EP2838679A2 - Method for the production of a hollow metal part by means of casting - Google Patents

Method for the production of a hollow metal part by means of casting

Info

Publication number
EP2838679A2
EP2838679A2 EP13719995.6A EP13719995A EP2838679A2 EP 2838679 A2 EP2838679 A2 EP 2838679A2 EP 13719995 A EP13719995 A EP 13719995A EP 2838679 A2 EP2838679 A2 EP 2838679A2
Authority
EP
European Patent Office
Prior art keywords
core
shell
support members
mold
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13719995.6A
Other languages
German (de)
French (fr)
Inventor
Yves Longa
Jean DE RUFFRAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTIF -Centre Technique des Industries de la Fonderie
Original Assignee
CTIF -Centre Technique des Industries de la Fonderie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTIF -Centre Technique des Industries de la Fonderie filed Critical CTIF -Centre Technique des Industries de la Fonderie
Publication of EP2838679A2 publication Critical patent/EP2838679A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C21/00Flasks; Accessories therefor
    • B22C21/12Accessories
    • B22C21/14Accessories for reinforcing or securing moulding materials or cores, e.g. gaggers, chaplets, pins, bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/106Vented or reinforced cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity

Definitions

  • the present disclosure relates to a method of manufacturing a hollow metal part by casting and, more particularly, by die casting.
  • Such a method is particularly useful for the manufacture of parts which have an internal recess and which, therefore, are not demoldable directly, such as, for example, a fluid circulation duct or a semi-closed container (eg a casing ).
  • the foundry includes processes for forming metals (i.e. pure metals and alloys) which consist of casting a liquid metal in a mold to produce, after cooling, a given piece, limiting as much as possible the subsequent work of finishing on this piece.
  • metals i.e. pure metals and alloys
  • the liquid metal is injected into the mold under a significant injection pressure, typically between 100 and 1200 bar (i.e. 10 and 120 MPa).
  • the injection speed in the mold is typically between 10 m / s and 80 m / s and the temperature of the liquid metal is typically between 400 and 980 ° C.
  • pressure molding is often reserved for large-scale production for markets such as automotive or household appliances, because of the high price of tools (molds and cutting tools).
  • the smelter molds two half-parts which are then assembled mechanically by welding or gluing.
  • This solution is not satisfactory because, on the one hand, it requires two molding tools (one for each half-part) and, on the other hand, the step assembly is delicate because of the required sealing at the assembly area.
  • the present disclosure relates to a method of manufacturing a hollow metal piece, by casting, in which:
  • a destructible core comprising a body made of aggregated compounds, and a shell which surrounds and adheres to the body;
  • the kernel is arranged in a mold
  • the body of the core is disintegrated and evacuated via discharge orifices formed in the carapace and in the part;
  • the carapace is destroyed and evacuated via evacuation orifices formed in the room.
  • the core used here differs from conventional cores used in gravity foundry, in particular by the fact that it has a shell enabling it to mechanically resist the stresses exerted by the liquid metal during the injection. Without this shell, the core would disintegrate under these constraints.
  • the shell adheres to the body of the core to avoid a separation of the shell and the body during injection, and as the shell rests on the body, the latter takes some of the constraints during injection.
  • Such a manufacturing method is particularly interesting in die casting because the stresses exerted by the liquid metal during the injection are high and the carapace of the core is then of interest.
  • the mechanical strength of the shell is sufficient to resist the under-pressure injection of the liquid metal and, during molding, the liquid metal is injected under pressure into the mold, around the core.
  • this manufacturing process could be used in foundry in other applications such as low-pressure molding or gravity casting (eg for ferrous alloys and non-ferrous alloys, in metal or non-metallic molds)
  • the choice of the constituent material of the shell is made according to the good mechanical strength of this material, and its good adhesion to the core. Examples of materials are given below, but a person skilled in the art could easily, in view of this disclosure, consider others.
  • the material constituting the shell also has one or more of the following properties:
  • the carapace of the core is made, for example, based on particles aggregated by a binder (s) of organic nature (eg polyurethane), mineral (eg silicate, colloidal silica, ethyl silicate, low-point metals). fusion) or hydraulic (eg plaster, cement, lime).
  • a binder eg polyurethane
  • mineral eg silicate, colloidal silica, ethyl silicate, low-point metals.
  • fusion eg plaster, cement, lime
  • the particles may be ceramic, calcined clay, with or without zircon. They can result from the recycling of an old carapace.
  • the shell is metallic.
  • the core body is, for example, foundry sand or cast plaster, possibly loaded with fibers.
  • the binder used to aggregate the core compounds may be hydraulic, organic (eg cellulose) or inorganic (eg silicate).
  • the filler fibers may be organic or mineral in nature (eg linen, wood, glass).
  • the destructible core further includes a skeleton that traverses the core body and is attached to the shell.
  • This framework can be destroyed and evacuated at the same time as the body and / or the carapace. Such a framework makes it possible to further strengthen the mechanical strength of the core.
  • the core body is made by aggregating compounds in a box provided with pins that pass through the inside of the box, so that the body, once removed from the box, presents recesses in place of the pins, and filling these recesses with a material constituting the framework, for example by dipping the body of the core in a slip, injecting (under low pressure) this slip or by gravity flow the slip in a container.
  • the recesses and corresponding framing members may pass right through, or only partially, the core body.
  • the core body is dipped one or more times in one or more slips, so as to cover the body with one or more layers of curable material.
  • a slip plaster can be used.
  • the core body may be first dipped in a first slip to form the optional backbone and the lower layer of the carapace, and then in other slip to form the upper layer or layers of the carapace .
  • the core body can be dipped in a first slip to form the framework and a lower layer of the shell and then in one or several other slips to form one or more upper layers of the shell. Instead of soaking, it is possible to make the shell by injection of the slip.
  • the constituent materials of the shell and the framework may be identical or different.
  • the criteria used for the materials of the shell and the frame do not necessarily correspond.
  • the framework does not come into contact with the injected metal, its chemical passivity vis-à-vis this metal is not a selection criterion.
  • the mechanical strength of the framework may be lower than that of the shell.
  • the framework is made of aggregated, disaggregated compounds. Thus, one can disaggregate and evacuate the body and the frame, in one operation, according to a method of débourrage.
  • the body of the nucleus is made by aggregation of compounds in a box provided with support members which traverse (partially or partially) the inside of the box, and
  • the shell is made around the body and the support members so that the support members pass through the shell.
  • the support members are then used to hold the core in position in the mold during injection. Depending on the position occupied by the support members in the core, these can also serve to enhance the strength of the core.
  • the support members are hollow and define exhaust passages for gases that are formed by thermal decomposition of certain core components during molding of the workpiece. This makes it possible to limit the risks of deformation related to these gases, especially when the part has thin walls.
  • the support members are extracted the piece to provide the evacuation ports through which the body of the core and / or the shell are evacuated.
  • FIG 1 shows a box for the manufacture of the body of a core.
  • FIG 2 is a side view of the core body made with the box of FIG 1.
  • FIG 3 is a perspective view of the core made with the body of FIG 2.
  • FIG 4 is a sectional view of a mold in which is disposed the core of FIG 3.
  • FIG 5 is a perspective view of a hollow metal piece obtained by casting in the mold of FIG 4.
  • FIG 1 shows a box 10 for the manufacture of the body 22 of a core 20.
  • This box comprises two half-shells 10A, 10B which, once assembled, define between them a free space 12 intended to receive the compounds which will form the core body.
  • pins 16 Inside the box, ie in the free space 12, extend pins 16.
  • these pins 16 pass through the free space 12 from one end to the other, each pin 16 being formed of two half 16A, 16B carried, respectively, by the two half-shells 10A, 10B, and located in the extension of one another, once the half-shells assembled.
  • each member 18 is traversed by an inner passage (a lumen) opening at both ends of the organ.
  • the free space 12 is filled with aggregatable compounds, for example sand grains, mixed with at least one curable resin.
  • aggregatable compounds for example sand grains
  • the resin (s) have hardened (eg by heating, or using a catalyst gas)
  • the sand grains are aggregated and form the body 22.
  • the body 22 is then extracted from the mold 10 .
  • the body 22 has recesses
  • the body 22 is immersed one or more times in one or more fluid paste baths, or slips, so as to cover the body with one or more layers of a hardenable material.
  • the hollow support members 18 are used. Typically, pins are passed inside the members 18, which allows the body 22 to be held and to plug the internal passage of the organs 18 to prevent them from filling up.
  • the deposited layer is cured, for example in air.
  • the recesses 26 of the body 22 fill to form a framework 36.
  • the framework 36 is thus composed of several elements which pass through the body 22 of the core and are connected to the shell 40.
  • the frame members pass right through the body, so that the two ends of each frame member are connected to the shell 40.
  • the first slip also forms the first or lower layer of the shell 40.
  • Other layers, if any, of the shell 40 may be obtained by dipping the body 22 in other baths of hardenable material.
  • FIG 3 shows the core 20 obtained after formation of the shell 40 around the body 22.
  • the core 20 it is possible to manufacture the core 20 from the following materials and under the following conditions: to manufacture the body 22, use is made of foundry sand pre-coated with resin and hardener and the resin is cured with its hardener.
  • the sand used is 55 finite silica AFS. The fineness of the sand can change depending on the shape and size of the core to be made.
  • the resulting body 22 is immersed in a refractory slip mixed with colloidal silica. During the first soaking the recesses 26 are filled with slip to make the frame. The body 22 is dried and returned to the slip as many times as necessary to obtain the desired shell thickness 40 after the last drying.
  • the core 20 is placed in the cavity 51 of a mold 50, as shown in FIG. 4.
  • This figure shows the mold 50 and the core 20 in section.
  • the core 20 is held in position in the mold 50 by means of hollow pins 53, integral with a portion of the mold 50, and driven into the support members 18 of the core 20.
  • the liquid metal is melted and injected into the mold, around the core 20.
  • the injection of the metal can be under-pressure, the shell 40 resistant to the stresses exerted during the injection and allowing the core 20 to maintain its integrity.
  • gases related to the thermal decomposition of certain elements (typically binders) constituents of the core 20 are advantageously discharged outside the mold 50, via the internal passages of the support members 18 and the pins 53. This evacuation is symbolized by the arrows G in FIG 4.
  • a metal part 60 which surrounds the core 20, the core 20 materializing a hollow space inside this part.
  • the core 20 is subjected to a conventional deburring process, typically mechanical and / or hydraulic.
  • the body 22 of the core then disintegrates under the combined effect of the thermal decomposition of the binders which constituted it (this decomposition taking place during the injection of the liquid metal, under the effect of the temperature of this metal) and the stresses breaking. If its composition allows it, the framework 36 can be disintegrated at the same time as the body 22. Otherwise, the frame 36 can be extracted after the body 22, for example, by subjecting the piece to a second method of breaking in.
  • the elements resulting from the disintegration of the body 22 and, possibly, the framework 36, are discharged through the end orifices 62 of the hollow tubular piece 60.
  • the support members 18 are extracted at the same time as the body 22 through these orifices 62. Note that these orifices 62 pass through the part 60 and the shell 40.
  • the discharge orifices are formed by extracting the support members 18 from the core 20.
  • the hollow tubular metal part 60 illustrated in FIG. 5 is thus obtained, the internal face of this part 60 being covered by the shell 40.
  • the shell 40 is then destroyed and discharged through the orifices 62 to obtain the piece 60 alone.
  • the shell 40 is destroyed by shot blasting or by peeling under water pressure (5 to 50 MPa) depending on the strength of the part 60.
  • the piece 60 by conventional pressure molding of an aluminum-silicon-copper alloy.
  • the injection pressure can vary from 100 bars to 1200 bars (ie 10 and 120 MPa), the flow rate of the metal can vary from 10 to 80 m / s.
  • the silicon content can vary from 2 to 20%, the copper content can vary from 0.1 to 10%.
  • the alloy Al Si 9 Cu 3 (Fe) can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Casting Devices For Molds (AREA)
  • Mold Materials And Core Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention relates to a method for the production of a hollow metal part by means of casting, said method comprising the following steps of: providing a destructible core (20) having a body (22) made from aggregates, and an outer shell (40) which surrounds the body (22) and is adhered thereto; placing the core (20) in a mould (50); melting and injecting liquid metal, generally under pressure, into the mould (50) around the core, said core (20) forming an inner space in the part; after solidification of the part, disaggregating the body and removing same through outlets provided in the outer shell and the part; and destroying the outer shell and removing same through outlets provided in the part.

Description

PROCEDE DE FABRICATION D'UNE PIECE METALLIQUE CREUSE PAR FONDERIE  METHOD OF MANUFACTURING A HOLLOW METALLIC PIECE BY FOUNDRY
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
Le présent exposé concerne un procédé de fabrication d'une pièce métallique creuse par fonderie et, plus particulièrement, par moulage sous pression.  The present disclosure relates to a method of manufacturing a hollow metal part by casting and, more particularly, by die casting.
Un tel procédé est particulièrement utile à la fabrication de pièces qui présentent un évidement intérieur et qui, de ce fait, ne sont pas démoulables directement, comme, par exemple, un conduit de circulation de fluide ou un contenant semi-fermé (e.g. un carter).  Such a method is particularly useful for the manufacture of parts which have an internal recess and which, therefore, are not demoldable directly, such as, for example, a fluid circulation duct or a semi-closed container (eg a casing ).
ETAT DE LA TECHNIQUE ANTERIEURE  STATE OF THE PRIOR ART
La fonderie regroupe les procédés de formage des métaux (i.e. métaux purs et alliages) qui consistent à couler un métal liquide dans un moule pour réaliser, après refroidissement, une pièce donnée, en limitant autant que possible les travaux ultérieurs de finition sur cette pièce.  The foundry includes processes for forming metals (i.e. pure metals and alloys) which consist of casting a liquid metal in a mold to produce, after cooling, a given piece, limiting as much as possible the subsequent work of finishing on this piece.
Dans la technique de moulage sous-pression, le métal liquide est injecté dans le moule sous une pression d'injection significative, typiquement comprise entre 100 et 1200 bars (i.e. 10 et 120 MPa). La vitesse d'injection dans le moule est typiquement comprise entre 10 m/s et 80 m/s et la température du métal liquide est typiquement comprise entre 400 et 980°C.  In the underpressure molding technique, the liquid metal is injected into the mold under a significant injection pressure, typically between 100 and 1200 bar (i.e. 10 and 120 MPa). The injection speed in the mold is typically between 10 m / s and 80 m / s and the temperature of the liquid metal is typically between 400 and 980 ° C.
En fonderie, le moulage sous-pression est souvent réservé à des productions en grande série pour des marchés comme celui de l'automobile ou de l'électroménager, du fait du prix important de l'outillage (moules et outils de découpe).  In the foundry, pressure molding is often reserved for large-scale production for markets such as automotive or household appliances, because of the high price of tools (molds and cutting tools).
Actuellement, pour mouler sous-pression une pièce creuse comme un conduit ou une cuve semi-fermée, le fondeur moule deux demi-parties qui sont ensuite assemblées mécaniquement par soudure ou collage. Cette solution n'est pas satisfaisante car, d'une part, elle nécessite deux outillages de moulage (un pour chaque demi-partie) et, d'autre part, l'étape d'assemblage est délicate du fait de l'étanchéité requise au niveau de la zone d'assemblage. Currently, to mold under pressure a hollow part such as a duct or a semi-closed tank, the smelter molds two half-parts which are then assembled mechanically by welding or gluing. This solution is not satisfactory because, on the one hand, it requires two molding tools (one for each half-part) and, on the other hand, the step assembly is delicate because of the required sealing at the assembly area.
Il existe donc un besoin pour un autre procédé de fabrication.  There is therefore a need for another manufacturing process.
PRESENTATION DE L'INVENTION  PRESENTATION OF THE INVENTION
Le présent exposé concerne un procédé de fabrication d'une pièce métallique creuse, par fonderie, dans lequel:  The present disclosure relates to a method of manufacturing a hollow metal piece, by casting, in which:
- on fournit un noyau destructible comprenant un corps fait de composés agrégés, et une carapace qui entoure ce corps et adhère à celui-ci ;  a destructible core is provided comprising a body made of aggregated compounds, and a shell which surrounds and adheres to the body;
- on dispose le noyau dans un moule ;  the kernel is arranged in a mold;
- on fait fondre et on injecte le métal liquide dans le moule, autour du noyau, le noyau matérialisant un espace intérieur de la pièce ;  - Melting and injecting the liquid metal in the mold, around the core, the core materializing an interior space of the room;
- après solidification de la pièce, on désagrège le corps du noyau et on l'évacué via des orifices d'évacuation ménagés dans la carapace et dans la pièce ; et  after solidification of the part, the body of the core is disintegrated and evacuated via discharge orifices formed in the carapace and in the part; and
- on détruit et on évacue ladite carapace via des orifices d'évacuation ménagés dans la pièce.  the carapace is destroyed and evacuated via evacuation orifices formed in the room.
Le noyau utilisé ici se distingue des noyaux conventionnels utilisés en fonderie par gravité, en particulier par le fait qu'il présente une carapace lui permettant de résister mécaniquement aux contraintes exercées par le métal liquide lors de l'injection. Sans cette carapace, le noyau se désagrégerait sous l'effet de ces contraintes. La carapace adhère au corps du noyau afin d'éviter une désolidarisation de la carapace et du corps lors de l'injection, et comme la carapace prend appui sur le corps, ce dernier reprend une partie des contraintes lors de l'injection.  The core used here differs from conventional cores used in gravity foundry, in particular by the fact that it has a shell enabling it to mechanically resist the stresses exerted by the liquid metal during the injection. Without this shell, the core would disintegrate under these constraints. The shell adheres to the body of the core to avoid a separation of the shell and the body during injection, and as the shell rests on the body, the latter takes some of the constraints during injection.
Un tel procédé de fabrication est particulièrement intéressant en moulage sous pression car les contraintes exercées par le métal liquide lors de l'injection sont élevées et la carapace du noyau présente alors tout son intérêt. Dans ce cas, la résistance mécanique de la carapace est suffisante pour résister à l'injection sous-pression du métal liquide et, lors du moulage, on injecte sous pression le métal liquide dans le moule, autour du noyau. Néanmoins, ce procédé de fabrication pourrait être utilisé en fonderie dans d'autres applications comme le moulage basse pression ou le moulage par gravité (e.g. pour des alliages ferreux et des alliages non-ferreux, en moules métalliques ou non-métalliques) Such a manufacturing method is particularly interesting in die casting because the stresses exerted by the liquid metal during the injection are high and the carapace of the core is then of interest. In this case, the mechanical strength of the shell is sufficient to resist the under-pressure injection of the liquid metal and, during molding, the liquid metal is injected under pressure into the mold, around the core. Nevertheless, this manufacturing process could be used in foundry in other applications such as low-pressure molding or gravity casting (eg for ferrous alloys and non-ferrous alloys, in metal or non-metallic molds)
Le choix du matériau constitutif de la carapace est réalisé en fonction de la bonne résistance mécanique de ce matériau, et de sa bonne adhérence au noyau. Des exemples de matériaux sont donnés ci-après mais une personne du métier pourrait facilement, au vu du présent exposé, en envisager d'autres.  The choice of the constituent material of the shell is made according to the good mechanical strength of this material, and its good adhesion to the core. Examples of materials are given below, but a person skilled in the art could easily, in view of this disclosure, consider others.
Avantageusement, le matériau constitutif de la carapace présente également une ou plusieurs des propriétés suivantes:  Advantageously, the material constituting the shell also has one or more of the following properties:
- il est passif chimiquement vis-à-vis du métal injecté et, en particulier, il ne se dissout pas dans ce dernier;  - It is chemically passive vis-à-vis the injected metal and, in particular, it does not dissolve in the latter;
- il est non-pénétrable par le métal liquide injecté sous-pression;  it is non-penetrable by the liquid metal injected under pressure;
- il présente un bon état de surface et, notamment, pas ou peu de porosités de surface. Ceci permet de détacher plus facilement la carapace de la pièce moulée et d'obtenir un bon état de surface sur les parois de l'espace intérieur de la pièce. - It has a good surface and, in particular, no or little surface porosity. This makes it easier to detach the shell from the molded part and to obtain a good surface condition on the walls of the interior space of the part.
La carapace du noyau est réalisée, par exemple, à base de particules agrégées par un (des) liant(s) de nature organique (e.g. polyuréthane), minérale (e.g. silicate, silice colloïdale, silicate d'éthyle, métaux à bas point de fusion) ou hydraulique (e.g. plâtre, ciment, chaux). Les particules peuvent être en céramique, argile calcinée, avec ou sans zircon. Elles peuvent résulter du recyclage d'une vielle carapace. Selon un autre exemple, la carapace est métallique.  The carapace of the core is made, for example, based on particles aggregated by a binder (s) of organic nature (eg polyurethane), mineral (eg silicate, colloidal silica, ethyl silicate, low-point metals). fusion) or hydraulic (eg plaster, cement, lime). The particles may be ceramic, calcined clay, with or without zircon. They can result from the recycling of an old carapace. In another example, the shell is metallic.
Le corps du noyau est, par exemple, en sable de fonderie ou en plâtre à mouler, éventuellement chargé de fibres. Le liant utilisé pour agréger les composés du noyau peut être hydraulique, organique (e.g. cellulose) ou inorganique (e.g. silicate). Les fibres de charge peuvent être de nature organique ou minérale (e.g. en lin, en bois, en verre). Pour désagréger le corps et l'évacuer de la pièce moulée, on peut utiliser un procédé de débourrage classique, mécanique (e.g. par chocs, vibrations, projection de granulés ou ultra-sons) et/ou hydraulique (par jet d'eau), voire un procédé de débourrage chimique (e.g. par dissolution du (des) liant(s)). The core body is, for example, foundry sand or cast plaster, possibly loaded with fibers. The binder used to aggregate the core compounds may be hydraulic, organic (eg cellulose) or inorganic (eg silicate). The filler fibers may be organic or mineral in nature (eg linen, wood, glass). To disintegrate the body and evacuate it from the molded part, it is possible to use a conventional, mechanical (eg shock, vibration, granular or ultrasonic projection) and / or hydraulic (water jet) deburring process, even a process of chemical breaking (eg by dissolution of (the) binder (s)).
Dans certains modes de réalisation, le noyau destructible comprend, en outre, une ossature qui traverse le corps du noyau et est liée à la carapace. Cette ossature peut être détruite et évacuée en même temps que le corps et/ou la carapace. Une telle ossature permet de renforcer encore la résistance mécanique du noyau.  In some embodiments, the destructible core further includes a skeleton that traverses the core body and is attached to the shell. This framework can be destroyed and evacuated at the same time as the body and / or the carapace. Such a framework makes it possible to further strengthen the mechanical strength of the core.
Dans certains modes de réalisation, pour fabriquer le noyau, on fabrique le corps du noyau par agrégation de composés dans une boîte pourvue de broches qui traversent l'intérieur de la boîte, de sorte que le corps, une fois extrait de la boîte, présente des évidements à la place des broches, et on remplit ces évidements d'un matériau constitutif de l'ossature, par exemple en trempant le corps du noyau dans une barbotine, en injectant (sous faible pression) cette même barbotine ou en coulant par gravité la barbotine dans un contenant.  In some embodiments, to manufacture the core, the core body is made by aggregating compounds in a box provided with pins that pass through the inside of the box, so that the body, once removed from the box, presents recesses in place of the pins, and filling these recesses with a material constituting the framework, for example by dipping the body of the core in a slip, injecting (under low pressure) this slip or by gravity flow the slip in a container.
Les évidements et les éléments d'ossature correspondants (i.e. les éléments d'ossature obtenus par remplissage des évidements avec le matériau constitutif de l'ossature) peuvent traverser de part en part, ou seulement partiellement, le corps du noyau.  The recesses and corresponding framing members (i.e. the framing members obtained by filling the recesses with the material constituting the framework) may pass right through, or only partially, the core body.
Dans certains modes de réalisation, le corps du noyau est trempé une ou plusieurs fois dans une ou plusieurs barbotines, de manière à couvrir le corps d'une ou plusieurs couches d'un matériau durcissable. Par exemple, comme barbotine, on peut utiliser du plâtre. Par exemple, le corps du noyau peut être trempé d'abord dans une première barbotine pour former l'ossature éventuelle et la couche inférieure de la carapace, et, ensuite, dans d'autres barbotines pour former la ou les couches supérieures de la carapace. Ainsi, le corps du noyau peut être trempé dans une première barbotine pour former l'ossature et une couche inférieure de la carapace et, ensuite, dans une ou plusieurs autres barbotines pour former une ou plusieurs couches supérieures de la carapace. A la place du trempage, il est possible de réaliser la carapace par injection de la barbotine. In some embodiments, the core body is dipped one or more times in one or more slips, so as to cover the body with one or more layers of curable material. For example, as a slip, plaster can be used. For example, the core body may be first dipped in a first slip to form the optional backbone and the lower layer of the carapace, and then in other slip to form the upper layer or layers of the carapace . Thus, the core body can be dipped in a first slip to form the framework and a lower layer of the shell and then in one or several other slips to form one or more upper layers of the shell. Instead of soaking, it is possible to make the shell by injection of the slip.
Les matériaux constitutifs de la carapace et de l'ossature peuvent être identiques ou différents. D'ailleurs, les critères utilisables pour les matériaux de la carapace et de l'ossature ne correspondent pas nécessairement. En particulier, comme l'ossature n'entre pas au contact du métal injecté, sa passivité chimique vis-à-vis de ce métal n'est pas un critère de sélection. En outre, comme l'ossature est soumise à des contraintes moins importantes que la carapace lors de l'injection, la résistance mécanique de l'ossature peut être moins élevée que celle de la carapace. Par ailleurs, dans certains modes de réalisation, on souhaite évacuer l'ossature en même temps que le corps. Dans ce cas, comme le corps, l'ossature est faite de composés agrégés, désagrégeables. Ainsi, on peut désagréger et évacuer le corps et l'ossature, en une même opération, selon un procédé de débourrage.  The constituent materials of the shell and the framework may be identical or different. Moreover, the criteria used for the materials of the shell and the frame do not necessarily correspond. In particular, as the framework does not come into contact with the injected metal, its chemical passivity vis-à-vis this metal is not a selection criterion. In addition, since the framework is subjected to less stress than the shell during injection, the mechanical strength of the framework may be lower than that of the shell. Furthermore, in some embodiments, it is desired to evacuate the frame at the same time as the body. In this case, like the body, the framework is made of aggregated, disaggregated compounds. Thus, one can disaggregate and evacuate the body and the frame, in one operation, according to a method of débourrage.
Dans certains modes de réalisation, pour fabriquer le noyau:  In some embodiments, to make the core:
- on fabrique le corps du noyau par agrégation de composés dans une boîte pourvue d'organes de support qui traversent (de part en part, ou partiellement) l'intérieur de la boîte, et the body of the nucleus is made by aggregation of compounds in a box provided with support members which traverse (partially or partially) the inside of the box, and
- on réalise la carapace autour du corps et des organes de support de sorte que les organes de support traversent la carapace. the shell is made around the body and the support members so that the support members pass through the shell.
On utilise ensuite les organes de support pour maintenir le noyau en position dans le moule lors de l'injection. En fonction de la position occupée par les organes de support dans le noyau, ceux-ci peuvent également servir à renforcer la résistance mécanique du noyau.  The support members are then used to hold the core in position in the mold during injection. Depending on the position occupied by the support members in the core, these can also serve to enhance the strength of the core.
Dans certains modes de réalisation, les organes de support sont creux et définissent des passages d'évacuation pour les gaz qui sont formés par la décomposition thermique de certains composants du noyau lors du moulage de la pièce. Ceci permet de limiter les risques de déformation liés à ces gaz, notamment lorsque la pièce présente des parois minces.  In some embodiments, the support members are hollow and define exhaust passages for gases that are formed by thermal decomposition of certain core components during molding of the workpiece. This makes it possible to limit the risks of deformation related to these gases, especially when the part has thin walls.
Dans certains modes de réalisation, on extrait les organes de support de la pièce pour ménager les orifices d'évacuation par lesquels le corps du noyau et/ou la carapace sont évacués. In some embodiments, the support members are extracted the piece to provide the evacuation ports through which the body of the core and / or the shell are evacuated.
D'autres caractéristiques et avantages du procédé proposé apparaîtront à la lecture de la description détaillée qui suit. Cette description détaillée fait référence aux dessins annexés.  Other features and advantages of the proposed method will appear on reading the detailed description which follows. This detailed description refers to the accompanying drawings.
BREVE DESCRIPTION DES DESSINS  BRIEF DESCRIPTION OF THE DRAWINGS
Les dessins annexés sont schématiques et ne sont pas à l'échelle, ils visent avant tout à illustrer les principes de l'invention.  The accompanying drawings are diagrammatic and are not to scale, they are primarily intended to illustrate the principles of the invention.
Sur ces dessins, d'une figure (FIG) à l'autre, des éléments (ou parties d'élément) identiques sont repérés par les mêmes signes de référence.  In these drawings, from one figure (FIG) to the other, identical elements (or element parts) are identified by the same reference signs.
La FIG 1 représente une boîte pour la fabrication du corps d'un noyau. La FIG 2 est une vue de côté du corps de noyau fabriqué avec la boîte de la FIG 1.  FIG 1 shows a box for the manufacture of the body of a core. FIG 2 is a side view of the core body made with the box of FIG 1.
La FIG 3 est une vue en perspective du noyau fabriqué avec le corps de la FIG 2.  FIG 3 is a perspective view of the core made with the body of FIG 2.
La FIG 4 est une vue en coupe d'un moule dans lequel est disposé le noyau de la FIG 3.  FIG 4 is a sectional view of a mold in which is disposed the core of FIG 3.
La FIG 5 est une vue en perspective d'une pièce métallique creuse obtenue par fonderie dans le moule de la FIG 4.  FIG 5 is a perspective view of a hollow metal piece obtained by casting in the mold of FIG 4.
DESCRIPTION DETAILLEE D'EXEMPLE(S) DE REALISATION DETAILED DESCRIPTION OF EXAMPLE (S) OF REALIZATION
Un exemple de procédé est décrit en détail ci-après, en référence aux dessins annexés. Cet exemple illustre les caractéristiques et les avantages de l'invention. Il est toutefois rappelé que l'invention ne se limite pas à cet exemple. An exemplary method is described in detail below with reference to the accompanying drawings. This example illustrates the features and advantages of the invention. However, it is recalled that the invention is not limited to this example.
La FIG 1 représente une boîte 10 pour la fabrication du corps 22 d'un noyau 20. Cette boîte comprend deux demi-coquilles 10A, 10B qui, une fois assemblées, définissent entre elles un espace libre 12 destiné à recevoir les composés qui formeront le corps du noyau.  FIG 1 shows a box 10 for the manufacture of the body 22 of a core 20. This box comprises two half-shells 10A, 10B which, once assembled, define between them a free space 12 intended to receive the compounds which will form the core body.
A l'intérieur de la boîte, i.e. dans l'espace libre 12, s'étendent des broches 16. Dans l'exemple, ces broches 16 traversent l'espace libre 12 de part en part, chaque broche 16 étant formée de deux demi-broches 16A, 16B portées, respectivement, par les deux demi-coquilles 10A, 10B, et situées dans le prolongement l'une de l'autre, une fois les demi-coquilles assemblées. Inside the box, ie in the free space 12, extend pins 16. In the example, these pins 16 pass through the free space 12 from one end to the other, each pin 16 being formed of two half 16A, 16B carried, respectively, by the two half-shells 10A, 10B, and located in the extension of one another, once the half-shells assembled.
A l'intérieur de la boîte, se trouvent également des organes de support 18 qui traversent partiellement l'espace libre 12. Dans l'exemple, ces organes 18 sont creux et de forme tubulaire avec une extrémité libre 18E effilée (tronconique). L'autre extrémité de ces organes 18 prend appui contre une des parois 15. Chaque organe 18 est traversé par un passage intérieur (une lumière) débouchant aux deux extrémités de l'organe.  Inside the box, there are also support members 18 which partially cross the free space 12. In the example, these members 18 are hollow and tubular with a free end 18E tapered (frustoconical). The other end of these members 18 bears against one of the walls 15. Each member 18 is traversed by an inner passage (a lumen) opening at both ends of the organ.
Pour fabriquer le corps 22 du noyau, on remplit l'espace libre 12 de composés agrégeables, par exemple des grains de sable, mélangés à au moins une résine durcissable. Une fois la (les) résine(s) durcie(s) (e.g. par chauffage, ou par utilisation d'un gaz catalyseur), les grains de sables sont agrégés et forment le corps 22. Le corps 22 est ensuite extrait du moule 10.  In order to manufacture the body 22 of the core, the free space 12 is filled with aggregatable compounds, for example sand grains, mixed with at least one curable resin. Once the resin (s) have hardened (eg by heating, or using a catalyst gas), the sand grains are aggregated and form the body 22. The body 22 is then extracted from the mold 10 .
Comme représenté sur la FIG 2, le corps 22 présente des évidements As shown in FIG. 2, the body 22 has recesses
26 à la place des broches 16. En outre, les organes de support 18 sont prisonniers dans la masse du corps 22. Instead of the pins 16. In addition, the support members 18 are trapped in the mass of the body 22.
Pour fabriquer le noyau 20, on plonge le corps 22, une ou plusieurs fois, dans un ou plusieurs bains de pâte fluide, ou barbotines, de manière à couvrir le corps d'une ou plusieurs couches d'un matériau durcissable. Pour tenir le corps 22 lors du bain, on utilise les organes de support 18 creux. Typiquement, des broches sont passées à l'intérieur des organes 18, ce qui permet de tenir le corps 22 et de boucher le passage intérieur des organes 18 pour éviter qu'ils se remplissent. Après chaque bain, la couche déposée est durcie, par exemple à l'air.  In order to manufacture the core 20, the body 22 is immersed one or more times in one or more fluid paste baths, or slips, so as to cover the body with one or more layers of a hardenable material. To hold the body 22 during the bath, the hollow support members 18 are used. Typically, pins are passed inside the members 18, which allows the body 22 to be held and to plug the internal passage of the organs 18 to prevent them from filling up. After each bath, the deposited layer is cured, for example in air.
Lors du premier bain dans une première barbotine, les évidements 26 du corps 22 se remplissent pour former une ossature 36. L'ossature 36 est ainsi constituée de plusieurs éléments qui traversent le corps 22 du noyau et sont liés à la carapace 40. Dans l'exemple, à l'image des évidements 26, les éléments d'ossature traversent de part en part le corps, de sorte que les deux extrémités de chaque élément d'ossature sont liées à la carapace 40. La première barbotine forme également la première couche, ou couche inférieure, de la carapace 40. Les autres couches, éventuelles, de la carapace 40 peuvent être obtenues en plongeant le corps 22 dans d'autres bains de matériau durcissable. During the first bath in a first slip, the recesses 26 of the body 22 fill to form a framework 36. The framework 36 is thus composed of several elements which pass through the body 22 of the core and are connected to the shell 40. In For example, like the recesses 26, the frame members pass right through the body, so that the two ends of each frame member are connected to the shell 40. The first slip also forms the first or lower layer of the shell 40. Other layers, if any, of the shell 40 may be obtained by dipping the body 22 in other baths of hardenable material.
Pour couvrir le corps 22 et remplir les évidements 26, à la place (ou en complément) des opérations de trempage, il est possible de procéder à l'injection ou au coulage par gravité d'une barbotine autour et/ou dans le corps.  To cover the body 22 and fill the recesses 26, instead (or in addition) of the soaking operations, it is possible to proceed to the injection or casting by gravity of a slip around and / or in the body.
La FIG 3 représente le noyau 20 obtenu après formation de la carapace 40 autour du corps 22.  FIG 3 shows the core 20 obtained after formation of the shell 40 around the body 22.
A titre d'exemple, il est possible de fabriquer le noyau 20 à partir des matériaux suivants et dans les conditions suivantes : pour fabriquer le corps 22, on utilise du sable de fonderie pré-enrobé de résine et durcisseur et on fait durcir la résine avec son durcisseur. Par exemple, le sable utilisé est de la silice de finesse 55 AFS. La finesse du sable peut évoluer en fonction de la forme et de la taille du noyau à réaliser. Ensuite, on plonge le corps 22 obtenu dans une barbotine réfractaire mélangée à de la silice colloïdale. Lors du premier trempage les évidements 26 sont remplis de barbotine pour réaliser l'ossature. On sèche et on replonge le corps 22 dans la barbotine autant de fois que nécessaire pour obtenir l'épaisseur de carapace 40 désirée après le dernier séchage.  By way of example, it is possible to manufacture the core 20 from the following materials and under the following conditions: to manufacture the body 22, use is made of foundry sand pre-coated with resin and hardener and the resin is cured with its hardener. For example, the sand used is 55 finite silica AFS. The fineness of the sand can change depending on the shape and size of the core to be made. Then, the resulting body 22 is immersed in a refractory slip mixed with colloidal silica. During the first soaking the recesses 26 are filled with slip to make the frame. The body 22 is dried and returned to the slip as many times as necessary to obtain the desired shell thickness 40 after the last drying.
Une fois le noyau 20 fabriqué, on dispose celui-ci dans l'empreinte 51 d'un moule 50, comme illustré sur la FIG 4. Cette figure représente le moule 50 et le noyau 20 en coupe. Le noyau 20 est maintenu en position dans le moule 50 à l'aide de broches 53 creuses, solidaires d'une partie du moule 50, et enfoncées dans les organes de support 18 du noyau 20.  Once the core 20 is made, it is placed in the cavity 51 of a mold 50, as shown in FIG. 4. This figure shows the mold 50 and the core 20 in section. The core 20 is held in position in the mold 50 by means of hollow pins 53, integral with a portion of the mold 50, and driven into the support members 18 of the core 20.
Ensuite, on fait fondre et on injecte le métal liquide dans le moule, autour du noyau 20. L'injection du métal peut se faire sous-pression, la carapace 40 résistant aux contraintes exercées lors de l'injection et permettant au noyau 20 de conserver son intégrité. En outre, les gaz liés à la décomposition thermique de certains éléments (typiquement les liants) constitutifs du noyau 20 sont avantageusement évacués à l'extérieur du moule 50, via les passages intérieurs des organes de support 18 et des broches 53. Cette évacuation est symbolisée par les flèches G sur la FIG 4. Then, the liquid metal is melted and injected into the mold, around the core 20. The injection of the metal can be under-pressure, the shell 40 resistant to the stresses exerted during the injection and allowing the core 20 to maintain its integrity. In addition, gases related to the thermal decomposition of certain elements (typically binders) constituents of the core 20 are advantageously discharged outside the mold 50, via the internal passages of the support members 18 and the pins 53. This evacuation is symbolized by the arrows G in FIG 4.
Après durcissement et refroidissement (total ou partiel) du métal, on extrait du moule 50 une pièce métallique 60 qui entoure le noyau 20, le noyau 20 matérialisant un espace creux à l'intérieur de cette pièce. Pour séparer le noyau 20 de la pièce 60, on soumet celle-ci à un procédé de débourrage classique, typiquement mécanique et/ou hydraulique. Le corps 22 du noyau se désagrège alors sous l'effet combiné de la décomposition thermique des liants qui le constituaient (cette décomposition ayant lieu lors de l'injection du métal liquide, sous l'effet de la température de ce métal) et des sollicitations du débourrage. Si sa composition le permet, l'ossature 36 peut se désagréger en même temps que le corps 22. Sinon, l'ossature 36 peut être extraite après le corps 22, par exemple, en soumettant la pièce à un deuxième procédé de débourrage Dans l'exemple, les éléments issus de la désagrégation du corps 22 et, éventuellement, de l'ossature 36, sont évacués par les orifices d'extrémité 62 de la pièce tubulaire creuse 60. Les organes de support 18 sont extraits en même temps que le corps 22 par ces orifices 62. On notera que ces orifices 62 traversent la pièce 60 et la carapace 40. Selon un autre exemple, non représenté, les orifices d'évacuation sont ménagés en extrayant les organes de support 18 hors du noyau 20.  After curing and cooling (total or partial) of the metal, is extracted from the mold 50 a metal part 60 which surrounds the core 20, the core 20 materializing a hollow space inside this part. To separate the core 20 from the part 60, the latter is subjected to a conventional deburring process, typically mechanical and / or hydraulic. The body 22 of the core then disintegrates under the combined effect of the thermal decomposition of the binders which constituted it (this decomposition taking place during the injection of the liquid metal, under the effect of the temperature of this metal) and the stresses breaking. If its composition allows it, the framework 36 can be disintegrated at the same time as the body 22. Otherwise, the frame 36 can be extracted after the body 22, for example, by subjecting the piece to a second method of breaking in. for example, the elements resulting from the disintegration of the body 22 and, possibly, the framework 36, are discharged through the end orifices 62 of the hollow tubular piece 60. The support members 18 are extracted at the same time as the body 22 through these orifices 62. Note that these orifices 62 pass through the part 60 and the shell 40. According to another example, not shown, the discharge orifices are formed by extracting the support members 18 from the core 20.
On obtient ainsi la pièce métallique tubulaire creuse 60 illustrée sur la FIG 5, la face interne de cette pièce 60 étant recouverte par la carapace 40. On détruit ensuite la carapace 40 et on l'évacué par les orifices 62 pour obtenir la pièce 60 seule. Par exemple, la carapace 40 est détruite par projection de grenaille ou par débourrage sous pression d'eau (5 à 50 MPa) suivant la résistance de la pièce 60.  The hollow tubular metal part 60 illustrated in FIG. 5 is thus obtained, the internal face of this part 60 being covered by the shell 40. The shell 40 is then destroyed and discharged through the orifices 62 to obtain the piece 60 alone. . For example, the shell 40 is destroyed by shot blasting or by peeling under water pressure (5 to 50 MPa) depending on the strength of the part 60.
A titre d'exemple, il est possible de fabriquer la pièce 60 par moulage sous pression classique d'un alliage d'aluminium-silicium-cuivre. La pression d'injection peut varier de 100 bars à 1200 bars (i.e. 10 et 120 MPa), la vitesse d'écoulement du métal peut varier de 10 à 80 m/s. Le taux de silicium peut évoluer de 2 à 20%, le taux de cuivre peut évoluer de 0,1 à 10%. Par exemple, on peut utiliser l'alliage Al Si 9 Cu 3 (Fe). By way of example, it is possible to manufacture the piece 60 by conventional pressure molding of an aluminum-silicon-copper alloy. The injection pressure can vary from 100 bars to 1200 bars (ie 10 and 120 MPa), the flow rate of the metal can vary from 10 to 80 m / s. The silicon content can vary from 2 to 20%, the copper content can vary from 0.1 to 10%. For example, the alloy Al Si 9 Cu 3 (Fe) can be used.
Les modes ou exemples de réalisation décrits dans le présent exposé sont donnés à titre illustratif et non limitatif, une personne du métier pouvant facilement, au vu de cet exposé, modifier ces modes ou exemples de réalisation, ou en envisager d'autres, tout en restant dans la portée de l'invention.  The modes or examples of embodiment described in the present description are given for illustrative and not limiting, a person skilled in the art can easily, in view of this presentation, modify these modes or embodiments, or consider others, while remaining within the scope of the invention.
De plus, les différentes caractéristiques de ces modes ou exemples de réalisation peuvent être utilisées seules ou être combinées entre elles. Lorsqu'elles sont combinées, ces caractéristiques peuvent l'être comme décrit ci-dessus ou différemment, l'invention ne se limitant pas aux combinaisons spécifiques décrites dans le présent exposé. En particulier, sauf précision contraire, une caractéristique décrite en relation avec un mode ou exemple de réalisation peut être appliquée de manière analogue à un autre mode ou exemple de réalisation.  In addition, the various features of these modes or embodiments can be used alone or be combined with each other. When combined, these features may be as described above or differently, the invention not being limited to the specific combinations described herein. In particular, unless otherwise specified, a characteristic described in connection with a mode or example of embodiment may be applied in a similar manner to another embodiment or embodiment.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce métallique creuse, par fonderie, dans lequel: A method of manufacturing a hollow metal piece, by casting, in which:
- on fournit un noyau (20) destructible comprenant un corps (22) fait de composés agrégés, et une carapace (40) qui entoure ce corps et adhère à celui-ci ; a destructible core (20) is provided comprising a body (22) made of aggregates, and a shell (40) which surrounds and adheres to the body;
- on dispose le noyau (20) dans un moule (50) ;  the core (20) is arranged in a mold (50);
- on fait fondre et on injecte un métal liquide dans le moule (50), autour du noyau (20), le noyau matérialisant un espace intérieur de la pièce (60) ;  - melting and injecting a liquid metal into the mold (50) around the core (20), the core materializing an interior space of the part (60);
- après solidification de la pièce (60), on désagrège le corps (22) et on l'évacué via des orifices d'évacuation (62) ménagés dans la carapace (40) et la pièce (60); et  - After solidification of the piece (60), the body (22) is disintegrated and discharged via discharge orifices (62) formed in the shell (40) and the piece (60); and
- on détruit et on évacue ladite carapace (40) via des orifices d'évacuation (62) ménagés dans la pièce (60) ; et  - Destroying and removing said shell (40) via outlets (62) in the room (60); and
dans lequel le noyau (20) destructible comprend, en outre, une ossature (36) qui traverse le corps (22) du noyau et est liée à la carapace (40), et dans lequel on détruit et on évacue cette ossature (36) en même temps que le corps et/ou la carapace. wherein the destructible core (20) further comprises a framework (36) which traverses the core body (22) and is bonded to the shell (40), and in which said framework (40) is destroyed and removed (36) at the same time as the body and / or the carapace.
2. Procédé selon la revendication 1, dans lequel on injecte sous pression le métal liquide dans le moule (50), autour du noyau (20), et dans lequel la carapace (40) présente une résistance mécanique suffisante pour résister à l'injection sous-pression du métal liquide. 2. Method according to claim 1, wherein the liquid metal is injected under pressure into the mold (50), around the core (20), and wherein the shell (40) has sufficient mechanical strength to resist injection. underpressure of the liquid metal.
3. Procédé selon la revendication 1 ou 2, dans lequel, pour fabriquer le noyau (20): The method of claim 1 or 2, wherein, to make the core (20):
- on fabrique le corps (22) du noyau par agrégation de composés dans une boîte (10) pourvue de broches (16) qui traversent l'intérieur de la boîte, de sorte que le corps, une fois extrait de la boîte, présente des évidements (26) à la place des broches, et - on remplit ces évidements (26) d'un matériau constitutif de l'ossature (36). the body (22) of the core is made by aggregation of compounds in a box (10) provided with pins (16) which pass through the inside of the box, so that the body, once extracted from the box, has recesses (26) in place of the pins, and these recesses (26) are filled with a material constituting the framework (36).
4. Procédé selon la revendication 3, dans lequel les évidements (26) et les éléments d'ossature correspondants traversent de part en part le corps (22) du noyau (20). 4. The method of claim 3, wherein the recesses (26) and the corresponding frame members pass right through the body (22) of the core (20).
5. Procédé selon la revendication 3 ou 4, dans lequel le corps (22) du noyau est trempé dans une première barbotine pour former l'ossature (36) et une couche inférieure de la carapace (40) et, ensuite, dans une ou plusieurs autres barbotines pour former une ou plusieurs couches supérieures de la carapace (40). The method according to claim 3 or 4, wherein the body (22) of the core is dipped in a first slip to form the framework (36) and a lower layer of the shell (40) and then in one or several other slips to form one or more upper layers of the shell (40).
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel, pour fabriquer le noyau: 6. Process according to any one of claims 1 to 5, wherein, to manufacture the core:
- on fabrique le corps (22) du noyau (20) par agrégation de composés dans une boîte (10) pourvue d'organes de support (18) qui traversent l'intérieur de la boîte, et the body (22) of the core (20) is made by aggregating compounds in a box (10) provided with supporting members (18) which pass through the inside of the box, and
- on réalise la carapace (40) autour du corps (22) et des organes de support (18) de sorte que les organes de support traversent la carapace,  the shell (40) is made around the body (22) and the support members (18) so that the support members pass through the shell,
et dans lequel and in which
- on utilise les organes de support (18) pour maintenir le noyau (20) en position dans le moule (50) lors de l'injection.  the support members (18) are used to hold the core (20) in position in the mold (50) during the injection.
7. Procédé selon la revendication 6, dans lequel les organes de support (18) sont creux et définissent des passages d'évacuation pour les gaz formés par la décomposition thermique de certains composants du noyau (20) lors du moulage de la pièce. The method of claim 6, wherein the support members (18) are hollow and define exhaust passages for the gases formed by the thermal decomposition of certain components of the core (20) during molding of the workpiece.
8. Procédé selon la revendication 6 ou 7, dans lequel, après solidification de la pièce (60), on extrait les organes de support (18) de la pièce pour ménager les orifices d'évacuation par lesquels le corps du noyau (22) et/ou la carapace (40) sont évacués. 8. A method according to claim 6 or 7, wherein, after solidification of the workpiece (60), the support members (18) are extracted from the workpiece to provide the outlet openings through which the core body (22) and / or the shell (40) are evacuated.
9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel le corps (22) du noyau est en sable de fonderie ou en plâtre à mouler, éventuellement chargé en fibres. 9. A method according to any one of claims 1 to 8, wherein the body (22) of the core is foundry sand or cast plaster, optionally filled with fibers.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la carapace (40) du noyau est en céramique. 10. A method according to any one of claims 1 to 9, wherein the shell (40) of the core is ceramic.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel on désagrège le corps (22) et on l'évacué selon un procédé de débourrage mécanique et/ou hydraulique. 11. A method according to any one of claims 1 to 10, wherein the body (22) is disintegrated and discharged according to a method of mechanical and / or hydraulic débourrage.
EP13719995.6A 2012-04-16 2013-04-11 Method for the production of a hollow metal part by means of casting Withdrawn EP2838679A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1253486A FR2989293B1 (en) 2012-04-16 2012-04-16 METHOD FOR MANUFACTURING A HOLLOW METALLIC PART BY FOUNDRY
PCT/FR2013/050792 WO2013156713A2 (en) 2012-04-16 2013-04-11 Method for the production of a hollow metal part by means of casting

Publications (1)

Publication Number Publication Date
EP2838679A2 true EP2838679A2 (en) 2015-02-25

Family

ID=48237139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13719995.6A Withdrawn EP2838679A2 (en) 2012-04-16 2013-04-11 Method for the production of a hollow metal part by means of casting

Country Status (12)

Country Link
US (1) US9452469B2 (en)
EP (1) EP2838679A2 (en)
JP (1) JP6277178B2 (en)
KR (1) KR20140147893A (en)
CN (1) CN104302422B (en)
BR (1) BR112014025731A2 (en)
CA (1) CA2870546A1 (en)
FR (1) FR2989293B1 (en)
IN (1) IN2014DN09024A (en)
MX (1) MX357506B (en)
RU (1) RU2635596C2 (en)
WO (1) WO2013156713A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649687B2 (en) * 2014-06-20 2017-05-16 United Technologies Corporation Method including fiber reinforced casting article
KR101845447B1 (en) * 2016-06-23 2018-04-04 현대자동차주식회사 High-Pressure Casting Differential Carrier Case Inserted Pipe
CN107755646A (en) * 2016-08-15 2018-03-06 科华控股股份有限公司 A kind of Multi-point floating pressing device of shell mould die joint bonding contact
CN108080575B (en) * 2016-11-23 2019-12-03 中国科学院金属研究所 A kind of fixing means of silicon-base ceramic core
CN106583658B (en) * 2016-12-14 2018-11-13 江西腾勒动力有限公司 The method of motor cylinder casting sand core and the application casting sand core cast blocks
JP6897538B2 (en) * 2017-12-14 2021-06-30 トヨタ自動車株式会社 Core molding method and molding equipment
CN113329826B (en) 2018-11-27 2023-12-05 形状集团 Galvanized multi-tube beam and continuous forming method thereof
KR102703076B1 (en) * 2018-12-04 2024-09-06 현대자동차주식회사 Casting method for a product formed an inside flow passage and the product
KR20200095200A (en) * 2019-01-31 2020-08-10 현대자동차주식회사 Casting method for a product formed an inside flow passage and the product
KR102236758B1 (en) * 2019-11-19 2021-04-07 엠에이치기술개발 주식회사 Manufacturing method of a cooling module for a lighting device
US11813665B2 (en) * 2020-09-14 2023-11-14 General Electric Company Methods for casting a component having a readily removable casting core
CN114309488B (en) * 2021-10-20 2023-02-21 清华大学 Liquid metal forming method
CN114669728A (en) * 2022-03-15 2022-06-28 广东省科学院生物与医学工程研究所 Hollow pipeline casting device and casting method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1422232A (en) * 1921-05-04 1922-07-11 Sr Richard E Stanley Means for making cast bowling pins
US2752652A (en) * 1954-09-28 1956-07-03 Central States Ind Supply Comp Method of reinforcing cores, utilizing glass tubes
JPS5324964Y2 (en) * 1974-10-25 1978-06-27
DE2505093A1 (en) 1975-02-07 1976-08-19 Daimler Benz Ag Reinforcing inserts in foundry sand cores - where inserts are joined by straps to ensure their location during core shooting
CA1144338A (en) * 1978-05-25 1983-04-12 Enno H. Page Expendable cores for die casting
EP0062193A1 (en) * 1981-04-01 1982-10-13 Cosworth Research And Development Limited Chemically bondable foundry sand
DD256609A3 (en) * 1983-06-20 1988-05-18 Inst Gornogo Dela Sibirskogo O COMPRESSOR FOR COMPRESSING THE MOLDING OF FORM
JPS6183665A (en) * 1984-09-27 1986-04-28 株式会社ノリタケカンパニーリミテド Carbon fiber reinforced gypsum molded mold, gypsum powder and manufacture
JPS61103646A (en) * 1984-10-27 1986-05-22 Sintokogio Ltd Core for low melting point metal and its production
JPS6349343A (en) * 1986-08-14 1988-03-02 Nobuyoshi Sasaki Core and its production and production of mold for investment casting
JPS63177941A (en) * 1986-10-21 1988-07-22 Mazda Motor Corp Production of core for pressure casting
JPS63248552A (en) * 1987-04-03 1988-10-14 Ube Ind Ltd Sand core for pressure casting
JPS63260655A (en) * 1987-04-15 1988-10-27 Ube Ind Ltd Sand core for pressure casting
JPH074646B2 (en) * 1989-02-20 1995-01-25 リョービ株式会社 Sand core for high pressure casting and method for producing the same
JPH02280944A (en) * 1989-04-21 1990-11-16 Toyota Motor Corp And core for pressure casting and manufacture thereof
JPH0331045U (en) * 1989-08-02 1991-03-26
JPH06142832A (en) * 1992-11-13 1994-05-24 Ube Ind Ltd Production of sand core
US5479981A (en) * 1993-12-29 1996-01-02 Hyundai Motor Company Method for casting a hollow camshaft for internal combustion engine
RU2120834C1 (en) * 1997-08-06 1998-10-27 Открытое акционерное общество Авиационная корпорация "Рубин" Casting mold
JP2000199452A (en) * 1998-12-28 2000-07-18 Ryobi Ltd Closed deck type cylinder block and manufacture thereof
JP2001030046A (en) * 1999-07-19 2001-02-06 Yasunaga Corp Manufacture of hollow shaft, and core therefor
JP3541184B2 (en) * 2001-05-24 2004-07-07 株式会社ナカキン Manufacturing method of mold by stereolithography
JP2003181598A (en) * 2001-12-11 2003-07-02 Mitsubishi Electric Corp Casting machine
ITBS20060050A1 (en) * 2006-03-03 2007-09-04 Bassi Techonology S R L SOUL COMPOSITE OF FOUNDRY AND MELTING METHOD EMPLOYING THAT SOUL

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013156713A2 *

Also Published As

Publication number Publication date
RU2635596C2 (en) 2017-11-14
US20150083356A1 (en) 2015-03-26
CN104302422A (en) 2015-01-21
KR20140147893A (en) 2014-12-30
RU2014145837A (en) 2016-06-10
WO2013156713A2 (en) 2013-10-24
WO2013156713A3 (en) 2014-04-10
IN2014DN09024A (en) 2015-05-22
BR112014025731A2 (en) 2017-09-19
JP6277178B2 (en) 2018-02-07
FR2989293A1 (en) 2013-10-18
MX2014012537A (en) 2015-04-13
FR2989293B1 (en) 2023-06-09
JP2015516887A (en) 2015-06-18
CN104302422B (en) 2017-04-26
CA2870546A1 (en) 2013-10-24
US9452469B2 (en) 2016-09-27
MX357506B (en) 2018-07-12

Similar Documents

Publication Publication Date Title
WO2013156713A2 (en) Method for the production of a hollow metal part by means of casting
CN105458180B (en) A kind of shaping running channel and its preparation and method for blocking containing wax discharging port
CA2052899C (en) Process for fabricating abrasion-resistant component surfaces
BE1010959A3 (en) METHOD FOR MANUFACTURING EXOTHERMIC SLEEVES AND CASTING OF METAL PARTS, AND SLEEVES AND METAL PARTS OBTAINED THEREBY.
FR2591920A1 (en) METHOD OF MANUFACTURING CAST IRON
EP3134219B1 (en) Mould for monocrystalline casting
CA2507171A1 (en) Lost wax casting process with contact layer
FR2954193A1 (en) Fabricating shell mold by foundry lost wax casting and wax model, comprises dipping wax model in slurry, depositing sand particles on slurry film, drying the film coated by sand particles, and incorporating pore forming agent to layers
EP3487649B1 (en) Process for manufacturing a shell mold
EP3793963A1 (en) Method for manufacturing a cmc part
CN210547844U (en) Reinforced sand mold
FR3104042A1 (en) Manufacturing process of a hollow part using a core
CN112008042A (en) Reinforced sand mold and manufacturing method thereof
FR3099999A1 (en) Additive manufacturing process for a foundry mold and manufacturing process for a metal part using said process
EP1502676B1 (en) Potassium borate foundry core with dissolution cavity
EP4107307B1 (en) Method for chemical pickling of a cast metal part with porous ceramic core(s)
JP3720241B2 (en) Vacuum casting method using vanishing model
JP2007191823A (en) Fiber molded article for producing cast, method and apparatus for producing the same
JP2007307596A (en) Core for forming and manufacturing method therefor
KR20080032853A (en) Casting method of cast with pipe and thereof cast-iron products
WO2021099721A1 (en) Foundry mold, method for manufacturing the mold and foundry method
CN113414354A (en) Method for preventing copper pipe from being melted through
FR2654973A1 (en) PROCESS FOR MANUFACTURING PARTS HAVING PRESSING CAVITY.
FR2648373A1 (en) Foundry crucible (pot)
FR2677905A1 (en) Method for preparing the mould for baking (firing) a casting made from a lost-wax or similar pattern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190313