JP2007307596A - Core for forming and manufacturing method therefor - Google Patents

Core for forming and manufacturing method therefor Download PDF

Info

Publication number
JP2007307596A
JP2007307596A JP2006140443A JP2006140443A JP2007307596A JP 2007307596 A JP2007307596 A JP 2007307596A JP 2006140443 A JP2006140443 A JP 2006140443A JP 2006140443 A JP2006140443 A JP 2006140443A JP 2007307596 A JP2007307596 A JP 2007307596A
Authority
JP
Japan
Prior art keywords
core
molding
salt
molded body
core body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140443A
Other languages
Japanese (ja)
Inventor
Hiroo Kusaka
裕生 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006140443A priority Critical patent/JP2007307596A/en
Publication of JP2007307596A publication Critical patent/JP2007307596A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core for forming and a manufacturing method therefor which has excellent proof pressure and can easily remove after casting or after forming. <P>SOLUTION: The core for forming is constituted of a core body combining granular bodies with binder and an infiltrating salt layer composed of the salt having higher melting point than that of the material of the forming body and forming on the surface layer of the core body. The core body is made to have a plurality of fine holes and the salt is made to get into the fine holes. The manufacturing method of the core for forming is constituted of a main body forming process for forming the core body and a fused salt filtrating process for filtrating the fused state of the salt on the surface layer portion of the core body under reduced pressure condition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は中空の成形体を製造する際に用いられる成形用中子およびその製造方法に関する。   The present invention relates to a molding core used when producing a hollow molded body and a method for producing the same.

成形用中子は、中空の成形体を成形する際に用いられる成形型の一種である。予め成形用中子をキャビティに配し、このキャビティに溶融した金属材料(溶湯)や溶融樹脂などの成形材料を注入し、成形材料が固化した後に成形用中子を取り除くことで、鋳造体や樹脂成形体などの中空の成形体を製造できる。以下、本明細書において、中空の成形体を単に成形体と略する。   The molding core is a type of molding die used when molding a hollow molded body. A molding core is placed in a cavity in advance, a molding material such as a molten metal material (molten metal) or a molten resin is injected into the cavity, and the molding core is removed after the molding material is solidified. A hollow molded body such as a resin molded body can be manufactured. Hereinafter, in this specification, a hollow molded body is simply abbreviated as a molded body.

ところで、成形用中子としては、砂やセラミックなどの粒状体同士がバインダによって結合されてなるもの(所謂砂中子)を用いるのが一般的である。しかし、粒状体同士の間隙に成形材料が侵入して、成形体の表面が滑らかにならない場合がある。このため、近年では、成形材料が内部に侵入し難い成形用中子が提案されている(例えば、特許文献1参照)。特許文献1に紹介されている成形用中子は、粒状体同士がバインダによって結合されてなる中子本体の表面にコーティング層を形成している。このコーティング層は、粉末状耐火物としてのジルコンフラワーや樹脂バインダとしてのフェノール系樹脂、潤滑性付与物質としての雲母などを含み、中子本体の表面を被覆する。このため、この成形用中子を用いて製造された成形体は、表面が滑らかであると考えられる。   By the way, as a forming core, it is common to use a material in which particles such as sand and ceramic are bonded together by a binder (so-called sand core). However, the molding material may enter the gaps between the granular bodies, and the surface of the molded body may not be smooth. For this reason, in recent years, a molding core in which a molding material does not easily enter the interior has been proposed (for example, see Patent Document 1). In the molding core introduced in Patent Document 1, a coating layer is formed on the surface of the core body in which the granular materials are bonded together by a binder. This coating layer includes a zircon flower as a powder refractory, a phenolic resin as a resin binder, mica as a lubricity-imparting material, and the like, and covers the surface of the core body. For this reason, it is thought that the surface of the molded object manufactured using this molding core is smooth.

特許文献1に紹介されている成形用中子を成形体から取り除く場合には、成形体に打撃等の振動を与えて、中子本体を崩壊させればよいと考えられる。また、崩壊した中子本体を成形体から取り除けば、成形体に残ったコート層を除去できると考えられる。しかし、このような成形用中子を用いた場合、コート層を成形体から取り除く作業が繁雑であり、成形体の製造コストが高くなっていた。また、特許文献1に紹介されている成形用中子は、コート層の耐圧性が小さいために、高圧で成形する際には変形するおそれがあった。成形用中子が成形時に変形すれば、寸法精度に優れる成形体が得られない問題があった。   When removing the molding core introduced in Patent Document 1 from the molded body, it is considered that the core body may be collapsed by applying vibrations such as striking to the molded body. Further, it is considered that the coating layer remaining on the molded body can be removed by removing the collapsed core body from the molded body. However, when such a molding core is used, the operation of removing the coat layer from the molded body is complicated, and the manufacturing cost of the molded body is high. In addition, the molding core introduced in Patent Document 1 may be deformed when molded at high pressure because the pressure resistance of the coating layer is small. If the molding core is deformed at the time of molding, there is a problem that a molded body having excellent dimensional accuracy cannot be obtained.

成形用中子の耐圧性を高める技術も提案されている(例えば、特許文献2参照)。特許文献2に紹介されている成形用中子は、溶湯の温度よりも高融点の多孔質材料で形成された表面層と、溶湯の温度よりも低融点の材料で形成され表面層の内側に充填されている充填部とを持つ。この成形用中子によると、成形材料が固化した後に、成形用中子が内在する成形体を加熱すれば、充填部を構成する低融点の材料が溶融し、成形用中子が崩壊する。このため、成形用中子を成形体から容易に取り除くことができる。また、低融点の材料として塩などの耐圧性に優れた材料を用いれば、成形用中子が成形時に変形することもない。   A technique for increasing the pressure resistance of a molding core has also been proposed (see, for example, Patent Document 2). The molding core introduced in Patent Document 2 is composed of a surface layer formed of a porous material having a melting point higher than the temperature of the molten metal, and a surface layer formed of a material having a melting point lower than the temperature of the molten metal. And a filling section that is filled. According to this molding core, if the molded body in which the molding core is contained is heated after the molding material is solidified, the low melting point material constituting the filling portion is melted and the molding core collapses. For this reason, the molding core can be easily removed from the molded body. Further, if a material having excellent pressure resistance such as salt is used as the low melting point material, the molding core will not be deformed during molding.

しかし、引用文献2に紹介されている成形用中子を用いる場合にも、成形体を得た後に充填部を溶融させるための加熱工程が必要となる。このため、成形体からこの成形用中子を取り除くためには、依然として多くの工数を要し、成形体を安価に製造するのは依然として困難であった。
特開2003−191048号公報 特開2005−342751号公報
However, even when the molding core introduced in the cited document 2 is used, a heating step for melting the filling portion after obtaining the molded body is required. For this reason, in order to remove the molding core from the molded body, a large number of man-hours are still required, and it is still difficult to produce the molded body at low cost.
JP 2003-191048 A JP-A-2005-342751

本発明は上記事情に鑑みて成されたものであり、耐圧性に優れ、鋳造後や成形後に容易に取り除くことのできる成形用中子およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a molding core that is excellent in pressure resistance and can be easily removed after casting or molding, and a method for manufacturing the same.

上記課題を解決する本発明の成形用中子は、中空の成形体を成形するための成形用中子であって、粒状体同士がバインダによって結合されてなる中子本体と、該成形体の材料よりも融点の高い塩からなり該中子本体の表層部分に形成されている浸透塩層とを持ち、該中子本体は多数の細孔を持ち、該塩は該細孔に入り込んでいることを特徴とする。   The molding core of the present invention that solves the above problems is a molding core for molding a hollow molded body, wherein a core body in which granular bodies are bonded together by a binder, and the molded body The core body has a osmotic salt layer formed of a salt having a melting point higher than that of the material and formed on the surface layer portion of the core body. The core body has a large number of pores, and the salt enters the pores. It is characterized by that.

本発明の成形用中子は下記の(1)〜(2)の何れかを備えるのが好ましい。(1)、(2)の両方を備えるのが望ましい。
(1)前記塩の質量は、前記中子本体の質量を100%としたときに25%〜45%である。
(2)前記塩は、塩化カリウム、塩化ナトリウム、炭酸ナトリウムから選ばれる少なくとも1種からなる。
The molding core according to the present invention preferably includes any of the following (1) to (2). It is desirable to have both (1) and (2).
(1) The mass of the salt is 25% to 45% when the mass of the core body is 100%.
(2) The salt comprises at least one selected from potassium chloride, sodium chloride, and sodium carbonate.

上記課題を解決する本発明の成形用中子の製造方法は、中空の成形体を成形するための成形用中子であって、粒状体同士がバインダによって結合されてなる中子本体と、該成形体の材料よりも融点の高い塩からなり該中子本体の表層部分に形成されている浸透塩層とを持ち、該中子本体は多数の細孔を持ち、該塩は該細孔に入り込んでいる成形用中子を製造する方法であって、該粒状体同士が該バインダによって結合されてなる該中子本体を成形する本体成形工程と、減圧条件下で該中子本体の表層部分に溶融状態の塩を浸透させる溶融塩浸透工程と、を備えることを特徴とする。   A manufacturing method of a molding core of the present invention that solves the above problems is a molding core for molding a hollow molded body, wherein a core body in which granular bodies are bonded together by a binder, An osmotic salt layer formed on a surface layer portion of the core body, the core body having a large number of pores, and the salt in the pores. A method for producing an in-molding core, wherein a main body molding step for molding the core body in which the granules are bonded together by the binder, and a surface layer portion of the core body under reduced pressure conditions And a molten salt permeation step for allowing the molten salt to permeate.

本発明の成形用中子の製造方法は下記の(3)〜(4)の何れかを備えるのが好ましい。(3)、(4)の両方を備えるのが望ましい。
(3)前記溶融塩浸透工程において、前記中子本体の質量を100%としたときに25%〜45%の前記塩を浸透させる。
(4)前記塩は、塩化カリウム、塩化ナトリウム、炭酸ナトリウムから選ばれる少なくとも1種からなる。
The method for producing a molding core according to the present invention preferably includes any of the following (3) to (4). It is desirable to have both (3) and (4).
(3) In the molten salt infiltration step, 25% to 45% of the salt is infiltrated when the mass of the core body is 100%.
(4) The salt comprises at least one selected from potassium chloride, sodium chloride, and sodium carbonate.

本発明の成形用中子は成形体から容易に取り除くことができる。すなわち、本発明の成形用中子において、中子本体は粒状体とバインダとからなるため、従来の成形用中子と同様に、成形体に打撃等の振動を与えれば、中子本体が崩壊する。したがって、中子本体を成形体から容易に取り除くことができる。また、中子本体の表層部分に形成されている浸透塩層は、塩からなるために水に容易に溶解する。したがって、成形体の中空部分を温水で洗浄すれば、浸透塩層を容易に取り除くことができる。   The molding core of the present invention can be easily removed from the molded body. That is, in the molding core of the present invention, since the core body is composed of a granular body and a binder, the core body collapses if vibration such as striking is applied to the molded body, as in the conventional molding core. To do. Therefore, the core body can be easily removed from the molded body. Moreover, since the osmotic salt layer formed on the surface layer portion of the core body is made of salt, it easily dissolves in water. Therefore, the osmotic salt layer can be easily removed by washing the hollow part of the molded body with warm water.

また、本発明の成形用中子は、耐圧性に優れるため、成形体を高圧で成形する際にも変形し難い。すなわち、本発明の成形用中子において、中子本体の表層部分に形成されている浸透塩層は、塩からなり、耐圧性に優れる。したがって、本発明の成形用中子には、浸透塩層に由来する優れた耐圧性が付与される。なお、本発明の成形用中子においては、浸透塩層は中子本体の表面を覆うだけでなく、中子本体の細孔に入り込んでいるため、成形用中子のなかで浸透塩層の占める割合は大きい。換言すると、浸透塩層の肉厚は大きい。したがって、本発明の成形用中子は、浸透塩層に由来する耐圧効果を充分に発揮する。よって、本発明の成形用中子によると、寸法精度に優れた成形体を得ることができる。   Moreover, since the molding core of the present invention is excellent in pressure resistance, it is difficult to be deformed even when the molded body is molded at a high pressure. That is, in the molding core of the present invention, the osmotic salt layer formed on the surface layer portion of the core body is made of salt and has excellent pressure resistance. Therefore, excellent pressure resistance derived from the permeation salt layer is imparted to the molding core of the present invention. In the molding core of the present invention, the osmotic salt layer not only covers the surface of the core body, but also enters the pores of the core body. The share is large. In other words, the thickness of the osmotic salt layer is large. Therefore, the molding core of the present invention sufficiently exhibits the pressure resistance effect derived from the osmotic salt layer. Therefore, according to the molding core of the present invention, a molded article having excellent dimensional accuracy can be obtained.

上記(1)を備える本発明の成形用中子は、より耐圧性に優れ、成形体からより容易に取り出し得る。成形用中子の中で浸透塩層が占める割合が、浸透塩層に由来する耐圧効果を充分に発揮できる程度に大きく、かつ、浸透塩層が温水等に容易に溶解する程度に小さいためである。   The molding core according to the present invention having the above (1) is more excellent in pressure resistance and can be easily taken out from the molded body. This is because the proportion of the osmotic salt layer in the molding core is large enough to sufficiently exert the pressure-resistant effect derived from the osmotic salt layer, and small enough that the osmotic salt layer is easily dissolved in warm water or the like. is there.

上記(2)を備える本発明の成形用中子は、より耐圧性に優れ、かつ、成形体からより容易に取り出し得る。塩化カリウム、塩化ナトリウム、炭酸ナトリウムは何れも固体時の強度に優れ、かつ、水に溶解し易いため、温水などで洗い流せば成形体から容易に取り出し得ることによる。   The molding core according to the present invention having the above (2) is more excellent in pressure resistance and can be taken out from the molded body more easily. Since potassium chloride, sodium chloride, and sodium carbonate are all excellent in strength when solid and easily dissolved in water, they can be easily taken out from the molded body by washing with warm water or the like.

本発明の成形用中子の製造方法では、溶融塩浸透工程において、中子本体の表層部分に塩を浸透させる。したがって、本発明の成形用中子の製造方法によると、耐圧性に優れ、鋳造後や成形後に容易に取り除くことのできる成形用中子を製造することができる。また、本発明の製造方法では、溶融塩浸透工程において、減圧条件下で中子本体の表層部分に塩を浸透させる。したがって塩は、中子本体の表面だけでなく、中子本体表層部分、すなわち内部にまで容易に浸透する。また、中子本体には、溶融状態の塩すなわち高濃度の塩を浸透させるため、所望する量の塩を中子本体に迅速に浸透させ得る。よって、本発明の製造方法によると、成形用中子を容易かつ安価に製造し得る。   In the method for producing a molding core according to the present invention, the salt is infiltrated into the surface layer portion of the core body in the molten salt infiltration step. Therefore, according to the molding core manufacturing method of the present invention, it is possible to manufacture a molding core that is excellent in pressure resistance and can be easily removed after casting or molding. In the production method of the present invention, in the molten salt infiltration step, the salt is infiltrated into the surface layer portion of the core body under reduced pressure. Therefore, the salt easily penetrates not only to the surface of the core body but also to the surface layer portion of the core body, that is, the inside. Further, since a molten salt, that is, a high-concentration salt is infiltrated into the core body, a desired amount of salt can be rapidly infiltrated into the core body. Therefore, according to the manufacturing method of the present invention, the molding core can be manufactured easily and inexpensively.

上記(3)を備える本発明の成形用中子の製造方法は、上述したように、より耐圧性に優れ、成形体からより容易に取り出し得る本発明の成形用中子を製造し得る。   As described above, the method for producing a molding core of the present invention comprising the above (3) can produce the molding core of the present invention which is more excellent in pressure resistance and can be easily taken out from the molded body.

上記(4)を備える本発明の成形用中子の製造方法は、上述したように、より耐圧性に優れ、成形体からより容易に取り出し得る本発明の成形用中子を製造し得る。   As described above, the method for producing a molding core according to the present invention comprising the above (4) can produce the molding core according to the present invention which is more excellent in pressure resistance and can be easily taken out from the molded body.

本発明の成形用中子は鋳造体を成形(鋳造)する際や、樹脂成形体を成形する際に用いることができる。   The molding core of the present invention can be used when molding (casting) a cast body or molding a resin molded body.

本発明の成形用中子におけるバインダの配合割合は、粒状体同士を結合でき、かつ、中子本体に細孔が形成される程度であればよい。なお、本発明における中子本体の細孔とは、粒状体同士の隙間、粒状体とバインダとの隙間、バインダ同士の隙間等を指す。粒状体として多孔体を選択する場合には、粒状体自身の細孔もまた中子本体の細孔となる。   The blending ratio of the binder in the molding core of the present invention may be such that the particles can be bonded to each other and pores are formed in the core body. In addition, the pore of the core body in the present invention refers to a gap between granular bodies, a gap between granular bodies and a binder, a gap between binders, and the like. When a porous body is selected as the granular body, the pores of the granular body itself also become the pores of the core body.

本発明の成形用中子における粒状体としては、従来の砂中子に用いられる粒状体を用いれば良いが、成形材料よりも融点が高い材料からなるものが好ましい。成形体を成形する際における成形用中子の変形を防止するためである。また、粒状体としては、塩よりも融点が高い材料からなるものを用いるのが望ましい。   As the granular material in the molding core of the present invention, a granular material used in a conventional sand core may be used, but a granular material having a higher melting point than the molding material is preferable. This is to prevent deformation of the molding core when molding the molded body. Moreover, it is desirable to use a granular material made of a material having a melting point higher than that of the salt.

本発明の成形用中子において、浸透塩層は、水などの溶媒に溶解した塩を中子本体に浸透させ、溶媒を蒸発させて形成しても良い。あるいは、溶融状態の塩を中子本体に浸透させ、塩を冷却固化させて形成しても良い。何れの場合にも、成形用中子における浸透塩層は、固体状の塩で構成される。溶融状態の塩を中子本体に浸透させる場合には、成形用中子を製造する工程がより簡易化する利点がある。   In the molding core of the present invention, the osmotic salt layer may be formed by allowing a salt dissolved in a solvent such as water to penetrate into the core body and evaporating the solvent. Alternatively, the molten salt may be penetrated into the core body, and the salt may be cooled and solidified. In any case, the osmotic salt layer in the molding core is composed of a solid salt. In the case where the molten salt is infiltrated into the core body, there is an advantage that the process of manufacturing the molding core is further simplified.

中子本体に溶融状態の塩を浸透させるためには、粒状体として、塩よりも融点が高い材料からなるものを使用する必要がある。さらに、粒状体は多孔材であるのが好ましい。多孔材からなる粒状体はバインダや塩が浸透し易く、バインダや塩と強固に結合するため、成形用中子の耐圧性が高くなることによる。粒状体として好ましく用いられる材料としては、けい砂、アルミナ、ムライト、ジルコン、クロマイト等が挙げられる。   In order to infiltrate the molten salt into the core body, it is necessary to use a granular material made of a material having a melting point higher than that of the salt. Furthermore, the granular material is preferably a porous material. The granular material made of a porous material is easily penetrated by the binder and salt, and is firmly bonded to the binder and salt, so that the pressure resistance of the molding core is increased. Examples of the material preferably used as the granular material include silica sand, alumina, mullite, zircon, chromite and the like.

本発明の成形用中子では、中子本体の表層部分に浸透塩層が形成されている。換言すると、中子本体の表層部分は塩によって固められている。したがって、中子本体に要求される耐圧性は比較的小さく、バインダに要求される耐圧性もまた比較的小さい。また、本発明の成形用中子において、浸透塩層を構成する塩は、成形材料よりも融点が高い。したがって、成形時における成形用中子の耐圧性は浸透塩層によって充分に確保される。よって、バインダとしては成形材料よりも融点が低いものや、成形材料の融点以下で燃焼するもの等を用いることもできる。このため、本発明の成形用中子におけるバインダとしては、フェノール樹脂やイソシアネート樹脂、フラン樹脂等を用いることができる。   In the molding core of the present invention, an osmotic salt layer is formed on the surface layer portion of the core body. In other words, the surface layer portion of the core body is hardened with salt. Therefore, the pressure resistance required for the core body is relatively small, and the pressure resistance required for the binder is also relatively small. In the molding core of the present invention, the salt constituting the osmotic salt layer has a higher melting point than the molding material. Therefore, the pressure resistance of the molding core at the time of molding is sufficiently ensured by the osmotic salt layer. Therefore, a binder having a melting point lower than that of the molding material or a material that burns below the melting point of the molding material can be used as the binder. For this reason, a phenol resin, an isocyanate resin, a furan resin, etc. can be used as a binder in the molding core of this invention.

本発明の成形用中子における塩は、成形材料よりも融点が高い。よって、塩は成形材料に応じて適宜選択すればよい。塩化カリウム、塩化ナトリウム、炭酸ナトリウム等は、融点が高く、固体時における耐圧性に優れ、かつ水に溶解し易いため、好ましく用いられる。   The salt in the molding core of the present invention has a higher melting point than the molding material. Therefore, the salt may be appropriately selected according to the molding material. Potassium chloride, sodium chloride, sodium carbonate, and the like are preferably used because they have a high melting point, excellent pressure resistance when solid, and are easily dissolved in water.

以下、本発明の成形用中子およびその製造方法を図面を基に説明する。   Hereinafter, the molding core of the present invention and the manufacturing method thereof will be described with reference to the drawings.

(実施例)
実施例の成形用中子は、上記(1)〜(2)を備える。また、実施例の成形用中子の製造方法は上記(3)〜(4)を備える。実施例の成形用中子を模式的に表す断面図を図1に示す。図1の要部拡大図を図2に示す。実施例の成形用中子の製造方法における溶融塩浸透工程を模式的に表す説明図を図3に示す。実施例の成形用中子を用いて成形体を製造している様子を模式的に表す説明図を図4〜図7に示す。
(Example)
The molding core of the example includes the above (1) to (2). Moreover, the manufacturing method of the molding core of an Example is provided with said (3)-(4). FIG. 1 is a cross-sectional view schematically showing the molding core of the example. FIG. 2 shows an enlarged view of the main part of FIG. FIG. 3 is an explanatory diagram schematically showing the molten salt permeation step in the method for manufacturing a molding core of the example. FIG. 4 to FIG. 7 are explanatory views schematically showing how a molded body is manufactured using the molding core of the example.

図1に示すように、実施例の成形用中子1は中子本体2と、中子本体2の表層部分に形成されている浸透塩層3とを持つ。中子本体は、粒状体20としてのけい砂と、バインダ21としてのフェノール樹脂とからなる。粒状体20とバインダ21との質量比は97:3である。中子本体2の表層部分には、浸透塩層3が形成されている。実施例の成形用中子1において、浸透塩層3を構成する塩は塩化カリウムである。図1に示すように、浸透塩層3は中子本体2の表層部分全体に形成されている。図2に示すように、粒状体20同士はバインダ21によって結合されている。浸透塩層3において、塩30は中子本体2の細孔に入り込んでいる。中子本体2の質量を100%としたときの塩の質量は30%である。   As shown in FIG. 1, the molding core 1 of the embodiment has a core body 2 and an osmotic salt layer 3 formed on the surface layer portion of the core body 2. The core body is made of silica sand as the granular material 20 and phenol resin as the binder 21. The mass ratio of the granular material 20 and the binder 21 is 97: 3. An osmotic salt layer 3 is formed on the surface layer portion of the core body 2. In the molding core 1 of the example, the salt constituting the osmotic salt layer 3 is potassium chloride. As shown in FIG. 1, the osmotic salt layer 3 is formed on the entire surface layer portion of the core body 2. As shown in FIG. 2, the granular materials 20 are joined together by a binder 21. In the osmotic salt layer 3, the salt 30 enters the pores of the core body 2. The mass of the salt is 30% when the mass of the core body 2 is 100%.

実施例の成形用中子1の製造方法は、以下の通りである。   The manufacturing method of the core 1 for a shaping | molding of an Example is as follows.

(1.本体形成工程)
旭有機材工業製AVコーテッドサンド(フェノール樹脂でけい砂をコーティングしたもの)を混合材料とし、この混合材料を中子本体用の成形型に流し込んだ。このとき、成形型への混合材料の充填率を高めるため、成形型を加振機で振動させた。混合材料を充填した成形型を、250℃に加熱した。加熱後、成形型を冷却して、粒状体同士がバインダによって結合されてなる中子本体を得た。
(1. Main body forming process)
AV coated sand (coated with silica sand with phenolic resin) manufactured by Asahi Organic Materials Co., Ltd. was used as a mixed material, and this mixed material was poured into a mold for the core body. At this time, in order to increase the filling rate of the mixed material into the mold, the mold was vibrated with a vibrator. The mold filled with the mixed material was heated to 250 ° C. After the heating, the mold was cooled to obtain a core body in which the granular materials are bonded together by a binder.

(2.溶融塩浸透工程)
塩30を収容した塩浴槽40と、中子本体2を収容した中子浸漬装置41とをチャンバ42内に配した。塩浴槽40にはヒータが取り付けられており、塩を加熱し得る。また、中子浸漬装置41は塩浴槽40に対して上下動可能であるため、中子浸漬装置41に収容されている中子は塩浴槽40に出入可能である。チャンバ42には、チャンバ42内部を減圧するための減圧装置(図略)が取り付けられている(図3)。
(2. Molten salt infiltration process)
A salt bath 40 containing the salt 30 and a core immersion device 41 containing the core body 2 were disposed in the chamber 42. A heater is attached to the salt bath 40, and salt can be heated. Further, since the core immersion device 41 can move up and down with respect to the salt bath 40, the core accommodated in the core immersion device 41 can enter and exit the salt bath 40. A decompression device (not shown) for decompressing the interior of the chamber 42 is attached to the chamber 42 (FIG. 3).

先ず、ヒータを駆動し、塩浴槽40を850℃に加熱して塩30を加熱溶融した。次いで、減圧装置を駆動してチャンバ42内を80mmHg(約106.7hPa)に減圧した。減圧後、中子浸漬装置41を下動させて、本体形成工程で得た中子本体2を溶融状態の塩30に浸漬した。チャンバ42内が減圧されているため、溶融状態の塩30は中子本体2の表層部分に形成されている細孔に侵入した。浸漬開始後、数秒経過した後に、中子浸漬装置41を上動させて、中子本体2を溶融状態の塩30から引き上げた。この中子本体2を、冷却・乾燥して、実施例の成形用中子1を得た。   First, the heater was driven, the salt bath 40 was heated to 850 ° C., and the salt 30 was heated and melted. Next, the decompression device was driven to decompress the inside of the chamber 42 to 80 mmHg (about 106.7 hPa). After decompression, the core immersion device 41 was moved down, and the core body 2 obtained in the body formation step was immersed in the molten salt 30. Since the inside of the chamber 42 was depressurized, the molten salt 30 entered the pores formed in the surface layer portion of the core body 2. After several seconds after the start of the immersion, the core immersion device 41 was moved up, and the core body 2 was pulled up from the molten salt 30. The core body 2 was cooled and dried to obtain the molding core 1 of the example.

(成形用中子1を用いた成形体の製造)
実施例の成形用中子1を用いて成形体(鋳造体)を製造する方法を以下に説明する。この成形体の製造方法では、成形材料としてダイカスト用アルミニウムADC12を用いた。
(Manufacture of molded body using core 1 for molding)
A method for producing a molded body (cast body) using the molding core 1 of the embodiment will be described below. In this method for producing a molded body, aluminum ADC12 for die casting was used as a molding material.

(1.成形工程)
先ず、鋳造用成形型50のキャビティ51に成形用中子1を配置した(図4)。次いで、射出プランジャー52よりキャビティ51に向けて、溶融状態の成形材料53を射出した。このときの成形材料の温度(溶湯温度)は680℃、成形圧(鋳造圧)は20MPa、射出速度は2.0m/sであった。
(1. Molding process)
First, the molding core 1 was placed in the cavity 51 of the casting mold 50 (FIG. 4). Next, a molding material 53 in a molten state was injected from the injection plunger 52 toward the cavity 51. The molding material temperature (molten metal temperature) at this time was 680 ° C., the molding pressure (casting pressure) was 20 MPa, and the injection speed was 2.0 m / s.

(2.中子崩壊工程)
上述した成形工程によって、成形用中子1が一体化した成形体(以下、中間成形体54と呼ぶ)が得られた(図5)。この中間成形体54の巾木部55(成形用中子1のなかで外部に露出している部分)をハンマーで叩き折った。次いで、ノックアウトマシンによって、中間成形体54をノックし、中子本体2を崩壊させた。このときのノック圧力は0.2MPa、ノック時間は30秒であった。中子崩壊工程によって、中子本体2が崩壊し、粒状体20およびバインダ21の破片は、大半が自重によって中間成形体54の外部に脱落した。浸透塩層3は、一部が粒状体20等とともに中間成形体54の外部に脱落し、一部が中間成形体54の内部に残存した(図6)。
(2. Core decay process)
By the molding process described above, a molded body in which the molding core 1 was integrated (hereinafter referred to as an intermediate molded body 54) was obtained (FIG. 5). A baseboard portion 55 of the intermediate molded body 54 (a portion exposed to the outside in the molding core 1) was beaten with a hammer. Subsequently, the intermediate molded body 54 was knocked by the knockout machine, and the core body 2 was collapsed. The knock pressure at this time was 0.2 MPa, and the knock time was 30 seconds. The core body 2 collapsed by the core collapse process, and most of the fragments of the granular material 20 and the binder 21 dropped out of the intermediate molded body 54 due to their own weight. Part of the osmotic salt layer 3 dropped out of the intermediate molded body 54 together with the granular body 20 and the like, and part of the osmotic salt layer 3 remained inside the intermediate molded body 54 (FIG. 6).

(3.洗浄工程)
中子崩壊工程後、中間成形体54の内部を60℃の温水で洗浄した。温水によって、中間成形体54の内部に残存していた塩30が溶解し、中間成形体54の外部に脱落した。この洗浄工程によって、中空の成形体56が得られた(図7)。
(3. Cleaning process)
After the core collapse step, the inside of the intermediate molded body 54 was washed with hot water at 60 ° C. The salt 30 remaining inside the intermediate molded body 54 was dissolved by the hot water and dropped out of the intermediate molded body 54. By this washing step, a hollow molded body 56 was obtained (FIG. 7).

得られた成形体56の内面は滑らかであり、成形用中子1への成形材料53の差込はみられなかった。また、得られた成形体56は寸法精度に優れていることから、実施例の成形用中子1は高圧で成形しても変形しないことがわかった。   The inner surface of the obtained molded body 56 was smooth, and insertion of the molding material 53 into the molding core 1 was not observed. Moreover, since the obtained molded object 56 was excellent in dimensional accuracy, it turned out that the shaping | molding core 1 of an Example does not deform | transform even if it shape | molds by high pressure.

実施例の成形用中子1は、巾木を叩き折り、中間成形体をノックし、中間成形体の内部に残存する浸透塩層を洗浄するだけで中間成形体から取り除くことができる。したがって、実施例の成形用中子1は成形体から容易に取り除くことができる。   The molding core 1 of the embodiment can be removed from the intermediate molded body simply by knocking and folding the baseboard, knocking the intermediate molded body, and washing the osmotic salt layer remaining inside the intermediate molded body. Therefore, the molding core 1 of the embodiment can be easily removed from the molded body.

また、実施例の成形用中子1は、耐圧性に優れ、成形体を高圧で成形する際にも変形し難い。よって、実施例の成形用中子1によると寸法精度に優れた成形体を得ることができる。   In addition, the molding core 1 of the example is excellent in pressure resistance and hardly deforms even when the molded body is molded at a high pressure. Therefore, according to the molding core 1 of the embodiment, a molded body having excellent dimensional accuracy can be obtained.

実施例の成形用中子を模式的に表す断面図である。It is sectional drawing which represents the core for shaping | molding of an Example typically. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 実施例の成形用中子の製造方法における溶融塩浸透工程を模式的に表す説明図である。It is explanatory drawing which represents typically the molten salt osmosis | permeation process in the manufacturing method of the molding core of an Example. 実施例の成形用中子を用いて成形体を製造している様子を模式的に表す説明図である。It is explanatory drawing which represents typically a mode that the molded object is manufactured using the molding core of an Example. 実施例の成形用中子を用いて成形体を製造している様子を模式的に表す説明図である。It is explanatory drawing which represents typically a mode that the molded object is manufactured using the molding core of an Example. 実施例の成形用中子を用いて成形体を製造している様子を模式的に表す説明図である。It is explanatory drawing which represents typically a mode that the molded object is manufactured using the molding core of an Example. 実施例の成形用中子を用いて成形体を製造している様子を模式的に表す説明図である。It is explanatory drawing which represents typically a mode that the molded object is manufactured using the molding core of an Example.

符号の説明Explanation of symbols

1:成形用中子、2:中子本体、3:浸透塩層、20:粒状体、21:バインダ、30:塩 1: Molding core, 2: Core body, 3: Penetration salt layer, 20: Granular body, 21: Binder, 30: Salt

Claims (6)

中空の成形体を成形するための成形用中子であって、
粒状体同士がバインダによって結合されてなる中子本体と、該成形体の材料よりも融点の高い塩からなり該中子本体の表層部分に形成されている浸透塩層とを持ち、
該中子本体は多数の細孔を持ち、該塩は該細孔に入り込んでいることを特徴とする成形用中子。
A molding core for molding a hollow molded body,
A core body formed by bonding particles together with a binder, and a permeation salt layer formed of a salt having a melting point higher than the material of the molded body and formed on a surface layer portion of the core body;
The core for molding has a large number of pores, and the salt penetrates into the pores.
前記塩の質量は、前記中子本体の質量を100%としたときに25%〜45%である請求項1に記載の成形用中子。   2. The molding core according to claim 1, wherein the mass of the salt is 25% to 45% when the mass of the core body is 100%. 前記塩は、塩化カリウム、塩化ナトリウム、炭酸ナトリウムから選ばれる少なくとも1種からなる請求項1に記載の成形用中子。   The molding core according to claim 1, wherein the salt comprises at least one selected from potassium chloride, sodium chloride, and sodium carbonate. 中空の成形体を成形するための成形用中子であって、粒状体同士がバインダによって結合されてなる中子本体と、該成形体の材料よりも融点の高い塩からなり該中子本体の表層部分に形成されている浸透塩層とを持ち、該中子本体は多数の細孔を持ち、該塩は該細孔に入り込んでいる成形用中子を製造する方法であって、
該粒状体同士が該バインダによって結合されてなる該中子本体を成形する本体成形工程と、
減圧条件下で該中子本体の表層部分に溶融状態の塩を浸透させる溶融塩浸透工程と、を備えることを特徴とする成形用中子の製造方法。
A molding core for molding a hollow molded body, comprising a core body in which granular bodies are bonded together by a binder, and a salt having a melting point higher than the material of the molded body. The core body has a large number of pores, and the salt is a method for producing a molding core that has entered the pores.
A main body molding step of molding the core main body formed by bonding the granular materials with the binder;
And a molten salt permeation step for infiltrating the molten salt into the surface layer portion of the core body under reduced pressure conditions.
前記溶融塩浸透工程において、前記中子本体の質量を100%としたときに25%〜45%の前記塩を浸透させる請求項4に記載の成形用中子の製造方法。   5. The method for manufacturing a molding core according to claim 4, wherein, in the molten salt infiltration step, 25% to 45% of the salt is infiltrated when the mass of the core body is 100%. 前記塩は、塩化カリウム、塩化ナトリウム、炭酸ナトリウムから選ばれる少なくとも1種からなる請求項4に記載の成形用中子の製造方法。   The method for producing a molding core according to claim 4, wherein the salt comprises at least one selected from potassium chloride, sodium chloride, and sodium carbonate.
JP2006140443A 2006-05-19 2006-05-19 Core for forming and manufacturing method therefor Pending JP2007307596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140443A JP2007307596A (en) 2006-05-19 2006-05-19 Core for forming and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140443A JP2007307596A (en) 2006-05-19 2006-05-19 Core for forming and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007307596A true JP2007307596A (en) 2007-11-29

Family

ID=38840911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140443A Pending JP2007307596A (en) 2006-05-19 2006-05-19 Core for forming and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007307596A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517351A (en) * 2009-02-10 2012-08-02 シーメンス アクティエンゲゼルシャフト Nickel base cast part with compensator and method for manufacturing the nickel base cast part
CN108746567A (en) * 2018-07-19 2018-11-06 山东联诚精密制造股份有限公司 A kind of aluminum casting water desanding core system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517351A (en) * 2009-02-10 2012-08-02 シーメンス アクティエンゲゼルシャフト Nickel base cast part with compensator and method for manufacturing the nickel base cast part
CN108746567A (en) * 2018-07-19 2018-11-06 山东联诚精密制造股份有限公司 A kind of aluminum casting water desanding core system

Similar Documents

Publication Publication Date Title
US4808360A (en) Method of producing mold for slip casting and method of molding slip casting
JP6277178B2 (en) Method for producing hollow metal member by casting method
CN103567384B (en) The method for manufacturing rotor
JP2005028455A5 (en)
TW200533436A (en) Process for producing cast item
KR20060100375A (en) Tool for producing cast components, method for producing said tool, and method for producing cast components
KR101761048B1 (en) Core for precision casting, production method therefor, and mold for precision casting
US10259036B2 (en) Variable diameter investment casting mold for casting of reticulated metal foams
JP5638062B2 (en) Method for manufacturing an article having a cavity
JP2902379B2 (en) How to make a wax pattern
JP2007307596A (en) Core for forming and manufacturing method therefor
CN112041102A (en) Method for producing a melt-filled casting mould and casting mould
CN110831712A (en) Casting process by utilizing hot die casting
Deore et al. A study of core and its types for casting process
JP5556455B2 (en) Casting method
JP2005066638A (en) Pressure resistant core and its manufacturing method
KR100893960B1 (en) Method for producing a light-alloy bearing bush with a rough external surface
JP6668333B2 (en) Method of manufacturing ceramic core
EP3586993B1 (en) Production of multi-passage hollow casting
JP7345773B2 (en) Wax model and its production method
TW453918B (en) A method of precise casting of shell
JPH0237937A (en) Precision casting method for casting having narrow mouth hollow part
JP2005131664A (en) Salt core for casting and its making method
JP7309143B2 (en) How to make a wax model
JPH0339774B2 (en)