EP2837829A1 - Control of the characteristics of centrifugal pumps - Google Patents

Control of the characteristics of centrifugal pumps Download PDF

Info

Publication number
EP2837829A1
EP2837829A1 EP13180356.1A EP13180356A EP2837829A1 EP 2837829 A1 EP2837829 A1 EP 2837829A1 EP 13180356 A EP13180356 A EP 13180356A EP 2837829 A1 EP2837829 A1 EP 2837829A1
Authority
EP
European Patent Office
Prior art keywords
pump
pressure
map
speed
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13180356.1A
Other languages
German (de)
French (fr)
Other versions
EP2837829B1 (en
Inventor
Jens-Patrik Springer
Andreas Grill
Richard Aumann
Andreas Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orcan Energy AG
Original Assignee
Orcan Energy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orcan Energy AG filed Critical Orcan Energy AG
Priority to EP13180356.1A priority Critical patent/EP2837829B1/en
Priority to US14/911,925 priority patent/US10480515B2/en
Priority to PCT/EP2014/063657 priority patent/WO2015022113A1/en
Priority to CN201480051136.3A priority patent/CN105556127B/en
Publication of EP2837829A1 publication Critical patent/EP2837829A1/en
Application granted granted Critical
Publication of EP2837829B1 publication Critical patent/EP2837829B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0027Varying behaviour or the very pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a method for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid and a corresponding device.
  • Centrifugal pumps have a strong dependence of the flow rate on the applied pressure difference and the speed. More specifically, a difference between the pump-side fluid pressure and the pump-side fluid pressure determines the flow rate (mass flow or volumetric flow).
  • Each pump has a characterizing pump map that defines a relationship between the three parameters (difference between the pump output side fluid pressure and the pump input side fluid pressure, flow rate, speed). In this way, the third can be determined from the characteristic map with knowledge of two of the parameters.
  • the map may be in the form of empirical, semi-empirical or theoretical model equations. In empirical model equations empirically recorded values can be associated with compensation functions. These empirical compensation functions can also be recorded as an illustration in a table. In the case of semi-empirical model equations, empirical values as well as physical equations are used, which are e.g. Describe correlations of physical parameters. In the case of theoretical model equations, the relationships of the parameters are fully described by physical equations.
  • the disadvantage is that fluctuations in the medium pressure on high and / or low pressure side cause a non-uniform flow (at a given speed), which in mass flow critical processes to impairments of Process flow can lead. Furthermore, the map reduces the operating range of the pump, which can lead to process disturbances and component damage when the limits are exceeded.
  • Fig. 1 shows an example of such a map.
  • the delivery head H is plotted as a function of the rotational speed n via the volume flow Q.
  • the volume flow is limited by a minimum and maximum value of the map.
  • the limitation of the volume flow downwards does not have to be constant as in the drawing, but may depend on the speed.
  • Fig. 2 shows a reduction in the delivery head from H 1 to H 2 at a constant speed n.
  • the performance of the map increases the flow from Q 1 to Q 2 significantly. Such changes can cause problems in process operation, which can lead to malfunctions, downtimes and defects.
  • many processes require changes in the flow, regardless of the current delivery head. This function is also affected by the influence of the map. If, for example, the flow rate is to be increased and the speed is increased, the increased flow rate in many processes can lead to an increase in pressure on the high-pressure side, which partially compensates for the increase in flow due to the influence of the field.
  • the map also shows that there are machine-specific restrictions for the pump operation (such as a minimum volume flow), the compliance of which is necessary to permanently ensure the machine function.
  • a pump (P) is controlled in the form that desired live steam parameters at the output of a heat exchanger downstream of the pump (V) can be set safely.
  • the speed of the pump is influenced by the control so that change the so changed flow, the evaporation condition such that the desired pressures and temperatures of the live steam and stabilized for a stable process operation are controlled.
  • the head of the pump depends on the live steam pressure (p FD ) and on the pressure level in front of the pump (p KOND ).
  • This pressure depends on the actual condensation pressure of the condenser (K) upstream of the pump.
  • This condenser cools and liquefies the working fluid in the ORC process by releasing heat to a cooling medium.
  • This cooling medium eg water of a heating network or ambient air
  • This cooling medium may fluctuate in quantity and temperature (temperature fluctuations in a heating network, wind or other environmental influences). These fluctuations affect the heat transfer in the condenser, which affects the condensation conditions and thus the condensation pressure.
  • external disturbances can affect the delivery head of the pump and therefore cause fluctuations in mass flow and live steam pressure.
  • a cascade control according to Fig. 4 , An internal control circuit regulates the flow rate on the basis of a comparison of the actual and setpoint values of the mass or mass flow rate. Volume flow, while an external control loop sets the flow rate setpoint for control to the actual control variable of the pump (eg process pressure) the inner circle. This allows flow deviations to be compensated and at the same time regulated to a desired process value.
  • the actual control variable of the pump eg process pressure
  • the (inner) sub-process I can be the pumping process.
  • the components that convert the signal of the mass flow control (m-control) in the delivery of a medium may include a control / speed control of the pump, the pump motor and the pump itself.
  • the outer sub-process II may be, for example, an evaporation process and the process value s may be the media pressure p after evaporation.
  • the evaporation process can thus contain all the necessary components, such as one or more heat exchangers, containers, fittings, etc.
  • the object of the invention is at least partially overcome the disadvantages described above.
  • the method according to the invention for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid comprises the steps of: determining a nominal value of a flow rate of the pump; Measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure the liquid downstream of the pump; Determining a desired value of a rotational speed of the pump or of a speed-determining actuating signal from a characteristic map of the pump, the specified nominal value of the flow rate and a difference between the output pressure and the input pressure being input into the characteristic map as input values; and adjusting the speed of the pump to the setpoint of the speed or supplying the speed-determining control signal to the pump.
  • control can already react when a pressure fluctuation occurs before the effects of a flow fluctuation occur (predictive control behavior), which improves the control performance.
  • the map of the pump can be used in a conventional form, that is, there is a relationship between the flow rate and the differential pressure or the delivery at different but each constant speed.
  • the map can alternatively or additionally be used in "inverted” form (hereinafter also called inverted map), in which case there is a relationship between differential pressure or delivery and the speed at different but constant flow.
  • the use of the map is such that a caused by a differential pressure change flow rate change is counteracted by a speed change to keep the flow rate as constant as possible, which is done by finding a corresponding operating point of the pump in the map or inverted map.
  • the desired value of the flow rate can in turn be determined by the control, for example based on a specified outlet pressure of the pump or based on another suitable process value.
  • the setpoint of the flow rate can be set by a user. In both cases, this can be done either by directly specifying the flow rate or indirectly by a Specification of the speed, from which then the constant flow rate can be determined, done.
  • the setting of the target value of the flow rate may comprise the following steps: determining a time average of the difference of the outlet pressure and the inlet pressure; and determining the setpoint of the flow rate from the map of the pump, wherein the time average of the difference of the output pressure and the input pressure and a current speed of the pump as input values are included in the map.
  • a setpoint value of the flow rate which is to be maintained as far as possible can be determined.
  • the setting of the target value of the flow rate can also be carried out continuously.
  • time average of the difference of the output pressure and the input pressure from a first time average of the input pressure and a second time average of the output pressure can be determined.
  • determining the pump speed setpoint may include the further steps of: checking whether a combination of pump speed, set flow rate set point, and the difference between the output pressure and the input pressure is within a map boundary; Adjusting the speed of the pump to the speed reference if the combination is within the map; and adjusting the speed of the pump to a safety value when the combination is outside the map, wherein the safety value is preferably selected so that the deviation from the desired value of the flow rate is as small as possible.
  • adjusting the rotational speed of the pump to the target value of the rotational speed may include outputting a correction signal to a control signal supplied to the pump.
  • a correction signal can be switched to the control signal.
  • a minimum control signal can be output as a correction signal in order to avoid that an operating state is set outside the map.
  • the map at different speeds defines a relationship between the flow rate and a delivery of the pump, and the head is determined from the pressure difference between the measured output pressure and the measured input pressure.
  • the density of the liquid may be used as a constant predetermined value or the method may comprise the further step of measuring the temperature of the liquid and the density of the liquid may be from a functional dependence of the density on the temperature or from a table
  • measuring the temperature may include averaging the temperature over a predetermined time interval.
  • the flow rate may be defined as a volumetric flow or as a mass flow of the fluid through the pump.
  • the device according to the invention for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid comprises: a first A pressure gauge for measuring an inlet pressure of the fluid upstream of the pump; a second pressure gauge for measuring an output pressure of the liquid downstream of the pump; and a controller for setting a target value of a flow rate of the pump; for determining a target value of a rotational speed of the pump from a map of the pump stored in a memory, wherein the setpoint value of the flow rate and a difference between the outlet pressure and the inlet pressure are input into the map as input values; and for adjusting the speed of the pump to the setpoint of the speed.
  • the advantages correspond to those which have been mentioned in connection with the method according to the invention.
  • the device according to the invention can be designed so that the method according to the invention or one of its developments can be carried out with it.
  • control device may furthermore be suitable for determining a time average of the difference of the outlet pressure and the inlet pressure; and for setting the target value of the flow rate from the map of the pump, wherein the time average of the difference of the output pressure and the input pressure and a current speed of the pump as input values are included in the map.
  • control device can be designed for outputting an actuating signal to the pump and setting the rotational speed of the pump to the desired value of the rotational speed can include outputting a correction signal to the actuating signal supplied to the pump.
  • the device may further comprise: a temperature measuring device for measuring a temperature of the liquid and for transmitting a temperature measuring signal to the control device; wherein the control device may further be configured to determine a density of the liquid from the temperature measurement signal and to determine the density of the liquid from a functional dependence of the density on the temperature or from a table stored in the memory.
  • the device according to the invention or one of the further developments can be part of an Organic Rankine Cycle (ORC) system with a pump for pumping a working medium of the ORC system.
  • ORC Organic Rankine Cycle
  • Fig. 5 illustrates the method according to the invention according to one embodiment.
  • the knowledge of the map of a machine allows its limitation with respect to the parameters of a process (difference between the pump output side fluid pressure and the pump input side fluid pressure, flow rate, speed) and their mutual dependence in the control to implement (map control).
  • a control algorithm monitors the actual head (or differential pressure) as well as the speed and uses this to calculate the current flow rate.
  • the map is stored numerically in the algorithm.
  • the actual density can either be determined exactly via an additional measurement of the temperature of the medium, or can be assumed to be constant by an approximation in the operating range used.
  • the latter simplification is included Many media in liquid phase and limited operating range (pressure and / or temperature range) in a sufficiently good approximation for the regulation allowed.
  • a setpoint of a flow rate of the pump is set as the currently calculated flow rate; measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure of the liquid downstream of the pump; determining a setpoint of a speed of the pump from the map of the pump, wherein the setpoint of the flow rate and the difference between the output pressure and the input pressure are included as input values in the map; and finally, adjusting the speed of the pump to the setpoint speed.
  • the limitation of the map (e.g., minimum flow) is considered in the algorithm. As a result, both a uniform process operation and compliance with the operating limits of the pump can be ensured.
  • Fig. 6 shows the operation of the compensation effect of the map control, namely the correction of the speed at a differential pressure change, so as to correct the flow rate.
  • the operation of the method according to this embodiment of the map control according to the invention is shown in the map of the pump. If the pressure difference or the corresponding delivery head drops from that in point 1 to that at point 2, the flow Q increases at a constant speed n 1. By reducing the speed to n 2 , the original flow at the new pressure difference or delivery head can now be reduced be restored in point 3.
  • the measured values p FD and p KOND flow into the regulation according to the invention (see Fig. 7 ).
  • the measurement signal first passes through an averaging (moving average) in a suitable averaging interval.
  • the mean value of the live steam pressure p FD_M is used with the live steam setpoint for the control deviation as the input signal of a controller (eg a PID controller).
  • the output signal and the difference of the average values flow as input values into the map KF 1 .
  • the currently expected mass flow is calculated.
  • This supplies the currently required actuating signal of the pump.
  • the difference between this value and the current control signal of the controller is the sought-after deviation to be compensated. By adding this deviation to the control signal results in an activation of the compensation of the fault.
  • the gain K can be used to adjust the influence of this connection on the process.
  • the map KF 1 also provides to the controller the currently required minimum control signal S min . This can be prevented by the controller below this map limit.
  • Fig. 8 shows by way of example from a measurement on an ORC system the course of differential pressure (p FD -p KOND ) (upper curve in FIG Fig. 8 ) and mass flow (lower curve in Fig. 8 ) over a period of about 15 minutes. You can see how pressure fluctuations show their influence on the flow. With decreasing differential pressure, a higher flow rate is directly measurable, and vice versa.
  • the map control allows this stabilization to be implemented.
  • the consequences of stabilization on design and process can mean higher process quality and availability, but also higher safety against breaches of process limits.
  • the safety limits are reduced as a function of the now lower peak values or the process with higher temperatures (closer to the safety limits) are operated without availability reductions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, umfassend die Schritte: Festlegen eines Sollwerts einer Durchflussrate der Pumpe; Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Weiterhin betrifft die Erfindung eine entsprechende Vorrichtung zum Regeln einer Pumpe.The present invention relates to a method for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid, comprising the steps of: setting a target value of a flow rate of the pump; Measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure of the liquid downstream of the pump; Determining a setpoint of a speed of the pump from a map of the pump, wherein the setpoint set the flow rate and a difference between the output pressure and the input pressure as input values in the map received; and adjusting the speed of the pump to the speed reference. Furthermore, the invention relates to a corresponding device for controlling a pump.

Description

Gebiet der ErfindungField of the invention

Die vorliegende Erfindung betrifft ein Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit und eine entsprechende Vorrichtung.The present invention relates to a method for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid and a corresponding device.

Stand der TechnikState of the art

Kreiselpumpen weisen eine starke Abhängigkeit der Fördermenge von der anliegenden Druckdifferenz und der Drehzahl auf. Genauer gesagt, bestimmt eine Differenz zwischen dem pumpenausgangsseitigen Flüssigkeitsdruck und dem pumpeneingangsseitigen Flüssigkeitsdruck die Durchflussmenge (Massenstrom oder Volumenstrom). Jede Pumpe weist ein für sie kennzeichnendes Pumpenkennfeld auf, das einen Zusammenhang zwischen den drei Parametern (Differenz zwischen dem pumpenausgangsseitigen Flüssigkeitsdruck und dem pumpeneingangsseitigen Flüssigkeitsdruck, Durchflussmenge, Drehzahl) definiert. Auf diese Weise kann aus dem Kennfeld bei Kenntnis von zwei der Parameter der dritte ermittelt werden. Das Kennfeld kann in Form von empirischen, semi-empirischen oder theoretischen Modellgleichungen vorliegen. Bei empirischen Modellgleichungen können empirisch erfasste Werte mit Ausgleichfunktionen verbunden sein. Diese empirischen Ausgleichfunktionen können auch als Abbildung in einer Tabelle festgehalten sein. Im Falle von semi-empirischen Modellgleichungen gehen sowohl empirische ermittelte Werte als auch physikalische Gleichungen ein, welche z.B. Zusammenhänge von physikalischen Parametern beschreiben. Im Falle von theoretischen Modellgleichungen sind die Zusammenhänge der Parameter vollständig durch physikalische Gleichungen beschrieben.Centrifugal pumps have a strong dependence of the flow rate on the applied pressure difference and the speed. More specifically, a difference between the pump-side fluid pressure and the pump-side fluid pressure determines the flow rate (mass flow or volumetric flow). Each pump has a characterizing pump map that defines a relationship between the three parameters (difference between the pump output side fluid pressure and the pump input side fluid pressure, flow rate, speed). In this way, the third can be determined from the characteristic map with knowledge of two of the parameters. The map may be in the form of empirical, semi-empirical or theoretical model equations. In empirical model equations empirically recorded values can be associated with compensation functions. These empirical compensation functions can also be recorded as an illustration in a table. In the case of semi-empirical model equations, empirical values as well as physical equations are used, which are e.g. Describe correlations of physical parameters. In the case of theoretical model equations, the relationships of the parameters are fully described by physical equations.

Nachteilig ist, dass Schwankungen im Mediendruck auf Hoch- und/oder Niederdruckseite einen ungleichmäßigen Durchfluss (bei gegebener Drehzahl) verursachen, was bei massenstromkritischen Prozessen zu Beeinträchtigungen des Prozessablaufs führen kann. Weiterhin reduziert das Kennfeld den Betriebsbereich der Pumpe, was zu Prozessstörungen und Komponentenschäden bei Überschreiten der Grenzen führen kann.The disadvantage is that fluctuations in the medium pressure on high and / or low pressure side cause a non-uniform flow (at a given speed), which in mass flow critical processes to impairments of Process flow can lead. Furthermore, the map reduces the operating range of the pump, which can lead to process disturbances and component damage when the limits are exceeded.

Fig. 1 zeigt ein Beispiel eines solchen Kennfelds. Hierin ist über den Volumenstrom Q die Förderhöhe H in Abhängigkeit der Drehzahl n aufgetragen. Der Volumenstrom wird durch einen Minimal- und Maximalwert des Kennfelds limitiert. Weiter gibt es eine maximale Förderhöhe, die nur bei höchster Drehzahl und minimalem Durchfluss erreicht werden kann. Es zeigt sich, dass sich bei fester Drehzahl der Durchfluss stark in Abhängigkeit der Höhe ändert. Da die Förderhöhe proportional zur anliegenden Druckdifferenz an der Pumpe ist, bewirken Schwankungen im Druck auf Hoch- oder Niederdruckseite eine Änderung des Pumpendurchflusses. Die Begrenzung des Volumenstroms nach unten muss nicht wie in der Zeichnung konstant sein, sondern kann von der Drehzahl abhängen. Fig. 1 shows an example of such a map. Herein, the delivery head H is plotted as a function of the rotational speed n via the volume flow Q. The volume flow is limited by a minimum and maximum value of the map. There is also a maximum delivery height, which can only be achieved at maximum speed and minimum flow. It turns out that at fixed speed, the flow changes greatly depending on the altitude. Since the delivery head is proportional to the applied pressure difference across the pump, fluctuations in the pressure on the high or low pressure side cause a change in the pump flow. The limitation of the volume flow downwards does not have to be constant as in the drawing, but may depend on the speed.

Das Beispiel in Fig. 2 zeigt eine Reduzierung der Förderhöhe von H1 nach H2 bei konstanter Drehzahl n. Durch das Kennfeldverhalten erhöht sich der Durchfluss von Q1 nach Q2 signifikant. Solche Änderungen können Probleme im Prozessbetrieb verursachen, die zu Störungen, Stillstandzeiten und Defekten führen können. Zudem werden bei vielen Prozessen Änderungen des Durchflusses unabhängig von aktueller Förderhöhe gewünscht. Diese Funktion wird durch den Einfluss des Kennfeldes ebenfalls beeinträchtigt. Soll z.B. der Durchfluss erhöht werden und wird dazu die Drehzahl erhöht, so kann die erhöhte Fördermenge in vielen Prozessen zu einer Druckerhöhung auf der Hochdruckseite führen, die den Durchflussanstieg aufgrund des Kennfeldeinflusses zum Teil wieder kompensieren.The example in Fig. 2 shows a reduction in the delivery head from H 1 to H 2 at a constant speed n. The performance of the map increases the flow from Q 1 to Q 2 significantly. Such changes can cause problems in process operation, which can lead to malfunctions, downtimes and defects. In addition, many processes require changes in the flow, regardless of the current delivery head. This function is also affected by the influence of the map. If, for example, the flow rate is to be increased and the speed is increased, the increased flow rate in many processes can lead to an increase in pressure on the high-pressure side, which partially compensates for the increase in flow due to the influence of the field.

Weiterhin zeigt das Kennfeld auch, dass es maschinentypische Einschränkungen für den Pumpenbetrieb gibt (wie z.B. einen Mindestvolumenstrom) deren Einhaltung zur dauerhaften Sicherstellung der Maschinenfunktion notwendig sind.Furthermore, the map also shows that there are machine-specific restrictions for the pump operation (such as a minimum volume flow), the compliance of which is necessary to permanently ensure the machine function.

Aus dem Dokument DE 10 2011 115 244 A1 ist lediglich eine Überwachung des Betriebszustands einer Pumpe bekannt, die einen Vergleich einer Ist-Kennlinie mit einer Soll-Kennlinie der Pumpe umfasst, um daraus eine Reparaturbedürftigkeit oder Austauschbedürftigkeit der Pumpe zu prognostizieren.From the document DE 10 2011 115 244 A1 only a monitoring of the operating state of a pump is known, which comprises a comparison of an actual characteristic curve with a nominal characteristic of the pump in order to predict a need for repair or replacement of the pump.

Ein Anwendungsbereich bei der das sichere Fördern eines Fluidstroms von besonderer Bedeutung ist, ist die Pumpenreglung einer Speisepumpe eines ORC-Kraftwerkprozesses (Organic-Rankine-Cycle), wie schematisch in Fig. 3 dargestellt. Darin wird eine Pumpe (P) in der Form geregelt, dass gewünschte Frischdampfparameter am Ausgang eines der Pumpe nachgeschalteten Wärmeübertragers (V) sicher eingestellt werden können. Dazu wird die Drehzahl der Pumpe durch die Regelung so beeinflusst, dass sich über den damit geänderten Durchfluss die Verdampfungsbedingung derart ändern, dass die gewünschten Drücke und Temperaturen des Frischdampfes erreicht und für einen stabilen Prozessbetrieb stabil kontrolliert werden.One area of application in which the safe delivery of a fluid stream is of particular importance is the pump control of a feed pump of an ORC (Organic Rankine Cycle) power plant process, as shown schematically in FIG Fig. 3 shown. Therein, a pump (P) is controlled in the form that desired live steam parameters at the output of a heat exchanger downstream of the pump (V) can be set safely. For this purpose, the speed of the pump is influenced by the control so that change the so changed flow, the evaporation condition such that the desired pressures and temperatures of the live steam and stabilized for a stable process operation are controlled.

In diesem Beispiel hängt die Förderhöhe der Pumpe zum einen vom Frischdampfdruck (pFD), zum anderen vom Druckniveau vor der Pumpe ab (pKOND). Dieser Druck hängt vom aktuellen Kondensationsdruck des der Pumpe vorgeschalteten Kondensators (K) ab. Dieser Kondensator kühlt und verflüssigt im ORC-Prozess das Arbeitsmedium durch Abgabe von Wärme an ein Kühlmedium. Dieses Kühlmedium (z.B. Wasser eines Heiznetzes oder Umgebungsluft) kann in Menge und Temperatur Schwankungen unterliegen (Temperaturschwankungen in einem Heiznetz, Wind- oder sonstige Umwelteinflüsse). Diese Schwankungen beeinflussen die Wärmeübertragung im Kondensator, was Auswirkungen auf die Kondensationsbedingungen und somit den Kondensationsdruck hat. Somit können sich externe Störungen auf die Förderhöhe der Pumpe auswirken und deshalb Schwankungen in Massenstrom und Frischdampfdruck verursachen. Diese möglichen Schwankungsamplituden müssen in Sicherheitsbetrachtungen und Verfügbarkeitsanalysen berücksichtigt werden. Weiterhin handelt es sich beim ORC-Prozess um ein geschlossenes System, und somit ist eine Rückwirkung eines schwankenden Frischdampfdrucks über die Expansionsmaschine (E) auf den Kondensationsdruck nicht auszuschließen. Daher kann es zu einem selbstverstärkenden Effekt kommen, der die Prozessstabilität weiter negativ beeinflusst.In this example, the head of the pump depends on the live steam pressure (p FD ) and on the pressure level in front of the pump (p KOND ). This pressure depends on the actual condensation pressure of the condenser (K) upstream of the pump. This condenser cools and liquefies the working fluid in the ORC process by releasing heat to a cooling medium. This cooling medium (eg water of a heating network or ambient air) may fluctuate in quantity and temperature (temperature fluctuations in a heating network, wind or other environmental influences). These fluctuations affect the heat transfer in the condenser, which affects the condensation conditions and thus the condensation pressure. Thus, external disturbances can affect the delivery head of the pump and therefore cause fluctuations in mass flow and live steam pressure. These potential fluctuation amplitudes must be taken into account in safety considerations and availability analyzes. Furthermore, the ORC process is a closed system, and thus a retroactive effect of a fluctuating live steam pressure on the expansion machine (E) on the condensation pressure can not be excluded. Therefore, a self-reinforcing effect may occur which further adversely affects process stability.

Eine Möglichkeit diesen Einflüssen zu begegnen, ist der Einsatz einer Kaskadenregelung gemäß Fig. 4. Darin regelt ein innerer Regelkreis den Durchfluss anhand eines Vergleichs aus aktuellem Ist- und Sollwert des Massen- bzw. Volumenstroms, während ein äußerer Regelkreis den Durchflusssollwert zur Regelung auf die eigentliche Regelgröße der Pumpe (z.B. Prozessdruck) dem inneren Kreis vorgibt. Dadurch können Durchflussabweichungen kompensiert werden und gleichzeitig auf einen gewünschten Prozesswert geregelt werden.One way to counteract these influences is the use of a cascade control according to Fig. 4 , An internal control circuit regulates the flow rate on the basis of a comparison of the actual and setpoint values of the mass or mass flow rate. Volume flow, while an external control loop sets the flow rate setpoint for control to the actual control variable of the pump (eg process pressure) the inner circle. This allows flow deviations to be compensated and at the same time regulated to a desired process value.

Im Kaskadenregler kann der (innere) Teilprozess I der Pumpprozess sein. Hierin finden sich alle Komponenten, die das Signal der Massenstrom-Regelung (m-Regelung) in das Fördern eines Mediums umsetzen. Dies kann eine Ansteuerung/Drehzahlregelung der Pumpe, den Pumpenmotor und die Pumpe selbst beinhalten. Der äußere Teilprozess II kann beispielsweise ein Verdampfungsprozess und der Prozesswert s kann der Mediendruck p nach der Verdampfung sein. Der Verdampfungsprozess kann damit alle notwendigen Komponenten, wie ein oder mehrere Wärmeübertrager, Behälter, Armaturen, usw. enthalten.In the cascade controller, the (inner) sub-process I can be the pumping process. Here are all the components that convert the signal of the mass flow control (m-control) in the delivery of a medium. This may include a control / speed control of the pump, the pump motor and the pump itself. The outer sub-process II may be, for example, an evaporation process and the process value s may be the media pressure p after evaporation. The evaporation process can thus contain all the necessary components, such as one or more heat exchangers, containers, fittings, etc.

Diese Lösung erlaubt es zwar, Durchflussabweichungen beim Auftreten zu detektieren und darauf zu reagieren, dazu muss sich der Durchfluss jedoch bereits von seinem Sollwert SSoll entfernt haben. Damit ist keine vorausschauende Kompensation vor Eintreten der Schwankungen möglich. Somit wird eine zusätzliche Störgrößenaufschaltung notwendig (nicht dargestellt). Zudem benötigt diese Lösung nach dem Stand der Technik eine aufwendige und häufig kostenintensive Messung des Massen- bzw. Volumenstroms. Eine Vermeidung dieser Messung hätte signifikante Kostenvorteile.Although this solution makes it possible to detect and respond to flow deviations on occurrence, the flow must have already departed from its setpoint S setpoint . Thus, no predictive compensation before the occurrence of fluctuations is possible. Thus, an additional feedforward control is necessary (not shown). In addition, this solution requires a complex and often costly measurement of the mass or volume flow according to the prior art. Avoiding this measurement would have significant cost advantages.

Beschreibung der ErfindungDescription of the invention

Aufgabe der Erfindung ist es, die oben beschriebenen Nachteile zumindest teilweise zu überwinden.The object of the invention is at least partially overcome the disadvantages described above.

Diese Aufgabe wird gelöst durch ein Verfahren nach Anspruch 1.This object is achieved by a method according to claim 1.

Das erfindungsgemäße Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, umfasst die Schritte: Festlegen eines Sollwerts einer Durchflussrate der Pumpe; Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; Bestimmen eines Sollwerts einer Drehzahl der Pumpe bzw. eines die Drehzahl bestimmenden Stellsignals aus einem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl bzw. Zuführen des die Drehzahl bestimmenden Stellsignals an die Pumpe.The method according to the invention for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid, comprises the steps of: determining a nominal value of a flow rate of the pump; Measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure the liquid downstream of the pump; Determining a desired value of a rotational speed of the pump or of a speed-determining actuating signal from a characteristic map of the pump, the specified nominal value of the flow rate and a difference between the output pressure and the input pressure being input into the characteristic map as input values; and adjusting the speed of the pump to the setpoint of the speed or supplying the speed-determining control signal to the pump.

Vorteilhaft ist dabei, dass es durch die Berücksichtigung des Kennfeldes keiner Messung des Massen- bzw. Volumenstroms zur Regelung bzw. Kompensation bedarf. Weiterhin kann die Regelung bereits beim Auftreten einer Druckschwankung reagieren, bevor die Auswirkungen einer Durchflussschwankung auftreten (Vorausschauendes Regelverhalten), womit die Regelgüte verbessert wird.It is advantageous that, due to the consideration of the characteristic field, no measurement of the mass or volume flow is required for regulation or compensation. Furthermore, the control can already react when a pressure fluctuation occurs before the effects of a flow fluctuation occur (predictive control behavior), which improves the control performance.

Das Kennfeld der Pumpe kann dabei in üblicher Form verwendet werden, wobei also ein Zusammenhang zwischen der Durchflussrate und dem Differenzdruck bzw. der Förderhöhe bei verschiedener jedoch jeweils konstanter Drehzahl gegeben ist.The map of the pump can be used in a conventional form, that is, there is a relationship between the flow rate and the differential pressure or the delivery at different but each constant speed.

Das Kennfeld kann alternativ oder zusätzlich in "invertierter" Form (nachfolgend auch invertiertes Kennfeld genannt) verwendet werden, wobei dann ein Zusammenhang zwischen Differenzdruck bzw. Förderhöhe und der Drehzahl bei verschiedenem jedoch jeweils konstantem Durchfluss gegeben ist.The map can alternatively or additionally be used in "inverted" form (hereinafter also called inverted map), in which case there is a relationship between differential pressure or delivery and the speed at different but constant flow.

In jedem Fall erfolgt die Verwendung des Kennfelds derart, dass einer durch eine Differenzdruckänderung hervorgerufenen Durchflussratenänderung durch eine Drehzahländerung entgegengeregelt wird, um die Durchflussrate möglichst konstant zu halten, was durch Auffinden eines entsprechenden Betriebspunktes der Pumpe in deren Kennfeld bzw. invertiertem Kennfeld erfolgt.In any case, the use of the map is such that a caused by a differential pressure change flow rate change is counteracted by a speed change to keep the flow rate as constant as possible, which is done by finding a corresponding operating point of the pump in the map or inverted map.

Der Sollwert der Durchflussrate kann dabei wiederum von der Regelung festgelegt werden, z.B. basierend auf einem festgelegten Ausgangsdruck der Pumpe oder basierend auf einem anderen geeigneten Prozesswert. Andererseits kann der Sollwert der Durchflussrate von einem Nutzer festgelegt werden. In beiden Fällen kann dies entweder durch die direkte Vorgabe der Durchflussrate oder aber indirekt durch eine Vorgabe der Drehzahl, woraus sich dann die konstant zu haltende Durchflussrate ermitteln lässt, geschehen.The desired value of the flow rate can in turn be determined by the control, for example based on a specified outlet pressure of the pump or based on another suitable process value. On the other hand, the setpoint of the flow rate can be set by a user. In both cases, this can be done either by directly specifying the flow rate or indirectly by a Specification of the speed, from which then the constant flow rate can be determined, done.

Vorzugsweise erfolgt nach dem Festlegen des Sollwerts der Durchflussrate ein kontinuierliches Durchführen der Schritte des Messens des Eingangsdrucks der Flüssigkeit und des Ausgangsdrucks der Flüssigkeit, des Bestimmens des Sollwerts der Drehzahl der Pumpe und des Einstellens der Drehzahl der Pumpe.Preferably, after setting the target value of the flow rate, continuously performing the steps of measuring the input pressure of the liquid and the output pressure of the liquid, determining the target value of the rotational speed of the pump and adjusting the rotational speed of the pump.

Gemäß einer Weiterbildung kann das Festlegen des Sollwerts der Durchflussrate die folgenden Schritte umfassen: Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen. Auf diese Weise kann im laufenden Betrieb der Pumpe ein möglichst einzuhaltender Sollwert der Durchflussrate bestimmt werden. In diesem Fall kann auch das Festlegen des Sollwerts der Durchflussrate kontinuierlich erfolgen.According to a development, the setting of the target value of the flow rate may comprise the following steps: determining a time average of the difference of the outlet pressure and the inlet pressure; and determining the setpoint of the flow rate from the map of the pump, wherein the time average of the difference of the output pressure and the input pressure and a current speed of the pump as input values are included in the map. In this way, during the operation of the pump, a setpoint value of the flow rate which is to be maintained as far as possible can be determined. In this case, the setting of the target value of the flow rate can also be carried out continuously.

Eine andere Weiterbildung besteht darin, dass der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks aus einem ersten zeitlichen Mittelwert des Eingangsdrucks und einem zweiten zeitlichen Mittelwert des Ausgangsdrucks bestimmt werden kann. Somit ist es möglich, bei Bedarf unterschiedliche Zeitkonstanten für die Mittelung des Eingangsdrucks und des Ausgangsdrucks zu verwenden.Another development is that the time average of the difference of the output pressure and the input pressure from a first time average of the input pressure and a second time average of the output pressure can be determined. Thus, it is possible to use, if necessary, different time constants for the averaging of the input pressure and the output pressure.

Nach einer anderen Weiterbildung kann das Bestimmen des Sollwerts der Drehzahl der Pumpe die folgenden weiteren Schritte umfassen: Überprüfen, ob eine Kombination aus Drehzahl der Pumpe, festgelegtem Sollwert der Durchflussrate und der Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck innerhalb einer Kennfeldbegrenzung liegt; Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl, wenn die Kombination innerhalb des Kennfelds liegt; und Einstellen der Drehzahl der Pumpe auf einen Sicherheitswert, wenn die Kombination außerhalb des Kennfelds liegt, wobei der Sicherheitswert vorzugsweise so gewählt wird, dass die Abweichung von dem Sollwert der Durchflussrate möglichst klein ist.In another embodiment, determining the pump speed setpoint may include the further steps of: checking whether a combination of pump speed, set flow rate set point, and the difference between the output pressure and the input pressure is within a map boundary; Adjusting the speed of the pump to the speed reference if the combination is within the map; and adjusting the speed of the pump to a safety value when the combination is outside the map, wherein the safety value is preferably selected so that the deviation from the desired value of the flow rate is as small as possible.

Gemäß einer anderen Weiterbildung kann das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf ein der Pumpe zugeführtes Stellsignals umfassen. Auf diese Weise kann ein Korrektursignal auf das Stellsignal aufgeschaltet werden. Insbesondere kann ein Mindeststellsignal als Korrektursignal ausgegeben werden, um zu vermeiden, dass ein Betriebszustand außerhalb des Kennfelds eingestellt wird.According to another development, adjusting the rotational speed of the pump to the target value of the rotational speed may include outputting a correction signal to a control signal supplied to the pump. In this way, a correction signal can be switched to the control signal. In particular, a minimum control signal can be output as a correction signal in order to avoid that an operating state is set outside the map.

Eine andere Weiterbildung besteht darin, dass das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definiert, und die Förderhöhe aus der Druckdifferenz zwischen dem gemessenen Ausgangsdruck und dem gemessenen Eingangsdruck bestimmt wird. Insbesondere kann die Förderhöhe h aus h=(p2-p1)/(ρ·g) bestimmt werden, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.Another development is that the map at different speeds defines a relationship between the flow rate and a delivery of the pump, and the head is determined from the pressure difference between the measured output pressure and the measured input pressure. In particular, the delivery head h can be determined from h = (p 2 -p 1 ) / (ρ · g), where p 1 denotes the measured inlet pressure, p 2 the measured outlet pressure, ρ the density of the fluid and g the normal fall acceleration.

Gemäß einer anderen Weiterbildung kann die Dichte der Flüssigkeit als ein konstanter vorbestimmter Wert verwendet werden, oder das Verfahren kann den weiteren Schritt des Messens der Temperatur der Flüssigkeit umfassen und die Dichte der Flüssigkeit kann aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer Tabelle ermittelt werden, wobei das Messen der Temperatur insbesondere eine Mittelung der Temperatur über ein vorbestimmtes Zeitintervall umfassen kann.According to another embodiment, the density of the liquid may be used as a constant predetermined value or the method may comprise the further step of measuring the temperature of the liquid and the density of the liquid may be from a functional dependence of the density on the temperature or from a table In particular, measuring the temperature may include averaging the temperature over a predetermined time interval.

Eine andere Weiterbildung besteht darin, dass das Messen des Eingangsdrucks und des Ausgangsdrucks der Flüssigkeit kontinuierlich erfolgen kann. Auf diese Weise ist eine ständige Korrektur der Drehzahl bei Druckschwankungen möglich.Another development is that the measurement of the inlet pressure and the outlet pressure of the liquid can be carried out continuously. In this way, a constant correction of the speed at pressure fluctuations is possible.

Die Durchflussrate kann als ein Volumenstrom oder als ein Massenstrom der Flüssigkeit durch die Pumpe definiert sein.The flow rate may be defined as a volumetric flow or as a mass flow of the fluid through the pump.

Die oben genannte Aufgabe wird weiterhin gelöst durch eine Vorrichtung nach Anspruch 10.The above object is further achieved by a device according to claim 10.

Die erfindungsgemäße Vorrichtung zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit umfasst: ein erstes Druckmessgerät zum Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe; ein zweites Druckmessgerät zum Messen eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; und eine Steuereinrichtung zum Festlegen eines Sollwerts einer Durchflussrate der Pumpe; zum Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem in einem Speicher gespeicherten Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und zum Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Die Vorteile entsprechen jenen die im Zusammenhang mit dem erfindungsgemäßen Verfahren genannt wurden. Weiterhin kann die erfindungsgemäße Vorrichtung so ausgebildet sein, dass damit das erfindungsgemäße Verfahren oder eine dessen Weiterbildungen ausgeführt werden kann.The device according to the invention for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid comprises: a first A pressure gauge for measuring an inlet pressure of the fluid upstream of the pump; a second pressure gauge for measuring an output pressure of the liquid downstream of the pump; and a controller for setting a target value of a flow rate of the pump; for determining a target value of a rotational speed of the pump from a map of the pump stored in a memory, wherein the setpoint value of the flow rate and a difference between the outlet pressure and the inlet pressure are input into the map as input values; and for adjusting the speed of the pump to the setpoint of the speed. The advantages correspond to those which have been mentioned in connection with the method according to the invention. Furthermore, the device according to the invention can be designed so that the method according to the invention or one of its developments can be carried out with it.

Gemäß einer Weiterbildung kann die Steuereinrichtung weiterhin geeignet sein zum Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und zum Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen.According to a development, the control device may furthermore be suitable for determining a time average of the difference of the outlet pressure and the inlet pressure; and for setting the target value of the flow rate from the map of the pump, wherein the time average of the difference of the output pressure and the input pressure and a current speed of the pump as input values are included in the map.

Eine andere Weiterbildung besteht darin, dass die Steuereinrichtung zum Ausgeben eines Stellsignals an die Pumpe ausgebildet sein kann und das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf das der Pumpe zugeführte Stellsignals umfassen kann.Another development consists in that the control device can be designed for outputting an actuating signal to the pump and setting the rotational speed of the pump to the desired value of the rotational speed can include outputting a correction signal to the actuating signal supplied to the pump.

Gemäß einer Weiterbildung kann das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definieren, wobei die Steuereinrichtung weiterhin dazu ausgebildet sein kann, eine Förderhöhe H aus H=(p2-p1)/(ρ·g) zu bestimmen, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.According to a further development, the characteristic map can define a relationship between the flow rate and a delivery height of the pump at different rotational speeds, wherein the control device can also be designed to deliver a delivery height H from H = (p 2 -p 1 ) / (ρ · g) where p 1 is the measured input pressure, p 2 is the measured output pressure, ρ is the density of the fluid, and g is the standard acceleration.

Eine andere Weiterbildung besteht darin, dass die Vorrichtung weiterhin umfassen kann: ein Temperaturmessgerät zum Messen einer Temperatur der Flüssigkeit und zum Übermitteln eines Temperaturmesssignals an die Steuereinrichtung; wobei die Steuereinrichtung weiterhin dazu ausgebildet sein kann, aus dem Temperaturmesssignal eine Dichte der Flüssigkeit zu bestimmen und die Dichte der Flüssigkeit aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer im Speicher gespeicherten Tabelle zu ermitteln.Another development is that the device may further comprise: a temperature measuring device for measuring a temperature of the liquid and for transmitting a temperature measuring signal to the control device; wherein the control device may further be configured to determine a density of the liquid from the temperature measurement signal and to determine the density of the liquid from a functional dependence of the density on the temperature or from a table stored in the memory.

Die erfindungsgemäße Vorrichtung oder einer der Weiterbildungen können Teil eines ORC-Systems (Organic-Rankine-Cycle) mit einer Pumpe zum Pumpen eines Arbeitsmediums des ORC-Systems sein.The device according to the invention or one of the further developments can be part of an Organic Rankine Cycle (ORC) system with a pump for pumping a working medium of the ORC system.

Die Weiterbildungen der erfindungsgemäßen Vorrichtung und dessen Vorteile entsprechen jenen die im Zusammenhang mit dem erfindungsgemäßen Verfahren genannt wurden.The developments of the device according to the invention and its advantages correspond to those which have been mentioned in connection with the method according to the invention.

Weitere Merkmale und beispielhafte Ausführungsformen sowie Vorteile der vorliegenden Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es versteht sich, dass die Ausführungsformen nicht den Bereich der vorliegenden Erfindung erschöpfen. Es versteht sich weiterhin, dass einige oder sämtliche der im Weiteren beschriebenen Merkmale auch auf andere Weise miteinander kombiniert werden können.Further features and exemplary embodiments and advantages of the present invention will be explained in more detail with reference to the drawings. It is understood that the embodiments do not exhaust the scope of the present invention. It is further understood that some or all of the features described below may be combined with each other in other ways.

Zeichnungendrawings

Figur 1FIG. 1
zeigt schematisch ein Kennfeld einer Pumpe.schematically shows a map of a pump.
Figur 2FIG. 2
zeigt die Änderung des Durchflusses bei Druckänderung und konstanter Drehzahl im Kennfeld der Fig. 1.shows the change of the flow rate at pressure change and constant speed in the map of Fig. 1 ,
Figur 3FIG. 3
zeigt die wesentlichen Elemente eines ORC-Systems.shows the essential elements of an ORC system.
Figur 4FIG. 4
zeigt einen Kaskadenregler.shows a cascade controller.
Figur 5FIG. 5
zeigt die Wirkungsweise eine Ausführungsform der erfindungsgemäßen Kennfeldregelung.shows the operation of an embodiment of the map control according to the invention.
Figur 6FIG. 6
zeigt eine Kompensation des Durchflusses bei einer Schwankung der Druckdifferenz im Kennfeld der Pumpe.shows a compensation of the flow at a fluctuation of the pressure difference in the map of the pump.
Figur 7FIG. 7
zeigt eine weitere Ausführungsform der erfindungsgemäßen Kennfeldregelung.shows a further embodiment of the map control according to the invention.
Figur 8FIG. 8
zeigt beispielhaft einen Differenzdruck und einen entsprechenden Massenstrom in einem ORC-System.shows by way of example a differential pressure and a corresponding mass flow in an ORC system.
Figur 9FIG. 9
zeigt den Massenstrom nach Fig. 8 und eine entsprechende Dampftemperatur in dem ORC-System.indicates the mass flow Fig. 8 and a corresponding steam temperature in the ORC system.
Ausführungsformenembodiments

Fig. 5 veranschaulicht das erfindungsgemäße Verfahren gemäß einer Ausführungsform. Das Wissen um das Kennfeld einer Maschine erlaubt deren Begrenzung in Bezug auf die Parameter eines Prozesses (Differenz zwischen dem pumpenausgangsseitigen Flüssigkeitsdruck und dem pumpeneingangsseitigen Flüssigkeitsdruck, Durchflussrate, Drehzahl) und deren gegenseitige Abhängigkeit in die Regelung zu implementieren (Kennfeldregelung). Dabei überwacht ein Regelalgorithmus die aktuelle Förderhöhe (bzw. den Differenzdruck) sowie die Drehzahl und berechnet daraus die aktuellen Durchflussrate. Dazu ist im Algorithmus das Kennfeld numerisch hinterlegt. Fig. 5 illustrates the method according to the invention according to one embodiment. The knowledge of the map of a machine allows its limitation with respect to the parameters of a process (difference between the pump output side fluid pressure and the pump input side fluid pressure, flow rate, speed) and their mutual dependence in the control to implement (map control). A control algorithm monitors the actual head (or differential pressure) as well as the speed and uses this to calculate the current flow rate. For this purpose, the map is stored numerically in the algorithm.

Zur Ermittlung der Förderhöhe für die Regelung ist die Kenntnis der aktuellen Drücke auf der Nieder- und Hochdruckseite (pn, ph) der Pumpe notwendig (entsprechend: pumpeneinlassseitig und pumpenauslassseitig bzw. stromaufwärts und stromabwärts der Pumpe bzw. gemessener Eingangsdruck p1 und gemessener Ausgangsdruck p2). Aus der Differenz Δp= (ph - pn) dieser Drücke und der Dichte ρ des Mediums lässt sich die Förderhöhe H berechnen: H = Δp / ρ g

Figure imgb0001

wobei g die Normfallbeschleunigung bezeichnet.To determine the head for the control of the current pressures on the low and high pressure side (p n , p h ) of the pump is necessary (corresponding: pump inlet side and pump outlet side or upstream and downstream of the pump or measured input pressure p 1 and measured Outlet pressure p 2 ). From the difference Δp = (p h -p n ) of these pressures and the density ρ of the medium, the head H can be calculated: H = Ap / ρ G
Figure imgb0001

where g denotes the normal acceleration.

Die aktuelle Dichte kann entweder über eine zusätzliche Messung der Temperatur des Mediums exakt ermittelt werden, oder durch eine Approximation im verwendeten Betriebsbereich als konstant angenommen werden. Die letztere Vereinfachung ist bei vielen Medien in flüssiger Phase und eingeschränktem Betriebsbereich (Druck- und/oder Temperaturbereich) in einer für die Regelung ausreichend guten Näherung zulässig.The actual density can either be determined exactly via an additional measurement of the temperature of the medium, or can be assumed to be constant by an approximation in the operating range used. The latter simplification is included Many media in liquid phase and limited operating range (pressure and / or temperature range) in a sufficiently good approximation for the regulation allowed.

Es erfolgt ein Festlegen eines Sollwerts einer Durchflussrate der Pumpe als die aktuell berechnete Durchflussrate; ein Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; ein Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus dem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und die Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und schließlich erfolgt ein Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Wenn der Differenzdruck sich ändert, erfolgt somit eine Änderung der Drehzahl, um einer Änderung der Durchflussrate, die ansonsten eintreten würde, entgegenzuwirken. Zumindest kann die Änderung der Durchflussrate reduziert werden.A setpoint of a flow rate of the pump is set as the currently calculated flow rate; measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure of the liquid downstream of the pump; determining a setpoint of a speed of the pump from the map of the pump, wherein the setpoint of the flow rate and the difference between the output pressure and the input pressure are included as input values in the map; and finally, adjusting the speed of the pump to the setpoint speed. Thus, as the differential pressure changes, there is a change in rotational speed to counteract a change in flow rate that would otherwise occur. At least the change in the flow rate can be reduced.

Weiter wird die Begrenzung des Kennfeldes (z.B. Minimaldurchfluss) im Algorithmus berücksichtigt. Dadurch kann sowohl ein gleichmäßiger Prozessbetrieb als auch die Einhaltung der Betriebsgrenzen der Pumpe sichergestellt werden.Further, the limitation of the map (e.g., minimum flow) is considered in the algorithm. As a result, both a uniform process operation and compliance with the operating limits of the pump can be ensured.

Fig. 6 zeigt die Funktionsweise des Kompensationseinflusses der Kennfeldregelung, nämlich die Korrektur der Drehzahl bei einer Differenzdruckänderung, um auf diese Weise die Durchflussrate zu korrigieren. Die Wirkungsweise des Verfahrens gemäß dieser Ausführungsform der erfindungsgemäßen Kennfeldregelung ist im Kennfeld der Pumpe dargestellt. Sinkt bei konstanter Drehzahl n1 die Druckdifferenz bzw. die entsprechende Förderhöhe von der im Punkt 1 auf die im Punkt 2 ab, erhöht sich der Durchfluss Q. Durch Reduktion der Drehzahl auf n2 kann nun der ursprüngliche Durchfluss bei der neuen Druckdifferenz bzw. Förderhöhe im Punkt 3 wieder hergestellt werden. Fig. 6 shows the operation of the compensation effect of the map control, namely the correction of the speed at a differential pressure change, so as to correct the flow rate. The operation of the method according to this embodiment of the map control according to the invention is shown in the map of the pump. If the pressure difference or the corresponding delivery head drops from that in point 1 to that at point 2, the flow Q increases at a constant speed n 1. By reducing the speed to n 2 , the original flow at the new pressure difference or delivery head can now be reduced be restored in point 3.

Betrachtet man wieder das bereits oben genannte Beispiel eines ORC-Prozesses, so fließen in die erfindungsgemäße Regelung die Messwerte pFD und pKOND (als Hochdruck- bzw. Niedrigdruck) ein (siehe Fig. 7). Zur Unterdrückung der Messung zyklischer Schwankungen durchläuft das Messsignals zunächst eine Mittelwertbildung (gleitender Mittelwert) in einem geeigneten Mittelungsintervall. Der Mittelwert des Frischdampfdrucks pFD_M wird mit dem Frischdampfsollwert zur Regelabweichung als Eingangssignal eines Reglers (z.B. eines PID-Reglers) verwendet. Das Ausgangssignal und die Differenz der Mittelwerte fließen als Eingangswerte in das Kennfeld KF1 ein. Hierin wird der aktuell erwartete Massenstrom berechnet. Dieser Wert, sowie die Differenz der ungemittelten aktuellen Messwerte, fließen in das invertierte Kennfeld KF-1 ein. Dieses liefert das aktuell notwendige Stellsignal der Pumpe. Die Differenz dieses Wertes und des aktuelle Stellsignals des Reglers ist die gesuchte zu kompensierende Abweichung. Durch Addition dieser Abweichung auf das Stellsignal ergibt sich eine Aufschaltung der Kompensation der Störung. Durch die Verstärkung K kann der Einfluss dieser Aufschaltung an den Prozess angepasst werden.Considering again the above-mentioned example of an ORC process, the measured values p FD and p KOND (as high-pressure or low-pressure) flow into the regulation according to the invention (see Fig. 7 ). To suppress the measurement of cyclical fluctuations, the measurement signal first passes through an averaging (moving average) in a suitable averaging interval. The mean value of the live steam pressure p FD_M is used with the live steam setpoint for the control deviation as the input signal of a controller (eg a PID controller). The output signal and the difference of the average values flow as input values into the map KF 1 . Here the currently expected mass flow is calculated. This value, as well as the difference between the unmediated current measured values, flow into the inverted characteristic map KF -1 . This supplies the currently required actuating signal of the pump. The difference between this value and the current control signal of the controller is the sought-after deviation to be compensated. By adding this deviation to the control signal results in an activation of the compensation of the fault. The gain K can be used to adjust the influence of this connection on the process.

In diesem Beispiel liefert das Kennfeld KF1 ebenfalls an den Regler das aktuell notwendige Mindeststellsignal Smin. Damit kann eine Unterschreitung dieser Kennfeldgrenze durch den Regler verhindert werden.In this example, the map KF 1 also provides to the controller the currently required minimum control signal S min . This can be prevented by the controller below this map limit.

Einen signifikanten Vorteil dieses Vorgehens bietet das voraussehende Wirkungsprinzip dieser Regelung. Schon beim Eintreten von Druckschwankungen (die Ursache für Massenstromänderungen und daraus folgenden Störungen) wird die Durchflussschwankung kompensiert, bevor ein nachgeschaltetes Messsystem oder der nachgeschaltete Prozess die Abweichung detektieren bzw. deren Auswirkungen spüren könnte. Durch die Messung der Drücke und nicht des Durchflusses realisiert die Kennfeldregelung implizit ebenfalls die Funktion einer Störgrößenaufschaltung.A significant advantage of this approach is provided by the predictive effect principle of this regulation. Even when pressure fluctuations occur (the cause of mass flow changes and resulting disturbances), the flow fluctuation is compensated before a downstream measuring system or the downstream process could detect the deviation or feel its effects. By measuring the pressures and not the flow, the map control also implicitly implements the function of feedforward control.

Fig. 8 zeigt beispielhaft aus einer Messung an einem ORC-System den Verlauf von Differenzdruck (pFD-pKOND) (obere Kurve in Fig. 8) und Massenstrom (untere Kurve in Fig. 8) über eine Zeit von ca. 15 Minuten. Man sieht, wie Druckschwankungen ihren Einfluss auf den Durchfluss zeigen. Bei sinkendem Differenzdruck ist unmittelbar ein höherer Durchfluss messbar, sowie umgekehrt. Fig. 8 shows by way of example from a measurement on an ORC system the course of differential pressure (p FD -p KOND ) (upper curve in FIG Fig. 8 ) and mass flow (lower curve in Fig. 8 ) over a period of about 15 minutes. You can see how pressure fluctuations show their influence on the flow. With decreasing differential pressure, a higher flow rate is directly measurable, and vice versa.

Es ist zudem auch die Auswirkung auf einen Verdampfungsprozess messbar (siehe Fig. 9). Hierbei verringert sich bei steigendem Massenstrom (untere Kurve in Fig. 9) die Temperatur des Dampfes (obere Kurve in Fig. 9), da die im Wärmeübertrager übertragene Leistung nun einen höheren Massenstrom verdampfen und überhitzen muss. Die Dampftemperatur sinkt somit ab. Bei Absinken des Durchflusses erhöht sich die Temperatur wieder. Es zeigt sich damit, dass eine Reduktion der Durchflussschwankungen zu einer Stabilisierung von Prozessparametern führen kann.It is also the impact on an evaporation process measurable (see Fig. 9 ). This decreases with increasing mass flow (lower curve in Fig. 9 ) the temperature of the steam (upper curve in Fig. 9 ), as in the heat exchanger transmitted power must now evaporate a higher mass flow and overheat. The steam temperature thus drops. When the flow drops, the temperature increases again. This shows that a reduction of flow fluctuations can lead to a stabilization of process parameters.

Durch die Kennfeldregelung lässt sich diese Stabilisierung umsetzen. Die Folgen der Stabilisierung auf Auslegung und Prozess können höhere Prozessgüte und Verfügbarkeit, aber auch höhere Sicherheiten vor Verletzungen von Prozessgrenzwerten bedeuten. So können z.B. bei geringeren zu erwartenden Oszillationen von Temperaturen die Sicherheitsgrenzen in Abhängigkeit der nun niedrigeren Scheitelwerte reduziert werden bzw. der Prozess mit höheren Temperaturen (näher an den Sicherheitsgrenzen) ohne Verfügbarkeitsreduktionen betrieben werden.The map control allows this stabilization to be implemented. The consequences of stabilization on design and process can mean higher process quality and availability, but also higher safety against breaches of process limits. Thus, e.g. With lower expected oscillations of temperatures, the safety limits are reduced as a function of the now lower peak values or the process with higher temperatures (closer to the safety limits) are operated without availability reductions.

Weiterhin benötigt diese Regelung nur zwei relativ günstige Druckmessstellen, welche in vielen Prozessen bereits zur Verfügung stehen, statt der teuren Messung des Massen- bzw. Volumenstroms. Damit ergibt sich ein deutlicher Kostenvorteil der Kennfeldregelung gegenüber konventionellen Lösungsansätzen.Furthermore, this regulation requires only two relatively favorable pressure measuring points, which are already available in many processes, instead of the expensive measurement of the mass or volume flow. This results in a significant cost advantage of map control over conventional approaches.

Die dargestellten Ausführungsformen sind lediglich beispielhaft und der vollständige Umfang der vorliegenden Erfindung wird durch die Ansprüche definiert.The illustrated embodiments are merely exemplary and the full scope of the present invention is defined by the claims.

Claims (15)

Verfahren zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, mit den Schritten: Festlegen eines Sollwerts einer Durchflussrate der Pumpe; Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe und eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Method for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid, comprising the steps: Establishing a setpoint of a flow rate of the pump; Measuring an inlet pressure of the liquid upstream of the pump and an outlet pressure of the liquid downstream of the pump; Determining a setpoint of a speed of the pump from a map of the pump, wherein the setpoint set the flow rate and a difference between the output pressure and the input pressure as input values in the map received; and Set the speed of the pump to the speed reference. Verfahren nach Anspruch 1, wobei das Festlegen des Sollwerts der Durchflussrate die folgenden Schritte umfasst: Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen. The method of claim 1, wherein setting the target value of the flow rate comprises the steps of: Determining a time average of the difference of the output pressure and the input pressure; and Determining the setpoint of the flow rate from the map of the pump, wherein the time average of the difference of the output pressure and the input pressure and a current speed of the pump as input values are included in the map. Verfahren nach Anspruch 2, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks aus einem ersten zeitlichen Mittelwert des Eingangsdrucks und einem zweiten zeitlichen Mittelwert des Ausgangsdrucks bestimmt wird.The method of claim 2, wherein the time average of the difference of the output pressure and the input pressure from a first time average of the input pressure and a second time average of the output pressure is determined. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Bestimmen des Sollwerts der Drehzahl der Pumpe die folgenden weiteren Schritte umfasst: Überprüfen, ob eine Kombination aus Drehzahl der Pumpe, festgelegtem Sollwert der Durchflussrate und der Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck innerhalb einer Kennfeldbegrenzung liegt; Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl, wenn die Kombination innerhalb des Kennfelds liegt; und Einstellen der Drehzahl der Pumpe auf einen Sicherheitswert, wenn die Kombination außerhalb des Kennfelds liegt, wobei der Sicherheitswert vorzugsweise so gewählt wird, dass die Abweichung von dem Sollwert der Durchflussrate möglichst klein ist. Method according to one of claims 1 to 3, wherein determining the target value of the rotational speed of the pump comprises the following further steps: Check that a combination of pump speed, set flow rate set point, and the difference between output pressure and input pressure is within a map limit; Adjusting the speed of the pump to the speed reference if the combination is within the map; and Setting the speed of the pump to a safety value when the combination is outside the map, the safety value is preferably selected so that the deviation from the target value of the flow rate is as small as possible. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf ein der Pumpe zugeführtes Stellsignals umfasst, und wobei in Verbindung mit Anspruch 4 insbesondere ein Mindeststellsignal als Korrektursignal ausgegeben wird.Method according to one of claims 1 to 4, wherein the setting of the rotational speed of the pump to the desired value of the rotational speed comprises outputting a correction signal to a control signal supplied to the pump, and wherein in connection with claim 4, in particular a minimum control signal is output as a correction signal. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definiert, und die Förderhöhe aus der Druckdifferenz zwischen dem gemessenen Ausgangsdruck und dem gemessenen Eingangsdruck bestimmt wird, wobei die Förderhöhe H insbesondere aus H=(p2-p1)/(ρ·g) bestimmt wird, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.Method according to one of claims 1 to 5, wherein the characteristic field at different speeds, a relationship between the flow rate and a delivery height of the pump defined, and the delivery height of the pressure difference between the measured output pressure and the measured input pressure is determined, the delivery height H in particular H = (p 2 -p 1 ) / (ρ * g) where p 1 is the measured input pressure, p 2 is the measured output pressure, ρ is the density of the fluid, and g is the standard acceleration. Verfahren nach Anspruch 6, wobei die Dichte der Flüssigkeit als ein konstanter vorbestimmter Wert verwendet wird, oder wobei das Verfahren den weiteren Schritt des Messens der Temperatur der Flüssigkeit umfasst und die Dichte der Flüssigkeit aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer Tabelle ermittelt wird, wobei das Messen der Temperatur insbesondere eine Mittelung der Temperatur über ein vorbestimmtes Zeitintervall umfassen kann.The method of claim 6, wherein the density of the liquid is used as a constant predetermined value, or wherein the method comprises the further step of measuring the temperature of the liquid and the density of the liquid from a functional dependence of the density on the temperature or from a table In particular, measuring the temperature may include averaging the temperature over a predetermined time interval. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Messen des Eingangsdrucks und des Ausgangsdrucks der Flüssigkeit kontinuierlich erfolgt.Method according to one of claims 1 to 7, wherein the measurement of the inlet pressure and the outlet pressure of the liquid is carried out continuously. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Durchflussrate als ein Volumenstrom oder als ein Massenstrom der Flüssigkeit durch die Pumpe definiert ist.Method according to one of claims 1 to 8, wherein the flow rate is defined as a volume flow or as a mass flow of the liquid through the pump. Vorrichtung zum Regeln einer Pumpe, insbesondere einer Kreiselpumpe, während des Pumpens einer Flüssigkeit, wobei die Vorrichtung umfasst: ein erstes Druckmessgerät zum Messen eines Eingangsdrucks der Flüssigkeit stromaufwärts der Pumpe; ein zweites Druckmessgerät zum Messen eines Ausgangsdrucks der Flüssigkeit stromabwärts der Pumpe; und eine Steuereinrichtung zum Festlegen eines Sollwerts einer Durchflussrate der Pumpe; zum Bestimmen eines Sollwerts einer Drehzahl der Pumpe aus einem in einem Speicher gespeicherten Kennfeld der Pumpe, wobei der festgelegte Sollwert der Durchflussrate und eine Differenz zwischen dem Ausgangsdruck und dem Eingangsdruck als Eingangswerte in das Kennfeld eingehen; und zum Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl. Device for controlling a pump, in particular a centrifugal pump, during the pumping of a liquid, the device comprising: a first pressure gauge for measuring an inlet pressure of the fluid upstream of the pump; a second pressure gauge for measuring an output pressure of the liquid downstream of the pump; and a controller for setting a target value of a flow rate of the pump; for determining a target value of a rotational speed of the pump from a map of the pump stored in a memory, wherein the setpoint value of the flow rate and a difference between the outlet pressure and the inlet pressure are input into the map as input values; and for adjusting the speed of the pump to the setpoint of the speed. Vorrichtung nach Anspruch 10, wobei die Steuereinrichtung weiterhin geeignet ist zum Bestimmen eines zeitlichen Mittelwerts der Differenz des Ausgangsdrucks und des Eingangsdrucks; und zum Festlegen des Sollwerts der Durchflussrate aus dem Kennfeld der Pumpe, wobei der zeitliche Mittelwert der Differenz des Ausgangsdrucks und des Eingangsdrucks sowie eine aktuelle Drehzahl der Pumpe als Eingangswerte in das Kennfeld eingehen.An apparatus according to claim 10, wherein the control means is further adapted to determine a time average of the difference of the output pressure and the input pressure; and for setting the target value of the flow rate from the map of the pump, wherein the time average of the difference of the output pressure and the input pressure and a current speed of the pump as input values are included in the map. Vorrichtung nach Anspruch 10 oder 11, wobei die Steuereinrichtung zum Ausgeben eines Stellsignals an die Pumpe ausgebildet ist und das Einstellen der Drehzahl der Pumpe auf den Sollwert der Drehzahl das Ausgeben eines Korrektursignals auf das der Pumpe zugeführte Stellsignals umfasst.Apparatus according to claim 10 or 11, wherein the control means is adapted to output a control signal to the pump and adjusting the speed of the pump to the target value of the speed comprises outputting a correction signal to the control signal supplied to the pump. Vorrichtung nach einem der Ansprüche 10 bis 12, wobei das Kennfeld bei verschiedenen Drehzahlen einen Zusammenhang zwischen der Durchflussrate und einer Förderhöhe der Pumpe definiert, und wobei die Steuereinrichtung weiterhin dazu ausgebildet ist, eine Förderhöhe h aus h=(p2-p1)/(ρ·g) zu bestimmen, wobei p1 den gemessenen Eingangsdruck, p2 den gemessenen Ausgangsdruck, ρ die Dichte der Flüssigkeit und g die Normfallbeschleunigung bezeichnet.Device according to one of claims 10 to 12, wherein the map at different speeds, a relationship between the flow rate and a head of the pump defines, and wherein the control device is further adapted to a head h from h = (p 2 -p 1 ) / (ρ · g), where p 1 denotes the measured inlet pressure, p 2 the measured outlet pressure, ρ the density of the fluid and g the normal acceleration of the fall. Vorrichtung nach Anspruch 13, weiterhin umfassend: ein Temperaturmessgerät zum Messen einer Temperatur der Flüssigkeit und zum Übermitteln eines Temperaturmesssignals an die Steuereinrichtung; wobei die Steuereinrichtung weiterhin dazu ausgebildet ist, aus dem Temperaturmesssignal eine Dichte der Flüssigkeit zu bestimmen und die Dichte der Flüssigkeit aus einer funktionalen Abhängigkeit der Dichte von der Temperatur oder aus einer im Speicher gespeicherten Tabelle zu ermitteln. The device of claim 13, further comprising: a temperature measuring device for measuring a temperature of the liquid and for transmitting a temperature measuring signal to the control device; wherein the control device is further configured to determine a density of the liquid from the temperature measurement signal and to determine the density of the liquid from a functional dependence of the density on the temperature or from a table stored in the memory. ORC-System, umfassend: eine Pumpe zum Pumpen eines Arbeitsmediums, und eine Vorrichtung nach einem der Ansprüche 10 bis 14 zum Regeln der Pumpe. ORC system comprising: a pump for pumping a working medium, and An apparatus according to any one of claims 10 to 14 for controlling the pump.
EP13180356.1A 2013-08-14 2013-08-14 Control of the characteristics of centrifugal pumps Active EP2837829B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13180356.1A EP2837829B1 (en) 2013-08-14 2013-08-14 Control of the characteristics of centrifugal pumps
US14/911,925 US10480515B2 (en) 2013-08-14 2014-06-27 Performance map control of centrifugal pumps
PCT/EP2014/063657 WO2015022113A1 (en) 2013-08-14 2014-06-27 Performance map control of centrifugal pumps
CN201480051136.3A CN105556127B (en) 2013-08-14 2014-06-27 The comprehensive characteristics curve adjustment of centrifugal pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13180356.1A EP2837829B1 (en) 2013-08-14 2013-08-14 Control of the characteristics of centrifugal pumps

Publications (2)

Publication Number Publication Date
EP2837829A1 true EP2837829A1 (en) 2015-02-18
EP2837829B1 EP2837829B1 (en) 2019-12-18

Family

ID=48998450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13180356.1A Active EP2837829B1 (en) 2013-08-14 2013-08-14 Control of the characteristics of centrifugal pumps

Country Status (4)

Country Link
US (1) US10480515B2 (en)
EP (1) EP2837829B1 (en)
CN (1) CN105556127B (en)
WO (1) WO2015022113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2586425R1 (en) * 2015-02-19 2017-08-29 Expander Tech, S.L. EFFICIENT PUMP ANTI-CAVITATION SYSTEM FOR ORGANIC RANKINE POWER CYCLES

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107050700A (en) * 2017-05-12 2017-08-18 广州三业科技有限公司 Numeral is fixed than big flow mixing arrangement and its test system and adjustment method
CN108169394B (en) * 2017-12-26 2019-11-29 迈克医疗电子有限公司 Flow control methods and device, analysis instrument and computer readable storage medium
DE102018217230A1 (en) * 2018-10-09 2020-04-09 Robert Bosch Gmbh Method and device for controlling a fluid pump
DE102018217439A1 (en) * 2018-10-11 2020-04-16 Albert Ziegler Gmbh Pump device
EP4116791A1 (en) * 2021-07-09 2023-01-11 Grundfos Holding A/S System for regulating a temperature of a thermal energy carrying fluid in a sector of a fluid distribution network
CN113743808B (en) * 2021-09-09 2023-06-20 中国电子信息产业集团有限公司第六研究所 Block chain edge safety operation state evaluation method, system and electronic equipment
CN113719889B (en) * 2021-09-09 2023-04-07 中国电子信息产业集团有限公司第六研究所 Block chain edge flow safety control method, system and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1286056A1 (en) * 2001-08-10 2003-02-26 Reliance Electric Technologies, LLC System and method for detecting and diagnosing pump cavitation
DE102011115244A1 (en) 2011-09-28 2013-03-28 Airbus Operations Gmbh Method and system for monitoring the operating state of a pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108574A (en) * 1977-01-21 1978-08-22 International Paper Company Apparatus and method for the indirect measurement and control of the flow rate of a liquid in a piping system
US5006044A (en) * 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
US6425293B1 (en) * 1999-03-13 2002-07-30 Textron Systems Corporation Sensor plug
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
JP4678799B2 (en) * 2000-09-05 2011-04-27 テラル株式会社 Water supply apparatus and water supply apparatus control method
DE10163987A1 (en) * 2001-12-24 2003-07-10 Grundfos As Method for controlling a variable speed heating circulation pump
JP2003267191A (en) 2002-03-14 2003-09-25 Calsonic Kansei Corp Antitheft device for vehicle
US8774972B2 (en) * 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
CN101556068A (en) * 2008-04-11 2009-10-14 上海瀚艺冷冻机械有限公司 Constant pressure frequency conversion energy-saving control method of recycle pump in central air-conditioning system
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
CN201461354U (en) * 2009-06-15 2010-05-12 上海远动科技有限公司 Variable frequency regulation closed-loop control system of water pump
CN102094798B (en) * 2010-12-22 2013-08-21 哈尔滨工业大学 Variable flow adjusting method for heat supply network circulating pump in equal resistance interval

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1286056A1 (en) * 2001-08-10 2003-02-26 Reliance Electric Technologies, LLC System and method for detecting and diagnosing pump cavitation
DE102011115244A1 (en) 2011-09-28 2013-03-28 Airbus Operations Gmbh Method and system for monitoring the operating state of a pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2586425R1 (en) * 2015-02-19 2017-08-29 Expander Tech, S.L. EFFICIENT PUMP ANTI-CAVITATION SYSTEM FOR ORGANIC RANKINE POWER CYCLES

Also Published As

Publication number Publication date
US20160195092A1 (en) 2016-07-07
CN105556127A (en) 2016-05-04
CN105556127B (en) 2017-06-27
US10480515B2 (en) 2019-11-19
WO2015022113A1 (en) 2015-02-19
EP2837829B1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
EP2837829B1 (en) Control of the characteristics of centrifugal pumps
EP3164626B1 (en) Linear control valve
DE102007010768B4 (en) Method for optimizing valve position and pump speed in a valve system with PID control without the use of external signals
DE102008057730A1 (en) Method for operating a system for transporting thermal energy over a liquid medium
DE102010040503A1 (en) Method for controlling a compressor
EP3101352B1 (en) Method for operating a heating installation and controller with differential pressure sensor
DE102007003243A1 (en) Control arrangement for a roll stand and herewith corresponding objects
DE102014202738A1 (en) Method for automated hydraulic balancing of a refining plant
WO2015090648A1 (en) Sensorless condenser regulation for power optimization for orc systems
EP2667117B1 (en) Method for controlling and regulating refrigeration assemblies and heat pumps with an air-cooled evaporator
EP2402624A2 (en) Method for regulating a functional value of a hydrodynamic component
EP2288969A1 (en) Control system of a plant having multi-stage model optimization
DE102013102879A1 (en) Compressor and method for operating a compressor
EP1490735A1 (en) Method and controller for the adaptive control of at least one component of a technical plant
DE102016001393B4 (en) Laser oscillator with fan
EP1632690B1 (en) Method to determinate the target value for the pressure to control a hydrodynamic clutch
EP1744850A2 (en) Steam cutting device
WO2021209251A1 (en) Operation of a cooling unit with a minimal working pressure
DE102009030165A1 (en) Result control value calculating method for controlling temperature of cooling oil of motor vehicle, involves setting limited output value to output minimum value when output value lies below output threshold value
DE2516379A1 (en) ARRANGEMENT FOR THE CONTROL OF THE OUTPUT POWER OF ONE OR MORE TURBOGEN GENERATORS IN A POWER PLANT
EP3623068B1 (en) Application devices for cooling lines with second connection
DE102018212876A1 (en) Control method for machine with converter-driven electric drive
DE102021105123B3 (en) Method for operating a cooking device and cooking device
EP3350515B1 (en) Method and device for regulating a temperature of a fluid carrier medium
DE102021117668A1 (en) Method for operating a circulating pump of a heating system, storage medium, regulation and control unit, heating system and use of a starting pressure and an end pressure

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20130814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150803

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORCAN ENERGY AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190814

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHUSTER, ANDREAS

Inventor name: SPRINGER, JENS-PATRICK

Inventor name: AUMANN, RICHARD

Inventor name: GRILL, ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013014072

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013014072

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1214904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 11

Ref country code: GB

Payment date: 20230824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230824

Year of fee payment: 11

Ref country code: FR

Payment date: 20230824

Year of fee payment: 11

Ref country code: DE

Payment date: 20230830

Year of fee payment: 11

Ref country code: BE

Payment date: 20230824

Year of fee payment: 11