EP2823077B1 - Copper-nickel-zinc alloy containing silicon - Google Patents
Copper-nickel-zinc alloy containing silicon Download PDFInfo
- Publication number
- EP2823077B1 EP2823077B1 EP13704005.1A EP13704005A EP2823077B1 EP 2823077 B1 EP2823077 B1 EP 2823077B1 EP 13704005 A EP13704005 A EP 13704005A EP 2823077 B1 EP2823077 B1 EP 2823077B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nickel
- silicides
- copper
- weight
- zinc alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052710 silicon Inorganic materials 0.000 title claims description 40
- 229910001297 Zn alloy Inorganic materials 0.000 title claims description 33
- KOMIMHZRQFFCOR-UHFFFAOYSA-N [Ni].[Cu].[Zn] Chemical compound [Ni].[Cu].[Zn] KOMIMHZRQFFCOR-UHFFFAOYSA-N 0.000 title claims description 33
- 239000010703 silicon Substances 0.000 title claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 121
- 229910021332 silicide Inorganic materials 0.000 claims description 91
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 85
- 239000011572 manganese Substances 0.000 claims description 77
- 229910052748 manganese Inorganic materials 0.000 claims description 73
- 229910052759 nickel Inorganic materials 0.000 claims description 70
- 229910045601 alloy Inorganic materials 0.000 claims description 52
- 239000000956 alloy Substances 0.000 claims description 52
- 229910052742 iron Inorganic materials 0.000 claims description 51
- 239000010949 copper Substances 0.000 claims description 44
- 239000011701 zinc Substances 0.000 claims description 36
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 28
- 229910017052 cobalt Inorganic materials 0.000 claims description 24
- 239000010941 cobalt Substances 0.000 claims description 24
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 229910052745 lead Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 238000009749 continuous casting Methods 0.000 claims description 2
- 238000003483 aging Methods 0.000 claims 2
- 238000004512 die casting Methods 0.000 claims 1
- 230000005484 gravity Effects 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 description 23
- 239000010956 nickel silver Substances 0.000 description 18
- 229910052725 zinc Inorganic materials 0.000 description 18
- 239000011133 lead Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 17
- 229910001316 Ag alloy Inorganic materials 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 12
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000002349 favourable effect Effects 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 238000005275 alloying Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 244000052616 bacterial pathogen Species 0.000 description 3
- 230000002051 biphasic effect Effects 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- 229910018605 Ni—Zn Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 230000003009 desulfurizing effect Effects 0.000 description 2
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910021334 nickel silicide Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910001149 41xx steel Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- -1 strips Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/004—Copper alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/005—Continuous casting of metals, i.e. casting in indefinite lengths of wire
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/04—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/04—Alloys containing less than 50% by weight of each constituent containing tin or lead
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/06—Alloys containing less than 50% by weight of each constituent containing zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K1/00—Making machine elements
- B21K1/44—Making machine elements bolts, studs, or the like
Definitions
- the invention relates to a copper-nickel-zinc alloy according to the preamble of claim 1 and to processes for producing semi-finished products from this alloy.
- Alloys of copper, nickel and zinc are called because of their silver-like colors because of German silver. Commonly used alloys have between 47 to 64% by weight of copper and between 10 to 25% by weight of nickel. In turnable and drillable alloys usually up to 2.5 wt .-% lead are added as a chip breaker, in casting alloys even up to 9 wt .-%. The rest is zinc. These are single-phase materials that form only an ⁇ -phase.
- nickel silver alloys may also contain 0.5 to 0.7 wt .-% manganese to reduce the Glühbrüchmaschine. Also, the manganese additive acts deoxidizing and desulfurizing.
- Nickel silver alloys in their microstructure correspond approximately to the .alpha. Or the .alpha. + .Beta. Brass rings, since nickel replaces copper virtually equivalently.
- CuNi25Zn15, CuNi18Zn20, CuNi12Zn24, CuNi18Zn19Pb and CuNi12Zn30Pb form a homogeneous ⁇ -microstructure.
- the two-phase wrought alloy CuNi10Zn42Pb is in the ( ⁇ + ⁇ ) area.
- copper-nickel-zinc alloys having a significantly increased manganese content beyond a deoxidizing effect are also known.
- a known alloy CuNi12Zn38Mn5Pb2 has a significantly lower copper content and an increased zinc content.
- Such alloys are again biphasic materials consisting of ⁇ - and ⁇ -phase.
- the element Pb is present as a chip breaker in the manganese-containing nickel silver alloys to a significant extent.
- Lead makes wrought alloys more easily machinable, but reduces toughness and increases hot tear sensitivity during annealing.
- the hot workability of ⁇ -alloys is strongly affected by lead, so that they are usually only cold formed. In contrast, the good hot workability of the ( ⁇ + ⁇ ) alloys by lead is not significantly affected.
- nickel silver alloys are already described with manganese.
- EP 1 608 789 B1 Nickel silver alloys of composition 43 to 48% Cu, 33 to 38% Zn, 10 to 15% Ni and 3.5 to 6.5% Mn known.
- it can still contain up to 4% Pb.
- a lead additive is always a better machinability can be effected.
- the biphasic alloy having ( ⁇ + ⁇ ) structure is subjected to hot working and then a temperature treatment is preferably carried out in the range of 630 to 720 ° C. This temperature treatment converts the alloy into a pure ⁇ -structure instead of.
- This structure is then suitable for further cold forming steps in which, for example, tips are made for writing instruments.
- a machining, such as drilling only be economically useful with a lead additive.
- the publication JP 1177327 describes easily machinable nickel silver alloys with good hot and cold workability. These alloys consist of 6 to 15% Ni, 3 to 8% Mn, 0.1 to 2.5% Pb, 31 to 47% Zn, balance Cu with unavoidable impurities. Optionally, small amounts of Fe, Co, B, Si or P may be added to prevent grain growth on warming prior to hot working.
- the invention has for its object to further develop nickel silver alloys with respect to their mechanical properties, their workability and their material costs.
- the alloy should be comparable in strength and ductility to CrMo ferritic steels and at the same time be easy to machine and resistant to water-based writing gels.
- the invention includes a copper-nickel-zinc alloy having the following composition in% by weight: Cu 47.0 to 49.0%, Ni 8.0 to 10.0%, Mn 0.2 to 0.6%, Si 0.05 to 0.4%, pb 1.0 to 1.5%, Fe and / or Co up to 0.8%,
- Residual Zn as well as unavoidable impurities wherein the sum of Fe content and twice the Co content is at least 0.1% by weight and wherein in a microstructure consisting of ⁇ - and ⁇ -phase nickel-, iron- and manganese-containing and / or nickel-, cobalt- and manganese-containing mixed silicides are incorporated as spherical or ellipsoidal particles.
- the invention is based on the consideration that the microstructure of nickel silver materials by alloying of silicon is varied so that silicide precipitates are formed.
- Silicides as intermetallic compounds have a considerably higher hardness of about 800 HV than the ⁇ and ⁇ phase of the matrix structure.
- manganese acts deoxidizing and desulfurizing.
- silicon forms mixed silicides of approximate composition predominantly between (Mn, Fe, Ni) 2 Si and (Mn, Fe, Ni) 3 Si.
- mixed silicides of approximate composition (Mn, Co, Ni) x Si y , where x ⁇ y.
- mixed silicides may be formed which contain both iron and cobalt in addition to manganese and nickel.
- the mixed silicides are finely distributed as spherical or ellipsoidal particles in the matrix structure. The diameter of the particles is usually less than 2 microns.
- the microstructure does not contain large-area silicides which therefore easily break out of the matrix structure. This advantageous property is achieved in the alloy according to the invention in particular by the low levels of manganese and iron or cobalt.
- Both iron and cobalt act as nucleating sites for silicide formation, ie, in the presence of iron and / or cobalt, even small deviations from the thermodynamic equilibrium are sufficient, so that small precipitates are formed.
- These precipitation nuclei which may also contain nickel in the present alloy composition, are finely distributed in the microstructure. They are deposited on other silicides, which now also contain manganese, preferably on. Due to the low manganese content of the alloy, the size of the individual silicides is limited. Small amounts of iron and / or cobalt in combination with a small amount of manganese are therefore the prerequisite for the formation of the mixed silicides, which are relevant to the invention.
- the minimum amount of iron or cobalt is defined by the fact that the sum of the iron content and twice the cobalt content is at least 0.1%.
- nickel silver with a high element content of zinc and a comparatively low content of nickel and copper is preferred. These materials have a two-phase basic structure of good cold-formable ⁇ -phase and good heat formable ⁇ -phase.
- Lead is as chip-breaking structural component in the smallest droplets distributed in the structure. This makes the wrought alloy more easily machinable, with good hot workability of the biphasic alloy not being significantly affected by lead.
- either the iron content or the cobalt content is at least 0.1% by weight.
- the content of the other element can then be chosen freely between 0 and 0.8% by weight.
- the minimum content of one of the two elements ensures that even small deviations from the thermodynamic equilibrium precipitate germs are formed in sufficient density.
- the sum of the iron content and eight times the cobalt content is at least 0.4% by weight.
- Cobalt preferably forms excretory germs. This allows iron to be replaced by small amounts of cobalt. Depending on the exact requirements of the alloy, an optimum of properties and costs can be set.
- a preferred embodiment of the invention includes a copper-nickel-zinc alloy having the following composition in% by weight: Cu 47.0 to 49.0%, Ni 8.0 to 10.0% Mn 0.2 to 0.6%, Si 0.05 to 0.4%, pb 1.0 to 1.5%, Fe 0.2 to 0.8%,
- Iron increases the strength and hardness of the copper-nickel-zinc alloys.
- the preferred selection of the iron content causes a suitable formation of iron-containing precipitation nuclei for the mixed silicides according to the invention, so that they are finely distributed as spherical or ellipsoidal particles in the matrix structure.
- the diameter of the particles is usually less than 1 micron.
- Particularly preferred is an iron content of 0.4 to 0.6% by weight.
- the alloy can be modified by the addition of small amounts of cobalt while maintaining the favorable properties and so adapted to the operational requirements.
- the copper-nickel-zinc alloy may have the following composition in wt .-%: Cu 47.0 to 49.0%, Ni 9.0 to 9.8%, Mn 0.3 to 0.4%, Si 0.1 to 0.3%, pb 1.0 to 1.5%, Fe 0.4 to 0.6%,
- Residual Zn as well as unavoidable impurities optionally up to 0.6% Co.
- the preferred selection of the iron content causes a suitable formation of ferrous precipitate for the mixed silicides according to the invention.
- a nickel content 9.0 to 9.8 wt .-%
- a low-cost and easy machinable alloy is created.
- the proportions by weight of silicon and manganese ultimately determine the extent and topology of silicide formation.
- the manganese content should not exceed 0.4% by weight.
- the preferred manganese and silicon fractions can ultimately be used to create a material optimized for mechanical properties in conjunction with good machinability.
- the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Fe and Mn to the weight fraction of silicon bonded in silicides may be between 3 and 6.5.
- mixed silicides having approximate compositions between (Mn, Fe, Ni) 2 Si and (Mn, Fe, Ni) 3 Si are preferably formed.
- slightly different mixed silicides may also be formed in the stoichiometry, which may also contain, for example, small proportions of other alloying elements such as copper and zinc.
- the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Fe and Mn to the weight fraction of silicon bonded in silicides can be between 4 and 6. In this range of the concentration ratios, favorable properties of the alloy result.
- the ratio of the sum of the weight fractions of elements bound in silicides Ni and Fe to the proportion by weight of manganese bound in silicides may be at least 4. Due to the low manganese content, small mixed silicides form as spherical or ellipsoidal particles that do not break out of the matrix structure. The diameter of the particles is usually less than 1 micron.
- the areal density of the silicides with a particle diameter of at most 1 ⁇ m can be at least 20 per 100 ⁇ m 2 . This ensures that enough silicides are available in a favorable size.
- Another aspect of the invention includes a copper-nickel-zinc alloy having the following composition in wt .-%: Cu 47.0 to 49.0%, Ni 8.0 to 10.0%, Mn 0.2 to 0.6%, Si 0.05 to 0.4%, pb 1.0 to 1.5%, Co 0.1 to 0.8%,
- the preferred selection of the cobalt content brings about a suitable formation of cobalt-containing precipitation germs for the mixed silicides according to the invention, so that they are finely distributed as spherical or ellipsoidal particles in the matrix structure.
- the diameter of the particles is usually less than 2 microns.
- the alloy can be modified by the addition of small amounts of iron while retaining the favorable properties and so adapted to the operational requirements.
- the copper-nickel-zinc alloy may have the following composition in wt .-%: Cu 47.0 to 49.0%, Ni 9.0 to 9.8%, Mn 0.3 to 0.4%, Si 0.1 to 0.3%, pb 1.0 to 1.5%, Co 0.2 to 0.6%,
- Residual Zn as well as unavoidable impurities optionally up to 0.6% Fe.
- the preferred selection of the cobalt content causes a suitable formation of cobalt-containing excretion nuclei for the mixed silicides according to the invention.
- a nickel content 9.0 to 9.8 wt .-%
- a low-cost and easy machinable alloy is created.
- the proportions by weight of silicon and manganese ultimately determine the extent and topology of silicide formation. In order to obtain particularly fine-grained silicides, the manganese content should not exceed 0.4% by weight.
- the preferred manganese and silicon fractions can ultimately be used to create a material optimized for mechanical properties in conjunction with good machinability.
- the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Co and Mn to the weight fraction of silica bound in silicides may be between 2.5 and 5.
- slightly different mixed silicides may also be formed in the stoichiometry, which may also contain, for example, small proportions of other alloying elements such as copper and zinc.
- the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Co and Mn to the weight fraction of silicon bonded in silicides can be between 3 and 4.5. In this range of concentration ratios, favorable properties of the alloy result.
- the ratio of the sum of the weight fractions of elements bound in silicides Ni and Co to the proportion by weight of manganese bound in silicides may be at least 10. Due to the low manganese content, small mixed silicides form as spherical or ellipsoidal particles that do not break out of the matrix structure. The diameter of the particles is usually less than 2 microns.
- the ratio of the weight fraction of nickel bound in silicides to the weight fraction of cobalt bound in silicides can be between 1.5 and 2.5.
- the silicides thus formed contribute to the advantageous properties of the alloy.
- the surface density of the silicides with a particle diameter of not more than 2 ⁇ m may be at least 20 per 5000 ⁇ m 2 . This ensures that enough silicides are available in a favorable size.
- the heat treatment in step c) may preferably be carried out at a temperature which is 85 to 95% of the melting temperature of the alloy, measured in ° C. is.
- the duration of the heat treatment may preferably be between one minute and three hours.
- the aging annealing in step e) can increase the strength of the material compared to the strength after cold working in step d). With this approach, depending on the annealing temperature, an increase in hardness between 10% and 20% could be achieved.
- High-quality refill tips for ballpoint pens are made of nickel silver, not least for aesthetic reasons. These are made here of machinable nickel silver wire material as a kneading material.
- machinable nickel silver wire material For the production of ballpoint pen refills, approximately 15 to 20 mm long wire sections are bored through the center. A stepped contour is inserted in the tip, that a ball of tungsten carbide is pressed in and fixed by a final crimp so that it can rotate without play, but does not detach itself from the lead tip.
- the nickel silver alloy must have a cold workability of at least 40% to allow a crack-free crimping of the tip around the ball.
- the ink consumption of a ballpoint pen is determined by the wear of the ball seat by the ball of tungsten carbide. Accordingly, the material should also be corrosion resistant to ink. Both the required cold workability and the corrosion resistance is ensured by the nickel silver alloy according to the invention.
- the cast blanks were subsequently subjected to several rolling passes at 750 ° C 45% reduced.
- 6 mm thick sheets prepared therefrom by milling on both sides were cold rolled to 4 mm, then soft annealed at 650 ° C. for three hours. Then these sheets were cold rolled to 2.88 mm, then again annealed at 650 ° C for three hours and cold rolled to final thickness 2.0 mm. Finally, the strips were stress relieved at 300 ° C.
- Table 2 contains the mechanical properties obtained after annealing at 300 ° C: Table 2: Mechanical properties of alloys HV10 Rp0.2 / MPa Rm / MPa A5 /% CA 202 582 658 23 CC 242 712 769 6 CD 247 752 788 10
- the silicon-containing variants CC and CD are harder and achieve higher strength values than the comparative material CA. Accordingly, microstructures of alloys CC and CD show a much finer grain structure than the microstructures of silicon-free alloy CA. The gain in mechanical strength is explained by the formation of fine silicides: In the scanning electron microscope, small spherical and ellipsoidal precipitates can be seen in alloys CC and CD.
- the local elemental composition of the ⁇ -phase, the ⁇ -phase and the silicides was determined by means of energy-dispersive X-ray analysis in a scanning electron microscope.
- the energy-dispersive X-ray analysis provides for the silicides a composition of the elements Cu, Zn, Ni, Mn, Si and Fe, each with significant proportions. Outside the silicides, weight fractions of less than 0.4% are obtained for the elements Mn, Si and Fe.
- the high levels of Cu and Zn in the X-ray signal of the silicides are due to the small size of the silicides from the environment in which the silicide is embedded.
- the signals for Cu and Zn are very precisely in the ratio obtained for the pure ⁇ phase or the pure ⁇ phase.
- the X-ray signal for the element Ni is composed of the signal of the nickel bonded in the silicide and the background signal of the nickel in the Cu-Ni-Zn matrix.
- the contribution of the nickel background signal can be determined from the local Cu content by means of the information about the phase ( ⁇ or ⁇ ) and of the phase-corresponding Cu: Ni ratio and subtracted from the Ni total signal.
- the thus determined nickel content of the silicide can then be related to the elements Mn, Fe and Si. If the background signal represents a contribution greater than 50% of the total nickel signal, then the statement about the nickel content in the silicide is subject to great uncertainties. Values between 4 and 5.7 were determined for the weight ratio (Ni + Fe + Mn) / Si in the silicide using this method.
- the weight ratio (Ni + Fe) / Mn always assumes values greater than 4.
- the number of silicides per unit area was determined. For variant CC, at least 20 particles with a diameter of less than 1 ⁇ m were determined to be 100 ⁇ m 2 .
- the X-ray analysis provides for the silicides a composition of the elements Cu, Zn, Ni, Mn, Si and Co, each with significant proportions. Outside the silicides, the elements Mn, Si are obtained and Co parts by weight less than 0.4%.
- the X-ray signal of the silicides contains high proportions of Cu and Zn.
- the number of silicides per unit area was determined.
- at least 20 particles with a diameter of less than 2 ⁇ m were determined to be 5000 ⁇ m 2 .
- the pure metals copper, zinc, nickel and lead were melted in a medium frequency furnace together with a corresponding amount of binary master alloys of copper and iron, copper and silicon and copper and manganese and cast into steel chill molds with a diameter of 220 mm.
- the oxidized surfaces of the solidified cylindrical ingots were removed by machining.
- 500 mm long ingots were pressed into wires with a diameter of 4 mm.
- the chemical composition of a pressed wire was analyzed wet-chemically with ICP-OES (in% by weight): Cu Zn Ni Mn Si pb Fe Co Press wire 48.4 39.6 9.5 0.36 0.32 1.3 0.49 0.01
- the melting point of the alloy is approximately 850 ° C.
- the wire was subjected to a heat treatment at 800 ° C and then quenched.
- a deformation with a degree of deformation of 28% was applied.
- the hardness was 175 HV 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Conductive Materials (AREA)
- Silicon Compounds (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
Die Erfindung betrifft eine Kupfer-Nickel-Zink-Legierung gemäß dem Oberbegriff des Anspruchs 1 sowie Verfahren zur Herstellung von Halbzeugen aus dieser Legierung.The invention relates to a copper-nickel-zinc alloy according to the preamble of claim 1 and to processes for producing semi-finished products from this alloy.
Legierungen aus Kupfer, Nickel und Zink werden ihrer silberähnlichen Farben wegen als Neusilber bezeichnet. Technisch gebräuchliche Legierungen haben zwischen 47 bis 64 Gew.-% Kupfer und zwischen 10 bis 25 Gew.-% Nickel. Bei dreh- und bohrfähigen Legierungen werden üblicherweise bis zu 2,5 Gew.-% Blei als Spanbrecher zugesetzt, bei Gusslegierungen sogar bis zu 9 Gew.-%. Der Rest ist Zink. Hierbei handelt es sich um einphasige Werkstoffe, die lediglich eine α-Phase ausbilden.Alloys of copper, nickel and zinc are called because of their silver-like colors because of German silver. Commonly used alloys have between 47 to 64% by weight of copper and between 10 to 25% by weight of nickel. In turnable and drillable alloys usually up to 2.5 wt .-% lead are added as a chip breaker, in casting alloys even up to 9 wt .-%. The rest is zinc. These are single-phase materials that form only an α-phase.
Als Beimengungen können handelsübliche Neusilberlegierungen zudem 0,5 bis 0,7 Gew.-% Mangan enthalten, um die Glühbrüchigkeit zu vermindern. Auch wirkt der Manganzusatz desoxidierend und entschwefelnd.As admixtures commercial nickel silver alloys may also contain 0.5 to 0.7 wt .-% manganese to reduce the Glühbrüchigkeit. Also, the manganese additive acts deoxidizing and desulfurizing.
Durch den Nickelanteil verändert sich einerseits die Farbe, ab etwa 12 Gew.-% Nickel haben die Werkstoffe ein reinweißes bis silbergraues Aussehen. Andererseits werden auch verhältnismäßig gute Korrosionsbeständigkeit und erhöhte Festigkeitswerte erzielt. Allerdings haben Neusilberlegierungen gegenüber Kupfer einen erhöhten elektrischen Widerstand und dementsprechend auch eine geringere Wärmeleitfähigkeit.On the one hand, the color changes due to the nickel content; from about 12 wt.% Nickel, the materials have a pure white to silver-gray appearance. On the other hand, also relatively good corrosion resistance and increased strength values are achieved. However, nickel silver alloys have an increased electrical resistance compared to copper and accordingly also a lower thermal conductivity.
Neusilberlegierungen entsprechen in ihrem Gefügeaufbau etwa den α- bzw. den (α+β)-Messingen, da Nickel praktisch äquivalent Kupfer ersetzt. Von den genormten Kupfer-Nickel-Zink-Knetlegierungen bilden CuNi25Zn15, CuNi18Zn20, CuNi12Zn24, CuNi18Zn19Pb und CuNi12Zn30Pb ein homogenes α-Gefüge aus. Dagegen liegt die zweiphasige Knetlegierung CuNi10Zn42Pb im (α+β)-Gebiet.Nickel silver alloys in their microstructure correspond approximately to the .alpha. Or the .alpha. + .Beta. Brass rings, since nickel replaces copper virtually equivalently. Of the standard copper-nickel-zinc wrought alloys, CuNi25Zn15, CuNi18Zn20, CuNi12Zn24, CuNi18Zn19Pb and CuNi12Zn30Pb form a homogeneous α-microstructure. In contrast, the two-phase wrought alloy CuNi10Zn42Pb is in the (α + β) area.
Des Weiteren sind auch Kupfer-Nickel-Zink-Legierungen mit über eine Desoxidationswirkung hinausgehendem wesentlich erhöhtem Mangangehalt bekannt. Beispielsweise weist eine bekannte Legierung CuNi12Zn38Mn5Pb2 einen deutlich geringeren Kupferanteil sowie einen erhöhten Zinkanteil auf. Derartige Legierungen sind wiederum zweiphasige Werkstoffe, bestehend aus α- und β-Phase. Zur besseren Zerspanbarkeit ist in den manganhaltigen Neusilberlegierungen zu einem wesentlichen Anteil das Element Pb als Spanbrecher vorhanden.Furthermore, copper-nickel-zinc alloys having a significantly increased manganese content beyond a deoxidizing effect are also known. For example, a known alloy CuNi12Zn38Mn5Pb2 has a significantly lower copper content and an increased zinc content. Such alloys are again biphasic materials consisting of α- and β-phase. For better machinability, the element Pb is present as a chip breaker in the manganese-containing nickel silver alloys to a significant extent.
Blei macht die Knetlegierungen leichter zerspanbar, verringert jedoch die Zähigkeit und steigert die Warmrissempfindlichkeit während des Glühens. Die Warmumformbarkeit von α-Legierungen wird durch Blei stark beeinträchtigt, so dass diese meist nur kalt umgeformt werden. Dagegen wird die gute Warmumformbarkeit der (α+β)-Legierungen durch Blei nicht wesentlich beeinflusst.Lead makes wrought alloys more easily machinable, but reduces toughness and increases hot tear sensitivity during annealing. The hot workability of α-alloys is strongly affected by lead, so that they are usually only cold formed. In contrast, the good hot workability of the (α + β) alloys by lead is not significantly affected.
Auch in der Patentliteratur sind bereits Neusilberlegierungen mit Mangan beschrieben. Beispielsweise sind aus der Druckschrift
Aus der Druckschrift
Weitere Kupfer-Nickel-Zink-Legierungen für Halbzeuge und Gegenstände, die hoch belastet und extrem auf Verschleiß beansprucht werden und einen hohen Reibungsbeiwert aufweisen, insbesondere für Synchronringe, sind aus der Druckschrift
Aus der Druckschrift
Die Druckschrift
Aus der Druckschrift
Der Erfindung liegt die Aufgabe zugrunde, Neusilberlegierungen bezüglich ihrer mechanischen Eigenschaften, ihrer Bearbeitbarkeit und ihrer Materialkosten weiterzuentwickeln. Insbesondere soll die Legierung in Bezug auf Festigkeit und Duktilität mit ferritischen CrMo-Stählen vergleichbar sein und gleichzeitig gut zerspanbar und beständig gegen wasserbasierte Schreibgele sein.The invention has for its object to further develop nickel silver alloys with respect to their mechanical properties, their workability and their material costs. In particular, the alloy should be comparable in strength and ductility to CrMo ferritic steels and at the same time be easy to machine and resistant to water-based writing gels.
Die Erfindung wird bezüglich einer Kupfer-Nickel-Zink-Legierung durch die Merkmale des Anspruchs 1 und bezüglich eines Herstellungsverfahrens durch die Merkmale der Ansprüche 17 und 18 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The invention is reproduced with respect to a copper-nickel-zinc alloy by the features of claim 1 and with respect to a manufacturing method by the features of claims 17 and 18. The other dependent claims relate to advantageous embodiments and further developments of the invention.
Die Erfindung schließt eine Kupfer-Nickel-Zink-Legierung mit folgender Zusammensetzung in Gewichts-% ein:
Rest Zn sowie unvermeidbare Verunreinigungen,
wobei die Summe aus Fe-Gehalt und dem Doppelten des Co-Gehalts mindestens 0,1 Gewichts-% beträgt und wobei in einem aus α- und β-Phase bestehenden Gefüge nickel-, eisen- und manganhaltige und/oder nickel-, kobalt- und manganhaltige Mischsilizide als kugelförmige oder ellipsoidale Partikel eingelagert sind.Residual Zn as well as unavoidable impurities,
wherein the sum of Fe content and twice the Co content is at least 0.1% by weight and wherein in a microstructure consisting of α- and β-phase nickel-, iron- and manganese-containing and / or nickel-, cobalt- and manganese-containing mixed silicides are incorporated as spherical or ellipsoidal particles.
Die Erfindung geht dabei von der Überlegung aus, dass das Gefüge von Neusilber-Werkstoffen durch Zulegieren von Silizium so variiert wird, dass Silizid-Ausscheidungen gebildet werden. Silizide als intermetallische Verbindungen besitzen mit ca. 800 HV eine deutlich höhere Härte als die α- und β-Phase des Matrixgefüges. Prinzipiell wird zur Verbesserung des Kalt- und Warmumformvermögens und zur Steigerung der Festigkeit Mangan zulegiert. Zudem wirkt Mangan desoxidierend und entschwefelnd. Silizium bildet bei gleichzeitiger Anwesenheit von Mangan, Eisen und Nickel Mischsilizide mit ungefähren Zusammensetzungen vorwiegend zwischen (Mn,Fe,Ni)2Si und (Mn,Fe,Ni)3Si. Analog bildet Silizium bei gleichzeitiger Anwesenheit von Mangan, Kobalt und Nickel Mischsilizide der ungefähren Zusammensetzungen (Mn,Co,Ni)xSiy, wobei x ≥ y. Ferner können auch Mischsilizide gebildet werden, die neben Mangan und Nickel sowohl Eisen als auch Kobalt enthalten. Die Mischsilizide liegen fein verteilt als kugelförmige oder ellipsoidale Partikel im Matrixgefüge vor. Der Durchmesser der Partikel ist in der Regel kleiner als 2 µm. Das Gefüge enthält keine großflächigen und daher leicht aus dem Matrixgefüge heraus brechenden Silizide. Diese vorteilhafte Eigenschaft wird bei der erfindungsgemäßen Legierung insbesondere durch die geringen Anteile an Mangan und Eisen bzw. Kobalt erzielt. Sowohl Eisen als auch Kobalt wirken als Keimstellen für die Silizidbildung, d.h. bei Anwesenheit von Eisen und/oder Kobalt genügen bereits geringe Abweichungen vom thermodynamischen Gleichgewicht, so dass kleine Ausscheidungen entstehen. Diese Ausscheidungskeime, die bei der vorliegenden Legierungszusammensetzung auch Nickel enthalten können, sind im Gefüge fein verteilt. An sie lagern sich weitere Silizide, die nun auch Mangan enthalten, bevorzugt an. Durch den geringen Mangangehalt der Legierung wird die Größe der einzelnen Silizide begrenzt. Geringe Mengen an Eisen und/oder Kobalt in Kombination mit einer geringen Menge Mangan sind also die Voraussetzung für die Bildung der Mischsilizide, die für die Erfindung maßgeblich sind. Erfindungsgemäß wird die Mindestmenge an Eisen bzw. Kobalt dadurch definiert, dass die Summe aus dem Eisengehalt und dem Doppelten des Kobaltgehalts mindestens 0,1 % beträgt.The invention is based on the consideration that the microstructure of nickel silver materials by alloying of silicon is varied so that silicide precipitates are formed. Silicides as intermetallic compounds have a considerably higher hardness of about 800 HV than the α and β phase of the matrix structure. In principle, to improve the cold and hot forming capacity and to increase the strength of manganese added. In addition, manganese acts deoxidizing and desulfurizing. In the presence of manganese, iron and nickel, silicon forms mixed silicides of approximate composition predominantly between (Mn, Fe, Ni) 2 Si and (Mn, Fe, Ni) 3 Si. Similarly, silicon in the coexistence of manganese, cobalt and nickel forms mixed silicides of approximate composition (Mn, Co, Ni) x Si y , where x ≥ y. Furthermore, mixed silicides may be formed which contain both iron and cobalt in addition to manganese and nickel. The mixed silicides are finely distributed as spherical or ellipsoidal particles in the matrix structure. The diameter of the particles is usually less than 2 microns. The microstructure does not contain large-area silicides which therefore easily break out of the matrix structure. This advantageous property is achieved in the alloy according to the invention in particular by the low levels of manganese and iron or cobalt. Both iron and cobalt act as nucleating sites for silicide formation, ie, in the presence of iron and / or cobalt, even small deviations from the thermodynamic equilibrium are sufficient, so that small precipitates are formed. These precipitation nuclei, which may also contain nickel in the present alloy composition, are finely distributed in the microstructure. They are deposited on other silicides, which now also contain manganese, preferably on. Due to the low manganese content of the alloy, the size of the individual silicides is limited. Small amounts of iron and / or cobalt in combination with a small amount of manganese are therefore the prerequisite for the formation of the mixed silicides, which are relevant to the invention. According to the invention, the minimum amount of iron or cobalt is defined by the fact that the sum of the iron content and twice the cobalt content is at least 0.1%.
Für eine kostengünstige Fertigung wird Neusilber mit einem hohen Elementanteil an Zink und einem vergleichsweise niedrigen Gehalt an Nickel und Kupfer bevorzugt. Diese Werkstoffe besitzen ein zweiphasiges Basisgefüge aus gut kalt umformbarer α-Phase und gut warm umformbarer β-Phase. Blei ist als spanbrechender Gefügebestandteil in kleinsten Tröpfchen im Gefüge verteilt. Dies macht die Knetlegierung leichter zerspanbar, wobei eine gute Warmumformbarkeit der zweiphasigen Legierung durch Blei nicht wesentlich beeinträchtigt wird.For low-cost production, nickel silver with a high element content of zinc and a comparatively low content of nickel and copper is preferred. These materials have a two-phase basic structure of good cold-formable α-phase and good heat formable β-phase. Lead is as chip-breaking structural component in the smallest droplets distributed in the structure. This makes the wrought alloy more easily machinable, with good hot workability of the biphasic alloy not being significantly affected by lead.
Die besonderen Vorteile der erfindungsgemäßen Neusilberlegierung sind bezüglich ihrer mechanischen Eigenschaften und ihrer Bearbeitbarkeit zusammenfassend wie folgt zu nennen:
- kostengünstige Neusilberlegierung durch hohen Zinkanteil von ca. 40 %;
- Zugfestigkeit von über 750 MPa;
- Kaltumformvermögen von wenigstens 40 %;
- gute Zerspanbarkeit;
- Möglichkeit zur endmaßnahen Formgebung durch Warmumformung.
- inexpensive nickel silver alloy due to high zinc content of approx. 40%;
- Tensile strength of over 750 MPa;
- Cold workability of at least 40%;
- good machinability;
- Possibility of final shaping by hot forming.
In bevorzugter Ausgestaltung der Erfindung beträgt entweder der Eisengehalt oder der Kobaltgehalt mindestens 0,1 Gewichts-%. Der Gehalt des jeweils anderen Elements kann dann frei zwischen 0 und 0,8 Gewichts-% gewählt werden. Durch den Mindestgehalt von einem der beiden Elemente wird gewährleistet, dass bereits bei geringen Abweichungen vom thermodynamischen Gleichgewicht Ausscheidungskeime in ausreichender Dichte gebildet werden.In a preferred embodiment of the invention, either the iron content or the cobalt content is at least 0.1% by weight. The content of the other element can then be chosen freely between 0 and 0.8% by weight. The minimum content of one of the two elements ensures that even small deviations from the thermodynamic equilibrium precipitate germs are formed in sufficient density.
In einer weiteren bevorzugten Ausgestaltung der Erfindung beträgt die Summe aus dem Eisengehalt und dem Achtfachen des Kobaltgehalts mindestens 0,4 Gewichts-%. Kobalt bildet bevorzugt Ausscheidungskeime. Dies erlaubt, Eisenanteile durch geringe Mengen an Kobalt zu ersetzen. Je nach den genauen Anforderungen an die Legierung kann ein Optimum aus Eigenschaften und Kosten eingestellt werden.In a further preferred embodiment of the invention, the sum of the iron content and eight times the cobalt content is at least 0.4% by weight. Cobalt preferably forms excretory germs. This allows iron to be replaced by small amounts of cobalt. Depending on the exact requirements of the alloy, an optimum of properties and costs can be set.
Eine bevorzugte Ausgestaltung der Erfindung schließt eine Kupfer-Nickel-Zink-Legierung mit folgender Zusammensetzung in Gewichts-% ein:
Rest Zn sowie unvermeidbare Verunreinigungen,
wahlweise bis zu 0,8 % Co,
wobei in einem aus α- und β-Phase bestehenden Gefüge nickel-, eisen- und manganhaltige Mischsilizide als kugelförmige oder ellipsoidale Partikel eingelagert sind.Residual Zn as well as unavoidable impurities,
optionally up to 0.8% Co,
wherein in a structure consisting of α- and β-phase nickel-, iron- and manganese-containing mixed silicides are incorporated as spherical or ellipsoidal particles.
Eisen erhöht bei den Kupfer-Nickel-Zink-Legierungen die Festigkeit und Härte. Die bevorzugte Auswahl des Eisengehalts bewirkt eine geeignete Bildung von eisenhaltigen Ausscheidungskeimen für die erfindungsgemäßen Mischsilizide, so dass diese fein verteilt als kugelförmige oder ellipsoidale Partikel im Matrixgefüge vorliegen. Der Durchmesser der Partikel ist in der Regel kleiner als 1 µm. Besonders bevorzugt ist ein Eisengehalt von 0,4 bis 0,6 Gewichts-%. Wahlweise kann die Legierung durch die Zugabe von geringen Mengen Kobalt unter Beibehaltung der günstigen Eigenschaften modifiziert und so auf die betrieblichen Erfordernisse angepasst werden. Bevorzugt ist ein Kobaltgehalt von bis zu 0,8 Gewichts-%, besonders bevorzugt von bis zu 0,6 Gewichts-%.Iron increases the strength and hardness of the copper-nickel-zinc alloys. The preferred selection of the iron content causes a suitable formation of iron-containing precipitation nuclei for the mixed silicides according to the invention, so that they are finely distributed as spherical or ellipsoidal particles in the matrix structure. The diameter of the particles is usually less than 1 micron. Particularly preferred is an iron content of 0.4 to 0.6% by weight. Alternatively, the alloy can be modified by the addition of small amounts of cobalt while maintaining the favorable properties and so adapted to the operational requirements. A cobalt content of up to 0.8% by weight, more preferably of up to 0.6% by weight, is preferred.
In bevorzugter Ausgestaltung der Erfindung kann die Kupfer-Nickel-Zink-Legierung folgende Zusammensetzung in Gew.-% aufweisen:
Rest Zn sowie unvermeidbare Verunreinigungen,
wahlweise bis zu 0,6 % Co.Residual Zn as well as unavoidable impurities,
optionally up to 0.6% Co.
Die bevorzugte Auswahl des Eisengehalts bewirkt eine geeignete Bildung von eisenhaltigen Ausscheidungskeimen für die erfindungsgemäßen Mischsilizide. Mit einem Nickelanteil von 9,0 bis 9,8 Gew.-% wird eine kostengünstige und gut bearbeitbare Legierung geschaffen. Die Gewichtsanteile von Silizium und Mangan bestimmen letztendlich das Ausmaß und die Topologie der Silizidbildung. Um besonders kleine Silizide zu erhalten, sollte der Mangananteil nicht über 0,4 Gew.-% liegen. Insgesamt kann über die bevorzugten Mangan- und Siliziumanteile letztendlich ein auf die mechanischen Eigenschaften optimierter Werkstoff in Verbindung mit einer guten Bearbeitbarkeit geschaffen werden.The preferred selection of the iron content causes a suitable formation of ferrous precipitate for the mixed silicides according to the invention. With a nickel content of 9.0 to 9.8 wt .-%, a low-cost and easy machinable alloy is created. The proportions by weight of silicon and manganese ultimately determine the extent and topology of silicide formation. In order to obtain particularly small silicides, the manganese content should not exceed 0.4% by weight. Overall, the preferred manganese and silicon fractions can ultimately be used to create a material optimized for mechanical properties in conjunction with good machinability.
In bevorzugter Ausgestaltung der Erfindung kann das Verhältnis der Summe der Gewichtsanteile der in Siliziden abgebundenen Elemente Ni, Fe und Mn zum Gewichtsanteil des in Siliziden abgebundenen Siliziums zwischen 3 und 6,5 liegen. Hierbei werden bevorzugt Mischsilizide mit ungefähren Zusammensetzungen zwischen (Mn,Fe,Ni)2Si und (Mn,Fe,Ni)3Si gebildet. Je nach Zusammensetzung und Prozessführung bei der Herstellung und Bearbeitung können auch in der Stöchiometrie etwas abweichende Mischsilizide entstehen, die beispielsweise auch geringe Anteile anderer Legierungselemente wie Kupfer und Zink enthalten können.In a preferred embodiment of the invention, the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Fe and Mn to the weight fraction of silicon bonded in silicides may be between 3 and 6.5. Here, mixed silicides having approximate compositions between (Mn, Fe, Ni) 2 Si and (Mn, Fe, Ni) 3 Si are preferably formed. Depending on the composition and process management during production and processing, slightly different mixed silicides may also be formed in the stoichiometry, which may also contain, for example, small proportions of other alloying elements such as copper and zinc.
In besonders bevorzugter Ausgestaltung der Erfindung kann das Verhältnis der Summe der Gewichtsanteile der in Siliziden abgebundenen Elemente Ni, Fe und Mn zum Gewichtsanteil des in Siliziden abgebundenen Siliziums zwischen 4 und 6 liegen In diesem Bereich der Konzentrationsverhältnisse ergeben sich günstige Eigenschaften der Legierung.In a particularly preferred embodiment of the invention, the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Fe and Mn to the weight fraction of silicon bonded in silicides can be between 4 and 6. In this range of the concentration ratios, favorable properties of the alloy result.
Bei einer vorteilhaften Ausführungsform der Erfindung kann das Verhältnis der Summe der Gewichtsanteile der in Siliziden abgebundenen Elemente Ni und Fe zum Gewichtsanteil des in Siliziden abgebundenen Mangans mindestens 4 betragen. Aufgrund des geringen Mangangehalts bilden sich kleine Mischsilizide als kugelförmige oder ellipsoide Partikel, die nicht aus dem Matrixgefüge heraus brechen. Der Durchmesser der Partikel ist in der Regel kleiner als 1 µm.In an advantageous embodiment of the invention, the ratio of the sum of the weight fractions of elements bound in silicides Ni and Fe to the proportion by weight of manganese bound in silicides may be at least 4. Due to the low manganese content, small mixed silicides form as spherical or ellipsoidal particles that do not break out of the matrix structure. The diameter of the particles is usually less than 1 micron.
Bei einer besonders vorteilhaften Ausführungsform der Erfindung kann die Flächendichte der Silizide mit einem Partikeldurchmesser von maximal 1 µm mindestens 20 pro 100 µm2 betragen. Dadurch wird gewährleistet, dass ausreichend viele Silizide in günstiger Größe vorhanden sind.In a particularly advantageous embodiment of the invention, the areal density of the silicides with a particle diameter of at most 1 μm can be at least 20 per 100 μm 2 . This ensures that enough silicides are available in a favorable size.
Ein weiterer Aspekt der Erfindung schließt eine Kupfer-Nickel-Zink-Legierung mit folgender Zusammensetzung in Gew.-% ein:
Rest Zn sowie unvermeidbare Verunreinigungen,
wahlweise bis zu 0,8 % Fe,
wobei in einem aus α- und β-Phase bestehenden Gefüge nickel-, kobalt- und manganhaltige Mischsilizide als kugelförmige oder ellipsoidale Partikel eingelagert sind.Residual Zn as well as unavoidable impurities,
optionally up to 0.8% Fe,
wherein in a structure consisting of .alpha. and .beta.-phase, mixed silicides containing nickel, cobalt and manganese are incorporated as spherical or ellipsoidal particles.
Die bevorzugte Auswahl des Kobaltgehalts bewirkt eine geeignete Bildung von kobalthaltigen Ausscheidungskeimen für die erfindungsgemäßen Mischsilizide, so dass diese fein verteilt als kugelförmige oder ellipsoidale Partikel im Matrixgefüge vorliegen. Der Durchmesser der Partikel ist in der Regel kleiner als 2 µm. Wahlweise kann die Legierung durch die Zugabe von geringen Mengen Eisen unter Beibehaltung der günstigen Eigenschaften modifiziert und so auf die betrieblichen Erfordernisse angepasst werden. Bevorzugt ist ein Eisengehalt von bis zu 0,8 Gewichts-%, besonders bevorzugt von bis zu 0,6 Gewichts-%.The preferred selection of the cobalt content brings about a suitable formation of cobalt-containing precipitation germs for the mixed silicides according to the invention, so that they are finely distributed as spherical or ellipsoidal particles in the matrix structure. The diameter of the particles is usually less than 2 microns. Optionally, the alloy can be modified by the addition of small amounts of iron while retaining the favorable properties and so adapted to the operational requirements. An iron content of up to 0.8% by weight, more preferably of up to 0.6% by weight, is preferred.
In bevorzugter Ausgestaltung der Erfindung kann die Kupfer-Nickel-Zink-Legierung folgende Zusammensetzung in Gew.-% aufweisen:
Rest Zn sowie unvermeidbare Verunreinigungen,
wahlweise bis zu 0,6 % Fe.Residual Zn as well as unavoidable impurities,
optionally up to 0.6% Fe.
Die bevorzugte Auswahl des Kobaltgehalts bewirkt eine geeignete Bildung von kobalthaltigen Ausscheidungskeimen für die erfindungsgemäßen Mischsilizide. Mit einem Nickelanteil von 9,0 bis 9,8 Gew.-% wird eine kostengünstige und gut bearbeitbare Legierung geschaffen. Die Gewichtsanteile von Silizium und Mangan bestimmen letztendlich das Ausmaß und die Topologie der Silizidbildung. Um besonders feinkörnige Silizide zu erhalten, sollte der Mangananteil nicht über 0,4 Gew.-% liegen. Insgesamt kann über die bevorzugten Mangan- und Siliziumanteile letztendlich ein auf die mechanischen Eigenschaften optimierter Werkstoff in Verbindung mit einer guten Bearbeitbarkeit geschaffen werden.The preferred selection of the cobalt content causes a suitable formation of cobalt-containing excretion nuclei for the mixed silicides according to the invention. With a nickel content of 9.0 to 9.8 wt .-%, a low-cost and easy machinable alloy is created. The proportions by weight of silicon and manganese ultimately determine the extent and topology of silicide formation. In order to obtain particularly fine-grained silicides, the manganese content should not exceed 0.4% by weight. Overall, the preferred manganese and silicon fractions can ultimately be used to create a material optimized for mechanical properties in conjunction with good machinability.
In bevorzugter Ausgestaltung der Erfindung kann das Verhältnis der Summe der Gewichtsanteile der in Siliziden abgebundenen Elemente Ni, Co und Mn zum Gewichtsanteil des in Siliziden abgebundenen Siliziums zwischen 2,5 und 5 liegen. Hierbei werden bevorzugt Mischsilizide der ungefähren Zusammensetzungen (Mn,Co,Ni)xSiy gebildet, wobei x ≥ y und x < 2,5y. Je nach Zusammensetzung und Prozessführung bei der Herstellung und Bearbeitung können auch in der Stöchiometrie etwas abweichende Mischsilizide entstehen, die beispielsweise auch geringe Anteile anderer Legierungselemente wie Kupfer und Zink enthalten können.In a preferred embodiment of the invention, the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Co and Mn to the weight fraction of silica bound in silicides may be between 2.5 and 5. Here, preferred are mixed silicides of the approximate compositions (Mn, Co, Ni) x Si y , where x ≥ y and x <2.5y. Depending on the composition and process management during production and processing, slightly different mixed silicides may also be formed in the stoichiometry, which may also contain, for example, small proportions of other alloying elements such as copper and zinc.
In besonders bevorzugter Ausgestaltung der Erfindung kann das Verhältnis der Summe der Gewichtsanteile der in Siliziden abgebundenen Elemente Ni, Co und Mn zum Gewichtsanteil des in Siliziden abgebundenen Siliziums zwischen 3 und 4,5 liegen. In diesem Bereich der Konzentrationsverhältnisse ergeben sich günstige Eigenschaften der Legierung.In a particularly preferred embodiment of the invention, the ratio of the sum of the weight fractions of the elements bound in silicides Ni, Co and Mn to the weight fraction of silicon bonded in silicides can be between 3 and 4.5. In this range of concentration ratios, favorable properties of the alloy result.
Bei einer vorteilhaften Ausführungsform der Erfindung kann das Verhältnis der Summe der Gewichtsanteile der in Siliziden abgebundenen Elemente Ni und Co zum Gewichtsanteil des in Siliziden abgebundenen Mangans mindestens 10 betragen. Aufgrund des geringen Mangangehalts bilden sich kleine Mischsilizide als kugelförmige oder ellipsoide Partikel, die nicht aus dem Matrixgefüge heraus brechen. Der Durchmesser der Partikel ist in der Regel kleiner als 2 µm.In an advantageous embodiment of the invention, the ratio of the sum of the weight fractions of elements bound in silicides Ni and Co to the proportion by weight of manganese bound in silicides may be at least 10. Due to the low manganese content, small mixed silicides form as spherical or ellipsoidal particles that do not break out of the matrix structure. The diameter of the particles is usually less than 2 microns.
Vorteilhafterweise kann bei einer erfindungsgemäßen Kupfer-Nickel-Zink-Legierung das Verhältnis des Gewichtsanteils des in Siliziden abgebundenen Nickels zum Gewichtsanteil des in Siliziden abgebundenen Kobalts zwischen 1,5 und 2,5 liegen. Die so gebildeten Silizide tragen zu den vorteilhaften Eigenschaften der Legierung bei.Advantageously, in a copper-nickel-zinc alloy according to the invention, the ratio of the weight fraction of nickel bound in silicides to the weight fraction of cobalt bound in silicides can be between 1.5 and 2.5. The silicides thus formed contribute to the advantageous properties of the alloy.
Bei einer besonders vorteilhaften Ausführungsform der Erfindung kann die Flächendichte der Silizide mit einem Partikeldurchmesser von maximal 2 µm mindestens 20 pro 5000 µm2 betragen. Dadurch wird gewährleistet, dass ausreichend viele Silizide in günstiger Größe vorhanden sind.In a particularly advantageous embodiment of the invention, the surface density of the silicides with a particle diameter of not more than 2 μm may be at least 20 per 5000 μm 2 . This ensures that enough silicides are available in a favorable size.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zur Herstellung von Drähten, Stangen und Profilen aus der erfindungsgemäßen Kupfer-Nickel-Zink Legierung. Die Erfindung schließt ein Verfahren ein, bei dem folgende Schritte durchgeführt werden:
- a) Herstellung von Bolzen mittels Kokillen- oder Strangguss,
- b) Strangpressen,
- c) Wärmebehandlung bei Temperaturen etwas unterhalb der Schmelztemperatur der Legierung mit anschließendem Abschrecken,
- d) Kaltumformung mit Umformgrad mindestens 25 %,
- e) Auslagerungsglühung zwischen 350 °C und 500 °C.
- a) production of bolts by means of chill casting or continuous casting,
- b) extrusion,
- c) heat treatment at temperatures slightly below the melting temperature of the alloy followed by quenching,
- d) cold forming with a degree of deformation of at least 25%,
- e) aging annealing between 350 ° C and 500 ° C.
Die Wärmebehandlung im Schritt c) kann vorzugsweise bei einer Temperatur erfolgen, die 85 bis 95 % der Schmelztemperatur der Legierung, gemessen in °C. beträgt. Die Dauer der Wärmebehandlung kann vorzugsweise zwischen einer Minute und drei Stunden betragen. Durch die Auslagerungsglühung im Schritt e) kann die Festigkeit des Werkstoffs gegenüber der Festigkeit nach der Kaltumformung im Schritt d) gesteigert werden. Mit dieser Vorgehensweise konnte je nach Glühtemperatur eine Steigerung der Härte zwischen 10 % und 20 % erreicht werden.The heat treatment in step c) may preferably be carried out at a temperature which is 85 to 95% of the melting temperature of the alloy, measured in ° C. is. The duration of the heat treatment may preferably be between one minute and three hours. The aging annealing in step e) can increase the strength of the material compared to the strength after cold working in step d). With this approach, depending on the annealing temperature, an increase in hardness between 10% and 20% could be achieved.
Ein weiterer Aspekt der Erfindung betrifft ein alternatives Verfahren zur Herstellung von Drähten aus der erfindungsgemäßen Kupfer-Nickel-Zink Legierung. Die Erfindung schließt ein Verfahren ein, bei dem folgende Schritte durchgeführt werden:
- a) Herstellung von Gießdraht mittels Drahtguss,
- b) mindestens eine Kaltumformung des Drahts,
- c) Wärmebehandlung bei Temperaturen etwas unterhalb der Schmelztemperatur der Legierung mit anschließendem Abschrecken,
- d) Kaltumformung mit Umformgrad mindestens 25 %,
- e) Auslagerungsglühung zwischen 350 °C und 500 °C, so dass eine weitere Steigerung der Festigkeit der Legierung erzielt wird.
- a) production of foundry wire by means of wire casting,
- b) at least one cold forming of the wire,
- c) heat treatment at temperatures slightly below the melting temperature of the alloy followed by quenching,
- d) cold forming with a degree of deformation of at least 25%,
- e) aging annealing between 350 ° C and 500 ° C, leaving another Increasing the strength of the alloy is achieved.
Hochwertigere Minenspitzen für Kugelschreiber werden nicht zuletzt aus ästhetischen Gründen aus Neusilber hergestellt. Diese werden hierbei aus zerspanbarem Neusilber-Drahtmaterial als Knetwerkstoff gefertigt. Zur Herstellung von Kugelschreiberminen werden ungefähr 15 bis 20 mm lange Drahtabschnitte durchgängig zentrisch gebohrt. In die Spitze wird eine stufige Kontur eingebracht, dass eine Kugel aus Wolframcarbid eingedrückt und durch ein abschließendes Crimpen so fixiert wird, dass sie ohne Spiel rotieren kann, aber sich nicht aus der Minenspitze löst. Hierzu muss die Neusilberlegierung ein Kaltumformvermögen von wenigstens 40 % aufweisen, um ein rissfreies Crimpen der Spitze um die Kugel zu ermöglichen. Der Tintenverbrauch eines Kugelschreibers wird durch den Verschleiß des Kugelsitzes durch den Ball aus Wolframcarbid bestimmt. Der Werkstoff sollte demnach auch gegenüber Tinte korrosionsbeständig sein. Sowohl das erforderliche Kaltumformvermögen als auch die Korrosionsbeständigkeit wird von der erfindungsgemäßen Neusilberlegierung gewährleistet.High-quality refill tips for ballpoint pens are made of nickel silver, not least for aesthetic reasons. These are made here of machinable nickel silver wire material as a kneading material. For the production of ballpoint pen refills, approximately 15 to 20 mm long wire sections are bored through the center. A stepped contour is inserted in the tip, that a ball of tungsten carbide is pressed in and fixed by a final crimp so that it can rotate without play, but does not detach itself from the lead tip. For this purpose, the nickel silver alloy must have a cold workability of at least 40% to allow a crack-free crimping of the tip around the ball. The ink consumption of a ballpoint pen is determined by the wear of the ball seat by the ball of tungsten carbide. Accordingly, the material should also be corrosion resistant to ink. Both the required cold workability and the corrosion resistance is ensured by the nickel silver alloy according to the invention.
Ausführungsbeispiele der Erfindung werden im Folgenden näher erläutert.Embodiments of the invention will be explained in more detail below.
Für die Untersuchungen wurden drei Legierungszusammensetzungen CA, CC und CD eines α-β-Neusilbers im Tammann-Ofen zu ca. 25 mm x 60 mm x 100 mm Blöcken vergossen (siehe Tabelle 1).
Die Gussrohlinge wurden anschließend in mehreren Walzstichen bei 750 °C um 45 % reduziert. Daraus durch beidseitiges Fräsen präparierte 6 mm starke Bleche wurden an 4 mm kalt gewalzt, anschließend bei 650 °C drei Stunden weich geglüht. Dann wurden diese Bleche an 2,88 mm kalt gewalzt, anschließend wiederum bei 650°C drei Stunden geglüht und an Enddicke 2,0 mm kalt gewalzt. Abschließend wurden die Bänder bei 300 °C spannungsarm geglüht.The cast blanks were subsequently subjected to several rolling passes at 750 ° C 45% reduced. 6 mm thick sheets prepared therefrom by milling on both sides were cold rolled to 4 mm, then soft annealed at 650 ° C. for three hours. Then these sheets were cold rolled to 2.88 mm, then again annealed at 650 ° C for three hours and cold rolled to final thickness 2.0 mm. Finally, the strips were stress relieved at 300 ° C.
Tabelle 2 enthält die nach dem Glühen bei 300 °C erzielten mechanischen Eigenschaften:
Die siliziumhaltigen Varianten CC und CD sind härter und erreichen höhere Festigkeitswerte als der Vergleichswerkstoff CA. Dem entsprechend zeigen Gefügebilder der Legierungen CC und CD ein sehr viel feinkörnigeres Gefüge als die Gefügebilder der siliziumfreie Legierung CA. Der Zugewinn an mechanischer Festigkeit wird mit der Bildung feiner Silizide erklärt: Im Rasterelektronenmikroskop sind bei den Legierungen CC und CD kleine kugelförmige und ellipsoidale Ausscheidungen zu erkennen.The silicon-containing variants CC and CD are harder and achieve higher strength values than the comparative material CA. Accordingly, microstructures of alloys CC and CD show a much finer grain structure than the microstructures of silicon-free alloy CA. The gain in mechanical strength is explained by the formation of fine silicides: In the scanning electron microscope, small spherical and ellipsoidal precipitates can be seen in alloys CC and CD.
An den Varianten CC und CD wurde mittels energiedispersiver Röntgenstrahlanalyse im Rasterelektronenmikroskop die lokale Elementzusammensetzung der α-Phase, der β-Phase und der Silizide bestimmt.In the variants CC and CD, the local elemental composition of the α-phase, the β-phase and the silicides was determined by means of energy-dispersive X-ray analysis in a scanning electron microscope.
Für die Variante CC erhält man für die α-Phase ungefähr die Gewichtsverhältnisse Cu:Zn = 1,3:1 und Cu:Ni = 5:1. In der β-Phase betragen die Gewichtsverhältnisse ungefähr Cu:Zn = 0,9:1 und Cu:Ni = 3:1 bis 4:1. Die energiedispersive Röntgenstrahlanalyse liefert für die Silizide eine Zusammensetzung aus den Elementen Cu, Zn, Ni, Mn, Si und Fe mit jeweils signifikanten Anteilen. Außerhalb der Silizide erhält man für die Elemente Mn, Si und Fe Gewichtsanteile kleiner 0,4 %. Die hohen Anteile an Cu und Zn im Röntgensignal der Silizide stammen aufgrund der geringen Größe der Silizide aus der Umgebung, in die das Silizid eingebettet ist. Sie stellen quasi das Hintergrundsignal der Matrix dar. Die Signale für Cu und Zn stehen hierbei sehr genau in dem Verhältnis, das man für die reine α-Phase bzw. die reine β-Phase erhält. Das Röntgensignal für das Element Ni setzt sich aus dem Signal des im Silizid abgebundenen Nickels und dem Hintergrundsignal des Nickels in der Cu-Ni-Zn-Matrix zusammen. Der Beitrag des Nickel-Hintergrundsignals lässt sich aus dem lokalen Cu-Gehalt mit Hilfe der Information über die Phase (α oder β) und des der Phase entsprechenden Cu:Ni-Verhältnisses ermitteln und vom Ni-Gesamtsignal subtrahieren. Der so ermittelte Nickel-Gehalt des Silizids lässt sich dann mit den Elementen Mn, Fe und Si in Beziehung setzen. Stellt das Hintergrundsignal einen Beitrag größer 50 % des Nickel-Gesamtsignals dar, dann ist die Aussage über den Nickel-Gehalt im Silizid mit großen Unsicherheiten behaftet. Mit dieser Methode wurden für das Gewichtsverhältnis (Ni+Fe+Mn)/Si im Silizid Werte zwischen 4 und 5,7 ermittelt. Das Gewichtsverhältnis (Ni+Fe)/Mn nimmt immer Werte größer 4 an.For the variant CC, the weight ratios Cu: Zn = 1.3: 1 and Cu: Ni = 5: 1 are obtained for the α-phase. In the β phase, the weight ratios are approximately Cu: Zn = 0.9: 1 and Cu: Ni = 3: 1 to 4: 1. The energy-dispersive X-ray analysis provides for the silicides a composition of the elements Cu, Zn, Ni, Mn, Si and Fe, each with significant proportions. Outside the silicides, weight fractions of less than 0.4% are obtained for the elements Mn, Si and Fe. The high levels of Cu and Zn in the X-ray signal of the silicides are due to the small size of the silicides from the environment in which the silicide is embedded. They represent, so to speak, the background signal of the matrix. The signals for Cu and Zn are very precisely in the ratio obtained for the pure α phase or the pure β phase. The X-ray signal for the element Ni is composed of the signal of the nickel bonded in the silicide and the background signal of the nickel in the Cu-Ni-Zn matrix. The contribution of the nickel background signal can be determined from the local Cu content by means of the information about the phase (α or β) and of the phase-corresponding Cu: Ni ratio and subtracted from the Ni total signal. The thus determined nickel content of the silicide can then be related to the elements Mn, Fe and Si. If the background signal represents a contribution greater than 50% of the total nickel signal, then the statement about the nickel content in the silicide is subject to great uncertainties. Values between 4 and 5.7 were determined for the weight ratio (Ni + Fe + Mn) / Si in the silicide using this method. The weight ratio (Ni + Fe) / Mn always assumes values greater than 4.
Anhand der Aufnahmen des Rasterelektronenmikroskops wurde die Anzahl der Silizide pro Flächeneinheit bestimmt. Für die Variante CC wurden wenigstens 20 Partikel mit Durchmesser kleiner 1 µm auf 100 µm2 ermittelt.Based on the images of the scanning electron microscope, the number of silicides per unit area was determined. For variant CC, at least 20 particles with a diameter of less than 1 μm were determined to be 100 μm 2 .
Auch bei der Variante CD erhält man aus der energiedispersiven Röntgenstrahlanalyse für die α-Phase ungefähr die Gewichtsverhältnisse Cu:Zn = 1,3:1 und Cu:Ni = 5:1. In der β-Phase betragen die Gewichtsverhältnisse ungefähr Cu:Zn = 0,9:1 und Cu:Ni = 3:1 bis 4:1. Die Röntgenstrahlanalyse liefert für die Silizide eine Zusammensetzung aus den Elementen Cu, Zn, Ni, Mn, Si und Co mit jeweils signifikanten Anteilen. Außerhalb der Silizide erhält man für die Elemente Mn, Si und Co Gewichtsanteile kleiner 0,4 %. Wie bei der Variante CC enthält das Röntgensignal der Silizide hohe Anteile an Cu und Zn. Diese Anteile werden aufgrund der geringen Größe der Silizide als Hintergrundsignal der Matrix, in die das Silizid eingebettet ist, interpretiert. Die Signale für Cu und Zn stehen hierbei sehr genau in dem Verhältnis, das man für die reine α-Phase bzw. die reine β-Phase erhält. Das Röntgensignal für das Element Ni wurde - wie bei Variante CC beschrieben - um den Beitrag des Hintergrundsignal des Nickels in der Cu-Ni-Zn-Matrix bereinigt und der so ermittelte Nickel-Gehalt des Silizids dann mit den Elementen Mn, Co und Si in Beziehung gesetzt. Mit dieser Methode wurden für das Gewichtsverhältnis (Ni+Co+Mn)/Si im Silizid Werte zwischen 2,5 und 4,5 ermittelt. Das Gewichtsverhältnis (Ni+Co)/Mn nimmt immer Werte größer 10 an. Ferner nimmt das Verhältnis des in Siliziden abgebundenen Nickels zum in Siliziden abgebundenen Kobalt immer Werte zwischen 1,5 und 2,5 an.Also in the variant CD, the energy dispersive X-ray analysis for the α-phase gives approximately the weight ratios Cu: Zn = 1.3: 1 and Cu: Ni = 5: 1. In the β phase, the weight ratios are approximately Cu: Zn = 0.9: 1 and Cu: Ni = 3: 1 to 4: 1. The X-ray analysis provides for the silicides a composition of the elements Cu, Zn, Ni, Mn, Si and Co, each with significant proportions. Outside the silicides, the elements Mn, Si are obtained and Co parts by weight less than 0.4%. As with the variant CC, the X-ray signal of the silicides contains high proportions of Cu and Zn. Due to the small size of the silicides, these components are interpreted as the background signal of the matrix in which the silicide is embedded. The signals for Cu and Zn are in this case very exactly in the ratio obtained for the pure α-phase or the pure β-phase. The X-ray signal for the element Ni was - as described in variant CC - adjusted by the contribution of the background signal of the nickel in the Cu-Ni-Zn matrix and the thus determined nickel content of the silicide then with the elements Mn, Co and Si in Relationship set. Values between 2.5 and 4.5 were determined for the weight ratio (Ni + Co + Mn) / Si in the silicide using this method. The weight ratio (Ni + Co) / Mn always assumes values greater than 10. Furthermore, the ratio of nickel bound in silicides to cobalt bound in silicides always assumes values between 1.5 and 2.5.
Anhand der Aufnahmen des Rasterelektronenmikroskops wurde die Anzahl der Silizide pro Flächeneinheit bestimmt. Für die Variante CD wurden wenigstens 20 Partikel mit Durchmesser kleiner 2 µm auf 5000 µm2 ermittelt.Based on the images of the scanning electron microscope, the number of silicides per unit area was determined. For the variant CD, at least 20 particles with a diameter of less than 2 μm were determined to be 5000 μm 2 .
Um eine Drahtfertigung nachzustellen, wurden in einem Mittelfrequenzofen die reinen Metalle Kupfer, Zink, Nickel und Blei gemeinsam mit einer entsprechenden Menge an binären Vorlegierungen aus Kupfer und Eisen, Kupfer und Silizium sowie Kupfer und Mangan aufgeschmolzen und in stählerne Standkokillen mit Durchmesser 220 mm vergossen. In Vorbereitung auf das Strangpressen von Drähten wurden die oxidierten Oberflächen der erstarrten zylindrischen Gussblöcke spanend entfernt. Mit Hilfe einer Strangpresse wurden 500 mm lange Gussblöcke zu Drähten mit Durchmesser 4 mm verpresst. Die chemische Zusammensetzung eines Pressdrahtes wurde nasschemisch mit ICP-OES analysiert (Angaben in Gew.-%):
Der Schmelzpunkt der Legierung liegt ungefähr bei 850 °C. Nach dem Strangpressen wurde der Draht einer Wärmebehandlung bei 800 °C unterzogen und anschließend abgeschreckt. Durch Kaltwalzen des Drahtes an Drahtdicke 3 mm wurde eine Umformung mit Umformgrad 28 % aufgebracht. Nach der Kaltumformung betrug die Härte 175 HV 10. Mittels dreistündigem Auslagerungsglühen bei Temperaturen zwischen 350 °C und 500 °C wurde eine Aufhärtung des Werkstoffs erreicht, die sich in Härtewerten bis 207 HV 10 äußert. Diese Steigerung der Festigkeit wird mit der Bildung von Siliziden aus den noch in Lösung befindlichen Elementen während der Auslagerungsglühung erklärt.The melting point of the alloy is approximately 850 ° C. After the extrusion, the wire was subjected to a heat treatment at 800 ° C and then quenched. By cold rolling the wire to a wire thickness of 3 mm, a deformation with a degree of deformation of 28% was applied. After cold working, the hardness was 175 HV 10. Using a three-hour aging process at temperatures between 350 ° C and 500 ° C, a hardening of the material was achieved, which manifests itself in hardness values up to 207 HV 10. This increase in strength is explained by the formation of silicides from the still-in-solution elements during the aging anneal.
Claims (18)
- Copper-nickel-zinc alloy having the following composition [in % by wt.]:
Cu 47.0 to 49.0 %, Ni 8.0 to 10.0 %, Mn 0.2 to 0.6 %, Si 0.05 to 0.4 %, Pb 1.0 to 1.5 %, Fe and/or Co up to 0.8 %, - Copper-nickel-zinc alloy according to Claim 1, characterized in that either the Fe content or the Co content is at least 0.1 % by weight.
- Copper-nickel-zinc alloy according to Claim 1 or 2, characterized in that the total of the Fe content and eight times the Co content is at least 0.4 % by weight.
- Copper-nickel-zinc alloy according to one of Claims 1 to 3 having the following composition [in % by wt.]:
Cu 47.0 to 49.0 %, Ni 8.0 to 10.0 %, Mn 0.2 to 0.6 %, Si 0.05 to 0.4 %, Pb 1.0 to 1.5 %, Fe 0.2 to 0.8 %,
optionally up to 0.8 % Co,
wherein in a structure comprising α and β phases, mixed silicides containing nickel, iron and manganese are embedded as spherical or ellipsoidal particles. - Copper-nickel-zinc alloy according to Claim 4 having the following composition [in % by wt.]:
Cu 47.0 to 49.0 %, Ni 9.0 to 9.8 %, Mn 0.3 to 0.4 %, Si 0.1 to 0.3 %, Pb 1.0 to 1.5 %, Fe 0.4 to 0.6 %,
optionally up to 0.6 % Co,
wherein in a structure comprising α and β phases, mixed silicides containing nickel, iron and manganese are embedded as spherical or ellipsoidal particles. - Copper-nickel-zinc alloy according to Claim 4 or 5, characterized in that the ratio of the total fractions by weight of the elements Ni, Fe and Mn ligated in silicides to the fraction by weight of the silicon ligated in silicides is between 3 and 6.5.
- Copper-nickel-zinc alloy according to Claim 6, characterized in that the ratio of the total fractions by weight of the elements Ni, Fe and Mn ligated in silicides to the fraction by weight of the silicon ligated in silicides is between 4 and 6.
- Copper-nickel-zinc alloy according to one of Claims 4 to 7, characterized in that the ratio of the total fractions by weight of the elements Ni and Fe ligated in silicides to the fraction by weight of the manganese ligated in silicides is at least 4.
- Copper-nickel-zinc alloy according to one of Claims 4 to 8, characterized in that the surface density of silicides with a particle diameter of maximum 1 µm is at least 20 per 100 µm2.
- Copper-nickel-zinc alloy according to one of Claims 1 to 3 having the following composition [in % by wt.]:
Cu 47.0 to 49.0 %, Ni 8.0 to 10.0 %, Mn 0.2 to 0.6 %, Si 0.05 to 0.4 %, Pb 1.0 to 1.5 %, Co 0.1 to 0.8 %,
optionally up to 0.8 % Fe,
wherein in a structure comprising α and β phases, mixed silicides containing nickel, iron and manganese are embedded as spherical or ellipsoidal particles. - Copper-nickel-zinc alloy according to Claim 10 having the following composition [in % by wt.]:
Cu 47.0 to 49.0 %, Ni 9.0 to 9.8 %, Mn 0.3 to 0.4 %, Si 0.1 to 0.3 %, Pb 1.0 to 1.5 %, Co 0.2 to 0.6 %,
optionally up to 0.6 % Fe,
wherein in a structure comprising α and β phases, mixed silicides containing nickel, iron and manganese are embedded as spherical or ellipsoidal particles. - Copper-nickel-zinc alloy according to Claim 10 or 11, characterized in that the ratio of the total fractions by weight of the elements Ni, Co and Mn ligated in silicides to the fraction by weight of the silicon ligated in silicides is between 2.5 and 5.
- Copper-nickel-zinc alloy according to Claim 12, characterized in that the ratio of the total fractions by weight of the elements Ni, Co and Mn ligated in silicides to the fraction by weight of the silicon ligated in silicides is between 3 and 4.5.
- Copper-nickel-zinc alloy according to one of Claims 10 to 13, characterized in that the ratio of the total fractions by weight of the elements Ni and Co ligated in silicides to the fraction by weight of the manganese ligated in silicides is at least 10.
- Copper-nickel-zinc alloy according to one of Claims 10 to 14, characterized in that the ratio of the fraction by weight of the nickel ligated in silicides to the fraction by weight of the cobalt ligated in silicides is between 1.5 and 2.5.
- Copper-nickel-zinc alloy according to one of Claims 10 to 15, characterized in that the surface density of silicides with a particle diameter of maximum 2 µm is at least 20 per 5000 µm2.
- Method of producing wires, profiles and bars from copper-nickelzinc alloys according to one of Claims 1 to 16 comprising the following steps:a. production of bolts by means of gravity die casting or continuous casting,b. extrusion mouldingc. heat treatment at temperatures slightly below the melting temperature of the alloy followed by quenching,d. cold forming with a degree of deformation of at least 25 %,e. age hardening at between 350 °C and 500 °C, so that a further increase in the strength of the alloy is achieved.
- Method of producing wires from copper-nickel-zinc alloys according to one of Claims 1 to 16 comprising the following steps:a. production of continuous cast wire rod by means of wire casting,b. at least one cold forming of the wire,c. heat treatment at temperatures slightly below the melting temperature of the alloy followed by quenching,d. cold forming with a degree of deformation of at least 25 %,e. age hardening at between 350 °C and 500 °C, so that a further increase in the strength of the alloy is achieved.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012004725.8A DE102012004725B4 (en) | 2012-03-07 | 2012-03-07 | Silicon-containing copper-nickel-zinc alloy |
PCT/EP2013/000373 WO2013131604A2 (en) | 2012-03-07 | 2013-02-08 | Copper-nickel-zinc alloy containing silicon |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2823077A2 EP2823077A2 (en) | 2015-01-14 |
EP2823077B1 true EP2823077B1 (en) | 2016-04-06 |
Family
ID=47714016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13704005.1A Active EP2823077B1 (en) | 2012-03-07 | 2013-02-08 | Copper-nickel-zinc alloy containing silicon |
Country Status (7)
Country | Link |
---|---|
US (2) | US9617629B2 (en) |
EP (1) | EP2823077B1 (en) |
JP (1) | JP5850590B2 (en) |
DE (1) | DE102012004725B4 (en) |
MX (1) | MX363002B (en) |
MY (1) | MY171496A (en) |
WO (1) | WO2013131604A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015014856A1 (en) | 2015-11-17 | 2017-05-18 | Wieland-Werke Ag | Copper-nickel-zinc alloy and its use |
CN110952019B (en) * | 2019-12-24 | 2021-09-14 | 宁波博威合金材料股份有限公司 | Free-cutting zinc white copper and preparation method and application thereof |
CN113523266A (en) * | 2020-04-14 | 2021-10-22 | 江苏友和工具有限公司 | Ceramic wafer and processing technology thereof |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE519901A (en) | 1953-05-13 | |||
DE1120151B (en) | 1954-04-26 | 1961-12-21 | Dr Eugen Vaders | High-strength nickel silver alloy |
DE1238220B (en) | 1959-05-06 | 1967-04-06 | Dr Eugen Vaders | Use of a copper-manganese-zinc alloy as a material for machine parts exposed to sliding stress |
DE1205285B (en) * | 1962-12-28 | 1965-11-18 | Ver Deutsche Metallwerke Ag | Use of manganese and silicon-containing copper alloys for items subject to wear and tear |
DE1558817B2 (en) | 1966-09-14 | 1975-02-27 | Vereinigte Deutsche Metallwerke Ag, 6000 Frankfurt | Use of a copper alloy |
US3627593A (en) * | 1969-10-30 | 1971-12-14 | Int Nickel Co | Two phase nickel-zinc alloy |
US4684052A (en) | 1985-05-16 | 1987-08-04 | Handy & Harman | Method of brazing carbide using copper-zinc-manganese-nickel alloys |
US4631171A (en) | 1985-05-16 | 1986-12-23 | Handy & Harman | Copper-zinc-manganese-nickel alloys |
DE3735783C1 (en) | 1987-10-22 | 1989-06-15 | Diehl Gmbh & Co | Use of a copper-zinc alloy |
JPH01177327A (en) | 1988-01-06 | 1989-07-13 | Sanpo Shindo Kogyo Kk | Free cutting copper-based alloy showing silver-white |
JPH0368732A (en) | 1989-08-08 | 1991-03-25 | Nippon Mining Co Ltd | Manufacture of copper alloy and copper alloy material for radiator plate |
DE4339426C2 (en) | 1993-11-18 | 1999-07-01 | Diehl Stiftung & Co | Copper-zinc alloy |
JPH07166279A (en) | 1993-12-09 | 1995-06-27 | Kobe Steel Ltd | Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof |
JP3022488B2 (en) | 1997-06-04 | 2000-03-21 | 社団法人高等技術研究院研究組合 | Resistance spot welding quality control device |
CH693948A5 (en) | 2003-03-21 | 2004-05-14 | Swissmetal Boillat Sa | Copper based alloy used for fabrication of ball-point pen components contains specified amounts of copper, zinc, nickel, manganese and lead |
DE102007029991B4 (en) | 2007-06-28 | 2013-08-01 | Wieland-Werke Ag | Copper-zinc alloy, method of manufacture and use |
DE102009021336B9 (en) | 2009-05-14 | 2024-04-04 | Wieland-Werke Ag | Copper-nickel-zinc alloy and its use |
-
2012
- 2012-03-07 DE DE102012004725.8A patent/DE102012004725B4/en not_active Expired - Fee Related
-
2013
- 2013-02-08 JP JP2014559120A patent/JP5850590B2/en active Active
- 2013-02-08 MX MX2014009958A patent/MX363002B/en unknown
- 2013-02-08 MY MYPI2015700247A patent/MY171496A/en unknown
- 2013-02-08 EP EP13704005.1A patent/EP2823077B1/en active Active
- 2013-02-08 US US14/383,261 patent/US9617629B2/en active Active
- 2013-02-08 WO PCT/EP2013/000373 patent/WO2013131604A2/en active Application Filing
-
2016
- 2016-09-28 US US15/278,448 patent/US9738961B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP2823077A2 (en) | 2015-01-14 |
US9617629B2 (en) | 2017-04-11 |
MX363002B (en) | 2019-03-01 |
MX2014009958A (en) | 2015-07-17 |
DE102012004725A1 (en) | 2013-09-12 |
JP2015514863A (en) | 2015-05-21 |
US20170016097A1 (en) | 2017-01-19 |
JP5850590B2 (en) | 2016-02-03 |
WO2013131604A2 (en) | 2013-09-12 |
MY171496A (en) | 2019-10-15 |
US20150041028A1 (en) | 2015-02-12 |
WO2013131604A3 (en) | 2014-07-10 |
US9738961B2 (en) | 2017-08-22 |
DE102012004725B4 (en) | 2018-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3665312B1 (en) | Copper alloy, use of a copper alloy, sanitary fitting and method for producing a sanitary fitting | |
DE102009021336B4 (en) | Copper-nickel-zinc alloy and its use | |
EP3377663B1 (en) | Copper-nickel-zinc alloy and use thereof | |
EP1888798B1 (en) | Aluminium plain bearing alloy | |
DE102016008754B4 (en) | Copper-nickel-tin alloy, process for their production and their use | |
EP2013371A2 (en) | Copper-nickel-tin alloy and its use | |
DE102016008753B4 (en) | Copper-nickel-tin alloy, process for their production and their use | |
EP2742161B1 (en) | Copper zinc alloy | |
AT522440A4 (en) | Multi-layer plain bearing element | |
EP3004413B1 (en) | Refill for a ball-point pen and use thereof | |
DE102017113216A1 (en) | Monotectic aluminum plain bearing alloy and process for its production and thus manufactured sliding bearing | |
EP2823077B1 (en) | Copper-nickel-zinc alloy containing silicon | |
DE1558622B2 (en) | Alloys based on copper | |
DE102013005158A1 (en) | copper alloy | |
DE102013014502A1 (en) | copper alloy | |
EP2906733B1 (en) | Material for electric contact components | |
DE19756815A1 (en) | Copper-tin-titanium alloy | |
EP3992319A1 (en) | Alloy product made of a lead-free copper-zinc alloy and method for producing the same | |
EP1279748B1 (en) | Aluminum bronze with high wear resistance | |
EP2450463B1 (en) | Aluminium alloy | |
DE10136787C2 (en) | aluminum Bronze | |
DE102009047909B4 (en) | Palladium jewelery alloy | |
DE1558624B1 (en) | COPPER ALLOY WITH IMPROVED STRENGTH AND ELONGATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140816 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151021 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 787921 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOHEST AG, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013002470 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Ref country code: NL Ref legal event code: MP Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160806 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160706 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160808 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013002470 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
26N | No opposition filed |
Effective date: 20170110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170208 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170208 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 787921 Country of ref document: AT Kind code of ref document: T Effective date: 20180208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160406 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231212 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240229 Year of fee payment: 12 Ref country code: CH Payment date: 20240301 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240111 Year of fee payment: 12 |