EP2830157B1 - Bodenantenne - Google Patents

Bodenantenne Download PDF

Info

Publication number
EP2830157B1
EP2830157B1 EP14002324.3A EP14002324A EP2830157B1 EP 2830157 B1 EP2830157 B1 EP 2830157B1 EP 14002324 A EP14002324 A EP 14002324A EP 2830157 B1 EP2830157 B1 EP 2830157B1
Authority
EP
European Patent Office
Prior art keywords
antenna
ground
pipe
slot
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14002324.3A
Other languages
English (en)
French (fr)
Other versions
EP2830157A1 (de
Inventor
Stojan Iliev
Thomas Brunner
Holger Busse
Walter Behnke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein Sachsen GmbH
Original Assignee
Kathrein Sachsen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Sachsen GmbH filed Critical Kathrein Sachsen GmbH
Publication of EP2830157A1 publication Critical patent/EP2830157A1/de
Application granted granted Critical
Publication of EP2830157B1 publication Critical patent/EP2830157B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3225Cooperation with the rails or the road
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/12Longitudinally slotted cylinder antennas; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays

Definitions

  • the present invention relates to a ground antenna for high-frequency electromagnetic signals which can be embedded in a ground and a transmitting and / or receiving system for high-frequency electromagnetic signals with at least one ground antenna located in a ground, at least one coupled to the ground antenna transmitter and / or Receiver unit, and at least one movable receiving and / or transmitting module, which is adapted to receive transmitted from the ground antenna electromagnetic signals and / or to transmit electromagnetic signals receivable by the ground antenna.
  • Electromagnetic signals transmitted and / or received by means of antennas are used in the prior art for various purposes.
  • this describes DE 10 2011 100 046 A1 an RFID device for use in logistics, are arranged in the conventional planar RFID antennas in a floor of a transport path and in particular in a route for vehicles.
  • metal structures are provided with slots that form part of the bottom of the transport routes.
  • the slots in the metal structures serve as secondary steel for RFID signals, so that in the combination of conventional RFID antennas and metal structures ground antennas are formed.
  • Disadvantages of this solution include its complicated assembly and device as well as a strong detuning of the RFID antennas by the metal in the immediate vicinity of the RFID antennas. In the case of large mechanical loads on the transport paths, complicated mechanical reinforcements of the slotted signal passage areas of the metal structures are also required.
  • an RFID system with a portal composed of tube slotted antennas dimensioned for UHF RFID wavelengths is known.
  • This RFID system can capture goods transported through the portal and labeled with RFID transponders.
  • a disadvantage of this technical solution is the high construction costs for the construction of the portal, especially if several lanes that can be traveled for example by several trucks to be monitored.
  • a ground antenna of the type mentioned which is characterized in that the ground antenna is designed as a tube slot antenna, wherein the tube slot antenna as a cavity resonator for a standing electromagnetic wave with a waveguide wavelength ⁇ H and for blasting and / or receiving electromagnetic signals having a signal wavelength ⁇ o in the direction of the ground surface through at least one slit (3) of the pipe slot antenna (1, 1 ') located below the ground surface.
  • the ground antenna according to the invention can absorb even high mechanical forces.
  • the slit of the tube slot antenna may be sealed with a solid electromagnetic radiation transparent material to further increase its capacity.
  • the tube slot antenna can easily be embedded in a floor.
  • the floor may be made of different electromagnetic radiation transparent materials, such as bitumen, tartan, asphalt or concrete.
  • the floor equipped with the ground antenna may be, for example, a lane, a lane with multiple lanes, the floor of a production hall or runways in a stadium.
  • the solution according to the invention also differs significantly from the prior art, for example DE 863 522 B in the form of a device for controlling the radiation damping of a hollow tube slot radiator is known.
  • the ground antenna like any antenna, can be used both as a transmitting antenna and as an electromagnetic wave receiving antenna.
  • the waves are usually shaped into signals, ie modulated in a suitable manner.
  • an RFID reader transmits high-frequency electromagnetic signals
  • an RFID transponder modulates these signals and the RFID reader registers this modulation of the signal transmitted by the reader.
  • the ground antenna is used at least in sections as a pure transmitting antenna or as a pure receiving antenna or both for transmitting and for receiving data.
  • the signals transmitted and / or received by the ground antenna have a vacuum signal wavelength in vacuum.
  • the signal wavelength in the medium is shortened in inverse proportion to the refractive index of the medium.
  • the tube closed on both sides of the tube slot antenna acts as a cavity for a standing electromagnetic wave with a waveguide wavelength ⁇ H , wherein the waveguide wavelength ⁇ H is greater than the signal wavelength ⁇ o , with the signal exiting the slot of the tube slot antenna.
  • the resonant condition of the cavity resonator is satisfied at axial antenna lengths that have a single or multiple length of half waveguide wavelength ( ⁇ H / 2), for example, a length of ⁇ H / 2 or ⁇ H or 3/2 ⁇ H.
  • the length of the slot is approximately equal to half the signal wavelength ( ⁇ o / 2) of the signals outside the slot.
  • the ground antenna according to the invention is preferably formed of a circular and closed on both sides by conductive plates and electrically conductive round tube, in whose cylinder jacket-shaped tube wall, the at least one slot is axially aligned.
  • the tube of the tube slot antenna has a round cross-section.
  • Round tubes can be made particularly cheap. In principle, however, other tubes, for example hollow sections with a rectangular cross-section, can also be used.
  • the tubular hollow tube antenna is closed at both cylinder bases by conductive plates, the plates serving as reflectors for electromagnetic waves propagating in the tube. This creates a substantially closed cavity.
  • the pipe slot antenna has a pipe length approximately equal to a period of half the waveguide wavelength ( ⁇ H / 2) and a pipe diameter which is the formation of a standing wave in the fundamental transverse electric mode TE 011 on suppression of higher modes.
  • a slot which is aligned in the axial direction parallel to the axis of the tube.
  • the center of the slot is located in the axial direction at ⁇ H / 4, ie at a ⁇ H H / 2-long antenna in the middle of the tube.
  • the length and the width of the ground antenna are tuned so that the fundamental mode TE 011 is excited, but higher modes are not.
  • the tube slot antennas have a tube length of 492.0 mm or less than 50% of 492.0 mm tube length and a tube diameter of 219.1 mm.
  • the ground antenna according to the invention has a feed bar protruding radially from the tube wall of the tube slot antenna, the feed bar being approximately axially centered with respect to the slot and offset on a circumference of the tube by approximately 90 ° from the slot.
  • the high frequency is coupled into the cavity resonator, wherein the rod causes a coupling of an antenna cable to the electric field in the cavity.
  • This type of coupling is also referred to as pin coupling. But it can also be another type of coupling, for example, the loop coupling to the magnetic field can be used.
  • the feed bar is horizontal and offset on the circumference of the tube by 90 ° to the slot. The feed bar can also be offset at any other angles to the slot.
  • the connector When using the pin coupling of the feed bar is preferably attached to a located in the pipe wall connector, wherein the connector is a plug and / or a socket.
  • the antenna cable can be assembled and mounted independently of the antenna, without affecting the pin coupling in the tube slot antenna.
  • plug and socket Sometimes one pole of the connector is designed as a plug and a respective other pole as a socket, so that the connector in this case is both plug and socket.
  • the pipe slot antenna has at least two slots arranged along a line, wherein the distance of the centers of the slots is approximately equal to a period of the waveguide wavelength ( ⁇ H ). Longer antennas with multiple slots are characterized by higher antenna gains.
  • the tube slot antenna has at least two adjacent to a center line alternately in slits arranged offset in opposite directions, wherein the axial spacing of the centers of the slots is approximately equal to a period of half of the waveguide wavelength ( ⁇ H / 2) and wherein the feed bar is approximately centered axially with respect to the slot and approximately on a circumference of the tube 180 ° is arranged offset to the center line.
  • one slot is present per half-wave of the waveguide wavelength.
  • the object of the invention is achieved in one aspect by a transmitting and / or receiving system of the type defined above, in which the bottom is formed of a transparent material for high-frequency electromagnetic radiation and according to the invention the ground antenna is embedded in the ground tube slot antenna.
  • the transmitting and / or receiving system according to the invention has a mechanically loadable tube slot antenna.
  • the floor in the transmitting and / or receiving system according to the invention is not made of metal but of a material which is at least partially transparent to high-frequency electromagnetic radiation, so that signals transmitted by the ground antenna emerge from the ground and signals transmitted in the direction of the ground are received by the ground antenna can.
  • the transmitter and / or receiver unit is arranged in the tube slot antenna.
  • the tube slot antenna has the additional function of a housing for the transmitter and / or receiver unit. This saves an external housing for the transmitter and / or receiver unit. Another saving results from the attributable antenna cable, which otherwise connects the ground antenna and an externally arranged transmitter and / or receiver unit.
  • the arranged in the tube slot antenna transmitter and / or receiver unit is powered in one embodiment via a cable with energy.
  • the transmitter and / or receiver unit has a wireless data transmission interface.
  • the wireless communication interface such as the WLAN or ZigBee standard, allows wireless communication between the transmitter and / or receiver unit and a computer.
  • the computer is here a component of the transmitting and / or receiving system that forwards information, for example, read from RFID transponders.
  • the transmitting and / or receiving system has at least two tube slot antennas, which are rotated in a horizontal plane relative to one another by 90 ° and can be fed with signals phase-shifted by 90 °.
  • This circularly polarized signals can be generated, which allow constant good signal transmissions regardless of the orientation of an antenna of a movable above the floor receiving and / or transmit module.
  • the transmitter and / or receiver unit is an RFID reader and the receiving and / or transmitting module is an RFID transponder and the transmitting and / or receiving system is designed to the ground moving RFID transponder to capture with the RFID reader.
  • the RFID transponders can be used to identify various objects.
  • the objects are goods whose transport is monitored and documented by a computer in a database.
  • the objects are vehicles whose movement is detected for the purpose of a toll calculation, or shoes of athletes whose movement is timed.
  • these lanes or raceways can be monitored simultaneously with a plurality of ground antennas, which are assigned, for example, to a plurality of lanes on one or more tracks in a sports stadium.
  • Fig. 1 schematically shows a ground antenna according to the invention in the form of a tube slot antenna 1 with a slot 3, which is shown directed according to a preferred mounting position upwards.
  • the length of the slot is approximately equal to half the signal wavelength ( ⁇ o / 2).
  • the tube slot antenna 1 consists of one along an axis the tube straight round tube, which is closed axially on both sides by planar conductive plates 4 to form a hollow cylinder.
  • the plates 4 are welded to the tube in the illustrated embodiment. In other embodiments, not shown, at least one of the two plates 4 is clamped with the formation of an electrically conductive interface in the tube or attached to the tube axially displaceable along the axis.
  • the length of the tube slot antenna 1 is dimensioned at half the waveguide wavelength ( ⁇ H / 2) such that a standing electromagnetic wave can form in the tube slot antenna 1 in the fundamental transverse electrical mode TE 011 . Such a wave is partially radiated through the slit 3 because the slit 3 in the cavity resonator forms a small opening.
  • the supply of the tube slot antenna 1 with a high-frequency electromagnetic signal via a not shown coaxial antenna cable.
  • the coupling of the antenna cable to the antenna via two interconnectable connector 6, of which only the connected to the pipe slot antenna 1 part is outlined.
  • a feed bar 5 is fixed, wherein the length of the feed bar 5 is dimensioned so that the best possible coupling is achieved, that is, the least possible reflection of the high-frequency electromagnetic signal occurs.
  • the outer diameter of the illustrated tube slot antenna 1 is 219.1 mm and the tube length is 492.0 mm. With these dimensions, the resonance frequency of the TE 011 mode is 865 MHz, so that the UHF RFID frequency at 865 MHz can be transmitted with the ground antenna.
  • the length of the tube can be designed to adapt to different boundary conditions, such as antenna detuning through antenna cable and slot, by about 50% greater or less than 492.0 mm. To realize other frequency ranges, for example in the 5.8 GHz RFID range, a scaling of the antenna dimensions is required.
  • Fig. 2 schematically shows a detail of a second embodiment of a pipe slot antenna 1 'according to the invention, which in contrast to the in Fig. 1
  • Pipe slot antenna 1 shown has a plurality of slots 3 arranged on a line. Of the existing slots 3 only three slots 3 are exemplified.
  • the tube slot antenna 1 ' has the same diameter as the tube slot antenna 1, but its length is a multiple, for example, a fivefold, the tube slot antenna 1. Inside the tube slot antenna 1' forms a standing wave with several periods and about the same frequency as in the tube slot antenna 1 off.
  • the tube slot antenna 1 ' has a higher gain, so that the high-frequency electromagnetic signals can be transmitted over a greater distance.
  • this has a feed bar 5, which is arranged offset at the circumference of the tube slot antenna 1' by 90 ° to the slot. This offset is in Fig.2 illustrated by guides.
  • Fig. 3 1 shows a schematic section of a third exemplary embodiment of a tube slot antenna 1 "according to the invention, which has a plurality of slots 3 arranged alternately offset in opposite directions next to a center line, that is, starting from the center line, the slots are arranged alternately to the left and right of the center line Slots in the tube slot antenna 1 "is half the waveguide wavelength ( ⁇ H / 2) half the axial spacing of the slots in the tube slot antenna 1 'in FIG Fig. 2 ,
  • the feed bar 5 is arranged offset on the cylinder jacket of the tube slot antenna 1 "by 180 ° to the center line.
  • Fig. 4 schematically shows an inventive transmitting and / or receiving system 7 with three of the tube slot antennas 1, the in Fig. 1 are shown separately.
  • the tube slot antennas 1 are embedded in a bottom 2.
  • the bottom 2 is sketched in a sectional view to allow a clear view of the tube slot antennas 1.
  • the tube slot antennas 1 are each connected via an antenna cable 10 to a transmitter and / or receiver unit 8.
  • the transmitter and / or receiver unit 8 is an RFID reader with three channels.
  • the transmitter and / or receiver unit 8 is designed to transmit signals according to the RFID standard and is capable of detecting the backscatters generated by RFID transponders 9, which act back into the transmitter and / or receiver unit 8.
  • the RFID transponder used in the sketched embodiment for the identification of motor vehicles and each of the tube slot antennas 1 is used to monitor a lane of a wide street.

Landscapes

  • Waveguide Aerials (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Bodenantenne für hochfrequente elektromagnetische Signale, die in einen Boden eingebettet werden kann und ein Sende- und/oder Empfangssystem für hochfrequente elektromagnetische Signale mit wenigstens einer in einem Boden befindlichen Bodenantenne, wenigstens einer mit der Bodenantenne gekoppelten Sender- und/oder Empfängereinheit, und wenigstens einem bewegbaren Empfangs- und/oder Sendemodul, das dafür ausgebildet ist, von der Bodenantenne gesendete elektromagnetische Signale zu empfangen und/oder elektromagnetische von der Bodenantenne empfangbare Signale zu senden.
  • Elektromagnetische Signale, die mit Hilfe von Antennen gesendet und/oder empfangen werden, kommen im Stand der Technik für unterschiedliche Zwecke zum Einsatz. Beispielsweise beschreibt die DE 10 2011 100 046 A1 eine RFID-Vorrichtung zur Nutzung in der Logistik, bei der herkömmliche planare RFID-Antennen in einem Boden eines Transportweges und insbesondere in einem Fahrweg für Fahrzeuge angeordnet sind. Als mechanischer Schutz dieser RFID-Antennen sind Metallkonstruktionen mit Schlitzen vorgesehen, die teilweise den Boden der Transportwege bilden. Die Schlitze in den Metallkonstruktionen dienen dabei als Sekundärstahler für RFID-Signale, sodass in der Kombination der herkömmlichen RFID-Antennen und der Metallkonstruktionen Bodenantennen ausgebildet sind. Nachteilig an dieser Lösung sind unter anderem deren aufwendige Montage und Einrichtung sowie eine starke Verstimmung der RFID-Antennen durch das Metall in unmittelbarer Nähe der RFID-Antennen. Bei großen mechanischen Belastungen der Transportwege sind darüber hinaus aufwendige mechanische Verstärkungen der geschlitzten Signaldurchlassbereiche der Metallkonstruktionen erforderlich.
  • Aus der DE 10 2007 007 674 A1 ist ein RFID-System mit einem aus für UHF RFID Wellenlängen dimensionierten Rohrschlitzantennen zusammengesetzten Portal bekannt. Dieses RFID-System kann durch das Portal transportierte und mit RFID-Transpondern gekennzeichnete Waren erfassen. Nachteilig an dieser technischen Lösung ist der hohe bauliche Aufwand zur Errichtung des Portals, insbesondere wenn mehrere Fahrspuren, die beispielsweise von mehreren LKW befahren werden können, überwacht werden sollen.
  • Es sind daher Aufgaben der Erfindung, eine Bodenantenne und ein Sende- und/oder Empfangssystem mit der Bodenantenne vorzuschlagen, die kostengünstig und einfach montierbar und einrichtbar sind.
  • Die Aufgabe wird in einem Aspekt durch eine Bodenantenne der eingangs genannten Gattung gelöst, die sich dadurch auszeichnet, dass die Bodenantenne als eine Rohrschlitzantenne ausgestaltet ist, wobei die Rohrschlitzantenne als Hohlraumresonator für eine stehende elektromagnetische Welle mit einer Hohlleiter-Wellenlänge λH und für ein Abstrahlen und/oder ein Empfangen von elektromagnetischen Signalen mit einer Signal-Wellenlänge λo in Richtung der Bodenoberfläche durch wenigstens einen unterhalb der Bodenoberfläche befindlichen Schlitz (3) der Rohrschlitzantenne (1, 1') ausgebildet ist.
  • Bei der erfindungsgemäßen Lösung, als Bodenantenne eine Rohrschlitzantenne einzusetzen, sind wegen der hohen mechanischen Belastbarkeit einer Rohrschlitzantenne keine die Bodenantenne schützenden Metallkonstruktionen zur Aufnahme mechanischer Kräfte erforderlich. Stattdessen kann die erfindungsgemäße Bodenantenne bei richtiger Auslegung selbst hohe mechanische Kräfte aufnehmen. Der Schlitz der Rohrschlitzantenne kann zur weiteren Erhöhung der Belastbarkeit mit einem festen für elektromagnetische Strahlen transparenten Material verschlossen sein. Die Rohrschlitzantenne kann einfach in einen Boden eingebettet werden. Der Boden kann dabei aus verschiedenen für elektromagnetische Strahlen transparenten Materialien, beispielsweise aus Bitumen, Tartan, Asphalt oder Beton bestehen. Bei dem mit der Bodenantenne ausgestatteten Boden kann es sich beispielsweise um eine Fahrspur, eine Fahrbahn mit mehreren Fahrspuren, den Boden einer Produktionshalle oder um Laufbahnen in einem Stadion handeln. Somit unterscheidet sich die erfindungsgemäße Lösung auch deutlich vom Stand der Technik, der beispielsweise aus DE 863 522 B in Form einer Vorrichtung zur Regelung der Strahlungsdämpfung eines Hohlrohrschlitzstrahlers bekannt ist.
  • Die Bodenantenne kann wie jede Antenne sowohl als eine Sendeantenne als auch als eine Ernpfangsantenne für elektromagnetische Wellen eingesetzt werden. Zur technischen Ausnutzung elektromagnetischer Wellen zum Zweck von Datenübertragungen sind die Wellen üblicherweise zu Signalen geformt, d.h. in einer geeigneten Weise moduliert. In einem RFID-System sendet ein RFID-Lesegerät hochfrequente elektromagnetische Signale, ein RFID-Transponder moduliert diese Signale und das RFID-Lesegerät registriert diese Modulation des von dem Lesegerät gesendeten Signals. In anderen Sende- und Empfangssystemen wird die Bodenantenne zumindest zeitabschnittsweise als reine Sendeantenne oder als reine Empfangsantenne oder sowohl zum Senden als auch zum Empfangen von Daten genutzt.
  • Die von der Bodenantenne gesendeten und/oder empfangenen Signale haben im Vakuum eine Vakuum-Signal-Wellenlänge. In Luft oder anderen dielektrischen Medien verkürzt sich die Signal-Wellenlänge in dem Medium umgekehrt proportional zu der Brechzahl des Mediums. Das beidseitig geschlossene Rohr der Rohrschlitzantenne wirkt als Hohlraumresonator für eine stehende elektromagnetische Welle mit einer Hohlleiter-Wellenlänge λH, wobei die Hohlleiter-Wellenlänge λH größer ist als die Signal-Wellenlänge λo, mit der das Signal aus dem Schlitz der Rohrschlitzantenne austritt. Die Resonanzbedingung des Hohlraumresonators ist bei axialen Antennenlängen erfüllt, die eine einfache oder mehrfache Länge der halben Hohlleiter-Wellenlänge (λH/2), beispielsweise eine Länge von λH/2 oder λH oder 3/2 λH, haben. Die Länge des Schlitzes ist ungefähr gleich der halben Signal-Wellenlänge (λo/2) der Signale außerhalb des Schlitzes.
  • Die erfindungsgemäße Bodenantenne ist vorzugsweise aus einem beidseitig durch leitfähige Platten geschlossenen und elektrisch leitfähigen Rundrohr ausgebildet, in dessen zylindermantelförmiger Rohrwandung der wenigstens eine Schlitz axial ausgerichtet ist.
  • In dieser Ausbildung hat das Rohr der Rohrschlitzantenne einen runden Querschnitt. Runde Rohre können besonders günstig hergestellt werden. Prinzipiell können aber auch andere Rohre, beispielsweise Hohlprofile mit einem rechteckigen Querschnitt, eingesetzt werden. Die rohrförmige bzw. hohlzylindrische Rohrschlitzantenne ist an den beiden Zylindergrundflächen durch leitfähige Platten geschlossen, wobei die Platten als Reflektoren für sich in dem Rohr ausbreitende elektromagnetische Wellen dienen. Auf diese Weise entsteht ein im Wesentlichen geschlossener Hohlraum.
  • In der bevorzugten Ausbildung der erfindungsgemäßen Bodenantenne weist die Rohrschlitzantenne eine Rohrlänge, die etwa gleich einer Periode der Hälfte der Hohlleiter-Wellenlänge (λH/2) ist, und einen Rohrdurchmesser, der die Ausbildung einer stehenden Welle in der fundamentalen transversalen elektrischen Mode TE011 bei Unterdrückung höherer Moden bewirkt, auf.
  • In der Rohrwandung befindet sich ein Schlitz, der in axialer Richtung parallel zu der Achse des Rohres ausgerichtet ist. Der Mittelpunkt des Schlitzes befindet sich in axialer Richtung bei λH/4, also bei einer λHH/2-langen Antenne in der Mitte des Rohres. Die Länge und die Breite der Bodenantenne sind derart abgestimmt, dass die Fundamentalmode TE011 angeregt wird, höhere Moden jedoch nicht.
  • In Ausführungsbeispielen von für die UHF RFID Frequenzen 865 MHz oder 928 MHz verwendbaren Bodenantennen haben die Rohrschlitzantennen eine Rohrlänge von 492,0 mm oder eine um weniger als 50 % von 492,0 mm abweichende Rohrlänge und einen Rohrdurchmesser von 219,1 mm.
  • In einer bevorzugten Ausbildung weist die erfindungsgemäße Bodenantenne einen radial von der Rohrwandung der Rohrschlitzantenne aus in das Rohr ragenden Speisestab auf, wobei der Speisestab axial bezüglich des Schlitzes etwa zentriert und auf einem Umfang des Rohres um etwa 90° zu dem Schlitz versetzt angeordnet ist.
  • Über den Stab wird die Hochfrequenz in den Hohlraumresonator eingekoppelt, wobei der Stab eine Kopplung eines Antennenkabels an das elektrische Feld in dem Hohlraum bewirkt. Diese Art der Kopplung wird auch als Stiftkoppelung bezeichnet. Es kann aber auch eine andere Art der Koppelung, beispielsweise die Schleifenkoppelung an das magnetische Feld eingesetzt werden. Für eine einfache Montage ist es günstig, den Speisestab und das in die Bodenantenne mündende Antennenkabel horizontal auszurichten. Bei einem nach oben orientierten Schlitz ist in diesem Fall der Speisestab horizontal und auf dem Umfang des Rohres um 90° zu dem Schlitz versetzt. Der Speisestab kann aber auch in beliebigen anderen Winkeln zu dem Schlitz versetzt angeordnet sein.
  • Bei Verwendung der Stiftkoppelung ist der Speisestab vorzugsweise an einem in der Rohrwandung befindlichen Steckverbinder befestigt, wobei der Steckverbinder ein Stecker und/oder eine Buchse ist. Durch den Steckverbinder kann das Antennenkabel unabhängig von der Antenne konfektioniert und montiert werden, ohne die Stiftkoppelung in der Rohrschlitzantenne zu beeinflussen. Je nach Ausbildung des Steckverbinders wird zwischen Stecker und Buchse unterschieden. Mitunter ist jeweils ein Pol des Steckverbinders als Stecker und ein jeweils anderer Pol als Buchse ausgebildet, so dass der Steckverbinder in diesem Fall sowohl Stecker als auch Buchse ist.
  • Gemäß einer vorteilhaften Ausbildung der erfindungsgemäßen Bodenantenne weist die Rohrschlitzantenne wenigstens zwei entlang einer Linie angeordnete Schlitze auf, wobei der Abstand der Mittelpunkte der Schlitze etwa gleich einer Periode der Hohlleiter-Wellenlänge (λH) ist. Längere Antennen mit mehreren Schlitzen zeichnen sich durch höhere Antennengewinne aus.
  • In einer anderen vorteilhaften Ausbildung der erfindungsgemäßen Bodenantenne weist die Rohrschlitzantenne wenigstens zwei neben einer Mittellinie abwechselnd in entgegengesetzte Richtungen versetzt angeordnete Schlitze auf, wobei der axiale Abstand der Mittelpunkte der Schlitze etwa gleich einer Periode der Hälfte der Hohlleiter-Wellenlänge (λH/2) ist und wobei der Speisestab axial bezüglich des Schlitzes etwa zentriert und auf einem Umfang des Rohres um etwa 180° zu der Mittellinie versetzt angeordnet ist. In diesem Ausführungsbeispiel ist pro Halbwelle der Hohlleiterwellenlänge ein Schlitz vorhanden. Durch die 180° auf dem Rohrumfang gegenüber der Mittellinie versetzt angeordnete Speisung sind die Schlitze umfänglich symmetrisch zu dem Speisepunkt beabstandet.
  • Die Aufgabe der Erfindung wird in einem Aspekt auch durch ein Sende- und/oder Empfangssystem der eingangs definierten Gattung gelöst, in welchem der Boden aus einem für hochfrequente elektromagnetische Strahlung transparenten Material ausgebildet ist und erfindungsgemäß die Bodenantenne eine in den Boden eingebettete Rohrschlitzantenne ist.
  • Das erfindungsgemäße Sende- und/oder Empfangssystem weist eine mechanisch belastbare Rohrschlitzantenne auf. Eine Metallkonstruktion als Bestandteil der Bodenantenne wie im Stand der Technik ist hingegen nicht vorgesehen. Der Boden in dem erfindungsgemäßen Sende- und/oder Empfangssystem besteht nicht aus Metall sondern aus einem zumindest teilweise für hochfrequente elektromagnetische Strahlung transparenten Material, so dass von der Bodenantenne gesendete Signale aus dem Boden austreten und in Richtung des Bodens gesendete Signale von der Bodenantenne empfangen werden können.
  • In einer bevorzugten Ausbildung des erfindungsgemäßen Sende- und/oder Empfangssystems ist die Sender- und/oder Empfängereinheit in der Rohrschlitzantenne angeordnet. In diesem Fall hat die Rohrschlitzantenne die zusätzliche Funktion eines Gehäuses für die Sender- und/oder Empfängereinheit. Dadurch wird ein externes Gehäuse für die Sender- und/oder Empfängereinheit eingespart. Eine weitere Einsparung ergibt sich aus dem entfallenden Antennenkabel, das sonst die Bodenantenne und eine extern angeordnete Sender- und/oder Empfängereinheit verbindet. Die in der Rohrschlitzantenne angeordnete Sender- und/oder Empfängereinheit wird in einem Ausführungsbeispiel über ein Kabel mit Energie versorgt. In einer vorteilhaften Ausgestaltung dieses erfindungsgemäßen Sende- und/oder Empfangssystems weist die Sender- und/oder Empfängereinheit eine drahtlose Datenübertragungsschnittstelle auf. Die drahtlose Datenübertragungsschnittstelle, beispielsweise nach dem WLAN oder dem ZigBee Standard, ermöglicht einen kabellosen Datenaustausch zwischen der Sender- und/oder Empfängereinheit und einem Computer. In einem anderen Ausführungsbeispiel erfolgt der Datenaustausch zwischen der Sender- und/oder Empfängereinheit und dem Computer über ein Datenkabel. Der Computer ist dabei eine Komponente des Sende- und/oder Empfangssystems, der beispielsweise aus RFID-Transpondern ausgelesene Informationen weiterleitet.
  • Gemäß einer vorteilhaften Weiterbildung weist das erfindungsgemäße Sende- und/oder Empfangssystem wenigstens zwei in einer horizontalen Ebene zueinander um 90° gedreht angeordnete Rohrschlitzantennen, die mit um 90° phasenverschobenen Signalen gespeist werden können, auf. Damit können zirkular polarisierte Signale erzeugt werden, die unabhängig von der Ausrichtung einer Antenne eines über dem Boden bewegbaren Empfangs- und/oder Sendemoduls konstant gute Signalübertragungen ermöglichen.
  • In einem Anwendungsbeispiel ist in dem erfindungsgemäßen Sende- und/oder Empfangssystem die Sender- und/oder Empfängereinheit ein RFID-Lesegerät und das Empfangs- und/oder Sendemodul ist ein RFID-Transponder und das Sende- und/oder Empfangssystem ist dafür ausgebildet, über dem Boden bewegte RFID-Transponder mit dem RFID-Lesegerät zu erfassen. Die RFID-Transponder können zur Kennzeichnung verschiedener Objekte verwendet werden. Beispielsweise handelt es sich bei den Objekten um Waren, deren Transport überwacht und von einem Computer in einer Datenbank dokumentiert wird. Die Objekte sind in anderen Anwendungsbeispielen Fahrzeuge, deren Bewegung zum Zweck einer Mautberechnung erfasst wird, oder Schuhe von Sportlern, deren Bewegung zeitlich erfasst wird. In dem erfindungsgemäßen Sende- und/oder Ernpfangssystem können mit mehreren Bodenantennen, die zum Beispiel mehreren Fahrspuren auf einer Straße oder mehreren Laufbahnen in einem Sportstadion zugeordnet sind, diese Fahrspuren oder Laufbahnen gleichzeitig überwacht werden.
  • Die vorliegende Erfindung soll im Folgenden an Hand von Figuren näher beschrieben werden. Es zeigen:
  • Fig. 1
    ein Ausführungsbeispiel einer erfindungsgemäßen Bodenantenne
    Fig. 2
    ein zweites Ausführungsbeispiel einer erfindungsgemäßen Bodenantenne
    Fig. 2
    ein drittes Ausführungsbeispiel einer erfindungsgemäßen Bodenantenne
    Fig. 4
    ein erfindungsgemäßes Sende- und/oder Empfangssystem mit drei Bodenantennen
  • Fig. 1 zeigt schematisch eine erfindungsgemäße Bodenantenne in Gestalt einer Rohrschlitzantenne 1 mit einem Schlitz 3, der entsprechend einer bevorzugten Einbaulage nach oben gerichtet dargestellt ist. Die Länge des Schlitzes ist ungefähr gleich der halben Signal-Wellenlänge (λo/2). Die Rohrschlitzantenne 1 besteht aus einem entlang einer Achse des Rohres geraden Rundrohr, das axial beidseitig durch planare leitfähige Platten 4 unter Ausbildung eines Hohlzylinders geschlossen ist. Die Platten 4 sind in dem dargestellten Ausführungsbeispiel mit dem Rohr verschweißt. In anderen nicht dargestellten Ausführungsbeispielen ist wenigstens eine der beiden Platten 4 unter Ausbildung einer elektrisch leitfähigen Grenzfläche in das Rohr geklemmt oder an dem Rohr entlang der Achse axial verschiebbar befestigt.
  • Die Länge der Rohrschlitzantenne 1 ist mit der halben Hohlleiter-Wellenlänge (λH/2) so bemessen, dass sich in der Rohrschlitzantenne 1 eine stehende elektromagnetische Welle in der fundamentalen transversalen elektrischen Mode TE011 ausbilden kann. Eine solche Welle wird, da der Schlitz 3 in dem Hohlraumresonator eine kleine Öffnung ausbildet, teilweise durch den Schlitz 3 abgestrahlt. Die Versorgung der Rohrschlitzantenne 1 mit einem hochfrequenten elektromagnetischen Signal erfolgt über ein nicht dargestelltes koaxiales Antennenkabel. Die Kopplung des Antennenkabels an die Antenne erfolgt über zwei miteinander verbindbare Steckverbinder 6, von denen nur der mit der Rohrschlitzantenne 1 verbundene Teil skizziert ist. An dem Steckverbinder 6 ist ein Speisestab 5 befestigt, wobei die Länge des Speisestabes 5 so bemessen ist, dass eine möglichst gute Kopplung erreicht wird, das heißt, dass möglichst wenig Reflexion des hochfrequente elektromagnetischen Signals auftritt.
  • Der Außendurchmesser der dargestellten Rohrschlitzantenne 1 beträgt 219,1 mm und die Rohrlänge 492,0 mm. Mit diesen Abmessungen liegt die Resonanzfrequenz der TE011-Mode bei 865 MHz, so dass die bei 865 MHz liegende UHF RFID Frequenz mit der Bodenantenne gesendet werden kann. Die Länge des Rohres kann in Anpassung an verschiedene Randbedingungen, wie z.B. an Antennenverstimmungen durch Antennenkabel und Schlitz, um etwa maximal 50% größer oder kleiner als 492,0 mm ausgebildet sein. Zur Realisierung anderer Frequenzbereiche, beispielsweise im 5,8 GHz-RFID-Bereich, ist eine Skalierung der Antennenabmessungen erforderlich.
  • Fig. 2 zeigt schematisch ausschnittweise ein zweites Ausführungsbeispiel einer erfindungsgemäßen Rohrschlitzantenne 1', die im Gegensatz zu der in Fig. 1 gezeigten Rohrschlitzantenne 1 mehrere auf eine Linie angeordnete Schlitze 3 aufweist. Von den vorhandenen Schlitzen 3 sind nur drei Schlitze 3 beispielhaft dargestellt. Die Rohrschlitzantenne 1' weist den gleichen Durchmesser wie die Rohrschlitzantenne 1 auf, ihre Länge beträgt hingegen ein Mehrfaches, beispielsweise ein Fünffaches, der Rohrschlitzantenne 1. Im Inneren der Rohrschlitzantenne 1' bildet sich eine stehende Welle mit mehreren Perioden und etwa der gleichen Frequenz wie in der Rohrschlitzantenne 1 aus.
  • Durch die mehreren Schlitze weist die Rohrschlitzantenne 1' einen höheren Gewinn auf, so dass die hochfrequenten elektromagnetischen Signale über eine größere Entfernung übertragen werden können. Zur Speisung der Rohrschlitzantenne 1' weist diese einen Speisestab 5 auf, der am Umfang der Rohrschlitzantenne 1' um 90° zu dem Schlitz versetzt angeordnet ist. Dieser Versatz ist in Fig.2 durch Hilfslinien verdeutlicht.
  • Fig. 3 zeigt schematisch ausschnittweise ein drittes Ausführungsbeispiel einer erfindungsgemäßen Rohrschlitzantenne 1", die mehrere neben einer Mittellinie abwechselnd in entgegengesetzte Richtungen versetzt angeordnete Schlitze 3 aufweist. Das heißt, von der Mittellinie ausgehend sind die Schlitze abwechselnd links und rechts neben der Mittellinie angeordnet. Der axiale Abstand der Schlitze in der Rohrschlitzantenne 1" ist mit der halben Hohlleiter-Wellenlänge (λH/2) halb so groß wie der axiale Abstand der Schlitze in der Rohrschlitzantenne 1' in Fig. 2. Der Speisestab 5 ist am Zylindermantel der Rohrschlitzantenne 1" um 180° zu der Mittellinie versetzt angeordnet.
  • Fig. 4 zeigt schematisch ein erfindungsgemäßes Sende- und/oder Empfangssystem 7 mit drei der Rohrschlitzantennen 1, die in Fig. 1 separat dargestellt sind. Die Rohrschlitzantennen 1 sind in einen Boden 2 eingebettet. Der Boden 2 ist in einer Schnittdarstellung skizziert, um einen freien Blick auf die Rohrschlitzantennen 1 zu ermöglichen. Die Rohrschlitzantennen 1 sind jeweils über ein Antennenkabel 10 mit einer Sender- und/oder Empfängereinheit 8 verbunden. Bei der Sender- und/oder Ernpfängereinheit 8 handelt es sich um ein RFID-Lesegerät mit drei Kanälen. Die Sender- und/oder Empfängereinheit 8 ist zum Senden von Signalen nach dem RFID-Standard ausgebildet und in der Lage die von RFID-Transpondern 9 erzeugten Rückstreuungen, die bis in die Sender- und/oder Empfängereinheit 8 rückwirken, zu detektieren. Die RFID-Transponder dienen in dem skizzierten Ausführungsbeispiel zur Kennzeichnung von Kraftfahrzeugen und jede der Rohrschlitzantennen 1 dient der Überwachung einer Fahrspur einer breiten Straße.
  • Aus den dargestellten und erörterten Ausführungsbeispielen kann der Fachmann weitere erfindungsgemäße Bodenantennen und Sende- und/oder Empfangssysteme im Bereich der Erfindung herleiten und ausführen.
  • Bezugszeichen
  • 1,1'
    Rohrschlitzantenne
    2
    Boden
    3
    Schlitz einer Rohrschlitzantenne
    4
    leitfähige Platte
    5
    Speisestab
    6
    Steckverbinder
    7
    Sende- und/oder Empfangssystem
    8
    Sender- und/oder Empfängereinheit
    9
    Empfangs- und/oder Sendemodul
    10
    Antennenkabel
    λH
    Hohlleiter-Wellenlänge
    λO
    Signal-Wellenlänge

Claims (13)

  1. Bodenantenne für hochfrequente elektromagnetische Signale, die in einen Boden eingebettet werden kann, dadurch gekennzeichnet, dass die Bodenantenne als eine Rohrschlitzantenne (1, 1') ausgestaltet ist, wobei die Rohrschlitzantenne (1, 1') als Hohlraumresonator für eine stehende elektromagnetische Welle mit einer Hohlleiter-Wellenlänge (λH) und für ein Abstrahlen und/oder ein Empfangen von elektromagnetischen Signalen mit einer Signal-Wellenlänge (λO) in Richtung der Bodenoberfläche durch wenigstens einen unterhalb der Bodenoberfläche befindlichen Schlitz (3) der Rohrschlitzantenne (1, 1') ausgebildet ist.
  2. Bodenantenne nach Anspruch 1, dadurch gekennzeichnet, dass die Rohrschlitzantenne (1, 1') aus einem beidseitig durch leitfähige Platten (4) geschlossenen und elektrisch leitfähigen Rundrohr ausgebildet ist, in dessen zylindermantelförmiger Rohrwandung der wenigstens eine Schlitz (3) axial ausgerichtet ist.
  3. Bodenantenne nach Anspruch 2, dadurch gekennzeichnet, dass die Rohrschlitzantenne (1, 1') eine Rohrlänge, die etwa gleich einer Periode der Hälfte der Hohlleiter-Wellenlänge (λH/2) ist, und einen Rohrdurchmesser, der die Ausbildung einer stehenden Welle in der fundamentalen transversalen elektrischen Mode TE011 bei Unterdrückung höherer Moden bewirkt, aufweist.
  4. Bodenantenne nach Anspruch 2, dadurch gekennzeichnet, dass die Rohrschlitzantenne (1, 1') eine Rohrlänge von 492,0 mm oder eine um weniger als 50 % von 492,0 mm abweichende Rohrlänge und einen Rohrdurchmesser von 219,1 mm hat.
  5. Bodenantenne nach Anspruch 2, dadurch gekennzeichnet, dass die Bodenantenne einen radial von der Rohrwandung der Rohrschlitzantenne (1, 1') aus in das Rohr ragenden Speisestab (5) aufweist, wobei der Speisestab (5) axial bezüglich des Schlitzes (3) etwa zentriert und auf einem Umfang des Rohres um etwa 90° zu dem Schlitz (3) versetzt angeordnet ist.
  6. Bodenantenne nach Anspruch 5, dadurch gekennzeichnet, dass der Speisestab (5) an einem in der Rohrwandung befindlichen Steckverbinder (6) befestigt ist, wobei der Steckverbinder (6) ein Stecker und/oder eine Buchse ist.
  7. Bodenantenne nach Anspruch 1, dadurch gekennzeichnet, dass die Rohrschlitzantenne (1') wenigstens zwei entlang einer Linie angeordnete Schlitze (3) aufweist, wobei der Abstand der Mittelpunkte der Schlitze (3) etwa gleich einer Periode der Hohlleiter-Wellenlänge (λH) ist.
  8. Bodenantenne nach Anspruch 2, dadurch gekennzeichnet, dass die Rohrschlitzantenne (1') wenigstens zwei neben einer Mittellinie abwechselnd in entgegengesetzte Richtungen versetzt angeordnete Schlitze (3) aufweist, wobei der axiale Abstand der Mittelpunkte der Schlitze (3) etwa gleich einer Periode der Hälfte der Hohlleiter-Wellenlänge (λH/2) ist und wobei der Speisestab (5) axial bezüglich der Schlitzes (3) etwa zentriert und auf einem Umfang des Rohres um etwa 180° zu der Mittellinie versetzt angeordnet ist.
  9. Sende- und/oder Empfangssystem (7) für hochfrequente elektromagnetische Signale mit
    - wenigstens einer in einem Boden (2) befindlichen Bodenantenne,
    - wenigstens einer mit der Bodenantenne gekoppelten Sender- und/oder Empfängereinheit (8), und
    - wenigstens einem bewegbaren Empfangs- und/oder Sendemodul (9), das dafür ausgebildet ist, von der Bodenantenne gesendete elektromagnetische Signale zu empfangen und/oder elektromagnetische von der Bodenantenne empfangbare Signale zu senden,
    dadurch gekennzeichnet, dass
    der Boden (2) aus einem für hochfrequente elektromagnetische Strahlung transparenten Material ausgebildet ist und die Bodenantenne eine in den Boden eingebettete Rohrschlitzantenne (1, 1') nach wenigstens einem der Ansprüche 1 bis 8 ist.
  10. Sende- und/oder Empfangssystem nach Anspruch 9, dadurch gekennzeichnet, dass die Sender- und/oder Empfängereinheit (8) in der Rohrschlitzantenne (1, 1') angeordnet ist.
  11. Sende- und/oder Empfangssystem nach Anspruch 10, dadurch gekennzeichnet, dass die Sender- und/oder Empfängereinheit (8) eine drahtlose Datenübertragungsschnittstelle aufweist.
  12. Sende- und/oder Empfangssystem nach Anspruch 9, dadurch gekennzeichnet, dass das Sende- und/oder Empfangssystem (7) wenigstens zwei in einer horizontalen Ebene zueinander um 90° gedreht angeordnete Rohrschlitzantennen (1, 1'), die mit um 90° phasenverschobenen Signalen gespeist werden können, aufweist.
  13. Sende- und/oder Empfangssystem nach Anspruch 9, dadurch gekennzeichnet, dass die Sender- und/oder Empfängereinheit (8) ein RFID-Lesegerät und das Empfangs- und/oder Sendemodul (9) ein RFID-Transponder ist und dass das Sende- und/oder Empfangssystem (7) dafür ausgebildet ist, über dem Boden (2) bewegte RFID-Transponder mit dem RFID-Lesegerät zu erfassen.
EP14002324.3A 2013-07-25 2014-07-07 Bodenantenne Active EP2830157B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013012551.0A DE102013012551A1 (de) 2013-07-25 2013-07-25 Bodenantenne

Publications (2)

Publication Number Publication Date
EP2830157A1 EP2830157A1 (de) 2015-01-28
EP2830157B1 true EP2830157B1 (de) 2017-03-29

Family

ID=51176038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14002324.3A Active EP2830157B1 (de) 2013-07-25 2014-07-07 Bodenantenne

Country Status (2)

Country Link
EP (1) EP2830157B1 (de)
DE (1) DE102013012551A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022110042A1 (de) 2022-04-26 2023-10-26 KATHREIN Sachsen GmbH Antennenanordnung zum Auslesen von UHF RFID Signalen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017272234B2 (en) 2016-12-20 2021-12-02 Licensys Australasia Pty Ltd An antenna

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE863522C (de) * 1945-04-15 1953-01-19 Telefunken Gmbh Vorrichtung zur Regelung der Strahlungsdaempfung eines Hohlrohr-schlitzstrahlers
US4211987A (en) * 1977-11-30 1980-07-08 Harris Corporation Cavity excitation utilizing microstrip, strip, or slot line
US4825219A (en) * 1987-01-23 1989-04-25 Hughes Aircraft Company Slot antenna in circular waveguide
DE3723951A1 (de) * 1987-07-20 1989-02-02 Rheydt Kabelwerk Ag Anordnung zur uebertragung von hochfrequenz-signalen
SE517001C2 (sv) * 2000-07-07 2002-04-02 Saab Ab Anordning för övervakning av ett område
JP3926677B2 (ja) * 2002-05-31 2007-06-06 日本アンテナ株式会社 スロットアンテナ
JP3749513B2 (ja) * 2002-06-25 2006-03-01 東芝テック株式会社 無線通信システム
JP3910978B2 (ja) * 2004-07-15 2007-04-25 アンリツ株式会社 原子発振器のte011共振モードマイクロ波空洞共振装置
DE102005062732A1 (de) * 2005-12-22 2007-07-05 Deutsche Telekom Ag Schachtabdeckung mit Antenne für Funknetzwerke
DE102007007674A1 (de) 2007-02-13 2008-08-14 KATHREIN Burgstädt GmbH Anordnung zur Erfassung, Verwaltung und/oder Steuerung von Daten mittels RFID-Systems
JP2009239858A (ja) * 2008-03-28 2009-10-15 Mitsubishi Electric Corp 導波管スロットアレーアンテナ
JP2010006557A (ja) * 2008-06-27 2010-01-14 Toshiba Tec Corp 物品管理システム
JP5424954B2 (ja) * 2010-03-29 2014-02-26 三菱電機株式会社 導波管スロットアレーアンテナ
DE102011100046A1 (de) 2011-04-29 2012-10-31 Hörmann KG Antriebstechnik RFID-Vorrichtung
DE102011100020A1 (de) * 2011-04-29 2012-10-31 Hörmann KG Antriebstechnik Bauwerkszugangsvorrichtung sowie bauelement hierfür

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022110042A1 (de) 2022-04-26 2023-10-26 KATHREIN Sachsen GmbH Antennenanordnung zum Auslesen von UHF RFID Signalen
EP4270637A1 (de) 2022-04-26 2023-11-01 KATHREIN Sachsen GmbH Antennenanordnung zum auslesen von uhf rfid signalen

Also Published As

Publication number Publication date
EP2830157A1 (de) 2015-01-28
DE102013012551A1 (de) 2015-02-26

Similar Documents

Publication Publication Date Title
EP2981980B1 (de) Induktive ladeeinrichtung, elektrofahrzeug, ladestation und verfahren zum induktiven laden
EP2176681B1 (de) Radarsensor für kraftfahrzeuge
EP2811575B1 (de) Antenne
DE102008023030B4 (de) Radarantennenanordnung
EP3050155B1 (de) Antenne für nahbereichsanwendungen sowie verwendung einer derartigen antenne
DE3130350A1 (de) Ukw - drehfunkfeuer - antenne
EP2830157B1 (de) Bodenantenne
EP2603882B1 (de) Transponder
DE2555909A1 (de) Einrichtung zur nachrichtenuebertragung bei ortsveraenderlichen objekten
DE2434924C3 (de) Antennenanlage für ein Primär- und Sekundärradar mit Reflektor, Primärstrahler und zwei Hilfsstrahlern
DE102006022160B3 (de) Testvorrichtung mit HF-/UHF-Dualbandantenne zum Testen von RFID-Transpondern in einem Fertigungsgerät
EP0300147B1 (de) Anordnung zur Übertragung von Hochfrequenz-Signalen
WO2009019177A1 (de) Mehrteilige antenne mit zirkularer polarisation
KR101679553B1 (ko) 빔 틸트 편차를 개선한 진행파 안테나
DE19719953A1 (de) Kraftfahrzeug-Radarsensor
DE102012108600B3 (de) Antennenanordnung mit flachbauendem Antennenelement
DE202012103520U1 (de) Kanalabdeckung
EP2410461B1 (de) Identifikationssystem, Verfahren zum berührungslosen Beschreiben und/oder Lesen eines Datenträgers und Anwendung
EP0644608A2 (de) Doppelerreger für Winkeldiversity zur Ausleuchtung des parabolischen Reflektors einer Antenne
DE102005039142A1 (de) Transpondergate und zugehörige Gateantenne
DE102012107291B4 (de) RFID-Tag mit polarisationsunabhängiger Antenne
EP2642424B1 (de) Identifikationssystem
WO2007104754A1 (de) Schleifen-antenne für mobile funkstrecken
EP2686811B1 (de) Bauwerkszugangsvorrichtung sowie bauelement hierfür
DE69330783T2 (de) Elektromagnetischer Strahler zum Senden und Empfangen elektromagnetischer Wellen

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150526

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 880545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003156

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003156

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 880545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190707

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240614

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 11