EP2840331A1 - Method for stagnation detection and stagnation prevention in heat exchangers - Google Patents
Method for stagnation detection and stagnation prevention in heat exchangers Download PDFInfo
- Publication number
- EP2840331A1 EP2840331A1 EP14179617.7A EP14179617A EP2840331A1 EP 2840331 A1 EP2840331 A1 EP 2840331A1 EP 14179617 A EP14179617 A EP 14179617A EP 2840331 A1 EP2840331 A1 EP 2840331A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transfer medium
- boiling
- heat transfer
- heated
- threshold value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000001514 detection method Methods 0.000 title description 5
- 230000002265 prevention Effects 0.000 title 1
- 238000009835 boiling Methods 0.000 claims abstract description 28
- 238000012546 transfer Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2007—Arrangement or mounting of control or safety devices for water heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/215—Temperature of the water before heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/219—Temperature of the water after heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/242—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/335—Control of pumps, e.g. on-off control
- F24H15/34—Control of the speed of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/36—Control of heat-generating means in heaters of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/305—Control of valves
- F24H15/325—Control of valves of by-pass valves
Definitions
- the invention relates to a method for detecting and avoiding stagnation in heat exchangers, in particular in primary heat exchangers in heaters, in particular in condensing heaters, which transfer the heat of the fuel to the water to be heated and in which a flow is carried out by a plurality of parallel pipes
- Stagnation in the context of heat exchangers is understood to mean a local or global boiling of the heat transfer medium. This can lead to partial overheating and damage to the heat exchanger in one or more of the parallel connected tubes. Therefore, it is important to avoid stagnation and, in the event that it occurs, to recognize reliably in order to be able to initiate countermeasures in good time. While it is known that a heat exchanger with a large volume of heat transfer medium is less prone to stagnation, this is in conflict with the desire to make heaters compact and light in weight.
- a characteristic process variable is detected for the occurrence of micro-boiling, which precedes the boiling effecting the stagnation, and is compared with a threshold value. If the threshold is exceeded, a threat of boiling and thus stagnation is detected and at least one operating parameter is changed so that the stagnation is counteracted.
- the variance of the pressure of the heat transfer medium to be heated is detected and compared with a threshold value.
- This process step takes advantage of the fact that boiling is preceded by so-called micro-boiling, in which small gas bubbles are formed in the region of the boundary layer of the flow, and after a short time collapse again in colder regions. This mechanism leads to an increase of the noise value on the pressure signal of the system pressure sensor.
- the variance about the mean value is determined in each case over time segments, for example over 1 s. If the variance exceeds a threshold, for example 3000 mbar 2 , microsilking is diagnosed. To avoid a false alarm, for example, in the case of diagnosed microsolvency, a counter may be incremented, for example by 10, the counter for undiagnosed microsilking is decremented by the same or a smaller value, for example by 5. If the counter exceeds a predetermined counter reading, for example 250, then this is an indication that repeated microsyring has occurred over a relatively long period of time.
- a threshold for example 3000 mbar 2
- a counter may be incremented, for example by 10
- the counter for undiagnosed microsilking is decremented by the same or a smaller value, for example by 5. If the counter exceeds a predetermined counter reading, for example 250, then this is an indication that repeated microsyring has occurred over a relatively long period of time.
- microsilking is detected.
- frequencies above 20 Hz or preferably above 100 Hz can be detected.
- the signal power or the signal level of the high-frequency component is compared with a threshold value.
- the ratio to the quasi-static fraction is formed and compared with a threshold value.
- the characteristic process variable is the negative gradient of the temperature spread between input and output for the heat transfer medium of the heat carrier to be heated. In order to measure the temperature spread reliably, this is done in quasi-stationary operation.
- the design makes use of the fact that, when stagnation occurs, the heat transfer to the heat transfer medium is impaired, since no or a significantly reduced circulation occurs in one or more of the pipes connected in parallel. This leads with respect to the total volume flow to the Verteill. Mixing points in the heat exchanger to a lower temperature spread, which is detected according to the invention and compared with a threshold value.
- Another effect is that under quasi-steady-state operating conditions, ie with a constant burner load and constant water circulation, the stagnation with several pipes connected in parallel leads to an increase in the volume flow of the pipes not affected by the boiling. This means that the temperature difference between the inlet and outlet of the heat exchanger drops in the remaining pipes. If the negative gradient of the temperature spread exceeds the threshold value, either the stagnation is detected and a measure initiated or another operating parameter is used.
- the embodiment described above is also suitable for detecting local boiling.
- the mass flow of the heat transfer medium to be heated is briefly increased before starting the burner of the heater.
- gas bubbles present in the water circuit are optionally expelled from the heat exchanger and divided into smaller bubbles by means of the turbulent flow conditions present in the pump, which have a markedly reduced tendency to stagnate due to the lower buoyancy forces.
- FIG. 1 schematically shows a heater for performing the method according to the invention.
- the heater 1 comprises a burner 3 with a heat exchanger 2, with which the heat obtained from the burner 3 is transferred to a heat transfer medium.
- the heat transfer medium is usually water, which is circulated in a circuit by a pump 4.
- the heater 1 is connected to a heat sink 5 provided by the heater 1 is supplied with heat. In the heat exchanger 2, stagnation due to boiling water may occur.
- a control device 11 is provided, which is connected to temperature sensors 6, 7 and / or a pressure sensor 8.
- control unit recognizes on the basis of the method according to the invention the entering or announcing stagnation and avoids the occurrence of stagnation by intervention in the rotational speed of the pump 4, in the operation of the burner 3 and / or in the position of the valve. 9 ,
- FIG. 2 shows in the course of temperature 20, the time course of the temperatures 21, 22 at the output and input of the heat exchanger 2 from FIG. 1 , which was recorded with the temperature sensors 6 and 7, and in the pressure curve 30, the time course of the with the pressure sensor 8 from FIG. 1 measured system pressure 32, the variance 33 and the measured directly at the heat exchanger 2 pressure 31st
- the course of the pressure 31 at the heat exchanger 2 has at 478 s an onset of high-frequency content. This weakens at 480 s, then rises sharply at 498 s. This is due to the onset of 478 s microsilusion, which then boils at 498 s.
- the pressure fluctuations are due to the formation and in particular to the collapse of vapor bubbles.
- the course of the system pressure 32 has these high-frequency components also, but in a lower amplitude. This is due to the fact that the pressure sensor 8 is provided for the system pressure at a certain distance from the heat exchanger.
- the course of the pressure can be clearly recognized.
- this threshold can be set so that the micro-boiling is already detected.
- the course of the pressure can be used as a further criterion. In any case, when a higher threshold is exceeded, the boiling, as occurs in the range from 498 s, and thus the stagnation certainly recognizable.
- the temperature profile 22 at the entrance of the heat exchanger 2 is almost constant, can be seen from the temperature profile 21 at the output of the heat exchanger microsolutions and boiling.
- the gradient between the temperatures at the output side of the heat exchanger and the input side is negative. This is monitored according to the invention by comparing the negative gradient in the quasi-stationary operation with a threshold value, and used for the detection of stagnation.
- the sudden temperature increase at 500 s is due to a vapor bubble formation, through which the heated water is pushed out. In principle, it is also possible to evaluate such curves for detecting the stagnation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Erkennung und Vermeidung von Sieden in Primär-Wärmeübertragern 2 in Heizgeräten 1, insbesondere Brennwert-Heizgeräten. Es werden eine oder mehrere das Sieden oder Mikrosieden charakterisierende Prozessgrößen 21, 22, 32, 33 erfasst und mit einem Schwellenwert verglichen. Bei Überschreiten des Schwellenwerts wird zumindest ein Betriebsparameter geändert wird, der einem Sieden entgegenwirkt.The invention relates to a method for detecting and avoiding boiling in primary heat exchangers 2 in heaters 1, in particular condensing heaters. One or more of the boiling or micro-boiling characterizing process variables 21, 22, 32, 33 are detected and compared with a threshold value. When the threshold is exceeded, at least one operating parameter is changed, which counteracts boiling.
Description
Die Erfindung betrifft ein Verfahren zur Erkennung und Vermeidung von Stagnation in Wärmeübertragern, insbesondere in Primär-Wärmeübertragern in Heizgeräten, insbesondere in Brennwert-Heizgeräten, die die Wärme des Brennstoffs auf das zu heizende Wasser übertragen und in denen eine Strömungsführung durch mehrere parallel geschaltete Rohre erfolgt. Unter Stagnation im Zusammenhang mit Wärmetauschern wird ein lokales oder globales Sieden des Wärmeübertragermediums verstanden. Dies kann zu einer partiellen Überhitzung und Beschädigung des Wärmeübertragers in einem oder mehreren der parallel geschalteten Rohre führen. Daher ist es wichtig, Stagnation zu vermeiden und für den Fall, dass sie auftritt, zuverlässig zu erkennen, um rechtzeitig Gegenmaßnahmen einleiten zu können. Es ist zwar bekannt, dass ein Wärmetauscher mit einem großen Wärmeübertragermedium-Volumen weniger zur Stagnation neigt, jedoch steht dies in einem Zielkonflikt zu dem Bestreben, Heizgeräte kompakt und mit geringem Gewicht aufzubauen.The invention relates to a method for detecting and avoiding stagnation in heat exchangers, in particular in primary heat exchangers in heaters, in particular in condensing heaters, which transfer the heat of the fuel to the water to be heated and in which a flow is carried out by a plurality of parallel pipes , Stagnation in the context of heat exchangers is understood to mean a local or global boiling of the heat transfer medium. This can lead to partial overheating and damage to the heat exchanger in one or more of the parallel connected tubes. Therefore, it is important to avoid stagnation and, in the event that it occurs, to recognize reliably in order to be able to initiate countermeasures in good time. While it is known that a heat exchanger with a large volume of heat transfer medium is less prone to stagnation, this is in conflict with the desire to make heaters compact and light in weight.
Daher ist es bekannt, Geräte mit einem Überströmventil auszustatten, das bei Vorliegen eines zu geringen Volumenstroms durch die Anlage einen Teilstrom direkt zwischen Vor- und Rücklauf vorsieht.Therefore, it is known to equip devices with an overflow valve, which provides a partial flow directly between the flow and return in the presence of too low a flow rate through the system.
Da hohe Volumenströme mit einer hohen elektrischen Stromaufnahme für die Umwälzpumpe verbunden sind, ist dies energetisch ungünstig. Zudem führen Überströmventile zu einer Beimischung von Wärmeträgermedium aus dem Vorlauf in den Rücklauf und schmälern somit bei Brennwertgeräten die Kondensationsrate, was zu einer verringerten Effizienz führt.Since high volume flows are associated with a high electrical current consumption for the circulation pump, this is energetically unfavorable. In addition, overflow valves lead to a Admixture of heat transfer medium from the flow in the return and thus reduce the condensing rate in condensing units, resulting in a reduced efficiency.
Es ist daher Aufgabe der Erfindung, ein Verfahren zur Stagnationserkennung und Stagnationsvermeidung bereitzustellen, das diese Nachteile nicht aufweist.It is therefore an object of the invention to provide a method for stagnation detection and stagnation avoidance, which does not have these disadvantages.
Diese Aufgabe wird gemäß den Merkmalen des Anspruchs 1 dadurch gelöst, dass eine für das Auftreten Mikrosieden, welches dem die Stagnation bewirkenden Sieden vorausgeht, charakteristische Prozessgröße erfasst und mit einem Schwellenwert verglichen wird. Bei Überschreiten des Schwellenwerts wird ein drohendes Sieden und somit eine Stagnation erkannt und zumindest ein Betriebsparameter so geändert, dass der Stagnation entgegengewirkt wird. Dies hat den Vorteil, dass die Nachteile eines höheren Energieverbrauchs der Pumpe oder einer schlechteren Effizienz des Heizgeräts nur dann auftreten, wenn eine Stagnation droht. Im Normalbetrieb hingegen kann das Heizgerät effizient betrieben werden.This object is achieved in accordance with the features of claim 1 in that a characteristic process variable is detected for the occurrence of micro-boiling, which precedes the boiling effecting the stagnation, and is compared with a threshold value. If the threshold is exceeded, a threat of boiling and thus stagnation is detected and at least one operating parameter is changed so that the stagnation is counteracted. This has the advantage that the disadvantages of a higher energy consumption of the pump or a poorer efficiency of the heater only occur when stagnation threatens. In normal operation, however, the heater can be operated efficiently.
In einer vorteilhaften Ausführung des erfindungsgemäßen Verfahrens wird die Varianz des Drucks des zu erwärmenden Wärmeträgermediums erfasst und mit einem Schwellenwert verglichen. Dieser Verfahrensschritt macht sich die Tatsache zu Nutze, dass dem Sieden ein so genanntes Mikrosieden vorausgeht, bei dem im Bereich der Grenzschicht der Strömung kleine Gasblasen gebildet werden, die nach kurzer Zeit in kälteren Regionen wieder kollabieren. Dieser Mechanismus führt zu einer Erhöhung des Rauschwerts auf dem Drucksignal des Anlagendrucksensors.In an advantageous embodiment of the method according to the invention, the variance of the pressure of the heat transfer medium to be heated is detected and compared with a threshold value. This process step takes advantage of the fact that boiling is preceded by so-called micro-boiling, in which small gas bubbles are formed in the region of the boundary layer of the flow, and after a short time collapse again in colder regions. This mechanism leads to an increase of the noise value on the pressure signal of the system pressure sensor.
In einer Weiterbildung des Verfahrens wird beispielsweise die Varianz um den Mittelwert jeweils über Zeitabschnitte, beispielsweise über 1 s, ermittelt. Überschreitet die Varianz einem Schwellenwert, zum Beispiel 3000 mbar2, wird Mikrosieden diagnostiziert. Um ein Fehlalarm zu vermeiden, kann beispielsweise bei diagnostiziertem Mikrosieden ein Zähler inkrementiert werden, beispielsweise um 10, wobei der Zähler bei nicht diagnostiziertem Mikrosieden um den gleichen oder um einen kleineren Wert, beispielsweise um 5, dekrementiert wird. Über schreitet der Zähler einen vorgegebenen Zählerstand, beispielsweise 250, so ist dies ein Indiz dafür, dass über einen längeren Zeitraum wiederholt Mikrosieden aufgetreten ist.In one development of the method, for example, the variance about the mean value is determined in each case over time segments, for example over 1 s. If the variance exceeds a threshold, for example 3000 mbar 2 , microsilking is diagnosed. To avoid a false alarm, for example, in the case of diagnosed microsolvency, a counter may be incremented, for example by 10, the counter for undiagnosed microsilking is decremented by the same or a smaller value, for example by 5. If the counter exceeds a predetermined counter reading, for example 250, then this is an indication that repeated microsyring has occurred over a relatively long period of time.
Alternativ wird durch Erfassung der Signalstreuung um den Mittelwert, beispielsweise mit Hilfe eines Hochpassfilters, das Mikrosieden erkannt. Dabei können Frequenzen oberhalb 20 Hz oder bevorzugt oberhalb 100 Hz erfasst werden. Dabei wird der Signalleistung oder der Signalpegel des hochfrequenten Anteils mit einem Schwellenwert verglichen. Alternativ wird das Verhältnis zum quasistatischen Anteil gebildet und mit einem Schwellenwert verglichen.Alternatively, by detecting the signal dispersion around the mean value, for example with the aid of a high-pass filter, microsilking is detected. In this case, frequencies above 20 Hz or preferably above 100 Hz can be detected. In this case, the signal power or the signal level of the high-frequency component is compared with a threshold value. Alternatively, the ratio to the quasi-static fraction is formed and compared with a threshold value.
Alternativ oder ergänzend wird in einer weiteren vorteilhaften Ausführung des erfindungsgemäßen Verfahrens ist die charakteristische Prozessgröße der negative Gradient der Temperaturspreizung zwischen Ein- und Ausgang für das zu erwärmenden Wärmeträgermedium des Wärmeträgers. Um die Temperaturspreizung zuverlässig messen zu können, erfolgt dies in quasistationären Betrieb. Die Ausführung macht sich die Tatsache zu Nutze, dass bei Auftreten von Stagnation der Wärmeübergang auf das Wärmeträgermedium beeinträchtigt wird, da sich bei einem oder mehreren der parallel geschaltete Rohre kein oder ein deutlich reduzierter Umlauf einstellt. Dies führt bezüglich des Gesamtvolumenstromes an den Verteilbzw. Mischungspunkten im Wärmeübertrager zu einer geringeren Temperaturspreizung, die erfindungsgemäß erfasst und mit einem Schwellenwert verglichen wird. Ein weiterer Effekt ist, dass unter quasistationären Betriebsbedingungen, also bei konstanter Brennerbelastung und konstantem Wasserumlauf, die Stagnation bei mehreren parallelgeschalteten Rohren zu einer Volumenstromerhöhung der nicht von dem Sieden betroffenen Rohre führt. Dies bedeutet, dass in den verbleibenden Rohren die Temperaturspreizung zwischen Ein- und Ausgang des Wärmetauschers sinkt. Überschreitet der negative Gradient der Temperaturspreizung den Schwellenwert, wird entweder die Stagnation erkannt und eine Maßnahme eingeleitet oder es wird ein weiterer Betriebsparameter herangezogen.Alternatively or additionally, in a further advantageous embodiment of the method according to the invention, the characteristic process variable is the negative gradient of the temperature spread between input and output for the heat transfer medium of the heat carrier to be heated. In order to measure the temperature spread reliably, this is done in quasi-stationary operation. The design makes use of the fact that, when stagnation occurs, the heat transfer to the heat transfer medium is impaired, since no or a significantly reduced circulation occurs in one or more of the pipes connected in parallel. This leads with respect to the total volume flow to the Verteilbzw. Mixing points in the heat exchanger to a lower temperature spread, which is detected according to the invention and compared with a threshold value. Another effect is that under quasi-steady-state operating conditions, ie with a constant burner load and constant water circulation, the stagnation with several pipes connected in parallel leads to an increase in the volume flow of the pipes not affected by the boiling. This means that the temperature difference between the inlet and outlet of the heat exchanger drops in the remaining pipes. If the negative gradient of the temperature spread exceeds the threshold value, either the stagnation is detected and a measure initiated or another operating parameter is used.
Aus diesen Gründen ist die zuvor beschriebene Ausführungsvariante ebenso geeignet, lokales Sieden zu erkennen.For these reasons, the embodiment described above is also suitable for detecting local boiling.
Erfindungsgemäß werden alternativ oder ergänzend mehrere Maßnahmen zur Vermeidung von Stagnation eingesetzt, nachdem diese erkannt wurde. Dies ist zum einen das Erhöhen des Massenstroms, indem die Pumpendrehzahl erhöht wird oder indem ein Bypass zwischen Aus- und Eingang des Wärmeübertragers geschaltet wird. Dadurch wird einerseits mehr Wärme abgeführt und andererseits ein Ausspülen der Dampfblasen bewirkt. Zusätzlich oder alternativ wird der Brenner abgeschaltet bzw. die Brennerleistung reduziert.According to the invention, alternatively or additionally, several measures are used to prevent stagnation after it has been detected. This is on the one hand the increase of the mass flow by the pump speed is increased or by a bypass between the output and input of the heat exchanger is switched. As a result, on the one hand more heat dissipated and on the other hand causes a flushing of the vapor bubbles. Additionally or alternatively, the burner is switched off or the burner power is reduced.
In einer vorteilhaften Weiterbildung der Erfindung wird vor dem Starten des Brenners des Heizgeräts der Massenstrom des zu erwärmenden Wärmeträgermediums kurzzeitig erhöht. Dadurch werden gegebenenfalls im Wasserkreis vorhandene Gasblasen aus dem Wärmeübertrager ausgetrieben und mittels der in der Pumpe vorliegenden turbulenten Strömungsbedingungen in kleinere Blasen zerteilt, die aufgrund der geringeren Auftriebskräfte eine deutlich verminderte Stagnationsneigung aufweisen.In an advantageous embodiment of the invention, the mass flow of the heat transfer medium to be heated is briefly increased before starting the burner of the heater. As a result, gas bubbles present in the water circuit are optionally expelled from the heat exchanger and divided into smaller bubbles by means of the turbulent flow conditions present in the pump, which have a markedly reduced tendency to stagnate due to the lower buoyancy forces.
Die Erfindung wird nun anhand der Figuren detailliert erläutert.The invention will now be explained in detail with reference to FIGS.
Anhand der Kurvenverläufe wird nachfolgend das Auftreten und Erkennen von Sieden erläutert. Der Verlauf des Drucks 31 am Wärmeübertrager 2 weist bei 478 s einen einsetzenden hochfrequenten Anteil auf. Dieser schwächt sich bei 480 s ab, um dann bei 498 s sehr stark anzusteigen. Dies ist auf ein bei 478 s einsetzendes Mikrosieden zurückzuführen, dass dann bei 498 s zu einem Sieden übergeht. Die Druckschwankungen sind auf die Bildung und insbesondere auf das Kollabieren von Dampfblasen zurückzuführen. Der Verlauf des Anlagendrucks 32 weist diese hochfrequenten Anteile ebenfalls auf, allerdings in geringerer Amplitude. Dies ist darauf zurückzuführen, dass der Drucksensor 8 für den Anlagendruck in einem gewissen Abstand vom Wärmeübertrager vorgesehen ist. Dennoch kann durch eine Ermittlung der Varianz des Anlagendrucks, deren Verlauf in der Kurve 33 dargestellt ist, das Mikrosieden und das Sieden deutlich erkannt werden. Durch Vergleich mit einem Schwellenwert kann somit das Mikrosieden und das Sieden erkannt werden und eine Maßnahme zur Vermeidung von Stagnation eingeleitet werden. In vorteilhafter Weise kann diese Schwelle so gelegt werden, dass bereits das Mikrosieden erkannt wird. Hier ist jedoch das Risiko einer Fehlerkennung gegeben. Daher kann optional oder alternativ der Verlauf des Drucks als weiteres Kriterium mit herangezogen werden. In jedem Fall ist bei Überschreiten einer höheren Schwelle das Sieden, wie es im Bereich ab 498 s auftritt, und damit die Stagnation sicher erkennbar.Based on the curves, the occurrence and detection of boiling will be explained below. The course of the
Während der Temperaturverlauf 22 am Eingang des Wärmeübertragers 2 nahezu konstant ist, lässt sich aus dem Temperaturverlauf 21 am Ausgang des Wärmeübertragers Mikrosieden und Sieden erkennen. Zunächst steigt die Temperatur im Bereich zwischen 475 und 477 s an. Dies ist auf einen Aufheizvorgang zurückzuführen und ist für die hier beschriebene Erkennung ohne Belang. Ab ca. 480 s fällt jedoch die Temperatur ab, was aufgrund der zuvor beschriebenen Mechanismen ein Indiz für das Auftreten von Sieden ist. Somit ist der Gradient zwischen den Temperaturen an der Ausgangsseite des Wärmeübertragers und der Eingangsseite negativ. Dies wird erfindungsgemäß überwacht, indem der negative Gradient im quasistationären Betrieb mit einem Schwellenwert verglichen wird, und für die Erkennung der Stagnation herangezogen. Ergänzend sei bemerkt, dass der sprungartige Temperaturanstieg bei 500 s auf eine Dampfblasenbildung zurückzuführen ist, durch die das erhitzte Wasser heraus gedrückt wird. Grundsätzlich ist es möglich, auch solche Kurvenverläufe zum Erkennen der Stagnation auszuwerten.While the
- 11
- Heizgerätheater
- 22
- WärmeübertragerHeat exchanger
- 33
- Brennerburner
- 44
- Pumpepump
- 55
- Wärmesenkeheat sink
- 66
- Temperatursensor am AusgangTemperature sensor at the output
- 77
- Temperatursensor am EingangTemperature sensor at the entrance
- 88th
- Drucksensorpressure sensor
- 99
- VentilValve
- 1010
- Bypassbypass
- 1111
- Steuergerätcontrol unit
- 2020
- Temperaturverlauftemperature curve
- 2121
- Temperatur am Ausgang des WärmeübertragersTemperature at the outlet of the heat exchanger
- 2222
- Temperatur am Eingang des WärmeübertragersTemperature at the entrance of the heat exchanger
- 3030
- Druckverlaufpressure curve
- 3131
- Druck am WärmeübertragerPressure at the heat exchanger
- 3232
- Anlagendrucksystem pressure
- 3333
- Varianz des AnlagendrucksVariance of system pressure
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA622/2013A AT514681B1 (en) | 2013-08-05 | 2013-08-05 | Method for detecting and avoiding boiling in heat exchangers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2840331A1 true EP2840331A1 (en) | 2015-02-25 |
EP2840331B1 EP2840331B1 (en) | 2018-11-14 |
Family
ID=51298558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14179617.7A Active EP2840331B1 (en) | 2013-08-05 | 2014-08-04 | Method for stagnation detection and stagnation prevention in heat exchangers |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2840331B1 (en) |
AT (1) | AT514681B1 (en) |
ES (1) | ES2710150T3 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822843A (en) * | 1981-07-30 | 1983-02-10 | Sanyo Electric Co Ltd | Solar heat collecting apparatus |
JPS58140555A (en) * | 1982-02-16 | 1983-08-20 | Hitachi Chem Co Ltd | Temperature control device for hot water storing type water heating apparatus |
EP0380369A1 (en) * | 1989-01-26 | 1990-08-01 | Otter Controls Limited | Controls for electrically powered heating elements |
WO1996025869A1 (en) * | 1995-02-20 | 1996-08-29 | Pifco Limited | Improvements to liquid boiling apparatus |
JP2005050713A (en) * | 2003-07-30 | 2005-02-24 | Mitsubishi Electric Corp | Heating cooker |
GB2452981A (en) * | 2007-09-21 | 2009-03-25 | Otter Controls Ltd | Flow-through liquid heating apparatus |
WO2009095751A2 (en) * | 2008-01-29 | 2009-08-06 | Michael Von Seidel | Culinary electric hot water appliance with automatic switch |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01289265A (en) * | 1988-05-17 | 1989-11-21 | Ricoh Co Ltd | Dividing of substrate |
JPH05272805A (en) * | 1992-03-25 | 1993-10-22 | Rinnai Corp | Hot water feeding controller |
JPH06123489A (en) * | 1992-10-08 | 1994-05-06 | Matsushita Electric Ind Co Ltd | Hot water supplier |
JP3880130B2 (en) * | 1997-04-30 | 2007-02-14 | 株式会社ガスター | One can two water channel hot water supply apparatus and control method thereof |
JP3862856B2 (en) * | 1998-04-20 | 2006-12-27 | パロマ工業株式会社 | Water heater with thermal insulation function |
EP2682582B1 (en) * | 2011-03-03 | 2016-12-21 | Toyota Jidosha Kabushiki Kaisha | Warmup acceleration device for internal combustion engine |
-
2013
- 2013-08-05 AT ATA622/2013A patent/AT514681B1/en not_active IP Right Cessation
-
2014
- 2014-08-04 ES ES14179617T patent/ES2710150T3/en active Active
- 2014-08-04 EP EP14179617.7A patent/EP2840331B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822843A (en) * | 1981-07-30 | 1983-02-10 | Sanyo Electric Co Ltd | Solar heat collecting apparatus |
JPS58140555A (en) * | 1982-02-16 | 1983-08-20 | Hitachi Chem Co Ltd | Temperature control device for hot water storing type water heating apparatus |
EP0380369A1 (en) * | 1989-01-26 | 1990-08-01 | Otter Controls Limited | Controls for electrically powered heating elements |
WO1996025869A1 (en) * | 1995-02-20 | 1996-08-29 | Pifco Limited | Improvements to liquid boiling apparatus |
JP2005050713A (en) * | 2003-07-30 | 2005-02-24 | Mitsubishi Electric Corp | Heating cooker |
GB2452981A (en) * | 2007-09-21 | 2009-03-25 | Otter Controls Ltd | Flow-through liquid heating apparatus |
WO2009095751A2 (en) * | 2008-01-29 | 2009-08-06 | Michael Von Seidel | Culinary electric hot water appliance with automatic switch |
Also Published As
Publication number | Publication date |
---|---|
EP2840331B1 (en) | 2018-11-14 |
ES2710150T3 (en) | 2019-04-23 |
AT514681A1 (en) | 2015-02-15 |
AT514681B1 (en) | 2015-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3145273B1 (en) | Heating device for heating water and a method for operating such a heating device | |
EP2613097B2 (en) | Heating device | |
EP3088800A1 (en) | Heating device for heating liquids, evaporator for an electric cooking apparatus and method for operating a heating device | |
EP3182813A1 (en) | Inverter cooler system | |
EP2700940A1 (en) | Method and device for measuring the gas content of a liquid and use of such a device | |
DE102015016247B3 (en) | heater | |
EP2680682B1 (en) | Method for controlling the function of a cooling system of an inverter and inverter | |
WO1997002516A1 (en) | Heating appliance, in particular for heating a motor vehicle passenger compartment | |
WO2009112150A2 (en) | Method and device for controlling a cooktop | |
DE102008008020B4 (en) | Method for identifying error events in a cooking appliance with at least one nozzle and cooking appliance for carrying out such a method | |
DE102008038733B4 (en) | Method for preventing overheating damage to a solar thermal system | |
EP2597380A2 (en) | Device, method, computer program and hot water tank for regulating a temperature | |
EP2840331B1 (en) | Method for stagnation detection and stagnation prevention in heat exchangers | |
WO2016023625A1 (en) | Method for operating a fluid circuit of a motor vehicle, and corresponding fluid circuit | |
EP0433215B1 (en) | Method and apparatus for controlling the hotwater circulation in a gas fired waterheater | |
EP1373801B1 (en) | Method and device for monitoring burners | |
EP3339827B1 (en) | Core temperature sensor for a cooking device, method for detecting the setting of a core temperature sensor and method for determining the thermal conductivity of a cooking device | |
EP2218972B1 (en) | Method for operating a heater and heater | |
DE1907987A1 (en) | Forced flow heater for heat carriers consisting of organic liquids | |
DE102015218120B4 (en) | Method for operating a heating device for heating water, heating device and dishwasher | |
EP2280230A2 (en) | Method for monitoring the contamination of a heat exchanger on a heater | |
DE102020109009B3 (en) | Method and device for monitoring the switching position of a directional control valve in a cooling system | |
EP2851629A1 (en) | Heating system | |
EP1460355A1 (en) | Method for monitoring a water boiler system and apparatus for carrying out the method | |
EP2172718B1 (en) | Method for extending the working life of a solar collector and solar collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140804 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20150814 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160407 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180627 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1065292 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014010042 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2710150 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190214 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190215 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014010042 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190804 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20220727 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230829 Year of fee payment: 10 Ref country code: ES Payment date: 20230901 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1065292 Country of ref document: AT Kind code of ref document: T Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230804 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240729 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240729 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240724 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240820 Year of fee payment: 11 |