dem Drucksignal des Anlagendrucksensors.In an advantageous embodiment of the method according to the invention, the variance of the pressure of the heat transfer medium to be heated is detected and compared with a threshold value. This process step takes advantage of the fact that boiling is preceded by so-called micro-boiling, in which small gas bubbles are formed in the region of the boundary layer of the flow, and after a short time collapse again in colder regions. This mechanism leads to an increase of the noise value on the pressure signal of the system pressure sensor.

In einer Weiterbildung des Verfahrens wird beispielsweise die Varianz um den Mittelwert jeweils über Zeitabschnitte, beispielsweise über 1 s, ermittelt. Überschreitet die Varianz einem Schwellenwert, zum Beispiel 3000 mbar2, wird Mikrosieden diagnostiziert. Um ein Fehlalarm zu vermeiden, kann beispielsweise bei diagnostiziertem Mikrosieden ein Zähler inkrementiert werden, beispielsweise um 10, wobei der Zähler bei nicht diagnostiziertem Mikrosieden um den gleichen oder um einen kleineren Wert, beispielsweise um 5, dekrementiert wird. Über schreitet der Zähler einen vorgegebenen Zählerstand, beispielsweise 250, so ist dies ein Indiz dafür, dass über einen längeren Zeitraum wiederholt Mikrosieden aufgetreten ist.In one development of the method, for example, the variance about the mean value is determined in each case over time segments, for example over 1 s. If the variance exceeds a threshold, for example 3000 mbar 2 , microsilking is diagnosed. To avoid a false alarm, for example, in the case of diagnosed microsolvency, a counter may be incremented, for example by 10, the counter for undiagnosed microsilking is decremented by the same or a smaller value, for example by 5. If the counter exceeds a predetermined counter reading, for example 250, then this is an indication that repeated microsyring has occurred over a relatively long period of time.

Alternativ wird durch Erfassung der Signalstreuung um den Mittelwert, beispielsweise mit Hilfe eines Hochpassfilters, das Mikrosieden erkannt. Dabei können Frequenzen oberhalb 20 Hz oder bevorzugt oberhalb 100 Hz erfasst werden. Dabei wird der Signalleistung oder der Signalpegel des hochfrequenten Anteils mit einem Schwellenwert verglichen. Alternativ wird das Verhältnis zum quasistatischen Anteil gebildet und mit einem Schwellenwert verglichen.Alternatively, by detecting the signal dispersion around the mean value, for example with the aid of a high-pass filter, microsilking is detected. In this case, frequencies above 20 Hz or preferably above 100 Hz can be detected. In this case, the signal power or the signal level of the high-frequency component is compared with a threshold value. Alternatively, the ratio to the quasi-static fraction is formed and compared with a threshold value.

Alternativ oder ergänzend wird in einer weiteren vorteilhaften Ausführung des erfindungsgemäßen Verfahrens ist die charakteristische Prozessgröße der negative Gradient der Temperaturspreizung zwischen Ein- und Ausgang für das zu erwärmenden Wärmeträgermedium des Wärmeträgers. Um die Temperaturspreizung zuverlässig messen zu können, erfolgt dies in quasistationären Betrieb. Die Ausführung macht sich die Tatsache zu Nutze, dass bei Auftreten von Stagnation der Wärmeübergang auf das Wärmeträgermedium beeinträchtigt wird, da sich bei einem oder mehreren der parallel geschaltete Rohre kein oder ein deutlich reduzierter Umlauf einstellt. Dies führt bezüglich des Gesamtvolumenstromes an den Verteilbzw. Mischungspunkten im Wärmeübertrager zu einer geringeren Temperaturspreizung, die erfindungsgemäß erfasst und mit einem Schwellenwert verglichen wird. Ein weiterer Effekt ist, dass unter quasistationären Betriebsbedingungen, also bei konstanter Brennerbelastung und konstantem Wasserumlauf, die Stagnation bei mehreren parallelgeschalteten Rohren zu einer Volumenstromerhöhung der nicht von dem Sieden betroffenen Rohre führt. Dies bedeutet, dass in den verbleibenden Rohren die Temperaturspreizung zwischen Ein- und Ausgang des Wärmetauschers sinkt. Überschreitet der negative Gradient der Temperaturspreizung den Schwellenwert, wird entweder die Stagnation erkannt und eine Maßnahme eingeleitet oder es wird ein weiterer Betriebsparameter herangezogen.Alternatively or additionally, in a further advantageous embodiment of the method according to the invention, the characteristic process variable is the negative gradient of the temperature spread between input and output for the heat transfer medium of the heat carrier to be heated. In order to measure the temperature spread reliably, this is done in quasi-stationary operation. The design makes use of the fact that, when stagnation occurs, the heat transfer to the heat transfer medium is impaired, since no or a significantly reduced circulation occurs in one or more of the pipes connected in parallel. This leads with respect to the total volume flow to the Verteilbzw. Mixing points in the heat exchanger to a lower temperature spread, which is detected according to the invention and compared with a threshold value. Another effect is that under quasi-steady-state operating conditions, ie with a constant burner load and constant water circulation, the stagnation with several pipes connected in parallel leads to an increase in the volume flow of the pipes not affected by the boiling. This means that the temperature difference between the inlet and outlet of the heat exchanger drops in the remaining pipes. If the negative gradient of the temperature spread exceeds the threshold value, either the stagnation is detected and a measure initiated or another operating parameter is used.

Aus diesen Gründen ist die zuvor beschriebene Ausführungsvariante ebenso geeignet, lokales Sieden zu erkennen.For these reasons, the embodiment described above is also suitable for detecting local boiling.

Erfindungsgemäß werden alternativ oder ergänzend mehrere Maßnahmen zur Vermeidung von Stagnation eingesetzt, nachdem diese erkannt wurde. Dies ist zum einen das Erhöhen des Massenstroms, indem die Pumpendrehzahl erhöht wird oder indem ein Bypass zwischen Aus- und Eingang des Wärmeübertragers geschaltet wird. Dadurch wird einerseits mehr Wärme abgeführt und andererseits ein Ausspülen der Dampfblasen bewirkt. Zusätzlich oder alternativ wird der Brenner abgeschaltet bzw. die Brennerleistung reduziert.According to the invention, alternatively or additionally, several measures are used to prevent stagnation after it has been detected. This is on the one hand the increase of the mass flow by the pump speed is increased or by a bypass between the output and input of the heat exchanger is switched. As a result, on the one hand more heat dissipated and on the other hand causes a flushing of the vapor bubbles. Additionally or alternatively, the burner is switched off or the burner power is reduced.

In einer vorteilhaften Weiterbildung der Erfindung wird vor dem Starten des Brenners des Heizgeräts der Massenstrom des zu erwärmenden Wärmeträgermediums kurzzeitig erhöht. Dadurch werden gegebenenfalls im Wasserkreis vorhandene Gasblasen aus dem Wärmeübertrager ausgetrieben und mittels der in der Pumpe vorliegenden turbulenten Strömungsbedingungen in kleinere Blasen zerteilt, die aufgrund der geringeren Auftriebskräfte eine deutlich verminderte Stagnationsneigung aufweisen.In an advantageous embodiment of the invention, the mass flow of the heat transfer medium to be heated is briefly increased before starting the burner of the heater. As a result, gas bubbles present in the water circuit are optionally expelled from the heat exchanger and divided into smaller bubbles by means of the turbulent flow conditions present in the pump, which have a markedly reduced tendency to stagnate due to the lower buoyancy forces.

Die Erfindung wird nun anhand der Figuren detailliert erläutert.The invention will now be explained in detail with reference to FIGS.

Figur 1 zeigt schematisch ein Heizgerät zum Durchführen des erfindungsgemäßen Verfahrens. Das Heizgerät 1 umfasst einen Brenner 3 mit einem Wärmeübertrager 2, mit dem die von dem Brenner 3 gewonnene Wärme auf ein Wärmeträgermedium übertragen wird. Das Wärmeübertragermedium ist in der Regel Wasser, das in einem Kreislauf von einer Pumpe 4 umgewälzt wird. Das Heizgerät 1 ist mit einer Wärmesenke 5 verbunden, die von dem Heizgerät 1 mit Wärme versorgt wird. In dem Wärmeübertrager 2 kann Stagnation aufgrund von siedendem Wasser auftreten. Um dies zu erkennen und zu vermeiden, ist ein Steuergerät 11 vorgesehen, welches mit Temperatursensoren 6, 7 und/oder einem Drucksensor 8 verbunden ist. Mittels der Sensoren erkennt das Steuergerät auf der Basis des erfindungsgemäßen Verfahrens die eintretende bzw. die sich ankündigenden Stagnation und vermeidet das Eintreten der Stagnation durch Eingriff in die Drehzahl der Pumpe 4, in den Betrieb des Brenners 3 und/oder in die Stellung des Ventils 9. FIG. 1 schematically shows a heater for performing the method according to the invention. The heater 1 comprises a burner 3 with a heat exchanger 2, with which the heat obtained from the burner 3 is transferred to a heat transfer medium. The heat transfer medium is usually water, which is circulated in a circuit by a pump 4. The heater 1 is connected to a heat sink 5 provided by the heater 1 is supplied with heat. In the heat exchanger 2, stagnation due to boiling water may occur. In order to recognize and avoid this, a control device 11 is provided, which is connected to temperature sensors 6, 7 and / or a pressure sensor 8. By means of the sensors, the control unit recognizes on the basis of the method according to the invention the entering or announcing stagnation and avoids the occurrence of stagnation by intervention in the rotational speed of the pump 4, in the operation of the burner 3 and / or in the position of the valve. 9 ,

Figur 2 zeigt im Temperaturverlauf 20 den zeitlichen Verlauf der Temperaturen 21, 22 am Aus- und Eingang des Wärmeübertragers 2 aus Figur 1, der mit den Temperatursensoren 6 und 7 aufgenommen wurde, sowie im Druckverlauf 30 den zeitlichen Verlauf des mit dem Drucksensor 8 aus Figur 1 gemessenen Anlagendruck 32, dessen Varianz 33 sowie den direkt am Wärmeübertrager 2 gemessenen Druck 31. FIG. 2 shows in the course of temperature 20, the time course of the temperatures 21, 22 at the output and input of the heat exchanger 2 from FIG. 1 , which was recorded with the temperature sensors 6 and 7, and in the pressure curve 30, the time course of the with the pressure sensor 8 from FIG. 1 measured system pressure 32, the variance 33 and the measured directly at the heat exchanger 2 pressure 31st

Anhand der Kurvenverläufe wird nachfolgend das Auftreten und Erkennen von Sieden erläutert. Der Verlauf des Drucks 31 am Wärmeübertrager 2 weist bei 478 s einen einsetzenden hochfrequenten Anteil auf. Dieser schwächt sich bei 480 s ab, um dann bei 498 s sehr stark anzusteigen. Dies ist auf ein bei 478 s einsetzendes Mikrosieden zurückzuführen, dass dann bei 498 s zu einem Sieden übergeht. Die Druckschwankungen sind auf die Bildung und insbesondere auf das Kollabieren von Dampfblasen zurückzuführen. Der Verlauf des Anlagendrucks 32 weist diese hochfrequenten Anteile ebenfalls auf, allerdings in geringerer Amplitude. Dies ist darauf zurückzuführen, dass der Drucksensor 8 für den Anlagendruck in einem gewissen Abstand vom Wärmeübertrager vorgesehen ist. Dennoch kann durch eine Ermittlung der Varianz des Anlagendrucks, deren Verlauf in der Kurve 33 dargestellt ist, das Mikrosieden und das Sieden deutlich erkannt werden. Durch Vergleich mit einem Schwellenwert kann somit das Mikrosieden und das Sieden erkannt werden und eine Maßnahme zur Vermeidung von Stagnation eingeleitet werden. In vorteilhafter Weise kann diese Schwelle so gelegt werden, dass bereits das Mikrosieden erkannt wird. Hier ist jedoch das Risiko einer Fehlerkennung gegeben. Daher kann optional oder alternativ der Verlauf des Drucks als weiteres Kriterium mit herangezogen werden. In jedem Fall ist bei Überschreiten einer höheren Schwelle das Sieden, wie es im Bereich ab 498 s auftritt, und damit die Stagnation sicher erkennbar.Based on the curves, the occurrence and detection of boiling will be explained below. The course of the pressure 31 at the heat exchanger 2 has at 478 s an onset of high-frequency content. This weakens at 480 s, then rises sharply at 498 s. This is due to the onset of 478 s microsilusion, which then boils at 498 s. The pressure fluctuations are due to the formation and in particular to the collapse of vapor bubbles. The course of the system pressure 32 has these high-frequency components also, but in a lower amplitude. This is due to the fact that the pressure sensor 8 is provided for the system pressure at a certain distance from the heat exchanger. Nevertheless, by determining the variance of the system pressure, the course of which is shown in the curve 33, micro-boiling and boiling can be clearly recognized. By comparison with a threshold value, it is thus possible to detect microsilution and boiling and initiate a measure to prevent stagnation. Advantageously, this threshold can be set so that the micro-boiling is already detected. Here, however, is the risk of a Error identification given. Therefore, optionally or alternatively, the course of the pressure can be used as a further criterion. In any case, when a higher threshold is exceeded, the boiling, as occurs in the range from 498 s, and thus the stagnation certainly recognizable.

Während der Temperaturverlauf 22 am Eingang des Wärmeübertragers 2 nahezu konstant ist, lässt sich aus dem Temperaturverlauf 21 am Ausgang des Wärmeübertragers Mikrosieden und Sieden erkennen. Zunächst steigt die Temperatur im Bereich zwischen 475 und 477 s an. Dies ist auf einen Aufheizvorgang zurückzuführen und ist für die hier beschriebene Erkennung ohne Belang. Ab ca. 480 s fällt jedoch die Temperatur ab, was aufgrund der zuvor beschriebenen Mechanismen ein Indiz für das Auftreten von Sieden ist. Somit ist der Gradient zwischen den Temperaturen an der Ausgangsseite des Wärmeübertragers und der Eingangsseite negativ. Dies wird erfindungsgemäß überwacht, indem der negative Gradient im quasistationären Betrieb mit einem Schwellenwert verglichen wird, und für die Erkennung der Stagnation herangezogen. Ergänzend sei bemerkt, dass der sprungartige Temperaturanstieg bei 500 s auf eine Dampfblasenbildung zurückzuführen ist, durch die das erhitzte Wasser heraus gedrückt wird. Grundsätzlich ist es möglich, auch solche Kurvenverläufe zum Erkennen der Stagnation auszuwerten.While the temperature profile 22 at the entrance of the heat exchanger 2 is almost constant, can be seen from the temperature profile 21 at the output of the heat exchanger microsolutions and boiling. First, the temperature rises in the range between 475 and 477 s. This is due to a heating process and is irrelevant to the detection described here. From about 480 s, however, the temperature drops, which is an indication of the occurrence of boiling due to the mechanisms described above. Thus, the gradient between the temperatures at the output side of the heat exchanger and the input side is negative. This is monitored according to the invention by comparing the negative gradient in the quasi-stationary operation with a threshold value, and used for the detection of stagnation. In addition, it should be noted that the sudden temperature increase at 500 s is due to a vapor bubble formation, through which the heated water is pushed out. In principle, it is also possible to evaluate such curves for detecting the stagnation.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Heizgerätheater
22
WärmeübertragerHeat exchanger
33
Brennerburner
44
Pumpepump
55
Wärmesenkeheat sink
66
Temperatursensor am AusgangTemperature sensor at the output
77
Temperatursensor am EingangTemperature sensor at the entrance
88th
Drucksensorpressure sensor
99
VentilValve
1010
Bypassbypass
1111
Steuergerätcontrol unit
2020
Temperaturverlauftemperature curve
2121
Temperatur am Ausgang des WärmeübertragersTemperature at the outlet of the heat exchanger
2222
Temperatur am Eingang des WärmeübertragersTemperature at the entrance of the heat exchanger
3030
Druckverlaufpressure curve
3131
Druck am WärmeübertragerPressure at the heat exchanger
3232
Anlagendrucksystem pressure
3333
Varianz des AnlagendrucksVariance of system pressure

Claims (15)

Verfahren zur Erkennung und Vermeidung von Sieden in Primär-Wärmeübertragern (2) in Heizgeräten (1), insbesondere Brennwert-Heizgeräten, dadurch gekennzeichnet, dass das dem Sieden vorausgehende Mikrosieden erfasst wird, wobei eine oder mehrere das Mikrosieden charakterisierende Prozessgrößen (21, 22, 32, 33) erfasst und mit einem Schwellenwert verglichen werden und dass bei Überschreiten des Schwellenwerts zumindest ein Betriebsparameter geändert wird, der einem Sieden entgegenwirkt.Method for detecting and avoiding boiling in primary heat exchangers (2) in heaters (1), in particular condensing heaters, characterized in that the boiling preceding the boiling is detected, wherein one or more Mikrosieden characterizing process variables (21, 22, 32, 33) are detected and compared with a threshold value and that, when the threshold value is exceeded, at least one operating parameter which counteracts boiling is changed. Verfahren nach Anspruch 1, wobei eine charakterisierende Prozessgröße die Varianz (33) des Drucks (32, 31) des zu erwärmenden Wärmeträgermediums ist.The method of claim 1, wherein a characterizing process variable is the variance (33) of the pressure (32, 31) of the heat transfer medium to be heated. Verfahren nach Anspruch 2, wobei die Varianz (33) des Drucks (32, 31) jeweils über kurze Zeitabschnitte gemessen wird, bei Überschreiten des Schwellenwerts ein Zähler um einen Wert erhöht und bei Unterschreiten des Schwellenwerts ein Zähler um einen zweiten Wert erniedrigt wird, wobei der zweite Wert bevorzugt kleiner ist als der erste Wert, und wobei zumindest ein Betriebsparameter geändert wird, sobald der Zählerstand einen zweiten Schwellenwert überschritten hat.Method according to claim 2, wherein the variance (33) of the pressure (32, 31) is measured over short periods of time, a counter is increased by one value when the threshold value is exceeded, and a counter is lowered by a second value when the threshold value is undershot, the second value is preferably smaller than the first value, and wherein at least one operating parameter is changed as soon as the counter reading has exceeded a second threshold value. Verfahren nach Anspruch 1, wobei eine charakterisierende Prozessgröße der Signalanteil des Drucks (32, 31) des zu erwärmenden Wärmeträgermediums in einem hochfrequenten Frequenzbereich ist oder das Verhältnis des Signalanteils des Drucks in einem hochfrequenten Frequenzbereich zum stationären Signal des Drucks (32, 31) des zu erwärmenden Wärmeträgermediums ist.The method of claim 1, wherein a characterizing process variable is the signal component of the pressure (32, 31) of the heat transfer medium to be heated in a high frequency range or the ratio of the signal component of the pressure in a high frequency range to the steady state signal of pressure (32, 31) is heating heat transfer medium. Verfahren nach Anspruch 4, wobei der hochfrequente Frequenzbereich ein Bereich oberhalb 20 Hz, bevorzugt oberhalb 100 Hz ist.The method of claim 4, wherein the high-frequency frequency range is an area above 20 Hz, preferably above 100 Hz. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine charakterisierende Prozessgröße der negative Gradient der Temperaturspreizung zwischen Ein- und Ausgang (22, 21) für das zu erwärmende Wärmeträgermedium des Wärmeübertragers (1) im quasistationären Betrieb ist.Method according to one of the preceding claims, wherein a characterizing process variable is the negative gradient of the temperature spread between input and output (22, 21) for the heat transfer medium of the heat exchanger (1) to be heated in quasi-stationary operation. Verfahren zur Erkennung und Vermeidung von Sieden in einem oder mehreren Rohren eines mehrere parallel geschaltete Rohre umfassenden Primär-Wärmeübertragers (2) in Heizgeräten (1), insbesondere Brennwert-Heizgeräten, dadurch gekennzeichnet, dass eine das Sieden charakterisierende Prozessgrößen (21, 22) erfasst und mit einem Schwellenwert verglichen werden und dass bei Überschreiten des Schwellenwerts zumindest ein Betriebsparameter geändert wird, der einem Sieden entgegenwirkt, und dass die charakterisierende Prozessgröße der negative Gradient der Temperaturspreizung zwischen Ein- und Ausgang (22, 21) für das zu erwärmenden Wärmeträgermedium des Wärmeübertragers (1) im quasistationären Betrieb ist.Method for detecting and avoiding boiling in one or more tubes of a primary heat exchanger (2) comprising a plurality of pipes connected in parallel in heating appliances (1), in particular condensing heating appliances, characterized in that a process variable (21, 22) characterizing the boiling is detected and are compared with a threshold value and that, when the threshold value is exceeded, at least one operating parameter which counteracts boiling is changed, and the characterizing process variable is the negative gradient of the temperature spread between input and output (22, 21) for the heat transfer medium of the heat exchanger to be heated (1) is in quasi-stationary operation. Verfahren nach Anspruch 7, wobei der Schwellenwert für den negativen Gradienten der Temperaturspreizung 0,05 K/s, bevorzugt 0,1 K/s ist.A method according to claim 7, wherein the threshold for the negative gradient of the temperature spread is 0.05 K / s, preferably 0.1 K / s. Verfahren nach Anspruch 7, wobei der Schwellenwert für den negativen Gradienten der Temperaturspreizung kleiner als, bevorzugt 63% der Temperaturspreizung im stationären Fall dividiert durch die Anzahl der parallel geschalteten Rohre des Primär-Wärmeübertragers (2) ist.The method of claim 7, wherein the threshold for the negative gradient of the temperature spread less than, preferably 63% of the temperature spread in the stationary Case divided by the number of parallel tubes of the primary heat exchanger (2). Verfahren nach einem der Ansprüche 7 bis 9, wobei der Gradient über einen Zeitraum von mindestens 5 Sekunden, bevorzugt von mindestens 12 Sekunden gemittelt wird.Method according to one of claims 7 to 9, wherein the gradient over a period of at least 5 seconds, preferably of at least 12 seconds is averaged. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Änderung eines Betriebsparameters das Verringern des Verhältnisses zwischen zugeführter und abgeführter Wärmemenge ist.The method of any one of the preceding claims, wherein changing an operating parameter is decreasing the ratio of supplied and discharged heat. Verfahren nach Anspruch 11, wobei die Verringerung des Verhältnisses zwischen zugeführter und abgeführter Wärmemenge dadurch erreicht wird, dass der Brenner (3) abgeschaltet wird oder die Brennerleistung reduziert wird.A method according to claim 11, wherein the reduction of the ratio between supplied and discharged heat quantity is achieved by switching off the burner (3) or reducing the burner output. Verfahren nach einem der Ansprüche 1 bis 11, wobei die Änderung eines Betriebsparameters dadurch erreicht wird, dass der Massenstrom des zu erwärmenden Wärmeträgermediums erhöht wird, insbesondere durch Erhöhung der Pumpendrehzahl der das zu erwärmende Wärmeträgermedium fördernden Pumpe (4).Method according to one of claims 1 to 11, wherein the change of an operating parameter is achieved in that the mass flow of the heat transfer medium to be heated is increased, in particular by increasing the pump speed of the heat transfer medium to be heated pump (4). Verfahren nach einem der Ansprüche 1 bis 10, wobei die Änderung des Betriebsparameters dadurch erreicht wird, dass eine Bypassstrecke (10) zwischen Aus- und Eingang für das zu erwärmenden Wärmeträgermedium des Wärmeübertragers geöffnet wird.Method according to one of claims 1 to 10, wherein the change of the operating parameter is achieved in that a bypass line (10) between the output and input for the heat transfer medium to be heated of the heat exchanger is opened. Verfahren nach einem der vorhergehenden Ansprüche, wobei beim Starten des Brenners (3) des Heizgeräts (1) der Massenstrom des zu erwärmenden Wärmeträgermediums kurzzeitig erhöht wird, insbesondere durch Erhöhung der Pumpendrehzahl der das zu erwärmenden Wärmeträgermedium fördernden Pumpe (4).Method according to one of the preceding claims, wherein when starting the burner (3) of the heater (1), the mass flow of the heat transfer medium to be heated is briefly increased, in particular by increasing the pump speed of the heat transfer medium to be heated pump (4).
EP14179617.7A 2013-08-05 2014-08-04 Method for stagnation detection and stagnation prevention in heat exchangers Active EP2840331B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA622/2013A AT514681B1 (en) 2013-08-05 2013-08-05 Method for detecting and avoiding boiling in heat exchangers

Publications (2)

Publication Number Publication Date
EP2840331A1 true EP2840331A1 (en) 2015-02-25
EP2840331B1 EP2840331B1 (en) 2018-11-14

Family

ID=51298558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14179617.7A Active EP2840331B1 (en) 2013-08-05 2014-08-04 Method for stagnation detection and stagnation prevention in heat exchangers

Country Status (3)

Country Link
EP (1) EP2840331B1 (en)
AT (1) AT514681B1 (en)
ES (1) ES2710150T3 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822843A (en) * 1981-07-30 1983-02-10 Sanyo Electric Co Ltd Solar heat collecting apparatus
JPS58140555A (en) * 1982-02-16 1983-08-20 Hitachi Chem Co Ltd Temperature control device for hot water storing type water heating apparatus
EP0380369A1 (en) * 1989-01-26 1990-08-01 Otter Controls Limited Controls for electrically powered heating elements
WO1996025869A1 (en) * 1995-02-20 1996-08-29 Pifco Limited Improvements to liquid boiling apparatus
JP2005050713A (en) * 2003-07-30 2005-02-24 Mitsubishi Electric Corp Heating cooker
GB2452981A (en) * 2007-09-21 2009-03-25 Otter Controls Ltd Flow-through liquid heating apparatus
WO2009095751A2 (en) * 2008-01-29 2009-08-06 Michael Von Seidel Culinary electric hot water appliance with automatic switch

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289265A (en) * 1988-05-17 1989-11-21 Ricoh Co Ltd Dividing of substrate
JPH05272805A (en) * 1992-03-25 1993-10-22 Rinnai Corp Hot water feeding controller
JPH06123489A (en) * 1992-10-08 1994-05-06 Matsushita Electric Ind Co Ltd Hot water supplier
JP3880130B2 (en) * 1997-04-30 2007-02-14 株式会社ガスター One can two water channel hot water supply apparatus and control method thereof
JP3862856B2 (en) * 1998-04-20 2006-12-27 パロマ工業株式会社 Water heater with thermal insulation function
EP2682582B1 (en) * 2011-03-03 2016-12-21 Toyota Jidosha Kabushiki Kaisha Warmup acceleration device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822843A (en) * 1981-07-30 1983-02-10 Sanyo Electric Co Ltd Solar heat collecting apparatus
JPS58140555A (en) * 1982-02-16 1983-08-20 Hitachi Chem Co Ltd Temperature control device for hot water storing type water heating apparatus
EP0380369A1 (en) * 1989-01-26 1990-08-01 Otter Controls Limited Controls for electrically powered heating elements
WO1996025869A1 (en) * 1995-02-20 1996-08-29 Pifco Limited Improvements to liquid boiling apparatus
JP2005050713A (en) * 2003-07-30 2005-02-24 Mitsubishi Electric Corp Heating cooker
GB2452981A (en) * 2007-09-21 2009-03-25 Otter Controls Ltd Flow-through liquid heating apparatus
WO2009095751A2 (en) * 2008-01-29 2009-08-06 Michael Von Seidel Culinary electric hot water appliance with automatic switch

Also Published As

Publication number Publication date
EP2840331B1 (en) 2018-11-14
ES2710150T3 (en) 2019-04-23
AT514681A1 (en) 2015-02-15
AT514681B1 (en) 2015-06-15

Similar Documents

Publication Publication Date Title
EP3145273B1 (en) Heating device for heating water and a method for operating such a heating device
EP2613097B2 (en) Heating device
EP3088800A1 (en) Heating device for heating liquids, evaporator for an electric cooking apparatus and method for operating a heating device
EP3182813A1 (en) Inverter cooler system
EP2700940A1 (en) Method and device for measuring the gas content of a liquid and use of such a device
DE102015016247B3 (en) heater
EP2680682B1 (en) Method for controlling the function of a cooling system of an inverter and inverter
WO1997002516A1 (en) Heating appliance, in particular for heating a motor vehicle passenger compartment
WO2009112150A2 (en) Method and device for controlling a cooktop
DE102008008020B4 (en) Method for identifying error events in a cooking appliance with at least one nozzle and cooking appliance for carrying out such a method
DE102008038733B4 (en) Method for preventing overheating damage to a solar thermal system
EP2597380A2 (en) Device, method, computer program and hot water tank for regulating a temperature
EP2840331B1 (en) Method for stagnation detection and stagnation prevention in heat exchangers
WO2016023625A1 (en) Method for operating a fluid circuit of a motor vehicle, and corresponding fluid circuit
EP0433215B1 (en) Method and apparatus for controlling the hotwater circulation in a gas fired waterheater
EP1373801B1 (en) Method and device for monitoring burners
EP3339827B1 (en) Core temperature sensor for a cooking device, method for detecting the setting of a core temperature sensor and method for determining the thermal conductivity of a cooking device
EP2218972B1 (en) Method for operating a heater and heater
DE1907987A1 (en) Forced flow heater for heat carriers consisting of organic liquids
DE102015218120B4 (en) Method for operating a heating device for heating water, heating device and dishwasher
EP2280230A2 (en) Method for monitoring the contamination of a heat exchanger on a heater
DE102020109009B3 (en) Method and device for monitoring the switching position of a directional control valve in a cooling system
EP2851629A1 (en) Heating system
EP1460355A1 (en) Method for monitoring a water boiler system and apparatus for carrying out the method
EP2172718B1 (en) Method for extending the working life of a solar collector and solar collector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150814

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1065292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010042

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2710150

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010042

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190804

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220727

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 10

Ref country code: ES

Payment date: 20230901

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1065292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240729

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240820

Year of fee payment: 11