EP2822375A1 - Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l'invention - Google Patents

Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l'invention

Info

Publication number
EP2822375A1
EP2822375A1 EP13714675.9A EP13714675A EP2822375A1 EP 2822375 A1 EP2822375 A1 EP 2822375A1 EP 13714675 A EP13714675 A EP 13714675A EP 2822375 A1 EP2822375 A1 EP 2822375A1
Authority
EP
European Patent Office
Prior art keywords
drying
mold
wall
pot
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13714675.9A
Other languages
German (de)
English (en)
Inventor
Guy De La Martiniere
Marc MIQUEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fertil
Original Assignee
Fertil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fertil filed Critical Fertil
Publication of EP2822375A1 publication Critical patent/EP2822375A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • A01G9/029Receptacles for seedlings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • B28B7/344Moulds, cores, or mandrels of special material, e.g. destructible materials from absorbent or liquid- or gas-permeable materials, e.g. plaster moulds in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/20Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/04Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in presses or clamping devices

Definitions

  • Biodegradable pot drying plant, manufacturing facility and associated manufacturing method, and biodegradable pot obtained according to the invention are Biodegradable pot drying plant, manufacturing facility and associated manufacturing method, and biodegradable pot obtained according to the invention
  • the invention relates to a plant for drying a thin-walled biodegradable pot, of the order of 0.5 to 3 mm, suitable for growing plants, a method and an associated pot.
  • Biodegradable pots are generally manufactured in the following manner.
  • a mixture of water and organic material such as peat, wood fiber, etc., makes it possible to obtain a liquid paste, which is molded by suction of the paste into molds with a wall of mesh material (in wire cloth, nylon fabric, etc.) and shaped to the shape of the desired pot.
  • the molded jars are then demolded and transferred to a drying tray either directly by means of a compressed air blowing device or via a counter-mold for transfer with the aid of a device. blowing with compressed air, then the tray is transferred to a hot air oven for drying the pots.
  • the drying time is of the order of a few tens of minutes to two hours, depending on the composition of the dough and the thickness of the walls of the pots in particular. After drying, the pots are stacked for storage and sent to users, including horticulture professionals.
  • the invention aims to improve the quality of the surface condition of the walls of the pots, in order to facilitate unstacking of the pots.
  • the invention proposes a new plant for drying pots, installation comprising a drying mold whose wall has a shape adapted to a corresponding shape of a wall of a molded pot to dry, and a means for heating the wall of the drying mold at a temperature above 160 ° C.
  • a drying mold whose wall has a shape adapted to a corresponding shape of a wall of a molded pot to dry
  • a means for heating the wall of the drying mold at a temperature above 160 ° C.
  • the pots are therefore degraded a little less quickly, and the work of horticulturists who handle them for several weeks is greatly facilitated.
  • the drying of the pots in mold avoids the deformation of the pots during the transfer of the pots after molding and before drying, as is the case in the prior art.
  • drying at an elevated temperature, greater than 160 ° C. in combination with heating the wall of the mold in contact with the wall of the pot to be dried, allow for faster drying of the pots, which also limits the deformation of the molds. pots during the drying time, deformation due to the gravity and the weight of the wet paste. Fast and fast drying also allows a significant reduction in energy consumption for drying.
  • the drying plant may also include means for drawing a fluid such as water and / or water vapor through at least a portion of the wall of the drying mold at a nozzle suction for example.
  • a suction nozzle on the wall of the mold is sufficient to suck the fluid.
  • a small number of suction nozzles, for example 2 to 10, distributed over the entire wall of the mold allows a more homogeneous suction.
  • the suction can be carried out before drying, to drain the pot, to extract as much liquid as possible before drying, in order to limit the drying time, thus to limit the deformation of the pots and to limit the energy consumption. .
  • Suction can also be performed during the drying of the pots, to suck up the water vapor produced during drying, but also to suck a little more water contained in the wet pots.
  • hot water is easier to evacuate, to suck than cold water; thus, while it is no longer possible to extract water from a cold pot (after molding and before drying) with a given depression, it is still possible to extract hot water from a heated pot having the same hygrometry with the same depression, without spraying the hot water. This further limits the amount of energy to be supplied during drying to vaporize the water contained in the wet pot, and also limits the duration of drying.
  • the wall of the drying mold is preferably made of a solid material, or a perforated material such as perforated sheet having a percentage of opening (that is to say the area of the holes divided by the total area of the wall of the drying mold) is less than 25%, that is to say at least two times lower than a percentage of opening corresponding to the mesh of the screened walls of the molding molds.
  • the installation may further comprise means for closing the drying mold. This limits the volume of air to be heated during the drying of the pot, and consequently limits the energy required for drying.
  • the means for closing the drying mold is a cover.
  • the volume of air to be heated is thus limited to the volume of the drying mold.
  • the closure means is a counter-drying mold whose wall has a shape adapted to a corresponding shape of a wall of the pot. In this case there is no more air to be heated unnecessarily, only the pot that fills the space between the drying mold and the drying counter-mold is heated.
  • the installation may further comprise means for heating the wall of the counter-drying mold at a temperature above 160 ° C, and preferably between 180 to 240 ° C. There is thus a more efficient and faster heating, which acts simultaneously on both sides of the walls of the pot to be dried.
  • the installation may further comprise a pressure means for compressing the pot between the counter-drying mold and the drying mold.
  • the pot is thus immobilized between the mold and the counter-mold so that, before being dry, it can only take the form imposed by the walls of the mold and counter-mold; and pressing the counter-mold against the mold has a mechanical effect of crushing the asperities of the walls of the wet pots; this further improves the depilability of dry pots.
  • pressing the mold against the mold has a spin effect, mechanical drive water before drying, but also during the drying of the pot, which further limits the duration of drying and consumption energy.
  • the drying installation according to the invention may further comprise means for injecting an inert gas into the drying mold.
  • the inert gas is, for example, carbon dioxide or nitrogen, preferably at a high temperature to maintain the heat of the mold.
  • the heat supplied by the heating means is conveyed to the heart of the material of the pot to be dried by the gases, in particular the water vapor produced by evaporation of the water.
  • the injection of a gas makes it possible to maintain a vector for efficient transport of heat, while evacuating water vapor; the use of an inert gas limits the risk of burning the heated organic material.
  • an installation according to the invention can of course comprise not one but a plurality of drying molds fixed on a tray or a roller.
  • the mechanical movement of the molds for example between a molding station and a drying station, is thus facilitated.
  • the invention also relates to an installation for manufacturing a thin-walled biodegradable pot for the cultivation of plants, comprising:
  • a molding mold one wall of which has a shape adapted to a corresponding shape of the wall of a pot to be manufactured, the wall of the molding mold being made of a mesh material, and a suction means for sucking and plating a liquid paste against the wall of the molding mold,
  • a counter-transfer mold whose wall has a shape adapted to a corresponding shape of the wall of a pot to be manufactured
  • a pot is molded by suction of dough into the molding mold, and then drained.
  • the molded and wet jar is then transferred to the drying mold via the shaped transfer counter mold adapted to the jar.
  • the pot does not deform during transfer to the drying mold.
  • the wall of the drying mold being made of a solid material or a perforated material having a small opening percentage, the asperities formed on the walls of the pot during molding are attenuated, flattened or even erased.
  • the drying is then carried out in the drying mold, at a temperature above 160 ° C, and preferably between 180 and 240 ° C, as explained above.
  • the invention also relates to a drying process that can be carried out on an installation as described above, the method comprising the steps of:
  • Heating the mold at an elevated temperature allows for thorough drying and fast drying, which reduces the deformations of the molded pot when it is still malleable, and limits the energy consumption required for drying.
  • the predefined time for drying is of the order of a few tens of seconds to a few minutes, depending on the composition of the dough to be dried and the thickness of the pot.
  • the method may also include a step of aspirating a fluid through the wall of the mold, said suction step being performed before and / or during the drying step.
  • the drying time is thus further reduced.
  • the method may also comprise a step of positioning and pressing a counter-drying mold against the wall of the pot, for compressing said pot between the mold and the counter-drying mold, the pressing step being carried out during the drying step. The drying time is thus further reduced.
  • the invention relates to a biodegradable thin-walled pot adapted for the cultivation of plants, obtained by a process as described above and / or from a drying or manufacturing plant as described above, and an assembly comprising a plant in a pot according to the invention.
  • FIG. 1 schematically shows the steps of a method according to the invention
  • FIG. 2 schematically shows the main elements of an installation according to the invention
  • a plant for manufacturing pots according to the invention on an industrial scale comprises in particular a pot-molding installation, a pot-transfer installation and a pot-drying installation, all three operating in an integrated manner, in a clocked manner.
  • An installation is shown very schematically in Figure 2, suitable for the manufacture of only three pots for the sake of clarity of the scheme.
  • the movement drive means of the molds are not shown, only represented by arrows the possible movements of the molds.
  • the molding installation comprises a plurality of molding molds 11 fixed for example in rows on a plate 12.
  • the molding molds have, for example, a cone section 11, a substantially parallelepiped shape, etc.
  • a driving means (not shown in Fig. 2) drives the plate (arrow 13) and the molds into a bath 14 of molding paste, and a suction means 15 draws the paste through the walls. molds 11 for pressing a quantity of suitable paste against the wall of the molds 11.
  • the transfer device comprises a plurality of counter-molds 21 fixed to a plate 22 in correspondence with the molding molds, a turning means (not shown) for turning the plate 12 (arrow 16), the driving means ( arrow 13) then transferring the molded pots onto or into the counter-molds 21, a pressing means (not shown) for pressing the counter-molds 21 against the molded dough in the molds 11 to drain the molded pots, and means (not shown) for transferring (arrow 23) the pots into or onto the drying molds 31.
  • the drying installation comprises a plurality of drying molds 31 fixed in rows on a plate 32, in correspondence with the counter molds 21 of transfer.
  • Each drying mold 31 has a shape wall adapted to a corresponding shape of a wall of a molded pot to dry.
  • the drying installation also comprises means for heating the wall of the drying mold at a temperature above 160 ° C, and preferably between 180 and 240 ° C.
  • the heating means comprises for example:
  • Means for regulating an electric current supplied to the resistors and / or a resistivity value of the electric heating resistors, as a function of the desired temperature for the wall of the drying mold.
  • the drying plant is preferably completed by means for aspirating a fluid such as water and / or water vapor through at least a portion of the wall of each drying mold.
  • the suction means comprises for example:
  • a vacuum pump 15 connected by a pipe to one or more connection nozzles fixed to an outer shell of the drying molds, and
  • a means for regulating the vacuum generated by the vacuum pump, as a function of the quantity of fluid to be extracted, and the force to be applied to extract the water or the steam from the pot to be dried; .
  • the same vacuum pump 15 is used for the drying molds and for the molding molds. Of course, it is also possible to use separate vacuum pumps for these two functions.
  • the wall of the drying molds is made of a material resistant to heat, resistant to the pressure difference that can be generated by the suction means, and resistant in time to use in wet environment in particular.
  • the wall of the molds is thus made for example of stainless steel, aluminum, etc.
  • the wall of the molds is made of a solid material. It may also be made of a perforated material such as perforated sheet having a percentage of opening is less than 25%. In this case, to allow the implementation of the suction means, it is expected to position the molds in an airtight shell for example, connected by a nozzle to the connection pipe of the vacuum pump.
  • the drying installation is advantageously completed by a closing means of the molds of drying type mold against which a wall has a shape adapted to a corresponding shape of a wall of the pot.
  • the closing means consists of a plate 42 on which a plurality of counter-molds 41 are fixed.
  • a heating means (not shown) is provided for heating the wall of the counter-mold for drying at a temperature greater than 160 ° C, and preferably between 180 to 240 ° C; the heating means is for example similar to the heating means of the mold.
  • a pressing means is also provided for pressing the counter-mold against the mold to compress the pot between the counter-drying mold and the drying mold.
  • the pressure means comprises, for example, means for translational movement of the mold 31 (arrow 34) and pressing the mold 31 on the corresponding counter-mold 41, according to a predefined pressure.
  • a preferred method that can be implemented on an installation such as that described above comprises the following steps: an ET1 molding step, an ET2 transfer step and an ET3 drying step.
  • the molding molds are dipped in a bath of liquid paste, and the paste is sucked against the wall of the molding molds.
  • the molded pots are first drained by a counter-mold and then transferred to the counter-mold.
  • the pots are deposited against the transfer mold in the drying molds, the wall of the drying molds being heated to a temperature greater than 160 ° C (ET30), and preferably between 180 and 240 ° C, for a predefined time of the order of a few tens of seconds to a few minutes.
  • a step of positioning and heating (ET32) a counter-mold for drying against the pots, and / or
  • a step ET4 demolding and stacking is performed at the end of drying. Note that an installation according to the invention was carried out using molding molds and drying molds of the female type (concave), and cons-molds transfer and drying of male type (convex). In this configuration, the pots are molded and dried in molds, and transferred to counter molds. But the opposite can of course be considered.
  • the installation according to the invention was tested at different temperatures, and the quality of the pots obtained was tested in order to optimize the manufacture of the pots.
  • biochemical stability index An important parameter for characterizing pots is the biochemical stability index. This standardized index makes it possible objectively to quantify the kinetics of degradation of organic materials, and more precisely the quantity of organic matter remaining in the soil (and enriching the soil), at 5-10 years. .
  • the calculation of this index takes into account the composition of the material, and in particular its composition of soluble sugar, cellulose and lignin, main components of any organic material and whose proposals condition the biodegradability.
  • An index of the order of 1 corresponds to a biological material whose biodegradability is the worst, for example pine bark, known to degrade very slowly.
  • an index close to 0 corresponds to a degradant material very quickly, straw for example.
  • pots obtained by drying at a temperature above 160 ° C have a biochemical stability index of 0.52, well above the index of biochemical stability of dried pots at lower temperatures. They are therefore less rapidly biodegradable, which gives them better mechanical strength throughout the growing season when they must be handled filled and wet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

L'invention concerne une installation de séchage d'un pot biodégradable à paroi mince, installation comprenant un moule de séchage dont une paroi a une forme adaptée à une forme correspondante d'une paroi d'un pot moulé à sécher, et un moyen pour chauffer la paroi du moule de séchage à une température supérieure à 160°C, et de préférence comprise entre 180 et 240°C. L'invention concerne également : · une installation de fabrication de pots comprenant une installation de séchage selon l'invention, · un procédé de séchage de pots, · un pot obtenu à partir d'une installation ou d'un procédé selon l'invention, et un ensemble comprenant une plante dans un pot selon l'invention. Application à fabrication de pots pour la culture de végétaux.

Description

Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l 'invention
Domaine technique et état de l'art
L'invention concerne une installation de séchage d'un pot biodégradable à paroi mince, de l'ordre de 0,5 à 3 mm, adapté pour la culture de végétaux, un procédé et un pot associés.
Les pots biodégradables sont généralement fabriqués de la manière suivante. Un mélange d'eau et de matière organique telle que de la tourbe, de la fibre de bois, etc., permet d'obtenir une pâte liquide, qui est moulée par aspiration de la pâte dans des moules à paroi en matériau grillagé (en toile métallique, en toile nylon, etc.) et de forme adaptée à la forme du pot recherchée. Les pots moulés sont ensuite démoulés et transférés sur un plateau de séchage soit directement à l'aide d'un dispositif de soufflage à air comprimé soit par l'intermédiaire d'un contre-moule de transfert à l'aide d'un dispositif de soufflage à air comprimé, puis le plateau est transféré dans un four à air chaud pour le séchage des pots. La durée de séchage est de l'ordre de quelques dizaines de minutes à deux heures, en fonction de la composition de la pâte et de l'épaisseur des parois des pots notamment. Après séchage, les pots sont empilés pour être stockés puis envoyés en piles aux utilisateurs, qui sont notamment des professionnels de l'horticulture.
On constate dans la pratique lors d'une utilisation industrielle en horticulture, à grande échelle donc, que le dépilage des pots est difficile, notamment le dépilage mécanique. La difficulté de dépilage s'explique par des formes inhomogènes des pots après séchage. En effet, tant qu'ils ne sont pas secs, les pots ont tendance à se déformer entre la fin du moulage et la fin du séchage, lors de leur transfert et de leur déplacement dans le séchoir notamment. Egalement, du simple fait de la gravité et du poids de la pâte mouillée, la paroi du pot a tendance à se tasser, à se plisser tant que la paroi n'est pas complètement sèche et ce même si les pots ne sont pas manipulés. Ceci est dû à la malléabilité de la pâte mouillée. Les déformations perdurent sur le produit fini sec et provoquent les difficultés de dépilage et d'emploi des pots.
On constate également que, lors de l'utilisation des pots, après remplissage et arrosage des pots pour une mise en culture de plantes, les pots se dégradent progressivement, ce qui rend leur manipulation difficile tout au long du processus de culture. On constate encore que la stabilité de la matière organique correspond à celle des matières premières d'origine, et que le séchage n'améliore pas cette stabilité.
Description de l'invention L'invention vise à améliorer la qualité de l'état de surface des parois des pots, afin de faciliter le dépilage des pots.
Pour cela, l'invention propose une nouvelle installation de séchage de pots, installation comprenant un moule de séchage dont une paroi a une forme adaptée à une forme correspondante d'une paroi d'un pot moulé à sécher, et un moyen pour chauffer la paroi du moule de séchage à une température supérieure à 160°C. Dans ces conditions de séchage, on constate que la forme des pots est améliorée, plus homogène d'un pot à l'autre. Les pots obtenus sont ainsi plus faciles à empiler et surtout plus faciles à dépiler mécaniquement.
On constate également que, lors de leur utilisation ultérieure, après avoir été remplis de terreau de culture et mouillés, les pots obtenus à partir d'une installation selon l'invention présentent, par rapport aux pots obtenus à partir d'une installation antérieure :
• un meilleur maintien de la résistance mécanique des pots au cours de la culture,
• une stabilité de la matière organique améliorée par rapport à celle des deux composants d'origine,
Les pots se dégradent donc un peu moins vite, et le travail des horticulteurs qui les manipulent pendant plusieurs semaines est ainsi grandement facilité. Le séchage des pots en moule évite la déformation des pots lors du transfert des pots après moulage et avant séchage, comme c'est le cas dans la technique antérieure. Par ailleurs, un séchage à une température élevée, supérieure à 160°C, en combinaison avec un chauffage de la paroi du moule au contact de la paroi du pot à sécher, permettent un séchage plus rapide des pots, qui limite également la déformation des pots pendant le temps de séchage, déformation due à la gravité et au poids de la pâte mouillée. Un séchage à coeur et rapide permet également une baisse significative de la consommation d'énergie pour le séchage.
Des essais réalisés à des températures comprises entre 180 et 240°C ont donné les meilleurs résultats, notamment pour des pots à base de tourbe et de fibre de bois. Un séchage complet peut ainsi être obtenu en un temps compris entre quelques dizaines de secondes à quelques minutes, en fonction de la composition de la pâte utilisée et de l'épaisseur des pots. Avec un chauffage au delà de 260°C, on constate une modification non souhaitée de certaines propriétés structurelles des pots : perte de masse sèche, changement de structure de la matière constituant les pots, etc. et un risque important de carbonisation de la matière constituant les pots.
L'installation de séchage peut également comprendre un moyen pour aspirer un fluide tel que de l'eau et / ou de la vapeur d'eau, à travers au moins une partie de la paroi du moule de séchage, au niveau d'une buse d'aspiration par exemple. Une buse d'aspiration sur la paroi du moule suffit pour aspirer le fluide. Toutefois, un petit nombre de buses d'aspiration, par exemple 2 à 10, réparties sur toute la paroi du moule, permet une aspiration plus homogène. L'aspiration peut être réalisée avant le séchage, pour égoutter le pot, en extraire à froid le plus de liquide possible avant séchage, afin de limiter la durée de séchage, donc de limiter la déformation des pots et de limiter la consommation d'énergie. L'aspiration peut également être réalisée pendant le séchage des pots, pour aspirer la vapeur d'eau produite durant le séchage, mais également pour aspirer un peu plus l'eau contenue dans les pots mouillés. En effet, l'eau chaude est plus facile à évacuer, à aspirer que l'eau froide ; ainsi, alors qu'il n'est plus possible d'extraire de l'eau d'un pot froid (après moulage et avant séchage) avec une dépression donnée, il est encore possible d'extraire de l'eau chaude d'un pot chauffé ayant le même taux d'hygrométrie avec la même dépression, sans vaporiser l'eau chaude. On limite ainsi encore la quantité d'énergie à fournir lors du séchage pour vaporiser l'eau contenu dans le pot mouillé, et on limite également la durée du séchage. La paroi du moule de séchage est réalisée de préférence en un matériau plein, ou en un matériau ajouré tel que de la tôle ajourée dont un pourcentage d'ouverture (c'est-à-dire la surface des trous divisée par la surface totale de la paroi du moule de séchage) est inférieure à 25%, c'est-à-dire au moins deux fois inférieur à un pourcentage d'ouverture correspondant aux mailles des parois grillagées des moules de moulage. Lors du moulage du pot dans le moule de moulage, la pâte mouillée est aspirée, plaquée contre la paroi grillagée du moule de moulage, de sorte que la paroi extérieure du pot mouillé présente des aspérités ayant la forme géométrique des mailles de la paroi grillagée du moule de moulage. En séchant le pot dans un moule de séchage à paroi pleine ou à paroi ajourée ayant un pourcentage d'ouverture plus petit, on constate une diminution, un aplatissement de ces aspérités. La paroi des pots après séchage est ainsi plus lisse, de sorte que les pots sont plus facilement dépilables. Cette diminution des aspérités est encore accentuée lorsque les fluides sont aspirés par la paroi du moule de séchage, car l'aspiration entraîne un placage accentué du pot contre la paroi du moule de séchage.
L'installation peut encore comprendre un moyen de fermeture du moule de séchage. On limite ainsi le volume d'air à chauffer pendant le séchage du pot, et on limite en conséquence l'énergie nécessaire au séchage.
Selon une variante, le moyen de fermeture du moule de séchage est un couvercle. Le volume d'air à chauffer est ainsi limité au volume du moule de séchage.
Selon une autre variante, le moyen de fermeture est un contre-moule de séchage dont une paroi a une forme adaptée à une forme correspondante d'une paroi du pot. Il n'y a dans ce cas plus d'air à chauffer inutilement, seul est chauffé le pot qui remplit l'espace entre le moule de séchage et le contre-moule de séchage.
L'installation peut comprendre en complément un moyen pour chauffer la paroi du contre-moule de séchage à une température supérieure à 160°C, et de préférence comprise entre 180 à 240°C. On a ainsi un chauffage plus efficace et plus rapide, qui vient agir simultanément sur les deux flancs des parois du pot à sécher.
L'installation peut encore comprendre un moyen de pression, pour comprimer le pot entre le contre-moule de séchage et le moule de séchage. Le pot est ainsi immobilisé entre le moule et le contre-moule de sorte que, avant d'être sec, il ne peut que prendre la forme imposée par les parois du moule et du contre-moule ; et le pressage du contre-moule contre le moule a un effet mécanique d'écrasement des aspérités des parois des pots mouillés ; ceci améliore encore la dépilabilité des pots secs. Par ailleurs, le pressage du contre-moule contre le moule a un effet d'essorage, d'entraînement mécanique de l'eau avant le séchage, mais également pendant le séchage du pot, ce qui limite encore la durée du séchage et la consommation d'énergie.
L'installation de séchage selon l'invention peut encore comprendre un moyen pour injecter un gaz inerte dans le moule de séchage. Le gaz inerte est par exemple du gaz carbonique ou de l'azote, de préférence à haute température pour conserver la chaleur du moule. Lors du séchage, la chaleur fournie par le ou les moyens de chauffage est véhiculée jusqu'au coeur du matériau du pot à sécher par les gaz, notamment la vapeur d'eau produite par évaporation de l'eau. L'évacuation de la vapeur d'eau au fur et à mesure du séchage rend ainsi le chauffage moins efficace, du simple fait de la disparition progressive du vecteur de la chaleur. L'injection d'un gaz permet de maintenir un vecteur pour un transport efficace de la chaleur, tout en évacuant la vapeur d'eau ; l'utilisation d'un gaz inerte limite les risques de combustion de la matière organique chauffée. A une échelle semi-industrielle ou industrielle, une installation selon l'invention peut bien sûr comprendre non pas un mais une pluralité de moules de séchage fixés sur un plateau ou un rouleau. Le déplacement mécanique des moules, par exemple entre un poste de moulage et un poste de séchage, est ainsi facilité.
L'invention concerne également une installation pour la fabrication d'un pot biodégradable à paroi mince pour la culture de végétaux, installation comprenant :
• un moule de moulage, dont une paroi a une forme adaptée à une forme correspondante de la paroi d'un pot à fabriquer, la paroi du moule de moulage étant réalisée en un matériau grillagé, et un moyen d'aspiration pour aspirer et plaquer une pâte liquide contre la paroi du moule de moulage,
• un contre-moule de transfert, dont une paroi a une forme adaptée à une forme correspondante de la paroi d'un pot à fabriquer,
• une installation de séchage telle que décrite ci-dessus, dans laquelle la paroi du moule de séchage est réalisée en un matériau plein ou en un matériau ajouré dont un pourcentage d'ouverture est au moins deux fois inférieur à un pourcentage d'ouverture correspondant du matériau grillagé formant la paroi du moule de moulage.
Dans une telle installation, un pot est moulé par aspiration de pâte dans le moule de moulage, puis égoutté. Le pot moulé et mouillé est ensuite transféré vers le moule de séchage par l'intermédiaire du contre-moule de transfert de forme adaptée au pot. Ainsi, le pot ne se déforme pas lors du transfert vers le moule de séchage. De plus, la paroi du moule de séchage étant réalisée en un matériau plein ou en un matériau ajouré présentant un petit pourcentage d'ouverture, les aspérités formées sur les parois du pot lors du moulage sont atténuées, aplaties, voire effacées. Le séchage est ensuite réalisé dans le moule de séchage, à une température supérieure à 160°C, et de préférence comprise entre 180 et 240°C, comme expliqué précédemment.
L'invention concerne également un procédé de séchage susceptible d'être mis en oeuvre sur une installation telle que décrite ci-dessus, procédé comprenant les étapes consistant à :
• déposer un pot moulé dans le moule de séchage,
• chauffer la paroi du moule de séchage pendant un temps prédéfini à une température supérieure à 160°C, et de préférence comprise entre 180 et 240°C.
Le chauffage du moule à une température élevée permet un séchage à coeur et un séchage rapide, qui réduit les déformations du pot moulé lorsqu'il est encore malléable, et limite la consommation d'énergie nécessaire pour le séchage.
Le temps prédéfini pour le séchage est de l'ordre de quelques dizaines de secondes à quelques minutes, selon la composition de la pâte à sécher et l'épaisseur du pot.
Le procédé peut également comprendre une étape d'aspiration d'un fluide à travers la paroi du moule, la dite étape d'aspiration étant réalisée avant et / ou pendant l'étape de séchage. La durée du séchage est ainsi encore diminuée. Le procédé peut également comprendre une étape de positionnement et de pressage d'un contre-moule de séchage contre la paroi du pot, pour comprimer le dit pot entre le moule et le contre-moule de séchage, l'étape de pressage étant réalisée pendant l'étape de séchage. La durée du séchage est ainsi encore diminuée.
L'invention concerne enfin un pot biodégradable à paroi mince adapté pour la culture de végétaux, obtenu par un procédé tel que décrit ci-dessus et / ou à partir d'une installation de séchage ou de fabrication telle que décrite ci- dessus, et un ensemble comprenant une plante dans un pot selon l'invention.
Brève description des figures
L'invention sera mieux comprise, et d'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description qui suit d'exemples d'installation et de procédé selon l'invention. Ces exemples sont donnés à titre non limitatif. La description est à lire en relation avec les dessins annexés dans lesquels :
• la figure 1 présente schématiquement les étapes d'un procédé selon l'invention
• la figure 2 présente schématiquement les principaux éléments d'une installation selon l'invention
Description d'un mode de réalisation de l'invention
Comme dit précédemment, l'invention propose une solution pour améliorer le séchage des pots biodégradables lors d'une fabrication industrielle de tels pots, l'amélioration du séchage entraînant une amélioration notable de la dépilabilité des pots, mais également une meilleure stabilité de la matière organique entraînant une meilleure résistance mécanique des pots. Une installation de fabrication de pots selon l'invention à une échelle industrielle comprend notamment une installation de moulage de pots, une installation de transfert de pots et une installation de séchage de pots, toutes trois fonctionnant de façon intégré, de manière cadencée. Une installation est représentée très schématiquement sur la figure2, adaptée pour la fabrication de seulement trois pots par souci de clarté du schéma. Par souci de simplification également, les moyens d'entraînement en mouvement des moules ne sont pas représentés, seuls sont représentés par des flèches les mouvements possibles des moules.
L'installation de moulage comprend une pluralité de moules de moulage 11 fixés par exemple en rangées sur un plateau 12. Les moules de moulage ont par exemple une forme de tronçon de cône 11, une forme sensiblement parallélépipédique, etc. Un moyen d'entraînement (non représenté fig. 2) entraîne le plateau (flèche 13) et les moules à l'intérieur d'un bain 14 de pâte à mouler, et un moyen d'aspiration 15 aspire la pâte à travers les parois des moules 11 pour plaquer une quantité de pâte appropriée contre la paroi des moule 11.
L'installation de transfert comprend une pluralité de contre-moules 21 fixés sur un plateau 22 en correspondance avec les moules de moulage, un moyen de retournement (non représenté) pour retourner le plateau 12 (flèche 16), le moyen d'entraînement (flèche 13) transférant alors les pots moulés sur ou dans les contre-moules 21, un moyen de pression (non représenté) pour presser les contre-moules 21 contre la pâte moulée dans les moules 11 pour égoutter les pots moulés, et un moyen (non représenté) pour transférer (flèche 23) les pots dans ou sur les moules de séchage 31.
L'installation de séchage comprend une pluralité de moules de séchage 31 fixés en rangées sur un plateau 32, en correspondance avec les contre-moules 21 de transfert. Chaque moule de séchage 31 a une paroi de forme adaptée à une forme correspondante d'une paroi d'un pot moulé à sécher. L'installation de séchage comprend également un moyen pour chauffer la paroi du moule de séchage à une température supérieure à 160°C, et de préférence comprise entre 180 et 240°C. Le moyen de chauffage comprend par exemple :
• une pluralité de résistances électriques 33, une résistance étant enroulée autour et à l'extérieur de chaque moule de séchage, et
· un moyen (non représenté) pour réguler un courant électrique fourni aux résistances et / ou une valeur de résistivité des résistances de chauffage électrique, en fonction de la température souhaitée pour la paroi du moule de séchage.
L'installation de séchage est de préférence complétée par un moyen pour aspirer un fluide tel que de l'eau et / ou de la vapeur d'eau, à travers au moins une partie de la paroi de chaque moule de séchage. Le moyen d'aspiration comprend par exemple :
• une pompe à vide 15, reliée par un tuyau à une ou plusieurs buses de raccordement fixées sur une coque externe des moules de séchage, et
• un moyen de régulation (non représenté) de la dépression engendrée par la pompe à vide, en fonction de la quantité de fluide à extraire, et de la force à appliquer pour extraire l'eau ou la vapeur d'eau du pot à sécher. Dans l'installation représentée, la même pompe à vide 15 est utilisée pour les moules de séchage et pour les moules de moulage. Bien sûr, il est également possible d'utiliser des pompes à vide distinctes pour ces deux fonctions.
La paroi des moules de séchage est réalisée en un matériau résistant à la chaleur, résistant à la différence de pression susceptible d'être générée par le moyen d'aspiration, et résistant dans le temps à une utilisation en milieu humide notamment. La paroi des moules est ainsi réalisée par exemple en inox, en aluminium, etc. De préférence, la paroi des moules est réalisée en un matériau plein. Elle peut également être réalisée en un matériau ajouré tel que de la tôle ajourée dont un pourcentage d'ouverture est inférieur à 25%. Dans ce cas, pour permettre la mise en oeuvre du moyen d'aspiration, on prévoit de positionner les moules dans une coque étanche à l'air par exemple, reliée par une buse au tuyau de raccordement de la pompe à vide.
L'installation de séchage est avantageusement complétée par un moyen de fermeture des moules de séchage, de type contre-moule dont une paroi a une forme adaptée à une forme correspondante d'une paroi du pot. Dans l'exemple représenté fig. 2, le moyen de fermeture est constitué d'un plateau 42 sur lequel sont fixés une pluralité de contre- moules 41. Un moyen de chauffage (non représenté) est prévu pour chauffer la paroi du contre-moule de séchage à une température supérieure à 160°C, et de préférence comprise entre 180 à 240°C ; le moyen de chauffage est par exemple similaire au moyen de chauffage du moule. Un moyen de pression est également prévu, pour presser le contre-moule contre le moule, afin de comprimer le pot entre le contre-moule de séchage et le moule de séchage. Le moyen de pression comprend par exemple un moyen pour déplacer en translation le moule 31 (flèche 34) et presser le moule 31 sur le contre-moule correspondant 41, selon une pression prédéfinie. Un procédé préféré susceptible d'être mis en oeuvre sur une installation telle que celle décrite ci-dessus comprend les étapes suivantes : une étape de moulage ET1, une étape de transfert ET2 et une étape de séchage ET3.
Lors de l'étape de moulage ET1, les moules de moulage sont trempés dans un bain de pâte liquide, et la pâte est aspirée contre la paroi des moules de moulage. Lors de l'étape de transfert ET2, les pots moulés sont d'abord égouttés par un contre-moule puis transférés sur le contre-moule.
Lors de l'étape de séchage ET3, les pots sont déposés du contre-moule de transfert dans les moules de séchage, la paroi des moules de séchage étant chauffée à une température supérieure à 160°C (ET30), et de préférence comprise entre 180 et 240°C, pendant un temps prédéfini de l'ordre de quelques dizaines de secondes à quelques minutes.
Peuvent également être réalisées, avant et / ou pendant l'étape de séchage :
· une étape d'aspiration (ET31) d'un fluide à travers la paroi des moules ou des contre-moules, et / ou
• une étape de positionnement et de chauffage (ET32) d'un contre-moule de séchage contre les pots, et / ou
• une étape de positionnement et de pressage (ET33) d'un contre-moule de séchage contre les pots, pour comprimer les dits pots entre les moules et les contre-moules de séchage.
Une étape ET4 de démoulage et d'empilage est réalisée en fin de séchage. A noter qu'une installation selon l'invention a été réalisée en utilisant des moules de moulage et des moules de séchage de type femelle (concave), et des contre-moules de transfert et de séchage de type mâle (convexe). Dans cette configuration, les pots sont moulés et séchés "dans" des moules, et transférés "sur" des contre-moules. Mais l'inverse peut bien sûr être envisagé.
L'installation selon l'invention a été testée à différentes températures, et la qualité des pots obtenus testée afin d'optimiser la fabrication des pots.
Un paramètre important pour caractériser les pots est l'indice de stabilité biochimique. Cet indice normalisé permet de quantifier objectivement la cinétique de dégradation des matériaux organiques, et plus précisément la quantité de matière organique restant dans le sol (et enrichissant le sol), à 5-10 ans. . Le calcul de cet indice prend en compte la composition du matériau, et notamment sa composition en sucre soluble, cellulose et lignine, composants principaux de tout matériau organique et dont les propositions conditionnent la biodégradabilité. Un indice de l'ordre de 1 correspond à un matériau biologique dont la biodégradabilité est la plus mauvaise, par exemple de l'écorce de pin, connue pour se dégrader très lentement. A l'inverse, un indice proche de 0 correspond à un matériau de dégradant très vite, de la paille par exemple.
L'analyse de la stabilité biochimique de pots réalisés à l'aide d'une installation selon l'invention donne les résultats suivants, pour des pots en sortie de l'installation : Séchage avec Séchage avec
T < 140-160°C 160°C < T < 240°C pourcentage (en poids) de matière organique (MO) dans un pot 84.2 % 85.8 % pourcentage (en poids) de sucre soluble dans la matière organique 2 % 6.9 % pourcentage (en poids) de cellulose dans la matière organique 51.2 % 49.8 % pourcentage (en poids) de lignine dans la matière organique 32.8 % 36.3 %
Indice de stabilité biochimique 0.35 0.52
Ainsi les pots obtenus par un séchage à une température supérieure à 160°C ont un indice de stabilité biochimique de 0.52, bien supérieur à l'indice de stabilité biochimique des pots séchés à plus basse température. Ils sont donc moins rapidement biodégradables, ce qui leur confère une meilleure résistance mécanique pendant toute la période de culture où ils doivent être manipulés remplis et humides.
Ceci a également été vérifié au cours d'essais de culture : les pots remplis et humides commencent à se déchirer moyenne au bout d'un temps globalement plus long que les pots antérieurs.

Claims

REVENDICATIONS
1. Installation de séchage d'un pot biodégradable à paroi mince pour la culture de végétaux, installation comprenant un moule de séchage dont une paroi a une forme adaptée à une forme correspondante d'une paroi d'un pot moulé à sécher, et un moyen pour chauffer la paroi du moule de séchage à une température supérieure à 160°C, et de préférence comprise entre 180 et 240°C.
2. Installation selon la revendication 1, comprenant également un moyen pour aspirer un fluide tel que de l'eau et / ou de la vapeur d'eau, à travers au moins une partie de la paroi du moule de séchage.
3. Installation selon l'une des revendications 1 ou 2, dans laquelle la paroi du moule de séchage est réalisée en un matériau plein, ou en un matériau ajouré dont un pourcentage d'ouverture est inférieur à 25%.
4. Installation selon l'une des revendications 1 à 3, comprenant également un moyen de fermeture du moule de séchage.
5. Installation selon la revendication 4, dans laquelle le moyen de fermeture est un contre-moule de séchage dont une paroi a une forme adaptée à une forme correspondante d'une paroi du pot.
6. Installation selon la revendication 5, comprenant également un moyen pour chauffer la paroi du contre-moule de séchage à une température supérieure à 160°C, et de préférence comprise entre 180 à 240°C.
7. Installation selon l'une des revendications 5 ou 6, comprenant également un moyen de pression, pour comprimer le pot entre le contre-moule de séchage et le moule de séchage.
8. Installation selon la revendication 4, dans laquelle le moyen de fermeture du moule de séchage est un couvercle.
9. Installation selon l'une des revendications précédentes, comprenant également un moyen pour injecter un gaz inerte dans le moule de séchage.
10. Installation selon l'une des revendications précédentes, comprenant une pluralité de moules de séchage fixés sur un plateau ou un rouleau.
11. Installation pour la fabrication d'un pot biodégradable à paroi mince pour la culture de végétaux, installation comprenant :
· un moule de moulage, dont une paroi a une forme adaptée à une forme correspondante d'un pot à fabriquer, la paroi du moule de moulage étant réalisée en un matériau grillagé, et un moyen d'aspiration pour aspirer et plaquer une pâte liquide contre la paroi du moule de moulage,
• un contre-moule de transfert, dont une paroi a une forme adaptée à une forme correspondante d'un pot à fabriquer, et
· une installation de séchage selon l'une des revendications précédentes, dans laquelle la paroi du moule de séchage est réalisée en un matériau plein ou en un matériau ajouré dont un pourcentage d'ouverture est au moins deux fois inférieur à un pourcentage d'ouverture correspondant du matériau grillagé formant la paroi du moule de moulage.
12. Procédé de séchage susceptible d'être mis en oeuvre sur une installation selon l'une des revendications précédentes, procédé comprenant les étapes consistant à :
· déposer un pot moulé dans le moule de séchage,
• chauffer la paroi du moule de séchage pendant un temps prédéfini à une température supérieure à 160°C, et de préférence comprise entre 180 et 240°C.
13. Procédé selon la revendication 11, dans lequel le temps prédéfini est de l'ordre de quelques dizaines de secondes à quelques minutes.
14. Procédé selon la revendication 11, comprenant également une étape d'aspiration d'un fluide à travers la paroi du moule, la dite étape d'aspiration étant réalisée avant et / ou pendant l'étape de séchage.
15. Procédé selon l'une des revendications 11 ou 13, comprenant également une étape de positionnement et de pressage d'un contre-moule contre le moule, pour comprimer le dit pot entre le contre-moule et le moule, l'étape de pressage étant réalisée pendant l'étape de séchage.
16. Pot biodégradable à paroi mince adapté pour la culture de végétaux, obtenu par un procédé selon l'une des revendications 12 à 15 ou à partir d'une installation selon l'une des revendications 1 à 11.
17. Ensemble comprenant une plante dans un pot selon la revendication 16.
EP13714675.9A 2012-03-07 2013-03-01 Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l'invention Withdrawn EP2822375A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252049A FR2987718B1 (fr) 2012-03-07 2012-03-07 Installation de sechage de pot biodegradable, installation de fabrication et procede de fabrication associe, et pot biodegradable obtenu selon l'invention
PCT/FR2013/050440 WO2013132177A1 (fr) 2012-03-07 2013-03-01 Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l'invention

Publications (1)

Publication Number Publication Date
EP2822375A1 true EP2822375A1 (fr) 2015-01-14

Family

ID=48050052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13714675.9A Withdrawn EP2822375A1 (fr) 2012-03-07 2013-03-01 Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l'invention

Country Status (5)

Country Link
US (1) US20150033624A1 (fr)
EP (1) EP2822375A1 (fr)
CA (1) CA2865990A1 (fr)
FR (1) FR2987718B1 (fr)
WO (1) WO2013132177A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180030658A1 (en) * 2016-07-26 2018-02-01 Footprint International, LLC Methods and Apparatus For Manufacturing Fiber-Based Produce Containers
FR3062863A1 (fr) * 2017-02-14 2018-08-17 Francois Ruffenach Element de recouvrement d’une surface et son procede de fabrication
CN110545973A (zh) * 2017-02-14 2019-12-06 切洛公司 用于制造疏水性元件的方法及其用途
US20220161466A1 (en) * 2017-02-14 2022-05-26 Celloz Method for manufacturing a hydrophobic element
US10377547B2 (en) 2017-05-26 2019-08-13 Footprint International, LLC Methods and apparatus for in-line die cutting of vacuum formed molded pulp containers
WO2018217920A1 (fr) * 2017-05-26 2018-11-29 Footprint International, Inc. Procédés et appareil de découpe à l'emporte-pièce de récipients en pâte à papier formés sous vide
US10240286B2 (en) 2017-05-26 2019-03-26 Footprint International, LLC Die press assembly for drying and cutting molded fiber parts
CN108015881A (zh) * 2017-12-15 2018-05-11 浙江丽尚建材科技有限公司 一种复合墙板的制作方法
FR3132005B1 (fr) 2022-01-22 2024-03-15 Lucie Guillemain Dispositif de culture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131100A (ja) * 1996-11-01 1998-05-19 Nippon Matai Co Ltd パルプモールド用成形型及びそれを用いたパルプモールド品の製造方法
US20050274075A1 (en) * 2004-06-14 2005-12-15 Freund Matthew R Agricultural products developed from manure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798837A (en) * 1973-02-26 1974-03-26 Minnesota Mining & Mfg Bio-active silvicultural container
US6461480B1 (en) * 1998-02-23 2002-10-08 Kao Corporation Method of manufacturing pulp mold formed product
ATE359397T1 (de) * 2002-02-26 2007-05-15 Grenidea Technologies Pte Ltd Verbesserte formstoffaserherstellung
AU2004255125A1 (en) * 2003-07-15 2005-01-20 Natural Fibre Innovations Limited - In Liquidation Hair felt
DE102007053139B4 (de) * 2007-11-08 2010-02-04 Deutsche Solar Ag Trocknungs-Vorrichtung und Verfahren zur Trocknung keramischer Formkörper
FR2927899B1 (fr) * 2008-02-27 2012-12-14 Univ Rennes Materiau horticole biodegradable et d'interet agronomique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131100A (ja) * 1996-11-01 1998-05-19 Nippon Matai Co Ltd パルプモールド用成形型及びそれを用いたパルプモールド品の製造方法
US20050274075A1 (en) * 2004-06-14 2005-12-15 Freund Matthew R Agricultural products developed from manure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013132177A1 *

Also Published As

Publication number Publication date
FR2987718A1 (fr) 2013-09-13
FR2987718B1 (fr) 2014-03-14
CA2865990A1 (fr) 2013-09-12
US20150033624A1 (en) 2015-02-05
WO2013132177A1 (fr) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2013132177A1 (fr) Installation de séchage de pot biodégradable, installation de fabrication et procédé de fabrication associé, et pot biodégradable obtenu selon l&#39;invention
EP0920376B1 (fr) Procede de fabrication d&#39;un vitrage en verre feuillete et dispositif pour l&#39;execution de ce procede
FR2977128A1 (fr) Procede de fabrication de tablettes de cafe soluble
EP4251534A1 (fr) Ensemble comprenant une capsule destinée à recevoir une substance pour la préparation d&#39;une boisson et un opercule
WO2004040985A1 (fr) Procede de fabrication d&#39;un produit alimentaire a base de cereales, cuit dans un moule.
FR2500021A1 (fr) Procede et dispositif pour le sechage d&#39;objets en materiaux fibreux
EP0000111A1 (fr) Appareil pour le traitement thermique d&#39;un matelas de fibres portant un liant thermoducissable
EP3048892B1 (fr) Procédé de cuisson de produits de boulangerie, viennoiserie et pâtisserie avec préchauffage direct, et ses dispositifs de mise en oeuvre
FR2573628A1 (fr) Procede de fabrication d&#39;un produit alimentaire et produit obtenu
EP3857146B1 (fr) Récipient de lyophilisation
LU502616B1 (fr) Capsule destinée à recevoir une substance pour la préparation d&#39;une boisson
LU502615B1 (fr) Capsule destinée à recevoir une substance pour la préparation d&#39;une boisson
CA2626870C (fr) Appareil refroidi pour le depot par plasma d&#39;une couche barriere sur un recipient
LU502617B1 (fr) Capsule destinée à recevoir une substance pour la préparation d&#39;une boisson
LU502614B1 (fr) Capsule destinée à recevoir une substance pour la préparation d&#39;une boisson
FR2651645A1 (fr) Dispositif pour l&#39;amelioration de la qualite de la vendange par maturation ou surmaturation, en vue de la vinification.
FR3122971A3 (fr) Récipient de levage
FR3094467A1 (fr) Installation de séchage en continu de matériau à sécher
FR2902292A1 (fr) Procede de division volumetrique de pate et son dispositif de mise en oeuvre
FR2711622A1 (fr) Elément de protection contre les chocs, procédé de fabrication et dispositif pour la mise en Óoeuvre du procédé.
WO2020053430A1 (fr) Dispositif de plaque support de produits de boulangerie ou similaires pour leur transport sur une ligne de production
EP0480839B1 (fr) Procédé de fabrication de pièces conformées à partir de pâte à papier et dispositif pour sa mise en oeuvre
FR3100689A1 (fr) Plaque support pour produits de boulangerie, viennoiserie, pâtisserie et similaires, fabriquée à partir d’une feuille en métal déployé
FR3126216A3 (fr) Recipient en papier en forme de batonnet
FR2734121A1 (fr) Procede et installation pour eliminer par pressage le lactoserum contenu dans du caille

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171109

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180320