EP2824216B1 - Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system - Google Patents

Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system Download PDF

Info

Publication number
EP2824216B1
EP2824216B1 EP14162799.2A EP14162799A EP2824216B1 EP 2824216 B1 EP2824216 B1 EP 2824216B1 EP 14162799 A EP14162799 A EP 14162799A EP 2824216 B1 EP2824216 B1 EP 2824216B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
burners
flameless
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14162799.2A
Other languages
German (de)
French (fr)
Other versions
EP2824216A1 (en
Inventor
Michael Peters
Friedhelm Macherey
Manuela Ruthenberg
Andreas WESTERFELD
Oliver Brehm
Werner Högner
Marc Blumenau
Martin Norden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2824216A1 publication Critical patent/EP2824216A1/en
Application granted granted Critical
Publication of EP2824216B1 publication Critical patent/EP2824216B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment

Definitions

  • the invention relates to a process for producing a flat steel product provided by hot dip coating with a metallic protective layer, in particular a high-strength steel flat product having a tensile strength of at least 500 MPa or a high-strength steel flat product having a tensile strength of at least 1000 MPa.
  • the invention further relates to a DFF-type continuous furnace for a hot-dip coating apparatus having a pre-oxidation section in which a flat steel product to be coated is exposed to an oxidizing atmosphere to form a covering FeO layer on the surface of the flat steel product, with burners arranged in the pre-oxidation section are operated with excess oxygen, and wherein at least one of the burner is associated with the top of the flat steel product and at least one of the other burner of the underside of the flat steel product.
  • High-strength and high-strength flat steel products are in demand due to their advantageous combination of strength and formability in increasing quantities. This applies in particular to sheet metal applications in automotive body construction.
  • the outstanding mechanical properties of such flat steel products are based on a multiphase microstructure of the material, possibly supported by induced plasticity of austenitic phase components (TRIP, TWIP or SIP effect).
  • TRIP austenitic phase components
  • the flat steel products in question usually have appreciable contents of certain alloying elements, typically manganese (Mn), aluminum (Al), silicon (Si). or chromium (Cr) count.
  • Mn manganese
  • Al aluminum
  • Si silicon
  • Cr chromium
  • Various methods of applying a metallic protective layer are known. These include electrolytic deposition and hot dip coating. In addition to an electrolytically produced processing, the hot dipping refinement has established itself as an economically and ecologically particularly favorable process. In hot-dip coating, the flat steel product to be coated is immersed in a molten metal bath.
  • Hot dip refinement proves to be particularly cost-effective if a flat-rolled steel semi-finished product delivered in the hard-rolled state is subjected to the process steps of purification, recrystallization annealing, hot dip coating, cooling, optional thermal, mechanical or chemical aftertreatment and coiling.
  • the annealing treatment can be used to activate the steel surface.
  • an N 2 -H 2 -Glühgasatmosphotre typically with unavoidable traces of H 2 O and O 2 is usually maintained in the continuous flow in the annealing furnace.
  • the presence of oxygen in the annealing atmosphere has the disadvantage that the oxygen-affine alloying elements (for example Mn, Al, Si, Cr,...) Contained in the particular steel flat product to be treated form selectively passive, non-wettable oxides on the steel surface, thereby improving the coating quality or adhesion on the steel substrate can be sustainably worsened. Therefore, various attempts have been made to carry out the annealing of high and high strength steels of the type in question so that the selective oxidation of the steel surface is largely suppressed.
  • the oxygen-affine alloying elements for example Mn, Al, Si, Cr,
  • a first method of this kind is from the DE 10 2006 039 307 B3 known.
  • the hot-dip coated steel flat product is bright annealed under particularly reductive atmosphere conditions (low H 2 O / H 2 ratio of the annealing atmosphere and high annealing temperature).
  • Another possibility of preparation of a hot-rolled flat steel product in the course of an annealing treatment is that preoxidations are carried out in a continuous annealing zone used for the annealing within a DFF type ("Direct Fired Furnace") preheating zone.
  • a DFF furnace flames emitted by gas burners act directly on the flat steel product to be treated.
  • the oxidation potential of the atmosphere surrounding the steel flat product is adjusted in such a way that a covering FeO layer forms on the surfaces of the flat steel product.
  • This FeO layer inhibits the selective oxidation of the oxygen-affine alloying elements of the flat steel product.
  • the FeO layer is completely reduced back to metallic iron back.
  • a method approach of this kind has long been from the DE 25 22 485 A1 known.
  • the advantage of preheating the flat steel product in a preheating furnace designed in DFF design consists in addition to the above-mentioned effects that can be achieved particularly high heating rates of the steel strip, which significantly reduces the duration of the annealing cycle and thus coupled with the output of a corresponding continuous furnace Can significantly increase hot dip coating plant.
  • the object of the invention was to provide a continuous furnace or a method of the type mentioned above, in a large-scale hot dip coating plant as uniform as possible pre-oxidation of steel strip, the significant alloying parts of oxygen-affine alloying elements (Mn , Al, Si, Cr, ...), can achieve over the bandwidth. As a result, an improvement of the wetting image and the coating adhesion over the entire width of the steel strip to be achieved.
  • the inventive method is characterized in that as a burner in the pre-oxidation of the preheating furnace flameless burner be used, by means of which fuel, preferably fuel gas, and oxygen-containing gas are introduced separately from each other at a flow rate of at least 60 m / s in the preheating furnace, wherein in addition to at least one of the top of the flat steel product associated flameless burner and at least one of the underside of the flat steel product associated flameless burner per at least one gas line for supplying at least one additional gas stream is provided, by means of which the fuel and the oxygen-containing gas are additionally mixed, and wherein the additional gas stream is directed obliquely to the plane of the flat steel product introduced into the preheating furnace.
  • a uniformly thick oxide layer is reliably produced on the steel strip by the method according to the invention, advantageously, relatively thin pre-oxidation layers of less than 1 ⁇ m, preferably less than 0.3 ⁇ m, in particular less than 0.2 ⁇ m, can be realized.
  • the quality of subsequent hot dip coating in the subsequent process can be significantly improved because of the intermediate reduction step, a clean, free of unwanted alloy oxides band surface is achieved, which has a very good wettability and thus avoids coating defects in the form of uncoated sites or at least significantly reduced.
  • An advantageous embodiment of the method according to the invention is characterized in that the flameless burners are operated with an oxygen excess of at least 1.1, preferably at least 1.2, more preferably at least 1.3.
  • the oxide layer with uniform layer thickness is very reliable, with the nitrogen oxide emissions decrease from a lambda value of about 1.05 with increasing oxygen excess.
  • a further advantageous embodiment of the method according to the invention is characterized in that at least two, preferably at least three flameless burners the top of the flat steel product and at least two, preferably at least three flameless burners are assigned to the bottom of the flat steel product, wherein the top of the flat steel product associated flameless burner in Passing direction of the flat steel product offset to be arranged on the underside of the flat steel product associated flameless burners.
  • This embodiment favors the setting of a homogeneous as possible oxidizing furnace atmosphere, in particular homogeneous temperature distribution.
  • This embodiment also favors the setting of a most homogeneous oxidizing furnace atmosphere.
  • a further advantageous embodiment of the method according to the invention is that the oxygen-containing gas is introduced preheated in the preheating furnace.
  • the oxygen-containing gas typically air
  • the oxygen-containing gas is preheated for this purpose, for example, by means of at least one heat exchanger, which is coupled to the annealing furnace, the cooling device following the annealing furnace and / or the molten bath vessel.
  • a further advantageous embodiment of the method according to the invention provides that the oxygen-containing gas and / or the fuel inert gas, for example, exhaust gas is added.
  • the dimensions of the combustion cloud and in particular the combustion temperature can be influenced in a targeted manner.
  • inert gas and / or exhaust gas preferably preheated inert gas and / or heated exhaust gas for the additional gas flow is used, by means of which the fuel and the oxygen-containing gas are additionally mixed.
  • a further advantageous embodiment of the method according to the invention is characterized in that the dew point of the annealing atmosphere over the entire path of the steel flat product through the annealing furnace between -40 ° C and + 25 ° C is maintained by losses or irregularities by supplying moisture by means of at least one moistening device the distribution of the humidity of the atmosphere can be compensated.
  • the dew point is on the one hand -40 ° C or more to minimize the driving force of the external oxidation of the alloying elements (eg Mn, Al, Si, Cr).
  • the dew point of a maximum of + 25 ° C a unwanted oxidation of iron avoided.
  • the continuous furnace according to the invention is characterized in that at least some of the burners in the pre-oxidation section are designed as flameless burners, by means of which fuel, preferably fuel gas, and oxygen-containing gas can be introduced separately into the preheating furnace at a flow rate of at least 60 m / s at least one flameless burner associated with the upper side of the flat steel product and at least one gas line for supplying at least one additional gas stream are provided adjacent to at least one underside of the flat steel product, the end of the respective gas line being oriented in such a way that the additional emerging therefrom Gas flow crosses or tangent to the emerging from the flameless burner fuel flow and / or oxygen-containing gas stream.
  • the continuous furnace according to the invention offers the advantages already mentioned above in connection with the method according to the invention.
  • hot dip coating plant A has in the conveying direction F of present as steel strip to be coated flat steel product S in direct connection consecutively one for preheating the Stahlflach exercisings S provided DFI booster 1, connected to its input 2 to the DFI booster preheating furnace 3, in which a pre-oxidation section 4 is formed, an annealing furnace 6, which is connected to a transition region 7 to the output 8 of the preheating furnace 3, connected to the output 9 of the annealing furnace 6 cooling zone 10, connected to the cooling zone 10 proboscis 11, to the output 12 of the cooling zone 10 is connected and immersed with its free end in a melt bath 13, a arranged in the melt bath 13 first deflecting means 14, a means 15 for adjusting the thickness of the on the Flat steel product S in the molten bath 13 applied metallic coating and a second deflecting 16 on.
  • the preheating furnace 3 is of the DFF type (Direct Fired Furnace). In it, distributed over the conveyor line of the flat steel product S or at least in the pre-oxidation section 4 a plurality of flameless burners 17 are arranged. In these burners, the fuel (B), preferably fuel gas, and oxygen-containing gas (L), typically air is introduced unmixed or largely unmixed at high flow rate in the preheating furnace 3 (see. Fig. 3 ).
  • the inflow rate of the fuel B and the oxygen-containing gas L is at least 60 m / s, preferably at least 120 m / s.
  • the essential difference to conventional burners in flame operation is the intensive internal recirculation of the exhaust gases AG in the furnace chamber and their mixing with the combustion air or the oxygen-containing gas L (see. Fig. 3 ).
  • the fuel B oxidizes in the entire furnace chamber volume.
  • a very homogeneous temperature distribution arises over the entire width of the flat steel product S.
  • the flameless burners 17 are operated in a superstoichiometric range, i. with a lambda value greater than 1, creating an oxidizing furnace atmosphere.
  • a lambda value of at least 1.05, particularly preferably at least 1.1, in particular at least 1.2 or at least 1.3 is set.
  • FIG Fig. 2 The structure of a flameless burner 17 for use in a continuous furnace (preheating furnace) 3 of the DFF type for a hot-dip coating machine is shown in FIG Fig. 2 shown.
  • the burner 17 has a pipe section 17.1 with an elongated gas nozzle 17.2.
  • the pipe section 17.1 is provided with a connecting flange 17.3 and connected via a fuel gas line, not shown, to a fuel gas supply, also not shown.
  • the burner 17 has a hollow chamber 17.4 for supplying oxygen-containing gas, preferably air, which surrounds a longitudinal section of the pipe section 17.1 with the fuel gas nozzle 17.2.
  • the hollow chamber 17.4 is provided with a connecting flange 17.5 and connected via a supply line, not shown, to a likewise not shown oxygen or air supply.
  • the gas nozzle 17.2 opens with a central opening 17.6 and a coaxial annular opening (ring nozzle) 17.7 in the preheating furnace 3. Further, in the furnace chamber facing end face of the burner 17, an annular nozzle or more arranged on a common pitch circle, preferably evenly spaced from each other Nozzles 17.8 provided for the supply of oxygen or air.
  • the oxygen or air nozzles 17.8 are designed so that the oxygen or air jets emerging therefrom cross the fuel gas stream leaving the gas nozzle.
  • the burner 17 On its front side, the burner 17 is also provided with a nozzle stone 17.9.
  • the nozzle block 17.9 has a channel 17.10, into which the nozzles 17.2, 17.6, 17.7, 17.8 open.
  • the nozzle block 17.9 is provided with a pilot burner 17.11, which is received in a smaller, branched off from the channel 17.10 transverse channel 17.12. 17.
  • the nozzle block 17.9 has a plurality of jet pipes (so-called jet pipes) 17.13 for the supply of oxygen-containing gas, which are connected to the hollow chamber 17.4 and whose longitudinal axes extend substantially parallel to the fuel inflow direction defined by the fuel gas nozzle 17.2.
  • each of the flameless burners 17 has three or more of these jet pipes 17, 13 equally spaced on a channel 17.10 surrounding pitch are arranged.
  • the nozzle block 17.9 is inserted in a form-fitting manner in a burner block 3.1 having a passage opening.
  • the burner block 3.1 is provided with a gas line 5 for supplying an additional gas flow ZG.
  • the end opening into the preheating furnace 3 (jet pipe) of the gas line 5 is oriented such that the additional gas flow ZG the fuel stream B emerging from the flameless burner 17 and oxygen-containing gas stream L crosses or tangent.
  • the burner air L required for the combustion or the oxygen supplied for the combustion is preferably preheated.
  • the respective flameless burner 17 may be preceded by a device (not shown here) for heating the oxygen-containing gas or the burner air L.
  • the fuel gas supply line can also be provided with a device (not shown here) for heating the fuel gas B.
  • the additional jet pipe 5 or the gas line connected thereto for supplying the at least one additional gas stream ZG can be preceded by a device (not shown here) for heating the additional gas stream.
  • an inert gas or exhaust pipe is connected to the connected to the respective connecting flange 17.3 or 17.5 supply line (feed), which is provided with a metering valve (control valve).
  • the flameless burners 17 are preferably integrated in at least one of the side walls 3.2, 3.3 of the preheating furnace 3, wherein at least two, preferably at least three flameless burners 17 the top of the flat steel product S and at least two, preferably at least three flameless burners 17 associated with the bottom of the flat steel product S. are.
  • the flameless burners 17 are preferably arranged offset from one another (cf. Fig. 1 ).
  • the flameless burners assigned to the upper side of the flat steel product S can be arranged offset in the direction of passage of the flat steel product S to the flameless burners associated with the underside of the flat steel product S.
  • jet pipes (jet pipes) 17.13 which are arranged with respect to the Brenngaseinströmstrahl and the channel 17.10 at a distance, and is injected via the additionally oxygen-containing gas L, preferably oxygen or air in the fuel gas stream B, already a homogenization the fuel gas distribution causes.
  • oxygen-containing gas L preferably oxygen or air in the fuel gas stream B
  • gas line 5 is preferably introduced inert gas and / or exhaust gas in the pre-oxidation.
  • This additional gas flow ZG crosses or touches the fuel flow.
  • FIGS. 3 and 4 shown schematically.
  • Fig. 4 is the above the flat steel product S arranged flameless burner 17, which is arranged in the side wall 3.2 of the preheating furnace 3, combined with a jet pipe 5.
  • This jet tube 5 is above or (not shown here) preferably laterally adjacent to the flameless one Burner 17 is arranged and in each case aligned so that the emerging therefrom additional gas flow ZG crossed by the flameless burner 17 introduced fuel flow B or tangent. Furthermore, the flameless burner 17 arranged below the flat steel product S, which is arranged in the side wall 3.3 of the preheating furnace, is also combined with a jet pipe 5. This jet pipe 5 is arranged below or (not shown here) preferably laterally next to the flameless burner 17 and in each case aligned so that the additional gas flow ZG emerging therefrom crosses or touches the fuel flow B introduced by means of the flameless burner 17. This combination of flameless burner 17 and jet pipe 5 delimits the transition to the flameless zone in the preheating furnace.
  • a device not shown in detail for the targeted feeding of oxygen or air is provided in the transition region 7.
  • the purpose of this feed is the setting of hydrogen, which possibly passes in the transition region 7 as a result of flowing in the annealing furnace 6 from the outlet 9 in the direction of its inlet gas flow G.
  • a suction device 24 is arranged in the region of the entrance of the annealing furnace 6, which sucks the reaching to the entrance of the annealing gas flow G.
  • two moistening devices 25, 26 Adjacent to the outlet 9 of the annealing furnace 6, two moistening devices 25, 26 are arranged, one of which is assigned to one of the upper side and the other of the underside of the flat steel product S to be coated.
  • the moistening devices 25, 26 are designed as slotted or perforated tubes oriented transversely to the conveying direction F of the flat steel product S and connected to a supply line 27, via which the moistening devices 25, 26 with steam or a moistened carrier gas, such as N 2 or N 2 /. H 2 , to be supplied.
  • the cooling zone 10 may be designed so that the cooled to the respective bath inlet temperature flat steel product S before its entry into the trunk 11 yet in the cooling zone 10 undergoes an overaging treatment at the bath inlet temperature.
  • the flat steel product S is deflected at the first deflection device 14 in the vertical direction and passes through the device 15 for adjusting the thickness of the metallic protective layer. Subsequently, the steel flat product S provided with the metallic protective layer is deflected again in the horizontal conveying direction F at the second deflection device 16 and, if appropriate, subjected to further treatment steps in plant parts not shown here.
  • a hot-dip coated flat steel product according to the invention is excellently suited for further processing by means of one-stage, two-stage or multi-stage cold or hot forming into a high-strength / high-strength sheet metal component.
  • a sheet metal component continues to be distinguished by its particular resistance to environmental influences.
  • the use of a hot-dip coated steel flat product according to the invention thus not only raises lightweight potential, but also prolongs the product life.
  • the method according to the invention achieves a very homogeneous pre-oxidation of a steel strip to be provided with a metallic protective layer by hot-dip coating, over the entire bandwidth in a large-scale DFF preheating furnace. This results in an improvement of the wetting pattern and the coating adhesion over the entire width of the flat steel product. Coating defects at the strip edges can thus be avoided even with relatively wide insert strips.
  • Another advantage lies in the optimized combustion, which differs significantly characterized by reduced pollutant emissions and reduced fuel consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts, insbesondere eines hochfesten Stahlflachprodukts mit einer Zugfestigkeit von mindestens 500 MPa oder eines höchstfesten Stahlflachprodukts mit einer Zugfestigkeit von mindestens 1000 MPa. Ferner betrifft die Erfindung einen Durchlaufofen vom DFF-Typ für eine Schmelztauchbeschichtungsanlage, mit einem Voroxidationsabschnitt, in welchem ein zu beschichtendes Stahlflachprodukt einer oxidierenden Atmosphäre ausgesetzt wird, um auf der Oberfläche des Stahlflachprodukts eine deckende FeO-Schicht zu bilden, wobei in dem Voroxidationsabschnitt Brenner angeordnet sind, die mit Sauerstoffüberschuss betrieben werden, und wobei mindestens einer der Brenner der Oberseite des Stahlflachproduktes und mindestens ein anderer der Brenner der Unterseite des Stahlflachproduktes zugeordnet ist. Wenn im Folgenden von Stahlflachprodukten die Rede ist, dann sind damit jegliche kalt- oder warmgewalzte Stahlbänder gemeint.The invention relates to a process for producing a flat steel product provided by hot dip coating with a metallic protective layer, in particular a high-strength steel flat product having a tensile strength of at least 500 MPa or a high-strength steel flat product having a tensile strength of at least 1000 MPa. The invention further relates to a DFF-type continuous furnace for a hot-dip coating apparatus having a pre-oxidation section in which a flat steel product to be coated is exposed to an oxidizing atmosphere to form a covering FeO layer on the surface of the flat steel product, with burners arranged in the pre-oxidation section are operated with excess oxygen, and wherein at least one of the burner is associated with the top of the flat steel product and at least one of the other burner of the underside of the flat steel product. When referring to flat steel products in the following, this means any cold or hot rolled steel strip.

Hochfeste sowie höchstfeste Stahlflachprodukte werden aufgrund ihrer vorteilhaften Kombination aus Festigkeit und Umformbarkeit in zunehmender Menge nachgefragt. Dies gilt insbesondere für Blechanwendungen im automobilen Karosseriebau. Dabei beruhen die herausragenden mechanischen Eigenschaften solcher Stahlflachprodukte auf einer mehrphasigen Mikrostruktur des Werkstoffs, ggf. unterstützt durch induzierte Plastizität austenitischer Phasenanteile (TRIP-, TWIP- oder SIP-Effekt). Um eine solch komplexe Mikrostruktur zu erhalten, weisen die hier in Rede stehenden Stahlflachprodukte üblicherweise nennenswerte Gehalte an bestimmten Legierungselementen auf, zu denen typischerweise Mangan (Mn), Aluminium (Al), Silizium (Si) oder Chrom (Cr) zählen. Eine Oberflächenveredelung in Form einer metallischen Schutzschicht erhöht dabei nicht nur die Beständigkeit der Stahlflachprodukte gegen Korrosion und damit einhergehend deren Produktlebensdauer, sondern verbessert auch ihre optische Anmutung.High-strength and high-strength flat steel products are in demand due to their advantageous combination of strength and formability in increasing quantities. This applies in particular to sheet metal applications in automotive body construction. The outstanding mechanical properties of such flat steel products are based on a multiphase microstructure of the material, possibly supported by induced plasticity of austenitic phase components (TRIP, TWIP or SIP effect). In order to obtain such a complex microstructure, the flat steel products in question usually have appreciable contents of certain alloying elements, typically manganese (Mn), aluminum (Al), silicon (Si). or chromium (Cr) count. A surface finish in the form of a metallic protective layer not only increases the resistance of the steel flat products to corrosion and, consequently, their product lifetime, but also improves their visual appearance.

Es sind verschiedene Verfahren zum Auftragen einer metallischen Schutzschicht bekannt. Hierzu zählen die elektrolytische Abscheidung und die Schmelztauchbeschichtung. Neben einer elektrolytisch erzeugten Veredelung hat sich die Schmelztauchveredelung als ökonomisch und ökologisch besonders günstiges Verfahren etabliert. Beim Schmelztauchbeschichten wird das zu beschichtende Stahlflachprodukt in ein metallisches Schmelzbad eingetaucht.Various methods of applying a metallic protective layer are known. These include electrolytic deposition and hot dip coating. In addition to an electrolytically produced processing, the hot dipping refinement has established itself as an economically and ecologically particularly favorable process. In hot-dip coating, the flat steel product to be coated is immersed in a molten metal bath.

Als besonders kosteneffektiv erweist sich die Schmelztauchveredelung dann, wenn ein im walzharten Zustand angeliefertes Stahlflachprodukt-Vormaterial in einem kontinuierlichen Durchlauf den Verfahrensschritten Reinigung, Rekristallisationsglühen, Schmelztauchbeschichten, Abkühlen, optionales thermisches, mechanisches oder chemisches Nachbehandeln und Aufhaspeln zu einem Coil unterzogen wird.Hot dip refinement proves to be particularly cost-effective if a flat-rolled steel semi-finished product delivered in the hard-rolled state is subjected to the process steps of purification, recrystallization annealing, hot dip coating, cooling, optional thermal, mechanical or chemical aftertreatment and coiling.

Die dabei durchgeführte Glühbehandlung kann zur Aktivierung der Stahloberfläche genutzt werden. Dazu wird üblicherweise in dem im kontinuierlichen Durchlauf durchlaufenen Glühofen eine N2-H2-Glühgasatmosphäre mit typischerweise unvermeidbaren Spuren an H2O und O2 aufrechterhalten.The annealing treatment can be used to activate the steel surface. For this purpose, an N 2 -H 2 -Glühgasatmosphäre typically with unavoidable traces of H 2 O and O 2 is usually maintained in the continuous flow in the annealing furnace.

Die Anwesenheit von Sauerstoff in der Glühatmosphäre hat den Nachteil, dass die im jeweils zu behandelnden Stahlflachprodukt enthaltenen sauerstoffaffinen Legierungselemente (z.B. Mn, Al, Si, Cr, ...) selektiv passive, nicht-benetzbare Oxide auf der Stahloberfläche bilden, wodurch die Überzugsqualität oder -haftung auf dem Stahlsubstrat nachhaltig verschlechtert werden kann. Es sind daher verschiedene Versuche unternommen worden, die Glühbehandlung von hoch- und höchstfesten Stählen der hier in Rede stehenden Art so durchzuführen, dass die selektive Oxidation der Stahloberfläche weitestgehend unterdrückt wird.The presence of oxygen in the annealing atmosphere has the disadvantage that the oxygen-affine alloying elements (for example Mn, Al, Si, Cr,...) Contained in the particular steel flat product to be treated form selectively passive, non-wettable oxides on the steel surface, thereby improving the coating quality or adhesion on the steel substrate can be sustainably worsened. Therefore, various attempts have been made to carry out the annealing of high and high strength steels of the type in question so that the selective oxidation of the steel surface is largely suppressed.

Ein erstes Verfahren dieser Art ist aus der DE 10 2006 039 307 B3 bekannt. Bei diesem Verfahren zur Schmelztauchveredelung von Stählen mit 6 - 30 Gew.-% Mn wird das schmelztauchzubeschichtende Stahlflachprodukt unter besonders reduktiven Atmosphärebedingungen (niedriges H20/H2-Verhältnis der Glühatmosphäre und hohe Glühtemperatur) blankgeglüht.A first method of this kind is from the DE 10 2006 039 307 B3 known. In this process for hot dip finishing of steels with 6 to 30% by weight of Mn, the hot-dip coated steel flat product is bright annealed under particularly reductive atmosphere conditions (low H 2 O / H 2 ratio of the annealing atmosphere and high annealing temperature).

In der EP 1 936 000 A1 und der JP 2004 315 960 A sind jeweils Verfahrenskonzepte beschrieben, bei denen die Atmosphärenbedingungen im Durchlaufofen innerhalb bestimmter Grenzen und in Abhängigkeit von der Temperatur des jeweils verarbeiteten Stahlflachprodukts eingestellt werden. Auf diese Weise soll jeweils die interne Oxidation der sauerstoffaffinen Legierungselemente gefördert werden, ohne dass dabei FeO auf der Oberfläche des Stahlflachprodukts gebildet wird. Voraussetzung dafür ist allerdings ein genau abgestimmtes Zusammenspiel der verschiedenen Einflussfaktoren auf die Glühgas-Metall-Reaktion, wie Glühgaszusammensetzung, Glühgasfeuchte oder Glühtemperatur. Diese liegen in der Regel anlagenbedingt inhomogen über den kompletten Ofenraum verteilt vor. Diese Inhomogenität macht es schwierig, diese Prozesse im großtechnischen Maßstab effektiv zu nutzen.In the EP 1 936 000 A1 and the JP 2004 315 960 A In each case, process concepts are described in which the atmospheric conditions in the continuous furnace are set within certain limits and as a function of the temperature of the respectively processed flat steel product. In this way, in each case the internal oxidation of the oxygen-affine alloying elements should be promoted without the formation of FeO on the surface of the flat steel product. However, a prerequisite for this is a precisely coordinated interaction of the various influencing factors on the annealing gas-metal reaction, such as annealing gas composition, annealing gas moisture content or annealing temperature. As a rule, these are distributed in an inhomogeneous manner over the entire furnace space due to the plant. This inhomogeneity makes it difficult to effectively use these processes on an industrial scale.

Eine andere Möglichkeit der im Zuge einer Glühbehandlung durchgeführten Vorbereitung eines Stahlflachprodukts für das Schmelztauchbeschichten besteht darin, dass in einem für das Glühen eingesetzten Durchlaufglühofens innerhalb einer Vorwärmzone nach DFF-Bauart ("DFF" = Direct Fired Furnace) Voroxidationen durchgeführt werden. Bei einem DFF-Ofen wirken von Gasbrennern ausgebrachte Flammen direkt auf das zu behandelnde Stahlflachprodukt ein. Indem die Brenner mit O2-Überschuss (Vertrimmung zu einer Luftzahl λ > 1) betrieben werden, wird das Oxidationspotenzial der das Stahlflachprodukt umgebenden Atmosphäre so eingestellt, dass sich auf den Oberflächen des Stahlflachprodukts gezielt eine deckende FeO-Schicht bildet. Diese FeO-Schicht unterbindet die selektive Oxidation der sauerstoffaffinen Legierungselemente des Stahlflachprodukts. In einem anschließend in einer Haltezone durchgeführten zweiten Glühschritt wird die FeO-Schicht wieder vollständig zu metallischem Eisen zurück reduziert.Another possibility of preparation of a hot-rolled flat steel product in the course of an annealing treatment is that preoxidations are carried out in a continuous annealing zone used for the annealing within a DFF type ("Direct Fired Furnace") preheating zone. In a DFF furnace, flames emitted by gas burners act directly on the flat steel product to be treated. By operating the burners with an O 2 excess (balanced to an air ratio λ> 1), the oxidation potential of the atmosphere surrounding the steel flat product is adjusted in such a way that a covering FeO layer forms on the surfaces of the flat steel product. This FeO layer inhibits the selective oxidation of the oxygen-affine alloying elements of the flat steel product. In a subsequent one Holding zone carried out second annealing step, the FeO layer is completely reduced back to metallic iron back.

Ein Verfahrensansatz dieser Art ist seit langem aus der DE 25 22 485 A1 bekannt. Der Vorteil der Vorerwärmung des Stahlflachprodukts in einem in DFF-Bauweise ausgeführten Vorwärmofen besteht dabei neben den voranstehend erläuterten Effekten darin, dass sich besonders hohe Aufheizraten des Stahlbands erzielen lassen, was die Dauer des Glühzyklus merklich verkürzt und somit die Ausbringung der mit einem entsprechenden Durchlaufofen verkoppelten Schmelztauchbeschichtungsanlage deutlich erhöhen kann.A method approach of this kind has long been from the DE 25 22 485 A1 known. The advantage of preheating the flat steel product in a preheating furnace designed in DFF design consists in addition to the above-mentioned effects that can be achieved particularly high heating rates of the steel strip, which significantly reduces the duration of the annealing cycle and thus coupled with the output of a corresponding continuous furnace Can significantly increase hot dip coating plant.

Durch die in der Regel an den Längsseiten des Vorwärmofens angeordneten Brenner wird jedoch hinsichtlich des Sauerstoffgehaltes und der Temperaturverteilung keine gleichmäßige Ofenatmosphäre erreicht. In der Praxis hat sich gezeigt, dass der Sauerstoffgehalt über die Ofen- bzw. Bandbreite abnimmt. Des Weiteren wurde eine ungleichmäßige Temperaturverteilung über die Bandbreite festgestellt, wodurch es zu einer unterschiedlich starken Oxidationsneigung und auch zur Überhitzung der Bandränder kommen kann. Zur Vergleichmäßigung der Temperatur- und Sauerstoffverteilung ist im Stand der Technik unter anderem eine Vertrimmung der DFF-Brennerflammen bekannt (siehe DE 10 2011 051 731 A1 ). Die Einstellung einer als optimal angesehenen FeO-Schichtdicke von 20 - 200 nm in einer homogenen, gleichmäßigen Verteilung über die Bandbreite ist jedoch alleine über eine Vertrimmung der DFF-Brennerflammen nur schwer kontrollierbar. Sowohl eine zu geringe als auch eine zu dicke FeO-Schicht können zu Benetzungs- und Haftungsstörungen führen.However, due to the burners usually arranged on the longitudinal sides of the preheating furnace, a uniform furnace atmosphere is not achieved with regard to the oxygen content and the temperature distribution. In practice it has been shown that the oxygen content decreases over the furnace or bandwidth. Furthermore, a non-uniform temperature distribution over the bandwidth was found, which can lead to a different degree of oxidation tendency and also to overheating of the band edges. To even out the distribution of temperature and oxygen in the prior art, inter alia, a trimming of the DFF burner flames is known (see DE 10 2011 051 731 A1 ). The setting of an optimal FeO layer thickness of 20-200 nm in a homogeneous, uniform distribution over the bandwidth, however, is difficult to control only by trimming the DFF burner flames. Both too low and too thick a FeO layer can lead to wetting and adhesion problems.

Des Weiteren ist aus der EP 1 829 983 A1 bekannt, zur Vergleichmäßigung der Temperatur- und Sauerstoffverteilung Linienbrenner einzusetzen, wobei eine Brennerflamme direkt auf die Bandoberfläche gerichtet wird. Hierdurch kann sich jedoch die Oberflächenqualität aufgrund der Bildung von Mikrokerben verschlechtern. In diesen Mikrokerben können sich zum Beispiel organische Restbeläge ansammeln und zu unbenetzten Stellen in einer perlenschnurartigen Anordnung führen.Furthermore, from the EP 1 829 983 A1 It is known to use line burners for equalizing the temperature and oxygen distribution, with a burner flame being directed directly onto the strip surface. As a result, however, the surface quality may deteriorate due to the formation of micro-notches. In These micro-scores can accumulate, for example, organic residues and lead to unwetted places in a bead-string arrangement.

Eine sehr gleichmäßige Voroxidation aufgrund des direkten Bandkontakts zu einer Hüllflamme erlaubt ein so genannter "DFI-Booster" ("DFI" - Direct Flame Impingement), wie er in der DE 10 2006 005 063 A1 beschrieben ist. Allerdings ist der Einsatz eines solchen DFI-Boosters nur unter bestimmten baulichen Voraussetzungen möglich, wie sie bei vielen bestehenden Schmelztauchbeschichtungsanlagen nicht gegeben sind.A very uniform pre-oxidation due to the direct band contact to a Hüllflamme allows a so-called "DFI-Booster"("DFI" - Direct Flame Impingement), as in the DE 10 2006 005 063 A1 is described. However, the use of such a DFI booster is possible only under certain structural conditions, as they are not given in many existing hot dip coating equipment.

Aus der EP 2 010 690 B1 und der DE 10 2004 059 566 B3 sind des Weiteren Verfahren bekannt, bei denen eine FeO-Schicht auf der Oberfläche des jeweils verarbeiteten Stahlflachprodukts durch Einspeisung von 0,01 - 1 Vol.-% O2 über eine Dauer von 1 - 10 Sekunden in eine geschlossene Reaktionskammer erzeugt wird. Die Installation einer solchen Reaktionskammer ist allerdings nur in einem indirekt beheizten RTF-Ofen möglich, bei dem die Beheizung des Stahlflachprodukts über Wärmestrahlung erfolgt ("RTF": Radiant Tube Furnace).From the EP 2 010 690 B1 and the DE 10 2004 059 566 B3 Furthermore, methods are known in which a FeO layer on the surface of each processed flat steel product by feeding 0.01 - 1 vol .-% O 2 over a period of 1 - 10 seconds is generated in a closed reaction chamber. The installation of such a reaction chamber, however, is only possible in an indirectly heated RTF furnace, in which the heating of the flat steel product takes place via thermal radiation ("RTF": Radiant Tube Furnace).

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, einen Durchlaufofen bzw. ein Verfahren der eingangs genannten Art anzugeben, mit dem sich in einer großtechnischen Schmelztauchbeschichtungsanlage eine möglichst gleichmäßige Voroxidation von Stahlband, das nennenswerte Legierungsanteile an sauerstoffaffinen Legierungselementen (Mn, Al, Si, Cr,...) aufweist, über die Bandbreite erzielen lässt. Dadurch soll eine Verbesserung des Benetzungsbildes und der Überzugshaftung über die komplette Breite des Stahlbandes erreicht werden.Against the background of the prior art described above, the object of the invention was to provide a continuous furnace or a method of the type mentioned above, in a large-scale hot dip coating plant as uniform as possible pre-oxidation of steel strip, the significant alloying parts of oxygen-affine alloying elements (Mn , Al, Si, Cr, ...), can achieve over the bandwidth. As a result, an improvement of the wetting image and the coating adhesion over the entire width of the steel strip to be achieved.

Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch einen Durchlaufofen mit den Merkmalen des Anspruchs 7. Bevorzugte und vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sowie des erfindungsgemäßen Durchlaufofens sind in den Unteransprüchen angegeben.This object is achieved by a method having the features of claim 1 or by a continuous furnace with the features of claim 7. Preferred and advantageous embodiments of the method according to the invention and of the continuous furnace according to the invention are specified in the subclaims.

Ein erfindungsgemäßes Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts umfasst demnach mindestens folgende Arbeitsschritte:

  1. a) Bereitstellen eines kalt- oder warmgewalzten Stahlflachprodukts, das neben Fe und unvermeidbaren Verunreinigungen (in Gew.-%) bis zu 35,0 % Mn, bis zu 10,0 % Al, bis zu 10,0 % Si, bis zu 5,0 % Cr, bis zu 2,0 % Ni, jeweils bis zu 0,5 % an Ti, V, Nb, Mo, jeweils bis zu 0,1 % S, P und N, bis zu 1,0 % C sowie optional 0,0005 - 0,01 % B enthält;
  2. b) Aufheizen des Stahlflachprodukts, vorzugsweise auf eine Temperatur im Bereich von 600 - 1000°C innerhalb einer Aufheizzeit von 5 - 60 Sekunden, in einem Vorwärmofen des DFF-Typs, in welchem ein Voroxidationsabschnitt ausgebildet ist und in welchem das Stahlflachprodukt einer oxidierenden Atmosphäre ausgesetzt wird, um auf der Oberfläche des Stahlflachprodukts eine deckende FeO-Schicht zu bilden, wobei in dem Voroxidationsabschnitt Brenner angeordnet sind, die mit Sauerstoffüberschuss betrieben werden, und wobei mindestens einer der Brenner der Oberseite des Stahlflachproduktes und mindestens ein anderer der Brenner der Unterseite des Stahlflachproduktes zugeordnet ist;
  3. c) rekristallisierendes Glühen des Stahlflachprodukts in einem Glühofen, der im Anschluss an den Vorwärmofen durchlaufen wird, um eine Rekristallisierung des Stahlflachprodukts zu bewirken, wobei in dem Glühofen eine gegenüber FeO reduzierend wirkende Glühatmosphäre herrscht;
  4. d) Abkühlen des Stahlflachprodukts auf eine Badeintrittstemperatur im Bereich von 430 bis 800°C in einer Schutzgasatmosphäre;
  5. e) Einleiten des Stahlflachprodukts in ein Schmelzenbad, dessen Temperatur im Bereich von 420 bis 780°C liegt; und
  6. f) Durchleiten des Stahlflachprodukts durch das Schmelzenbad und Einstellen der Dicke der auf dem aus dem Schmelzenbad austretenden Stahlflachprodukt vorhandenen metallischen Schutzschicht.
A method according to the invention for producing a flat steel product provided by hot-dip coating with a metallic protective layer accordingly comprises at least the following working steps:
  1. a) providing a cold or hot rolled flat steel product, which in addition to Fe and unavoidable impurities (in wt .-%) up to 35.0% Mn, up to 10.0% Al, up to 10.0% Si, up to 5 , 0% Cr, up to 2.0% Ni, up to 0.5% each of Ti, V, Nb, Mo, up to 0.1% S, P and N, up to 1.0% C, respectively optionally contains 0.0005 - 0.01% B;
  2. b) heating the flat steel product, preferably to a temperature in the range of 600-1000 ° C within a heating time of 5-60 seconds, in a preheating furnace of the DFF type in which a pre-oxidation section is formed and in which the flat steel product is exposed to an oxidizing atmosphere to form a covering FeO layer on the surface of the flat steel product, wherein burners are operated in the Voroxidationsabschnitt operated with excess oxygen, and wherein at least one of the burner of the upper side of the flat steel product and at least one other of the burner of the underside of the flat steel product assigned;
  3. c) recrystallizing annealing of the flat steel product in an annealing furnace, which is passed after the preheating furnace to cause a recrystallization of the steel flat product, wherein in the annealing furnace there is a refractory to FeO reducing annealing atmosphere prevails;
  4. d) cooling the steel flat product to a bath inlet temperature in the range of 430 to 800 ° C in a protective gas atmosphere;
  5. e) introducing the steel flat product into a melt bath whose temperature is in the range of 420 to 780 ° C; and
  6. f) passing the flat steel product through the melt bath and adjusting the thickness of the metallic protective layer present on the steel flat product leaving the melt bath.

Zudem ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass als Brenner in dem Voroxidationsabschnitt des Vorwärmofens flammenlose Brenner verwendet werden, mittels denen Brennstoff, vorzugsweise Brenngas, und sauerstoffhaltiges Gas getrennt voneinander mit einer Strömungsgeschwindigkeit von mindestens 60 m/s in den Vorwärmofen eingebracht werden, wobei neben mindestens einem der der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner und neben mindestens einem der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brenner je mindestens eine Gasleitung zur Zufuhr mindestens eines zusätzlichen Gasstroms vorgesehen ist, mittels dem der Brennstoff und das sauerstoffhaltige Gas ergänzend vermischt werden, und wobei der zusätzliche Gasstrom schräg auf die Ebene des Stahlflachprodukts gerichtet in den Vorwärmofen eingebracht wird.In addition, the inventive method is characterized in that as a burner in the pre-oxidation of the preheating furnace flameless burner be used, by means of which fuel, preferably fuel gas, and oxygen-containing gas are introduced separately from each other at a flow rate of at least 60 m / s in the preheating furnace, wherein in addition to at least one of the top of the flat steel product associated flameless burner and at least one of the underside of the flat steel product associated flameless burner per at least one gas line for supplying at least one additional gas stream is provided, by means of which the fuel and the oxygen-containing gas are additionally mixed, and wherein the additional gas stream is directed obliquely to the plane of the flat steel product introduced into the preheating furnace.

Durch die erfindungsgemäße Verwendung von flammenlosen Brennern in Kombination mit je mindestens einer Gasleitung zur Zufuhr eines zusätzlichen Gasstroms, mittels dem der Brennstoff und das sauerstoffhaltige Gas ergänzend vermischt werden, wird eine sehr homogene Temperatur- und Sauerstoffverteilung über die gesamte Breite des zu beschichtenden Stahlbandes erzielt. Hierdurch wird auch eine lokale Überhitzung der Feuerfestauskleidung des Vorwärmofens vermieden. In Verbindung mit dem überstöchimetrischem Betrieb des Vorwärmofens wird eine gleichmäßig oxidierende Ofenatmosphäre geschaffen, die auf dem zu beschichtenden, sauerstoffaffine Legierungselemente enthaltenden Stahlband eine gleichmäßig dicke Oxidschicht erzeugt. Da durch das erfindungsgemäße Verfahren in zuverlässiger Weise eine gleichmäßig dicke Oxidschicht auf dem Stahlband erzeugt wird, können tendenziell vorteilhafte, relativ dünne Voroxidationsschichten von kleiner 1 µm, vorzugsweise kleiner 0,3 µm, insbesondere kleiner 0,2 µm realisiert werden.The inventive use of flameless burners in combination with at least one gas line for supplying an additional gas stream, by means of which the fuel and the oxygen-containing gas are additionally mixed, a very homogeneous temperature and oxygen distribution over the entire width of the steel strip to be coated is achieved. As a result, a local overheating of the refractory lining of the preheating furnace is avoided. In conjunction with the superstoichimetric operation of the preheat furnace, a uniformly oxidizing furnace atmosphere is created which produces a uniformly thick oxide layer on the steel strip containing oxygen affinity alloying elements to be coated. Since a uniformly thick oxide layer is reliably produced on the steel strip by the method according to the invention, advantageously, relatively thin pre-oxidation layers of less than 1 μm, preferably less than 0.3 μm, in particular less than 0.2 μm, can be realized.

Die Qualität der im weiteren Verfahrensablauf folgenden Schmelztauchbeschichtung kann aufgrund der optimierten Voroxidation erheblich verbessert werden, da hierdurch nach dem zwischengeschalteten Reduktionsschritt eine saubere, von unerwünschten Legierungsoxiden freie Bandoberfläche erreicht wird, welche eine sehr gute Benetzbarkeit aufweist und somit Beschichtungsfehler in Form von unbeschichteten Stellen vermeidet oder zumindest deutlich reduziert.The quality of subsequent hot dip coating in the subsequent process can be significantly improved because of the intermediate reduction step, a clean, free of unwanted alloy oxides band surface is achieved, which has a very good wettability and thus avoids coating defects in the form of uncoated sites or at least significantly reduced.

Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass die flammenlosen Brenner mit einem Sauerstoffüberschuss von mindestens 1,1, vorzugsweise mindestens 1,2, besonders bevorzugt mindestens 1,3 betrieben werden. In Versuchen wurde festgestellt, dass sich in diesem Fall die Oxidschicht mit gleichmäßiger Schichtdicke sehr zuverlässig ausbildet, wobei die Stickstoffoxidemissionen ab einem Lambda-Wert von ca. 1,05 mit zunehmendem Sauerstoffüberschuss abnehmen.An advantageous embodiment of the method according to the invention is characterized in that the flameless burners are operated with an oxygen excess of at least 1.1, preferably at least 1.2, more preferably at least 1.3. In experiments, it was found that in this case, the oxide layer with uniform layer thickness is very reliable, with the nitrogen oxide emissions decrease from a lambda value of about 1.05 with increasing oxygen excess.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Oberseite des Stahlflachprodukts und mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Unterseite des Stahlflachprodukts zugeordnet werden, wobei die der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner in Durchlaufrichtung des Stahlflachprodukts versetzt zu den der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brennern angeordnet werden. Diese Ausgestaltung begünstigt die Einstellung einer möglichst homogenen oxidierenden Ofenatmosphäre, insbesondere homogenen Temperaturverteilung.A further advantageous embodiment of the method according to the invention is characterized in that at least two, preferably at least three flameless burners the top of the flat steel product and at least two, preferably at least three flameless burners are assigned to the bottom of the flat steel product, wherein the top of the flat steel product associated flameless burner in Passing direction of the flat steel product offset to be arranged on the underside of the flat steel product associated flameless burners. This embodiment favors the setting of a homogeneous as possible oxidizing furnace atmosphere, in particular homogeneous temperature distribution.

Nach einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Oberseite des Stahlflachprodukts und mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner der Unterseite des Stahlflachprodukts zugeordnet, wobei die der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner in einer Seitenwand des Vorwärmofens integriert sind, während die der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brennern in der gegenüberliegenden Seitenwand des Vorwärmofens integriert sind. Auch diese Ausgestaltung begünstigt die Einstellung einer möglichst homogenen oxidierenden Ofenatmosphäre.According to a further advantageous embodiment of the method according to the invention at least two, preferably at least three flameless burner the top of the flat steel product and at least two, preferably at least three flameless burners the underside of the Stahlflachprodukts assigned, wherein the top of the flat steel product associated flameless burner in a side wall of the preheating furnace integrated, while the underside of the flat steel product associated flameless burners are integrated in the opposite side wall of the preheating furnace. This embodiment also favors the setting of a most homogeneous oxidizing furnace atmosphere.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens besteht darin, dass das sauerstoffhaltige Gas vorgewärmt in den Vorwärmofen eingebracht wird. Hierdurch lässt sich der Brennstoff besser nutzen bzw. der Brennstoffverbrauch reduzieren. Das sauerstoffhaltige Gas, typischerweise Luft, wird hierzu beispielsweise mittels mindestens eines Wärmetauschers vorgewärmt, der mit dem Glühofen, der auf den Glühofen folgenden Abkühleinrichtung und/oder dem Schmelzbadgefäß gekoppelt ist.A further advantageous embodiment of the method according to the invention is that the oxygen-containing gas is introduced preheated in the preheating furnace. This makes it possible to better use the fuel and reduce fuel consumption. The oxygen-containing gas, typically air, is preheated for this purpose, for example, by means of at least one heat exchanger, which is coupled to the annealing furnace, the cooling device following the annealing furnace and / or the molten bath vessel.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass dem sauerstoffhaltigen Gas und/oder dem Brennstoff Inertgas, beispielsweise Abgas zugegeben wird. Hierdurch lassen sich die Abmessungen der Verbrennungswolke und insbesondere die Verbrennungstemperatur gezielt beeinflussen.A further advantageous embodiment of the method according to the invention provides that the oxygen-containing gas and / or the fuel inert gas, for example, exhaust gas is added. As a result, the dimensions of the combustion cloud and in particular the combustion temperature can be influenced in a targeted manner.

Zur Erzielung einer optimalen Voroxidation des Stahlflachprodukts (Stahlbandes) bei möglichst niedrigen Emissionswerten, insbesondere niedrigen NOx-Emissionen, ist es ferner günstig, wenn nach einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens Inertgas und/oder Abgas, vorzugsweise vorgewärmtes Inertgas und/oder erwärmtes Abgas für den zusätzlichen Gasstrom verwendet wird, mittels dem der Brennstoff und das sauerstoffhaltige Gas ergänzend vermischt werden.In order to achieve optimal pre-oxidation of the flat steel product (steel strip) with the lowest possible emission values, in particular low NO x emissions, it is also advantageous if, according to a further embodiment of the method, inert gas and / or exhaust gas, preferably preheated inert gas and / or heated exhaust gas for the additional gas flow is used, by means of which the fuel and the oxygen-containing gas are additionally mixed.

Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass der Taupunkt der Glühatmosphäre über den gesamten Weg des Stahlflachprodukts durch den Glühofen zwischen -40°C und +25°C gehalten wird, indem durch Zufuhr von Feuchtigkeit mittels mindestens einer Befeuchtungseinrichtung Verluste oder Unregelmäßigkeiten der Verteilung der Feuchtigkeit der Atmosphäre ausgeglichen werden. Der Taupunkt beträgt einerseits -40°C oder mehr, um die Triebkraft der externen Oxidation der Legierungselemente (z.B. Mn, Al, Si, Cr) zu minimieren. Andererseits wird durch den Taupunkt von maximal +25°C eine ungewollte Oxidation von Eisen vermieden. Diese Ausgestaltung trägt somit dazu bei, dass die Oberfläche des Stahlflachprodukts bei Eintritt in das Schmelztauschbad weitestgehend frei von störenden Oxiden ist.A further advantageous embodiment of the method according to the invention is characterized in that the dew point of the annealing atmosphere over the entire path of the steel flat product through the annealing furnace between -40 ° C and + 25 ° C is maintained by losses or irregularities by supplying moisture by means of at least one moistening device the distribution of the humidity of the atmosphere can be compensated. The dew point is on the one hand -40 ° C or more to minimize the driving force of the external oxidation of the alloying elements (eg Mn, Al, Si, Cr). On the other hand, by the dew point of a maximum of + 25 ° C a unwanted oxidation of iron avoided. This embodiment thus contributes to the fact that the surface of the flat steel product is largely free of interfering oxides when entering the Schmelztauschbad.

Der erfindungsgemäße Durchlaufofen ist dementsprechend dadurch gekennzeichnet, dass zumindest einige der Brenner in dem Voroxidationsabschnitt als flammenlose Brenner ausgeführt sind, mittels denen Brennstoff, vorzugsweise Brenngas, und sauerstoffhaltiges Gas getrennt voneinander mit einer Strömungsgeschwindigkeit von mindestens 60 m/s in den Vorwärmofen einbringbar sind, wobei neben mindestens einem der der Oberseite des Stahlflachprodukts zugeordneten flammenlosen Brenner und neben mindestens einem der Unterseite des Stahlflachprodukts zugeordneten flammenlosen Brenner je mindestens eine Gasleitung zur Zufuhr mindestens eines zusätzlichen Gasstroms vorgesehen ist, wobei das Ende der jeweiligen Gasleitung derart ausgerichtet ist, dass der dort austretende zusätzliche Gasstrom den aus dem flammenlosen Brenner austretenden Brennstoffstrom und/oder sauerstoffhaltigen Gasstrom kreuzt oder tangiert.Accordingly, the continuous furnace according to the invention is characterized in that at least some of the burners in the pre-oxidation section are designed as flameless burners, by means of which fuel, preferably fuel gas, and oxygen-containing gas can be introduced separately into the preheating furnace at a flow rate of at least 60 m / s at least one flameless burner associated with the upper side of the flat steel product and at least one gas line for supplying at least one additional gas stream are provided adjacent to at least one underside of the flat steel product, the end of the respective gas line being oriented in such a way that the additional emerging therefrom Gas flow crosses or tangent to the emerging from the flameless burner fuel flow and / or oxygen-containing gas stream.

Der erfindungsgemäße Durchlaufofen bietet die Vorteile, die bereits oben in Zusammenhang mit dem erfindungsgemäßen Verfahren genannt sind.The continuous furnace according to the invention offers the advantages already mentioned above in connection with the method according to the invention.

Bei der Voroxidation in einem DFF-Vorwärmofen von Schmelztauchbeschichtungsanlagen besteht prinzipiell das Problem, dass durch Gasströmungen im Ofen eine ungünstig hohe Ansammlung von Sauerstoff in der dem Voroxidationsbereich vorgeschalteten Ofenzone auftritt, was zu einer negativen Beeinflussung der Beschichtung führen kann. Es hat sich gezeigt, dass sich diese Sauerstoffansammlung bei der Verwendung von flammenlosen Brennern deutlich reduzieren lässt, indem zusätzlich zu den Stoffströmen des flammenlosen Brenners ein weiterer Gasstrom über mindestens ein sogenanntes Jet-Rohr eingespeist wird. Dies gilt insbesondere in Bezug auf den ersten überstöchiometrisch betriebenen flammenlosen Brenner in der Voroxidationszone. Das Jet-Rohr ist hierbei in Bezug auf die Brennerdüse(n) so ausgerichtet, dass der weitere Gasstrom eine schraubengangartige Verwirbelung bewirkt. Hierzu ist das Jet-Rohr schräg zur Ausströmachse der Brennerdüse und auch geneigt gegenüber der Ebene des Stahlflachprodukts ausgerichtet.In the case of pre-oxidation in a DFF preheating furnace of hot dip coating systems, there is the problem in principle that unfavorably high accumulation of oxygen in the furnace zone upstream of the preoxidation zone occurs due to gas flows in the furnace, which can lead to a negative influence on the coating. It has been shown that this oxygen accumulation can be significantly reduced when using flameless burners, in that in addition to the material flows of the flameless burner another gas stream is fed via at least one so-called jet tube. This is especially true with respect to the first superstoichiometric flameless burner in the pre-oxidation zone. In this case, the jet tube is aligned with respect to the burner nozzle (s) so that the further gas flow is a spiral-like swirling causes. For this purpose, the jet pipe is oriented obliquely to the outflow axis of the burner nozzle and also inclined relative to the plane of the flat steel product.

Nachfolgend wird die Erfindung anhand einer Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen jeweils schematisch:

Fig. 1
eine zur Durchführung des erfindungsgemäßen Verfahrens geeignete Schmelztauchbeschichtungsanlage;
Fig. 2
einen in der Schmelztauchbeschichtungsanlage gemäß Fig. 1 eingesetzten flammenlosen Brenner in Kombination mit einem Jet-Rohr, in einer Schnittansicht;
Fig. 3
eine Prinzipdarstellung der Stoff- bzw. Gasströme an einem flammenlosen Brenner während des flammenlosen Betriebs; und
Fig. 4
einen Querschnitt durch einen Durchlaufofen (Vorwärmofen) der Schmelztauchbeschichtungsanlage gemäß Fig. 1 im Bereich der mit Brennern gemäß Fig. 2 ausgerüsteten Vorwärmzone.
The invention will be explained in more detail with reference to an exemplary embodiments illustrative drawing. Each show schematically:
Fig. 1
a suitable for performing the method according to the invention hot dip coating equipment;
Fig. 2
one in the hot dip coating plant according to Fig. 1 flameless burner used in combination with a jet pipe, in a sectional view;
Fig. 3
a schematic representation of the material or gas flows on a flameless burner during flameless operation; and
Fig. 4
a cross section through a continuous furnace (preheating furnace) of the hot dip coating plant according to Fig. 1 in the area with burners according to Fig. 2 equipped preheating zone.

Die in Fig. 1 dargestellte Schmelztauchbeschichtungsanlage A weist in Förderrichtung F des als Stahlband vorliegenden, zu beschichtenden Stahlflachprodukts S in unmittelbarem Anschluss aufeinander folgend einen optional zum Vorwärmen des Stahlflachprodukts S vorgesehenen DFI-Booster 1, einen mit seinem Eingang 2 an den DFI-Booster angeschlossenen Vorwärmofen 3, in welchem ein Voroxidationsabschnitt 4 ausgebildet ist, einen Glühofen 6, der mit einem Übergangsbereich 7 an den Ausgang 8 des Vorwärmofens 3 angeschlossen ist, eine an den Ausgang 9 des Glühofens 6 angeschlossene Abkühlzone 10, einen an die Abkühlzone 10 angeschlossenen Rüssel 11, der an den Ausgang 12 der Abkühlzone 10 angeschlossen ist und mit seinem freien Ende in ein Schmelzenbad 13 taucht, eine in dem Schmelzenbad 13 angeordnete erste Umlenkeinrichtung 14, eine Einrichtung 15 zum Einstellen der Dicke des auf dem Stahlflachprodukt S im Schmelzenbad 13 aufgetragenen metallischen Überzugs sowie eine zweite Umlenkeinrichtung 16 auf.In the Fig. 1 shown hot dip coating plant A has in the conveying direction F of present as steel strip to be coated flat steel product S in direct connection consecutively one for preheating the Stahlflachprodukts S provided DFI booster 1, connected to its input 2 to the DFI booster preheating furnace 3, in which a pre-oxidation section 4 is formed, an annealing furnace 6, which is connected to a transition region 7 to the output 8 of the preheating furnace 3, connected to the output 9 of the annealing furnace 6 cooling zone 10, connected to the cooling zone 10 proboscis 11, to the output 12 of the cooling zone 10 is connected and immersed with its free end in a melt bath 13, a arranged in the melt bath 13 first deflecting means 14, a means 15 for adjusting the thickness of the on the Flat steel product S in the molten bath 13 applied metallic coating and a second deflecting 16 on.

Der Vorwärmofen 3 ist vom DFF-Typ (Direct Fired Furnace). In ihm sind über die Förderstrecke des Stahlflachprodukts S verteilt oder zumindest in dem Voroxidationsabschnitt 4 mehrere flammenlose Brenner 17 angeordnet. Bei diesen Brennern werden der Brennstoff (B), vorzugsweise Brenngas, und sauerstoffhaltiges Gas (L), typischerweise Luft unvermischt oder weitgehend unvermischt mit hoher Strömungsgeschwindigkeit in den Vorwärmofen 3 eingebracht (vgl. Fig. 3). Die Einströmungsgeschwindigkeit des Brennstoffs B sowie des sauerstoffhaltigen Gases L beträgt mindestens 60 m/s, vorzugsweise mindestens 120 m/s. Der wesentliche Unterschied zu herkömmlichen Brennern im Flammenbetrieb ist die intensive interne Rezirkulation der Abgase AG in der Ofenkammer und deren Vermischung mit der Verbrennungsluft bzw. dem sauerstoffhaltigen Gas L (vgl. Fig. 3). Hierdurch und durch die verzögerte Vermischung von Brennstoff B und Sauerstoff L kann sich keine sichtbare Flammenfront mehr ausbilden. Bei ausreichend hohen Temperaturen von beispielsweise mindestens 700°C, vorzugsweise mindestens 800°C oxidiert der Brennstoff B im gesamten Ofenraumvolumen. Dadurch stellt sich über die gesamte Breite des Stahlflachprodukts S eine sehr homogene Temperaturverteilung ein.The preheating furnace 3 is of the DFF type (Direct Fired Furnace). In it, distributed over the conveyor line of the flat steel product S or at least in the pre-oxidation section 4 a plurality of flameless burners 17 are arranged. In these burners, the fuel (B), preferably fuel gas, and oxygen-containing gas (L), typically air is introduced unmixed or largely unmixed at high flow rate in the preheating furnace 3 (see. Fig. 3 ). The inflow rate of the fuel B and the oxygen-containing gas L is at least 60 m / s, preferably at least 120 m / s. The essential difference to conventional burners in flame operation is the intensive internal recirculation of the exhaust gases AG in the furnace chamber and their mixing with the combustion air or the oxygen-containing gas L (see. Fig. 3 ). As a result, and by the delayed mixing of fuel B and oxygen L no visible flame front can form more. At sufficiently high temperatures of, for example, at least 700 ° C., preferably at least 800 ° C., the fuel B oxidizes in the entire furnace chamber volume. As a result, a very homogeneous temperature distribution arises over the entire width of the flat steel product S.

Zur Voroxidation des Stahlflachprodukts S werden die flammenlosen Brenner 17 in einem überstöchiometrischen Bereich betrieben, d.h. mit einem Lambda-Wert größer 1, wodurch eine oxidierende Ofenatmosphäre erzeugt wird. Vorzugsweise wird dabei ein Lambda-Wert von mindestens 1,05, besonders bevorzugt von mindestens 1,1, insbesondere mindestens 1,2 oder mindestens 1,3 eingestellt.For pre-oxidation of the flat steel product S, the flameless burners 17 are operated in a superstoichiometric range, i. with a lambda value greater than 1, creating an oxidizing furnace atmosphere. Preferably, a lambda value of at least 1.05, particularly preferably at least 1.1, in particular at least 1.2 or at least 1.3 is set.

Die Bildung thermischer Stickstoffoxide, die bei Brennern im Flammenbetrieb vor allem an der Flammengrenze mit ihren hohen Spitzentemperaturen stattfindet, wird bei den flammenlosen Brennern 17 weitgehend vermieden. Mit der gleichmäßigeren Temperaturverteilung sinken nicht nur die NOx-Emissionen, es lässt sich auch eine höhere mittlere Ofenraumtemperatur aufrechterhalten. Insbesondere sinken die NOx-Emissionen mit zunehmendem Lambda-Wert.The formation of thermal nitrogen oxides, which takes place in burners in flame operation, especially at the flame boundary with their high peak temperatures, is largely avoided in the flameless burners 17. With the more even temperature distribution not only the NO x emissions decrease, it can also be a maintained higher average furnace chamber temperature. In particular, the NO x emissions decrease with increasing lambda value.

Der Aufbau eines flammenlosen Brenners 17 zum Einsatz in einem Durchlaufofen (Vorwärmofen) 3 vom DFF-Typ für eine Schmelztauchbeschichtungsanlage ist in Fig. 2 dargestellt. Der Brenner 17 weist ein Rohrstück 17.1 mit einer länglichen Gasdüse 17.2 auf. Das Rohrstück 17.1 ist mit einem Verbindungsflansch 17.3 versehen und über eine nicht dargestellte Brenngasleitung an eine ebenfalls nicht dargestellte Brenngasversorgung angeschlossen. Des Weiteren hat der Brenner 17 eine Hohlkammer 17.4 zur Zufuhr von sauerstoffhaltigem Gas, vorzugsweise Luft, die einen Längsabschnitt des Rohrstücks 17.1 mit der Brenngasdüse 17.2 umgibt. Die Hohlkammer 17.4 ist mit einem Verbindungsflansch 17.5 versehen und über eine nicht dargestellte Versorgungsleitung an eine ebenfalls nicht dargestellte Sauerstoff-oder Luftversorgung angeschlossen. Die Gasdüse 17.2 mündet mit einer mittleren Öffnung 17.6 und einer dazu koaxial angeordneten ringförmigen Öffnung (Ringdüse) 17.7 in den Vorwärmofen 3. Ferner sind in der der Ofenkammer zugewandten Stirnseite des Brenners 17 eine Ringdüse oder mehrere auf einem gemeinsamen Teilkreis angeordnete, vorzugsweise gleichmäßig voneinander beabstandete Düsen 17.8 zur Zufuhr von Sauerstoff oder Luft vorgesehen. Die Sauerstoff- oder Luftdüsen 17.8 sind so ausgebildet, dass die daraus austretenden Sauerstoff- oder Luftstrahlen den aus der Gasdüse austretenden Brenngasstrom kreuzen. An seiner Stirnseite ist der Brenner 17 zudem mit einem Düsenstein 17.9 versehen. Der Düsenstein 17.9 weist einen Kanal 17.10 auf, in den die Düsen 17.2, 17.6, 17.7, 17.8 münden. Daneben ist der Düsenstein 17.9 mit einem Zündbrenner 17.11 versehen, der in einem kleineren, von dem Kanal 17.10 abzweigenden Querkanal 17.12 aufgenommen ist. Des Weiteren weist der Düsenstein 17.9 mehrere Strahlrohrleitungen (sogenannte Jet-Rohre) 17.13 zur Zufuhr von sauerstoffhaltigem Gas auf, die mit der Hohlkammer 17.4 verbunden sind und deren Längsachsen im Wesentlichen parallel zu der von der Brenngasdüse 17.2 definierten Brennstoff-Einströmrichtung verlaufen. Vorzugsweise weist jeder der flammenlosen Brenner 17 drei oder mehr dieser Strahlrohrleitungen 17.13 auf, die gleichmäßig voneinander beabstandet auf einem den Kanal 17.10 umgebenden Teilkreis angeordnet sind. Der Düsenstein 17.9 ist in einen eine Durchgangsöffnung aufweisenden Brennerstein 3.1 formschlüssig eingesetzt. Der Brennerstein 3.1 ist mit einer Gasleitung 5 zur Zufuhr eines zusätzlichen Gasstroms ZG versehen. Das in den Vorwärmofen 3 mündende Ende (Jet-Rohr) der Gasleitung 5 ist derart ausgerichtet, dass der zusätzliche Gasstrom ZG den aus dem flammenlosen Brenner 17 austretenden Brennstoffstrom B und sauerstoffhaltigen Gasstrom L kreuzt oder tangiert.The structure of a flameless burner 17 for use in a continuous furnace (preheating furnace) 3 of the DFF type for a hot-dip coating machine is shown in FIG Fig. 2 shown. The burner 17 has a pipe section 17.1 with an elongated gas nozzle 17.2. The pipe section 17.1 is provided with a connecting flange 17.3 and connected via a fuel gas line, not shown, to a fuel gas supply, also not shown. Furthermore, the burner 17 has a hollow chamber 17.4 for supplying oxygen-containing gas, preferably air, which surrounds a longitudinal section of the pipe section 17.1 with the fuel gas nozzle 17.2. The hollow chamber 17.4 is provided with a connecting flange 17.5 and connected via a supply line, not shown, to a likewise not shown oxygen or air supply. The gas nozzle 17.2 opens with a central opening 17.6 and a coaxial annular opening (ring nozzle) 17.7 in the preheating furnace 3. Further, in the furnace chamber facing end face of the burner 17, an annular nozzle or more arranged on a common pitch circle, preferably evenly spaced from each other Nozzles 17.8 provided for the supply of oxygen or air. The oxygen or air nozzles 17.8 are designed so that the oxygen or air jets emerging therefrom cross the fuel gas stream leaving the gas nozzle. On its front side, the burner 17 is also provided with a nozzle stone 17.9. The nozzle block 17.9 has a channel 17.10, into which the nozzles 17.2, 17.6, 17.7, 17.8 open. In addition, the nozzle block 17.9 is provided with a pilot burner 17.11, which is received in a smaller, branched off from the channel 17.10 transverse channel 17.12. 17. In addition, the nozzle block 17.9 has a plurality of jet pipes (so-called jet pipes) 17.13 for the supply of oxygen-containing gas, which are connected to the hollow chamber 17.4 and whose longitudinal axes extend substantially parallel to the fuel inflow direction defined by the fuel gas nozzle 17.2. Preferably, each of the flameless burners 17 has three or more of these jet pipes 17, 13 equally spaced on a channel 17.10 surrounding pitch are arranged. The nozzle block 17.9 is inserted in a form-fitting manner in a burner block 3.1 having a passage opening. The burner block 3.1 is provided with a gas line 5 for supplying an additional gas flow ZG. The end opening into the preheating furnace 3 (jet pipe) of the gas line 5 is oriented such that the additional gas flow ZG the fuel stream B emerging from the flameless burner 17 and oxygen-containing gas stream L crosses or tangent.

Die für die Verbrennung benötigte Brennerluft L bzw. der für die Verbrennung zugeführte Sauerstoff wird vorzugsweise vorgewärmt. Hierzu kann dem jeweiligen flammenlosen Brenner 17 eine (hier nicht gezeigte) Vorrichtung zur Erwärmung des sauerstoffhaltiges Gases bzw. der Brennerluft L vorgeschaltet sein. Ebenso kann auch die Brenngaszuleitung mit einer (hier nicht gezeigten) Vorrichtung zur Erwärmung des Brenngases B versehen sein. Ergänzend oder alternativ kann auch dem zusätzlichen Jet-Rohr 5 bzw. der daran angeschlossenen Gasleitung zur Zufuhr des mindestens einen zusätzlichen Gasstroms ZG eine (hier nicht gezeigte) Vorrichtung zur Erwärmung des zusätzlichen Gasstroms vorgeschaltet sein. Gegebenenfalls kann zusätzlich separat oder mit dem Brennstoff- und/oder Luft-/Sauerstoffstrom gemischt ein, vorzugsweise erwärmtes, Inertgas und/oder Abgas eingebracht werden. Hierzu ist an der an dem betreffenden Verbindungsflansch 17.3 oder 17.5 angeschlossenen Zufuhrleitung (Einspeisung) eine Inertgas- oder Abgasleitung (nicht gezeigt) angeschlossen, die mit einem Dosierventil (Regelventil) versehen ist.The burner air L required for the combustion or the oxygen supplied for the combustion is preferably preheated. For this purpose, the respective flameless burner 17 may be preceded by a device (not shown here) for heating the oxygen-containing gas or the burner air L. Likewise, the fuel gas supply line can also be provided with a device (not shown here) for heating the fuel gas B. Additionally or alternatively, also the additional jet pipe 5 or the gas line connected thereto for supplying the at least one additional gas stream ZG can be preceded by a device (not shown here) for heating the additional gas stream. Optionally, in addition separately or mixed with the fuel and / or air / oxygen stream, preferably, heated, inert gas and / or exhaust gas are introduced. For this purpose, an inert gas or exhaust pipe (not shown) is connected to the connected to the respective connecting flange 17.3 or 17.5 supply line (feed), which is provided with a metering valve (control valve).

Durch die getrennte Einbringung von Brennstoff B und Luft/Sauerstoff L mit hoher Geschwindigkeit erfolgt eine Mischung der Medien im Vorwärmofen 3 über die gesamte Breite des Stahlflachprodukts S. Zumindest das eingebrachte sauerstoffhaltige Gas und/oder das gegebenenfalls beigemischte Inertgas/Abgas werden auf eine Temperatur vorgewärmt, die nach Mischung der Medien im Voroxidationsofen eine ausreichende Reaktionsenergie (Zündtemperatur) ergibt, bei der die Verbrennung des Brennstoffs B erfolgt. Die Bildung einer sichtbaren Flamme wird auf diese Weise weitgehend vermieden. Es wird vielmehr eine "Verbrennungswolke" W über die gesamte Breite des Stahlbandes S bzw. Ofens 3 erzeugt.The separate introduction of fuel B and air / oxygen L at high speed, a mixture of media in the preheating furnace 3 over the entire width of the flat steel product S. At least the introduced oxygen-containing gas and / or the optionally admixed inert gas / exhaust gas are preheated to a temperature which, after mixing the media in the pre-oxidation furnace, gives a sufficient reaction energy (ignition temperature) at which the combustion of the fuel B takes place. The formation of a visible flame is on this way largely avoided. Rather, a "combustion cloud" W is generated over the entire width of the steel strip S or furnace 3.

Die flammenlosen Brenner 17 sind vorzugsweise in mindestens einer der Seitenwände 3.2, 3.3 des Vorwärmofens 3 integriert, wobei mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner 17 der Oberseite des Stahlflachprodukts S und mindestens zwei, vorzugsweise mindestens drei flammenlose Brenner 17 der Unterseite des Stahlflachprodukts S zugeordnet sind. Zur Vergleichmäßigung der Temperaturverteilung sowie der Sauerstoffverteilung sind die flammenlosen Brenner 17 vorzugsweise versetzt zueinander angeordnet (vgl. Fig. 1). Beispielsweise können die der Oberseite des Stahlflachprodukts S zugeordneten flammenlosen Brenner in Durchlaufrichtung des Stahlflachprodukts S versetzt zu den der Unterseite des Stahlflachprodukts S zugeordneten flammenlosen Brennern angeordnet sein. Insbesondere ist es zur Vergleichmäßigung der Temperatur- sowie Sauerstoffverteilung über die Breite des Stahlbandes S günstig, wenn - wie in Fig. 4 skizziert - die der Oberseite des Stahlflachprodukts S zugeordneten flammenlosen Brenner 17 in einer Seitenwand (3.2) des Vorwärmofens 3 integriert sind, während die der Unterseite des Stahlflachprodukts S zugeordneten flammenlosen Brenner in der gegenüberliegenden Seitenwand (3.3) des Vorwärmofens 3 integriert sind.The flameless burners 17 are preferably integrated in at least one of the side walls 3.2, 3.3 of the preheating furnace 3, wherein at least two, preferably at least three flameless burners 17 the top of the flat steel product S and at least two, preferably at least three flameless burners 17 associated with the bottom of the flat steel product S. are. To even out the temperature distribution and the oxygen distribution, the flameless burners 17 are preferably arranged offset from one another (cf. Fig. 1 ). By way of example, the flameless burners assigned to the upper side of the flat steel product S can be arranged offset in the direction of passage of the flat steel product S to the flameless burners associated with the underside of the flat steel product S. In particular, it is favorable for equalizing the temperature and oxygen distribution over the width of the steel strip S, if - as in Fig. 4 sketched - the top of the flat steel product S associated flameless burner 17 are integrated in a side wall (3.2) of the preheating furnace 3, while the underside of the flat steel product S associated flameless burner in the opposite side wall (3.3) of the preheating furnace 3 are integrated.

Durch die Installation der Strahlrohrleitungen (Jet-Rohre) 17.13, die in Bezug auf den Brenngaseinströmstrahl und den Kanal 17.10 mit Abstand angeordnet sind, und über die zusätzlich sauerstoffhaltiges Gas L, vorzugsweise Sauerstoff oder Luft in den Brenngasstrom B eingeblasen wird, wird bereits eine Homogenisierung der Brenngasverteilung bewirkt. Über die in den Vorwärmofen 3 mündende Gasleitung 5 (Jet-Rohr 5) wird in die Voroxidationzone vorzugsweise Inert- und/oder Abgas eingebracht. Dieser zusätzliche Gasstrom ZG kreuzt oder tangiert den Brennstoffstrom. Dies ist in den Figuren 3 und 4 schematisch dargestellt. In Fig. 4 ist der oberhalb des Stahlflachproduktes S angeordnete flammenlose Brenner 17, der in der Seitenwand 3.2 des Vorwärmofens 3 angeordnet ist, mit einem Jet-Rohr 5 kombiniert. Dieses Jet-Rohr 5 ist oberhalb oder (hier nicht gezeigt) vorzugsweise seitlich neben dem flammenlosen Brenner 17 angeordnet und dabei jeweils so ausgerichtet, dass der daraus austretende zusätzliche Gasstrom ZG den mittels des flammenlosen Brenners 17 eingebrachten Brennstoffstrom B kreuzt oder tangiert. Ferner ist auch der unterhalb des Stahlflachproduktes S angeordnete flammenlose Brenner 17, der in der Seitenwand 3.3 des Vorwärmofens angeordnet ist, mit einem Jet-Rohr 5 kombiniert. Dieses Jet-Rohr 5 ist unterhalb oder (hier nicht gezeigt) vorzugsweise seitlich neben dem flammenlosen Brenner 17 angeordnet und dabei jeweils so ausgerichtet, dass der daraus austretende zusätzliche Gasstrom ZG den mittels des flammenlosen Brenners 17 eingebrachten Brennstoffstrom B kreuzt oder tangiert. Durch diese Kombination von flammenlosem Brenner 17 und Jet-Rohr 5 wird der Übergang zur flammenlosen Zone im Vorwärmofen zusätzlich abgegrenzt.By the installation of the jet pipes (jet pipes) 17.13, which are arranged with respect to the Brenngaseinströmstrahl and the channel 17.10 at a distance, and is injected via the additionally oxygen-containing gas L, preferably oxygen or air in the fuel gas stream B, already a homogenization the fuel gas distribution causes. About the opening into the preheating furnace 3 gas line 5 (jet pipe 5) is preferably introduced inert gas and / or exhaust gas in the pre-oxidation. This additional gas flow ZG crosses or touches the fuel flow. This is in the FIGS. 3 and 4 shown schematically. In Fig. 4 is the above the flat steel product S arranged flameless burner 17, which is arranged in the side wall 3.2 of the preheating furnace 3, combined with a jet pipe 5. This jet tube 5 is above or (not shown here) preferably laterally adjacent to the flameless one Burner 17 is arranged and in each case aligned so that the emerging therefrom additional gas flow ZG crossed by the flameless burner 17 introduced fuel flow B or tangent. Furthermore, the flameless burner 17 arranged below the flat steel product S, which is arranged in the side wall 3.3 of the preheating furnace, is also combined with a jet pipe 5. This jet pipe 5 is arranged below or (not shown here) preferably laterally next to the flameless burner 17 and in each case aligned so that the additional gas flow ZG emerging therefrom crosses or touches the fuel flow B introduced by means of the flameless burner 17. This combination of flameless burner 17 and jet pipe 5 delimits the transition to the flameless zone in the preheating furnace.

Am Übergangsbereich 7 zu dem Glühofen 6 ist eine hier nicht näher gezeigte Einrichtung zum gezielten Einspeisen von Sauerstoff oder Luft in den Übergangsbereich 7 vorgesehen. Zweck dieser Einspeisung ist die Abbindung von Wasserstoff, der möglicherweise in Folge der im Glühofen 6 von dessen Ausgang 9 in Richtung von dessen Eingang strömenden Gasströmung G in den Übergangsbereich 7 gelangt. Gleichzeitig ist im Bereich des Eingangs des Glühofens 6 eine Absaugeinrichtung 24 angeordnet, die die zum Eingang des Glühofens gelangende Gasströmung G absaugt.At the transition region 7 to the annealing furnace 6, a device not shown in detail for the targeted feeding of oxygen or air is provided in the transition region 7. The purpose of this feed is the setting of hydrogen, which possibly passes in the transition region 7 as a result of flowing in the annealing furnace 6 from the outlet 9 in the direction of its inlet gas flow G. At the same time a suction device 24 is arranged in the region of the entrance of the annealing furnace 6, which sucks the reaching to the entrance of the annealing gas flow G.

Benachbart zum Ausgang 9 des Glühofens 6 sind zwei Befeuchtungseinrichtungen 25, 26 angeordnet, von denen die eine der Oberseite und die andere der Unterseite des zu beschichtenden Stahlflachprodukts S zugeordnet ist. Die Befeuchtungseinrichtungen 25, 26 sind als geschlitzte oder gelochte, quer zur Förderrichtung F des Stahlflachprodukts S ausgerichtete Rohre ausgebildet und an eine Versorgungsleitung 27 angeschlossen, über die die Befeuchtungseinrichtungen 25, 26 mit Dampf- oder einem befeuchteten Trägergas, wie N2 oder N2/H2, versorgt werden.Adjacent to the outlet 9 of the annealing furnace 6, two moistening devices 25, 26 are arranged, one of which is assigned to one of the upper side and the other of the underside of the flat steel product S to be coated. The moistening devices 25, 26 are designed as slotted or perforated tubes oriented transversely to the conveying direction F of the flat steel product S and connected to a supply line 27, via which the moistening devices 25, 26 with steam or a moistened carrier gas, such as N 2 or N 2 /. H 2 , to be supplied.

Die Abkühlzone 10 kann so ausgelegt sein, dass das auf die jeweilige Badeintrittstemperatur abgekühlte Stahlflachprodukt S vor seinem Eintritt in den Rüssel 11 noch in der Abkühlzone 10 eine Überalterungsbehandlung bei der Badeintrittstemperatur durchläuft.The cooling zone 10 may be designed so that the cooled to the respective bath inlet temperature flat steel product S before its entry into the trunk 11 yet in the cooling zone 10 undergoes an overaging treatment at the bath inlet temperature.

Im Schmelzenbad 13 wird das Stahlflachprodukt S an der ersten Umlenkeinrichtung 14 in vertikaler Richtung umgelenkt und durchläuft die Einrichtung 15 zur Einstellung der Dicke der metallischen Schutzschicht. Anschließend wird das mit der metallischen Schutzschicht versehene Stahlflachprodukt S an der zweiten Umlenkeinrichtung 16 wieder in die horizontale Förderrichtung F umgelenkt und gegebenenfalls weiteren Behandlungsschritten in hier nicht dargestellten Anlagenteilen unterzogen.In the molten bath 13, the flat steel product S is deflected at the first deflection device 14 in the vertical direction and passes through the device 15 for adjusting the thickness of the metallic protective layer. Subsequently, the steel flat product S provided with the metallic protective layer is deflected again in the horizontal conveying direction F at the second deflection device 16 and, if appropriate, subjected to further treatment steps in plant parts not shown here.

Ein nach dem erfindungsgemäßen Verfahren schmelztauchbeschichtetes Stahlflachprodukt eignet sich aufgrund seiner mechanischen Eigenschaften und seiner Oberflächeneigenschaften hervorragend, um mittels ein-, zwei- oder mehrstufiger Kalt- oder Warmumformung zu einem hoch-/ höchstfesten Blechbauteil weiterverarbeitet zu werden. Dies gilt vorrangig für Anwendungen der Automobilindustrie, aber auch für Apparate-, Maschinen- oder Hausgerätebau sowie die Bauindustrie. Neben den herausragenden mechanischen Bauteileigenschaften zeichnet sich ein solches Blechbauteil weiterhin durch besondere Widerstandsfähigkeit gegenüber Umwelteinflüssen aus. Die Anwendung eines erfindungsgemäß schmelztauchveredelten Stahlflachprodukts hebt somit nicht nur Leichtbaupotential, sondern verlängert auch die Produktlebensdauer.A hot-dip coated flat steel product according to the invention is excellently suited for further processing by means of one-stage, two-stage or multi-stage cold or hot forming into a high-strength / high-strength sheet metal component. This applies primarily to applications in the automotive industry, but also for apparatus, machine or household appliance construction as well as the construction industry. In addition to the outstanding mechanical component properties, such a sheet metal component continues to be distinguished by its particular resistance to environmental influences. The use of a hot-dip coated steel flat product according to the invention thus not only raises lightweight potential, but also prolongs the product life.

Zusammenfassend kann gesagt werden, dass durch das erfindungsgemäße Verfahren eine sehr homogene Voroxidation eines Stahlbandes, das durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehen werden soll, über die komplette Bandbreite in einem großtechnischen DFF-Vorwärmofen erzielt wird. Daraus resultiert eine Verbesserung des Benetzungsbildes und der Überzugshaftung über die komplette Breite des Stahlflachproduktes. Beschichtungsfehler an den Bandkanten können somit auch bei relativ breiten Einsatzbändern vermieden werden. Ein weiterer Vorteil liegt in der optimierten Verbrennung, die sich durch deutlich verringerte Schadstoffemissionen sowie einen reduzierten Brennstoffverbrauch auszeichnet.In summary, it can be said that the method according to the invention achieves a very homogeneous pre-oxidation of a steel strip to be provided with a metallic protective layer by hot-dip coating, over the entire bandwidth in a large-scale DFF preheating furnace. This results in an improvement of the wetting pattern and the coating adhesion over the entire width of the flat steel product. Coating defects at the strip edges can thus be avoided even with relatively wide insert strips. Another advantage lies in the optimized combustion, which differs significantly characterized by reduced pollutant emissions and reduced fuel consumption.

Claims (14)

  1. Method for producing a flat steel product (S) provided with a metallic protective layer by hot-dip coating, comprising the following production steps:
    a) providing a cold-rolled or hot-rolled flat steel product (S) which in addition to Fe and unavoidable impurities contains (in % wt.) up to 35.0 % Mn, up to 10.0 % Al, up to 10.0 % Si, up to 5 % Cr, up to 2.0 % Ni, up to 0.5 % of Ti, V, Nb, Mo respectively, up to 0.1 % S, P and N respectively, up to 1.0 % C and optionally 0.0005 - 0.01 % B;
    b) heating the flat steel product (S) in a DFF-type preheating furnace (3) in which a preoxidation section (4) is formed and in which the flat steel product (S) is exposed to an oxidising atmosphere, in order to form a covering FeO layer on the surface of the flat steel product, wherein burners are arranged in the preoxidation section which are operated with excess oxygen, and wherein at least one of the burners (17) is assigned to the upper side of the flat steel product and at least another of the burners (17) is assigned to the underside of the flat steel product;
    c) recrystallising annealing of the flat steel product (S) in an annealing furnace (6) which is passed through following the preheating furnace (3) in order to bring about a recrystallisation of the flat steel product, wherein an annealing atmosphere having a reducing effect with respect to the FeO prevails in the annealing furnace (6);
    d) cooling the flat steel product down to a bath entry temperature in the range from 430 °C to 800 °C in a protective gas atmosphere;
    e) introducing the flat steel product into a molten bath (13), the temperature of which is in the range from 420 °C to 780 °C; and
    f) passing the flat steel product through the molten bath (13) and setting the thickness of the metallic protective layer present on the flat steel product coming out of the molten bath, characterised in that flameless burners are used as burners (17) in the preoxidation section of the preheating furnace (3), by means of which fuel (B), preferably burnable gas, and oxygen-containing gas (L) are introduced into the preheating furnace (3) separately from one another at a flow rate of at least 60 m/s, wherein in addition to at least one of the flameless burners (17) assigned to the upper side of the flat steel product (S) and in addition to at least one flameless burner (17) assigned to the underside of the flat steel product (S), in each case at least one gas pipe (5) is provided for supplying at least one additional gas flow (ZG), by means of which the fuel (B) and the oxygen-containing gas (L) are mixed in a complementary manner, and wherein the additional gas flow (ZG) is introduced directed obliquely to the plane of the flat steel product (S) into the preheating furnace (3).
  2. Method according to Claim 1, characterised in that the flameless burners (17) are operated with an oxygen excess of at least 1.1, preferably at least 1.2, particularly preferably at least 1.3.
  3. Method according to Claim 1 or 2, characterised in that the oxygen-containing gas (L) is introduced preheated into the preheating furnace (3).
  4. Method according to any one of Claims 1 to 3, characterised in that inert gas is added to the oxygen-containing gas (L) and/or to the fuel (B).
  5. Method according to any one of Claims 1 to 4, characterised in that inert gas and/or flue gas, preferably preheated inert gas and/or heated flue gas, is used for the additional gas flow (ZG).
  6. Method according to any one of Claims 1 to 5, characterised in that the dew point of the annealing atmosphere is held between -40 °C and +25 °C over the entire passage of the flat steel product (S) through the annealing furnace (6) by balancing losses or irregularities in the distribution of the humidity in the atmosphere by supplying moisture by means of at least one humidifier (25, 26).
  7. DFF-type continuous furnace (3) for a hot-dip coating installation, having a preoxidation section (4), in which a flat steel product (S) to be coated is exposed to an oxidising atmosphere in order to form a covering FeO layer on the surface of the flat steel product, wherein burners (17) are arranged in the preoxidation section (4) which are operated with excess oxygen, and wherein at least one of the burners (17) is assigned to the upper side of the flat steel product (S) and at least another of the burners (17) is assigned to the underside of the flat steel product (S), characterised in that at least some of the burners (17) in the preoxidation section (4) are designed as flameless burners, by means of which fuel (B), preferably burnable gas, and oxygen-containing gas (L) can be introduced into the preheating furnace (3) separately from one another at a flow rate of at least 60 m/s, wherein in addition to at least one of the flameless burners (17) assigned to the upper side of the flat steel product (S) and in addition to at least one flameless burner (17) assigned to the underside of the flat steel product (S), in each case at least one gas pipe (5) is provided for supplying at least one additional gas flow (ZG), wherein the end of the respective gas pipe (5) is aligned in such a way that the additional gas flow (ZG) escaping there crosses or is tangent to the fuel flow (B) and/or oxygen-containing gas flow (L) escaping from the flameless burner (17).
  8. Continuous furnace according to Claim 7, characterised in that at least two, preferably at least three, flameless burners (17) are assigned to the upper side of the flat steel product (S) and at least two, preferably at least three, flameless burners (17) are assigned to the underside of the flat steel product (S), wherein the flameless burners (17) assigned to the upper side of the flat steel product (S) are offset in the direction of passage (F) of the flat steel product (S) in relation to the flameless burners (17) assigned to the underside of the flat steel product (S).
  9. Continuous furnace according to Claim 7 or 8, characterised in that at least two, preferably at least three, flameless burners (17) are assigned to the upper side of the flat steel product (S) and at least two, preferably at least three, flameless burners (17) are assigned to the underside of the flat steel product (S), wherein the flameless burners (17) assigned to the upper side of the flat steel product (S) are integrated in a side wall (3.2) of the preheating furnace (3), while the flameless burners assigned to the underside of the flat steel product are integrated in the opposite side wall (3.3) of the preheating furnace (3).
  10. Continuous furnace according to any one of Claims 7 to 9, characterised in that a device for heating the oxygen-containing gas (L) is connected upstream of the respective flameless burner (17).
  11. Continuous furnace according to any one of Claims 7 to 10, characterised in that a device for heating the gas flow (ZG) is connected upstream of the gas pipe (5) for supplying the at least one additional gas flow (ZG).
  12. Continuous furnace according to any one of Claims 7 to 11, characterised in that the respective flameless burner (17) has at least one fuel nozzle (17.2) which is encompassed by a ring nozzle or a plurality of nozzles (17.8), which are arranged on a common pitch circle and are uniformly spaced apart from one another, for supplying oxygen-containing gas (L).
  13. Continuous furnace according to Claim12, characterised in that the respective flameless burner (17) is provided with a plurality of jet pipes (17.13) for supplying oxygen-containing gas (L), the longitudinal axes of which run essentially parallel to the fuel inflow direction defined by the fuel nozzle (17.2).
  14. Continuous furnace according to Claim 12 or 13, characterised in that the respective flameless burner (17)) is provided with at least three jet pipes (17.13) for supplying oxygen-containing gas (L) which are arranged uniformly spaced apart from one another on a common pitch circle.
EP14162799.2A 2013-05-24 2014-03-31 Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system Active EP2824216B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013105378.5A DE102013105378B3 (en) 2013-05-24 2013-05-24 Process for the preparation of a hot-dip coated flat steel product and continuous furnace for a hot-dip coating machine

Publications (2)

Publication Number Publication Date
EP2824216A1 EP2824216A1 (en) 2015-01-14
EP2824216B1 true EP2824216B1 (en) 2019-05-15

Family

ID=50442358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14162799.2A Active EP2824216B1 (en) 2013-05-24 2014-03-31 Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system

Country Status (3)

Country Link
EP (1) EP2824216B1 (en)
DE (1) DE102013105378B3 (en)
ES (1) ES2738118T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016100648B4 (en) * 2015-12-23 2018-04-12 Benteler Automobiltechnik Gmbh A heat treatment furnace and method for heat treating a precoated sheet steel plate and method of making a motor vehicle component
KR101836714B1 (en) * 2016-10-12 2018-03-09 현대자동차주식회사 High manganese steel
DE102018102624A1 (en) 2018-02-06 2019-08-08 Salzgitter Flachstahl Gmbh Process for producing a steel strip with improved adhesion of metallic hot-dip coatings
DE102019108459B4 (en) 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings
DE102019108457B4 (en) 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings
IT202000013285A1 (en) * 2020-06-04 2021-12-04 Danieli Off Mecc PROCEDURE AND APPARATUS FOR HEATING STEEL PRODUCTS
CN111549307A (en) * 2020-06-15 2020-08-18 华菱安赛乐米塔尔汽车板有限公司 Production process of hot-dip aluminum-plated silicon steel plate
CN111780106B (en) * 2020-06-30 2022-07-12 武汉钢铁有限公司 Flameless burner of steel rolling heating furnace and application thereof
EP4217516B1 (en) * 2020-09-23 2024-07-31 Fives Stein Direct flame preheating section for a continuous metal strip processing line
FR3114324B1 (en) * 2020-09-23 2022-12-16 Fives Stein DIRECT FLAME PREHEATING SECTION FOR CONTINUOUS METAL STRIP TREATMENT LINE

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1985664U (en) * 1968-01-20 1968-05-22 Hubertus Wessel BURNER WITH FLAMELESS COMBUSTION.
US3925579A (en) 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
JP3255765B2 (en) * 1993-07-14 2002-02-12 川崎製鉄株式会社 Method for producing high-strength hot-dip or alloyed hot-dip galvanized steel sheet
JP4718782B2 (en) 2003-02-06 2011-07-06 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
DE102004059566B3 (en) * 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel
WO2006068169A1 (en) 2004-12-21 2006-06-29 Kabushiki Kaisha Kobe Seiko Sho Method and facility for hot dip zinc plating
KR101011897B1 (en) 2005-10-14 2011-02-01 신닛뽄세이테쯔 카부시키카이샤 Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping
DE102006005063A1 (en) 2006-02-03 2007-08-09 Linde Ag Process for the heat treatment of steel strip
BE1017086A3 (en) * 2006-03-29 2008-02-05 Ct Rech Metallurgiques Asbl PROCESS FOR THE RECLAIMING AND CONTINUOUS PREPARATION OF A HIGH STRENGTH STEEL BAND FOR ITS GALVANIZATION AT TEMPERATURE.
ATE458838T1 (en) 2006-04-26 2010-03-15 Thyssenkrupp Steel Europe Ag METHOD FOR HOT-DIP COATING A FLAT STEEL PRODUCT MADE OF HIGH-STRENGTH STEEL
DE102006039307B3 (en) 2006-08-22 2008-02-21 Thyssenkrupp Steel Ag Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
FR2920439B1 (en) * 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas METHOD AND DEVICE FOR THE CONTROLLED OXIDATION / REDUCTION OF THE SURFACE OF A CONTINUOUSLY STRAY STEEL BAND IN A RADIANT TUBE OVEN FOR ITS GALVANIZATION
DE102010037254B4 (en) * 2010-08-31 2012-05-24 Thyssenkrupp Steel Europe Ag Process for hot dip coating a flat steel product
DE102011051731B4 (en) 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013105378B3 (en) 2014-08-28
EP2824216A1 (en) 2015-01-14
ES2738118T3 (en) 2020-01-20

Similar Documents

Publication Publication Date Title
EP2824216B1 (en) Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system
EP2732062B1 (en) Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating
EP2010690B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
EP2795218B1 (en) Nozzle device for a furnace for heat-treating a flat steel product, and furnace equipped with such a nozzle device
EP1819840B1 (en) Method for hot dip coating a strip of heavy-duty steel
EP3172345B1 (en) Method for heating up steel sheets
DE102012101018B3 (en) Process for hot dip coating a flat steel product
WO2012028465A1 (en) Method for hot-dip coating a flat steel product
WO2012152508A1 (en) Device and method for treating a steel sheet product in a continuous manner
DE69712636T2 (en) METHOD FOR PRODUCING FERRITIC, STAINLESS STEEL FECrAl STEEL TAPES
WO2011069906A2 (en) Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
EP2818571B1 (en) Diffusion of aluminium-silicon into a steel sheet web
DE60130823T2 (en) Improvements in the preheating of metal strips, especially in galvanizing or annealing plants
EP3511430A1 (en) Method for a continuous heat treatment of a steel strip, and installation for dip coating a steel strip
EP3159419A1 (en) Method of fabrication of roll formed partly hardened profiles
DE102016011047A1 (en) Flexible heat treatment plant for metallic strip in horizontal construction
DE102015001438A1 (en) Flexible heat treatment plant for metallic strip
DE2516621C2 (en) Method of fire metallizing a small diameter steel pipe
DE102005046198A1 (en) Burner for industrial oven or furnace has annealed head fabricated in aluminum-coated cobalt alloy
EP0959145B1 (en) Method and apparatus for carrying out the heating of a galvannealed process
DE3231981C2 (en) Process for the production of coated, high-strength, low-alloy steel
DE102021109973A1 (en) Process for the manufacture of hot-dip coated steel flat products
DE102016222993A1 (en) Process for producing a coated steel component
DE3039424C2 (en) Burner-heated continuous furnace
EP3867058A1 (en) Method for producing a heat-formable flat steel product

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150625

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C23C0008180000

Ipc: C23C0028000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 28/00 20060101AFI20180907BHEP

Ipc: C23C 2/40 20060101ALI20180907BHEP

Ipc: C23C 8/80 20060101ALI20180907BHEP

Ipc: C21D 1/70 20060101ALI20180907BHEP

Ipc: C21D 9/56 20060101ALI20180907BHEP

Ipc: C23C 8/18 20060101ALI20180907BHEP

Ipc: C21D 1/74 20060101ALI20180907BHEP

Ipc: F27D 99/00 20100101ALI20180907BHEP

Ipc: F27B 9/28 20060101ALI20180907BHEP

Ipc: C23C 2/02 20060101ALI20180907BHEP

Ipc: C21D 6/00 20060101ALI20180907BHEP

Ipc: F27B 9/36 20060101ALI20180907BHEP

INTG Intention to grant announced

Effective date: 20181012

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WESTERFELD, ANDREAS

Inventor name: RUTHENBERG, MANUELA

Inventor name: BREHM, OLIVER

Inventor name: MACHEREY, FRIEDHELM

Inventor name: HOEGNER, WERNER

Inventor name: PETERS, MICHAEL

Inventor name: BLUMENAU, MARC

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETERS, MICHAEL

Inventor name: BREHM, OLIVER

Inventor name: WESTERFELD, ANDREAS

Inventor name: NORDEN, MARTIN

Inventor name: HOEGNER, WERNER

Inventor name: RUTHENBERG, MANUELA

Inventor name: MACHEREY, FRIEDHELM

Inventor name: BLUMENAU, MARC

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190124

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BREHM, OLIVER

Inventor name: NORDEN, MARTIN

Inventor name: WESTERFELD, ANDREAS

Inventor name: HOEGNER, WERNER

Inventor name: RUTHENBERG, MANUELA

Inventor name: PETERS, MICHAEL

Inventor name: MACHEREY, FRIEDHELM

Inventor name: BLUMENAU, MARC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RUTHENBERG, MANUELA

Inventor name: HOEGNER, WERNER

Inventor name: PETERS, MICHAEL

Inventor name: WESTERFELD, ANDREAS

Inventor name: NORDEN, MARTIN

Inventor name: BLUMENAU, MARC

Inventor name: BREHM, OLIVER

Inventor name: MACHEREY, FRIEDHELM

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2738118

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

26N No opposition filed

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230328

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 11

Ref country code: FR

Payment date: 20240328

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240426

Year of fee payment: 11