EP2818234A1 - Vorrichtung zur Lagerung von zähflüssigen Medien - Google Patents

Vorrichtung zur Lagerung von zähflüssigen Medien Download PDF

Info

Publication number
EP2818234A1
EP2818234A1 EP20140172654 EP14172654A EP2818234A1 EP 2818234 A1 EP2818234 A1 EP 2818234A1 EP 20140172654 EP20140172654 EP 20140172654 EP 14172654 A EP14172654 A EP 14172654A EP 2818234 A1 EP2818234 A1 EP 2818234A1
Authority
EP
European Patent Office
Prior art keywords
jet
medium
jet apparatus
section
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20140172654
Other languages
English (en)
French (fr)
Other versions
EP2818234B1 (de
Inventor
Roman Herx
Hans Joachim Schriek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benninghoven GmbH and Co KG
Original Assignee
Benninghoven GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benninghoven GmbH and Co KG filed Critical Benninghoven GmbH and Co KG
Publication of EP2818234A1 publication Critical patent/EP2818234A1/de
Application granted granted Critical
Publication of EP2818234B1 publication Critical patent/EP2818234B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/02Maintaining the aggregation state of the mixed materials
    • B01F23/023Preventing sedimentation, conglomeration or agglomeration of solid ingredients during or after mixing by maintaining mixed ingredients in movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/21Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers
    • B01F25/211Jet mixers, i.e. mixers using high-speed fluid streams with submerged injectors, e.g. nozzles, for injecting high-pressure jets into a large volume or into mixing chambers the injectors being surrounded by guiding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3123Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements
    • B01F25/31233Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with two or more Venturi elements used successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3125Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
    • B01F25/31251Throats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3125Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
    • B01F25/31251Throats
    • B01F25/312512Profiled, grooved, ribbed throat, or being provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof

Definitions

  • the invention relates to a device for storing viscous media, in particular of medium to high viscosity media.
  • Polymer bitumen is a dispersion of bitumen and polymers. Polymer bitumen is particularly important in the field of road construction of great importance. Polymer bitumen has only a limited storage stability. During prolonged storage of polymer bitumen, for example in a tank of an asphalt mixing plant or in a product storage tank at a polymer bitumen manufacturer, thorough mixing of the polymer bitumen raw material is necessary. Mixing is required even with prolonged storage of bitumen emulsion.
  • a bitumen emulsion is a colloidal mixture of road bitumen and water. The mixing of polymer bitumen or a bitumen emulsion can be carried out by mechanical stirrers.
  • Mechanical agitators are suitable for mixing medium-viscosity media such as sludge, especially sludge, and foods such as tomato paste. Mechanical agitators are structurally complex and subject to wear. The organization and implementation of maintenance and repair work on such agitators is cumbersome. Methods are also known for mixing the stored polymer bitumen, in which the stored polymer bitumen is circulated in the storage container by pumping over. The mixing of the stored polymer bitumen achieved during pumping is limited according to the pump delivery rate. In particular, a homogeneous mixture of the entire storage container contents is not guaranteed.
  • the gist of the invention is to provide a jet apparatus in a storage vessel which provides a stirring jet for agitating the medium, wherein the jet of jet to be delivered from the jet apparatus has an increased volume and / or reduced momentum loss with respect to a jet of jet medium to be supplied to the jet apparatus.
  • the jet apparatus has at least one jet nozzle. This can be achieved in particular by widening the stirring jet, in particular with respect to the jet of propulsion medium.
  • the agitating jet is large-volume and flows at a comparatively reduced flow velocity, ie in particular with an increased volume flow and mass flow.
  • the device according to the invention provides the stirring jet which has a comparatively large flow cross-sectional area and a comparatively reduced flow velocity.
  • the stirring jet can cause adequate mixing of the medium with little loss of momentum.
  • the device according to the invention is suitable under laminar flow conditions to reduce high, lossy relative speeds substantially lossless within a short mixing section. This makes it possible to avoid long mixing distances, in particular with high relative speeds, within the storage container. In particular, due to friction losses caused by the high viscosity at high velocities of the medium, long mixing distances are problematic for complete, homogeneous mixing of the medium.
  • the volume of the stirring jet is at least fivefold compared to the propellant jet and in particular tenfold. In particular, by a series connection of a plurality of jet nozzles in the jet apparatus, a further multiplication of the volume of the stirring jet with respect to the volume of the blowing medium jet can be achieved.
  • the device according to the invention enables advantageous operation of a container for storing a medium.
  • a feed pump and / or a metering pump is present.
  • the feed pump can be used to circulate the medium as a circulating pump.
  • the metering pump is used for a subsequent mixer in an asphalt mixing plant.
  • a viscous medium is considered to be a medium-to-high-viscosity liquid whose dynamic viscosity ⁇ is more than 100 mPas and less than 10,000 mPas. This is the case, for example, for polymer bitumen, bitumen emulsion and edible oil.
  • At least one filling and one metering pump are generally present on an already existing container system. These pumps can be used as a feed pump for conveying at least a partial volume of the medium for generating the stirring jet.
  • the jet apparatus has a drive medium input port connected to the feed pump for supplying propellant medium as a propellant jet into the jet apparatus and a stirring medium exit port for discharging the agitating jet into the container.
  • the drive medium inlet opening and the stirring medium outlet opening are arranged coaxially with one another and in particular coaxially with respect to a jet apparatus longitudinal axis.
  • the jet apparatus is compact and robust.
  • the jet apparatus is of small construction and can therefore be integrated into the container in a particularly advantageous manner and advantageously arranged there.
  • the drive medium inlet opening has a drive medium cross-sectional area oriented perpendicular to the jet apparatus longitudinal axis.
  • the stirring medium outlet opening has a stirring medium cross-sectional area oriented perpendicular to the jet apparatus longitudinal axis.
  • the drive medium cross-sectional area is smaller than the stirring medium cross-sectional area.
  • the Stirring medium cross-sectional area at least 1.5 times the blowing medium cross-sectional area, in particular at least twice and in particular at least three times.
  • the jet apparatus has at least one suction medium inlet opening for sucking suction medium into the jet apparatus.
  • the suction medium inlet opening is in particular connected directly to the medium in the container. This means that the suction medium inlet opening faces the medium surrounding the jet apparatus.
  • the suction medium inlet opening is provided in an outer wall of the jet apparatus.
  • the suction medium inlet opening extends in particular along a circumference around the jet apparatus longitudinal axis on an outer circumferential surface of the jet apparatus.
  • a plurality of suction medium inlet openings are provided, for example, along an outer circumference of the jet apparatus, in order to improve the suction of suction medium and thus the mixing of the medium.
  • the jet apparatus has a driving nozzle section for feeding driving medium into the jet apparatus, a suction nozzle section for sucking suction medium into the jet apparatus, a mixing nozzle section for mixing driving medium and suction medium, and a diffuser for discharging the stirring jet into the jet Container on.
  • the drive nozzle section, the mixing nozzle section and the diffuser are arranged one behind the other starting from the drive medium inlet opening.
  • the diffuser generates a negative pressure in the intake region, in particular in the mixing chamber, so that the suction power of the mixing chamber is additionally improved.
  • a drive wedge is provided in the motive nozzle section, which serves to generate a motive nozzle flow cross-section.
  • the motive nozzle flow cross section is designed in particular annular and thereby causes increased flow velocities to be present on an outer circumference of the motive nozzle flow cross section.
  • mixing with the suction medium is improved in particular.
  • the drive wedge is arranged coaxially to the jet apparatus longitudinal axis.
  • the driving wedge in particular has a rotationally symmetrical, in particular a conical or truncated conical geometry.
  • the drive wedge has a variable cross-sectional area along the jet apparatus longitudinal axis, a variable, directed from the drive medium inlet opening to the stirring medium output port.
  • the mixing nozzle section has a mixing chamber and a mixing section following along the jet apparatus longitudinal axis. Wherein a mixing chamber flow area decreases along the jet apparatus longitudinal axis toward the stirring medium exit opening and wherein a mixing section flow area along the jet apparatus longitudinal axis is substantially constant. This ensures that exerted within the mixing nozzle section via the upstream mixing chamber due to the decreasing mixing chamber flow cross-section, a suction effect on the propellant medium and on the previously sucked via suction medium inlet openings suction medium becomes. Subsequently, the supplied via the mixing chamber of the mixing section media streams are mixed together within the mixing section and passed to the diffuser.
  • the ratio of mixing section flow cross-section to blowing nozzle flow cross-section in the range of 4 to 15, in particular in the range of 6 to 12 and in particular is about 9. Such a ratio allows a particularly advantageous widening of the stirring jet against the propellant jet.
  • the diffuser has a widening diffuser flow cross-section. That is, the diffuser flow area increases along the jet apparatus longitudinal axis toward the agitation medium exit port.
  • the diffuser flow cross-section is designed conical or frustoconical. It is also possible that the diffuser flow cross section is not a solid cross section but a hollow cross section, in particular if a drive wedge is provided in the area of the diffuser.
  • a diffuser length is defined as a function of a radius of a diffuser inlet opening.
  • the diffuser length oriented along the jet apparatus longitudinal axis is at least 80% and at most 230% of the radius, in particular at least 100% and at most 200% of the radius and in particular the diffuser length is 1.6 times the radius of the diffuser. inlet opening.
  • the jet apparatus has no moving parts.
  • the device is simplified in that movable and mechanical parts are eliminated.
  • the wear of the entire device and the required effort for maintenance and / or repairs is reduced. Due to the lack of maintenance, the risk of accidents is reduced in particular.
  • the fact that the drive shaft penetrating the container is not required, the energy loss is reduced when mixing the medium in the container. With a usual temperature difference of about 150 K between the stored medium and the environment heat losses via a lantern flange are unavoidable in a stirrer.
  • Such heat loss does not occur in the device according to the invention.
  • the heat loss occurring in agitators is greater than a drive power of the feed pump in the apparatus according to the invention, in particular at short stirring intervals and / or long rest periods, as is customary in particular in the polymer bitumen storage.
  • the device according to the invention has a reduced energy consumption compared with a storage container with a mechanical stirrer.
  • the energy balance is positive.
  • the storage temperature can be above the flash point of the respective medium. The risk of sparking, which is possible with mechanical stirrers by bearing friction or material fracture, is excluded in the present device.
  • the media mixture with the device according to the invention is carried out in such a way that the surface of the medium largely smooth regardless of the level in the container is. As a result, the contact of the medium with displacement air is reduced. The risk of oxidation is reduced. In particular, compared to mechanical agitators, for example, work on the surface of the medium and cause a wave, the risk of oxidation is reduced. In particular, the inerting of displacement air and / or the surge-proof design of the container is not required.
  • the device according to the invention in particular the jet nozzle and the connecting lines required therefor, can advantageously be arranged, in particular, in a lower region of the container, which is set up in particular vertically oriented. In particular, no additional components are provided in the upper region of the container.
  • Intra- and superstructures for embarking on the upper portion of the container such as an upper manhole, inner and outer ladders, a round stage and / or a lantern flange can be omitted.
  • the execution of such a container is simplified and in particular inexpensive.
  • the device according to the invention enables a favorable, energy-efficient operation of the storage and mixing of the medium. It is possible to allow mixing and, in particular, heating of the medium stored in the container via the jet nozzle, even if not all of the medium volume is in liquid form. Mixing may start locally in the area of the jet apparatus and lead to an improved heat input in the area of the jet nozzle via a supply of heat. As a result, the heating capacity is advantageously utilized.
  • the heat exchange is improved by mixing by means of the jet apparatus. In particular, it is not necessary to start mixing until the stored medium is completely in liquid form, as would be required with a mechanical agitator.
  • the jet apparatus is maintenance-free.
  • the entire device is essentially maintenance-free, with only the delivery pump possibly requiring maintenance, but the delivery pump is arranged to be accessible, in particular, outside the container and in particular externally.
  • the service life of the jet apparatus is essentially unlimited.
  • gear pumps and rotary vane pumps are particularly suitable designs for the realization of the feed pump. In particular, this allows an increase in the service life of the feed pump.
  • Gear and rotary pumps for example, have an efficiency of 70% and allow the production of a motive medium jet with a flow rate of 40 m 3 / h at a pressure of 3 bar. Starting from a drive power of about 5 kW, thus about 50 to 100 m 3 of the medium in the container can be mixed reliably and homogeneously.
  • the jet apparatus has a first jet nozzle and a second jet nozzle, which are arranged one behind the other along the jet apparatus longitudinal axis.
  • the first jet nozzle is thus connected upstream of the second jet nozzle along the flow direction of the medium in the jet apparatus.
  • the first jet nozzle has a first blowing nozzle portion, a first suction nozzle portion, a first mixing nozzle portion and a first diffuser.
  • the second jet nozzle has a second blowing nozzle portion, a second suction nozzle portion, a second mixing nozzle portion and a second diffuser.
  • the stirring jet of the first jet nozzle can be used as Treibmediumstrahl for the second jet nozzle. It is particularly advantageous if the first diffuser and the second motive nozzle section are an integral, in particular one-piece, structural component. In particular, the first diffuser and the second motive nozzle section are one and the same, ie the identical component. The number of components for the jet apparatus is thereby reduced. In particular, such a jet apparatus is designed to be particularly compact and robust. The size of the jet apparatus is reduced. In particular, the overall length along the jet apparatus longitudinal axis is reduced. The series connection of two jet nozzles in the jet apparatus multiplies the maximum achievable increase in volume for the stirring jet.
  • the volume of the stirring jet is ten times greater than the volume of the motive medium jet. It is possible to integrate a further, that is to say a third, jet nozzle in the jet apparatus in order to bring about a further increase in the volume of the stirring jet.
  • the jet apparatus with the jet apparatus longitudinal axis is oriented parallel to a container longitudinal axis.
  • the mixing of the medium in the container is improved.
  • the container with the longitudinal axis of the container is oriented vertically relative to the ground.
  • jet apparatuses are arranged in the container.
  • the mixing is thereby additionally improved. It is possible to arrange a plurality of jet apparatus in a plane perpendicular to the longitudinal axis of the container, in particular along an inner wall of the container. It is also conceivable to arrange several jet apparatuses one behind the other along the container longitudinal axis.
  • FIG. 1 schematically illustrated device 1 is used for storing viscous media, in particular medium to high viscosity media such as polymer bitumen.
  • the device 1 comprises a container 2 in which the medium 3 is stored. Via a filling connection 4, the medium 3 can be supplied to a supply line 5.
  • a feed pump 6 conveys the medium 3 located in the supply line 5 to the container 2.
  • a first actuatable shut-off valve 7 is used to separate the filling port 4 from the supply line 5, in particular when no refilling of the container 2 is required.
  • the filling pump 6 is arranged along a conveying direction 8, a further, second check valve 9. Behind the second shut-off valve 9, a temperature sensor 10 is provided which serves for measuring the temperature of the medium 3 located in the feed line 5. Furthermore, a sampling point 11 is provided to remove a sample of the medium 3 in the feed line 5. Such a sample may then be subjected to further investigation. Such an investigation serves to analyze, for example, the composition of the medium.
  • the feed line 5 leads along the conveying direction 8 of the feed pump 6 to the container 2. Within the container 2, a first jet apparatus 12 and a second jet apparatus 13 are arranged and each independently connected to the feed line 5. For this purpose, the feed line 5 has a first switch 14, which is arranged in particular outside the container 2.
  • a third check valve 15 is arranged along the conveyor 8 in front of the first switch 14. With the third check valve 15, the delivery connection from the feed pump 6 to the two jet apparatuses 12, 13 are interrupted. If the third check valve 15 permits delivery of the medium 3, at least the first jet apparatus 12 is in conveying connection with the feed pump 6.
  • the second jet apparatus 13 can be connected separately via a fourth shut-off valve 16, which is arranged downstream of the first switch 14 along the conveying direction 8 become. It is therefore possible that either both jet apparatuses 12, 13, only the first jet apparatus 12 or none of the jet apparatuses 12, 13 are in conveying connection with the feed pump 6.
  • the container 2 has a container longitudinal axis 17.
  • the container 2 is placed vertically oriented with the container longitudinal axis 17.
  • the first jet apparatus 12 has a jet apparatus longitudinal axis 18 which is vertically oriented.
  • the second jet apparatus 13 has a jet apparatus longitudinal axis 19 which is vertically oriented.
  • the container longitudinal axis 17 and the jet apparatus longitudinal axes 18, 19 are oriented parallel to each other.
  • the first jet apparatus 12 is arranged in front of the second jet apparatus 13.
  • the level of the medium 3 is such that the first jet apparatus 12 is surrounded by the medium 3.
  • the second jet apparatus 13 is in a height range of the container 2 arranged, which is above the level. In this arrangement, the second jet apparatus 13 is inactive, ie, the second jet apparatus 13 is not used for pumping the medium 3.
  • the medium 3 is circulated exclusively by the first jet apparatus 12.
  • a level sensor 49 which serves to monitor the current level with medium 3 in the container 2.
  • the level sensor 49 can transmit a signal to a control unit 50, which then controls, for example, the feed pump 6 and / or at least one of the check valves 15, 16 for supplying the jet apparatus 12, 13.
  • the control unit 50 with the feed pump 6 and the check valves 15, 16 in signal communication.
  • the control unit 50 is also in signal communication with the level sensor 49.
  • the fourth shut-off valve 16 is switched such that the second jet apparatus 13 is separated from the supply line 5.
  • the first jet apparatus 12 with the feed pump 6 in conveying connection can also cause the first shut-off valve 7 is opened and refilled via the filling port 4 and the supply line 5 medium 3 in the container 2.
  • the fill level monitoring is regulated such that a predetermined minimum fill level in the container 2 is not undershot. This is possible, for example, in that the control for refilling the container 2 with medium 3 is triggered upon reaching and / or falling below a critical minimum level.
  • a flow sensor 51 is provided in the container 2.
  • the flow sensor 51 is fixedly mounted in the container 2 and, for example, fixedly connected to an inner wall of the container 2, in particular welded to it.
  • the flow sensor 51 is disposed adjacent to the first jet apparatus 12 along the jet apparatus longitudinal axis 18.
  • the flow sensor 51 detects the flow of the medium 3 within the container 2.
  • the flow sensor 51 can also be arranged at another location in the container 2 in order to detect the flow conditions within the container 2.
  • the flow sensor 51 is in signal communication with the control unit 50.
  • the flow sensor 51 transmits to the control unit 50 a signal which is used for controlling and in particular for controlling the rotational speed of the feed pump 6.
  • a frequency converter 52 can be provided along the signal connection between the control unit 50 and the feed pump 6.
  • the speed of the feed pump 6 is at the third power.
  • a reduction in the rotational speed of the feed pump 6 brings about a considerable saving in the drive power of the feed pump 6.
  • the flow sensor 51 it is possible to operate the device 1 in a particularly efficient and economical manner.
  • a feed port 20 through which the medium 3 can be pumped directly into the container 2.
  • the feed port 20 is associated with a fifth check valve 21.
  • a second switch 22 is provided on the supply line 5, which is upstream of the third check valve 15 along the conveying direction 8. It is thus possible, in particular, to convey medium 3 directly into the container 2 by means of the feed pump 6 via the feed connection 20, without the medium 3 additionally having to flow through at least one of the jet apparatuses 12, 13. This makes fast, direct and uncomplicated filling of the container possible.
  • a removal opening 23 is provided, which is associated with a sixth check valve 24.
  • medium 3 can be pumped back out of the container 2 along the conveying direction 8 and re-circulated via the delivery pump 6.
  • the extraction line 25 is supplied to the supply line 5 in the region of the feed pump 6, so that the withdrawn medium can be supplied via the feed pump in the feed line 5 along the conveying direction 8 of the first jet apparatus 12 and / or the second jet apparatus 13.
  • the removal opening 23 the extraction line 25, the feed pump 6, the supply line 5 and the jet apparatuses 12, 13, a closed circuit for the medium circulation is formed.
  • Fig. 2 the specific embodiment of the first jet apparatus 12, the in Fig. 1 is shown purely schematically, explained in more detail.
  • the jet apparatuses 12, 13 are identical.
  • the first jet apparatus 12 is rotationally symmetrical with respect to the jet apparatus longitudinal axis 18.
  • Fig. 2 shows a longitudinal section in a plane containing the jet apparatus longitudinal axis 18.
  • the jet apparatus 12 has an in Fig. 2 shown on the left drive medium inlet opening 26, which serves for supplying the medium 3 as a driving medium in the form of a propellant jet in the jet apparatus 12.
  • a stirring medium exit port 27 for discharging a stirring jet into the tank 2.
  • the stirring jet serves for stirring the medium 3.
  • the jet apparatus 12 comprises a first jet nozzle 28 and a second jet nozzle 29 arranged behind the jet apparatus longitudinal axis 18.
  • the first jet nozzle 28 comprises a first blowing nozzle section 30, a first suction jet section 53, a first mixing jet section 31 and a first diffuser 32.
  • the second jet nozzle 29 includes a second blowing nozzle portion 33, a second suction nozzle portion 54, a second mixing nozzle portion 34 and a second diffuser 35.
  • the respective blowing nozzle portions 30, 33, suction nozzle portions 53, 54, mixing nozzle sections 31, 34 and diffusers 32, 35 of the jet nozzles 28, 29 are substantially functionally identical.
  • propulsion nozzle section 30, 33, the suction nozzle section 53, 54, the mixing nozzle section 31, 34 and then the diffuser 32, 35 are arranged one after the other along the longitudinal axis of the jet apparatus along a medium throughflow direction 36 are.
  • the motive nozzle section 30, 33 serves to feed propellant medium 3 into the respective blast nozzles 28, 29.
  • the motive medium is supplied from the supply line 5 to the blast apparatus 12.
  • the blowing medium jet emerging at the first diffuser 32 of the first jet nozzle 28 is used as the driving medium for the second jet nozzle 29.
  • a drive wedge 37 is arranged coaxially with the longitudinal axis of the jet apparatus 18 and is surrounded by the inflowing motive medium.
  • the drive wedge 37 is used to generate an annular drive nozzle flow cross section.
  • a motive nozzle flow cross-section produced in this way has an increased flow velocity, in particular in a peripheral region of the annular surface oriented perpendicular to the jet apparatus longitudinal axis 18, so that mixing with a suction medium sucked in on the jet apparatus 12 is improved.
  • suction medium inlet openings 38 which are arranged in the outer wall of the jet apparatus 12.
  • four suction medium inlet openings 38 are provided which are distributed uniformly on the outer circumference of the jet apparatus 12.
  • the suction medium inlet openings 38 are each separated by dividing webs 55, not shown, in the outer wall of the jet apparatus 12.
  • the suction medium inlet openings 38 extend along a circumferential angle about the jet apparatus longitudinal axis 18 by almost 90 °.
  • An inflow surface for the suction medium formed by the suction medium inlet openings 38 substantially corresponds to the outer surface of the jet apparatus.
  • the suction medium inlet openings 38 are arranged in the suction nozzle section 53.
  • the flow of the suction medium 3 through the suction medium inlet openings 38 into the first mixing nozzle section 31 is represented by the arrows 39.
  • the first mixing nozzle section 31 serves to mix the driving medium and the suction medium. It is clear that the driving medium and the suction medium are one and the same medium 3, in particular polymer bitumen.
  • Driving medium is supplied through the motive medium flow 40 via the motive medium inlet port 26 of the first jet nozzle 28.
  • Suction medium is supplied via the suction medium inlet openings 38 as a suction flow 39.
  • the first mixing nozzle section 31 has a first mixing chamber 41 and a first mixing section 42 following the media flow direction 36.
  • the first mixing chamber 41 has a mixing chamber flow cross-section, which decreases along the direction of media flow 36, that is to say along the longitudinal axis of the jet apparatus 18 to the agitating-medium outlet opening 27.
  • the mixing of the media streams 39, 40 then takes place, in particular, in the first mixing section 42, which has a mixing-section flow cross-section along the longitudinal axis of the jet apparatus 18 which is essentially constant.
  • a ratio of mixing section flow area to motive flow area is in the range of 4 to 15. It is advantageous if this ratio is in the range of 6 to 12. According to the embodiment shown, the ratio is about 9.
  • the first diffuser 32 has an expanding diffuser flow area which has an outer conical or frusto-conical contour along the jet apparatus longitudinal axis 18.
  • a further drive wedge 43 is provided in the region of the first diffuser 32.
  • the driving wedge 43 performs substantially the same function as the driving wedge 37 in the region of the first driving nozzle portion 30.
  • the first diffuser 32 is integrally formed in one and the same component as the second driving nozzle portion.
  • the diffuser flow area of the first diffuser 32 is an annular jet.
  • the media flow exiting in the region of the first diffuser 32 serves as a propulsion flow 40 for the second jet nozzle 29.
  • the second jet nozzle 29 is designed substantially identical to the first jet nozzle 28. In particular, the dimensions, in particular the respective diameter of the cross-sectional areas perpendicular to the jet apparatus longitudinal axis 18 and the lengths along the jet apparatus longitudinal axis 18 relative to the corresponding dimensions of the first jet nozzle 28 are increased.
  • the second suction nozzle section 54 has four suction medium inlet openings 44 arranged regularly distributed along the outer circumference of the jet apparatus 12.
  • the second mixing nozzle section 34 has a second mixing chamber 45 and a second mixing section 46. Two adjacent suction medium inlet openings 44 are each separated by a separating web 56. Via the second diffuser, the medium 3 is discharged as a stirring jet 48 for stirring the medium 3 in the container 2 from the jet apparatus 12.
  • the jet 48 emitted by the jet apparatus 12 has a full-surface flow profile.
  • the output at the second diffuser 35 diffuser flow cross section is full-surface.
  • the diffuser 35 is designed widening along the jet apparatus longitudinal axis 18 and in particular has a truncated cone shape, the stirring jet 48 is widened.
  • the stirring jet 48 discharged from the jet apparatus 12 is increased in relation to the blowing medium jet 40 fed into the jet apparatus 12. That is, the agitating jet 48 has an increased volume and at the same time, due to the reduced Flow rate an extended pulse loss.
  • the stirring jet 48 produced in this way is particularly well suited to completely, homogeneously and reliably mixing the medium 3 in the container 2.
  • the expanded diffuser flow cross-section of the first diffuser 32 can be advantageously used as the inlet flow for the second jet nozzle 29.
  • the second diffuser 35 has a diffuser length L D oriented along the jet apparatus longitudinal axis 18.
  • the second diffuser 35 also has a radius r 1 of the diffuser inlet opening 47.
  • the jet apparatus 12 with the supply of a cooling medium, in particular of liquid water.
  • a cooling medium in particular of liquid water.
  • a small amount is supplied, in particular at most 5% of the volume of the delivered agitating jet 48, in particular at most 3% of the volume of the delivered agitating jet 48 and in particular at most 1% of the volume of the
  • the injected water is evaporated due to the increased temperature of the medium, in particular of the polymer bitumen. Due to the phase change enthalpy, the temperature of the medium 3 is reduced.
  • the momentum of the stirring jet 48 is increased. This is the mixing effect of the stirring jet 48 additionally improved.
  • Such an injected water agitating jet 48 has improved efficiency.
  • the liquid water via a feed line, not shown, to the jet apparatus 12 in the region of the second diffuser 35 on an outer jacket surface radially to the jet apparatus longitudinal axis 18. It is also conceivable to integrate the supply line into the jet apparatus 12 in such a way that a feed opening for the water is arranged coaxially with the jet apparatus longitudinal axis 18. It can also be provided a plurality of feed openings, which are then arranged, for example, concentric to the jet apparatus longitudinal axis 18 in a plane perpendicular to the jet apparatus longitudinal axis 18 spaced from the jet apparatus longitudinal axis 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)

Abstract

Eine Vorrichtung zur Lagerung von zähflüssigen Medien, insbesondere Polymerbitumen, umfasst einen Behälter (2) zum Bevorraten des Mediums (3), eine Förderpumpe (6) zum Fördern zumindest eines Teilvolumens des Mediums (3) und einen mindestens eine Strahldüse (28, 29) aufweisenden, in dem Behälter (2) angeordneten, mit der Förderpumpe (6) in Förderverbindung stehenden Strahlapparat (12, 13), der einen Rührstrahl (48) zum Rühren des Mediums (3) ermöglicht, wobei der aus dem Strahlapparat (12, 13) abzugebende Rührstrahl (48) bezogen auf einen in den Strahlapparat (12, 13) zuzuführenden Treibmediumstrahl ein vergrößertes Volumen aufweist und/oder einen verringerten Impulsverlust auf das zu rührende Medium (3) bewirkt.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Lagerung von zähflüssigen Medien, insbesondere von mittel- bis hochviskosen Medien.
  • Polymerbitumen ist eine Dispersion aus Bitumen und Polymeren. Polymerbitumen ist insbesondere im Bereich des Straßenbaus von großer Bedeutung. Polymerbitumen weist lediglich eine begrenzte Lagerstabilität auf. Bei längerer Lagerung von Polymerbitumen beispielsweise in einem Tank einer Asphaltmischanlage oder in einem Produktlagertank bei einem Polymerbitumenhersteller ist eine Durchmischung des Polymerbitumen-Rohstoffs notwendig. Eine Durchmischung ist auch bei längerer Lagerung von Bitumenemulsion erforderlich. Eine Bitumenemulsion ist eine kolloidale Mischung von Straßenbaubitumen und Wasser. Die Durchmischung von Polymerbitumen oder einer Bitumenemulsion kann durch mechanische Rührwerke erfolgen. Mechanische Rührwerke eignen sich zum Durchmischen von mittelviskosen Medien wie beispielsweise Schlamm, insbesondere Faulschlamm, und Lebensmitteln wie beispielsweise Tomatenmark. Mechanische Rührwerke sind konstruktiv aufwendig und unterliegen einem Verschleiß. Die Organisation und Durchführung von Wartungs- und Reparaturarbeiten an derartigen Rührwerken ist umständlich. Es sind auch Verfahren zur Mischung des gelagerten Polymerbitumens bekannt, bei dem das gelagerte Polymerbitumen im Lagerbehälter durch umpumpen umgewälzt wird. Die bei dem Umpumpen erreichte Durchmischung des gelagerten Polymerbitumens ist entsprechend der Pumpenförderleistung beschränkt. Insbesondere ist eine homogene Mischung des gesamten Lagerbehälterinhalts nicht gewährleistet.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine Vorrichtung zur Lagerung von zähflüssigen Medien, insbesondere Polymerbitumen, bereit zu stellen, bei der eine homogene Mischung des gelagerten Mediums unaufwändig gewährleistet ist.
  • Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Der Kern der Erfindung besteht darin, einen Strahlapparat in einem Lagerbehälter vorzusehen, der einen Rührstrahl zum Rühren des Mediums bereitstellt, wobei der aus dem Strahlapparat abzugebende Rührstrahl bezogen auf ein in den Strahlapparat zuzuführenden Treibmediumstrahl ein vergrößertes Volumen aufweist und/oder einen verringerten Impulsverlust bewirkt. Der Strahlapparat weist mindestens eine Strahldüse auf. Dies kann insbesondere dadurch erreicht werden, dass der Rührstrahl, insbesondere gegenüber dem Treibmediumstrahl, aufgeweitet ist. Der Rührstrahl ist großvolumig und strömt mit einer vergleichsweise reduzierten Strömungsgeschwindigkeit, also insbesondere mit einem erhöhten Volumenstrom und Massestrom. Erfindungsgemäß wurde also erkannt, dass mittels eines derart gebildeten Rührstrahls eine homogene Mischung des gesamten Behälterinhalts zuverlässig erfolgt. Die erfindungsgemäße Vorrichtung stellt den Rührstrahl zur Verfügung, der eine vergleichsweise große Strömungsquerschnittsfläche und eine vergleichsweise reduzierte Strömungsgeschwindigkeit aufweist. Bei laminaren Strömungsbedingungen in dem zu rührenden Medium kann der Rührstrahl bei geringem Impulsverlust eine ausreichende Durchmischung des Mediums bewirken. Insbesondere ist eine Durchmischung gegenüber einem Rührstrahl, der eine vergleichsweise kleine Strömungsquerschnittsfläche und hohe Strömungsgeschwindigkeiten aufweist, verbessert. Bei mittel- bis hochviskosen Medien und üblichen Abmessungen eines Lagerbehälters, insbesondere entlang einer Lagerbehälter-Längsachse gemäß dem Stand der Technik, können turbulente Strömungsbedingungen nicht oder nur sehr aufwändig erzeugt werden. Die erfindungsgemäße Vorrichtung ist geeignet, unter laminaren Strömungsbedingungen innerhalb einer kurzen Mischstrecke hohe, verlustbehaftete Relativgeschwindigkeiten im Wesentlichen verlustfrei abzubauen. Dadurch ist es möglich, lange Mischstrecken, insbesondere mit hohen Relativgeschwindigkeiten, innerhalb des Lagerbehälters zu vermeiden. Insbesondere aufgrund von Reibungsverlusten, die durch die hohe Viskosität bei hohen Geschwindigkeiten des Mediums verursacht sind, sind lange Mischstrecken für eine vollständige, homogene Durchmischung des Mediums problematisch. Das Volumen des Rührstrahls ist gegenüber dem Treibmediumstrahl mindestens verfünffacht und insbesondere verzehnfacht. Insbesondere kann durch eine Hintereinanderschaltung von mehreren Strahldüsen in dem Strahlapparat eine weitere Vervielfachung des Volumen des Rührstrahls gegenüber dem Volumen des Treibmediumstrahls erreicht werden.
  • Die erfindungsgemäße Vorrichtung ermöglicht ein vorteilhaftes Betreiben eines Behälters zum Bevorraten eines Mediums. An einem derartigen Behälter ist üblicherweise eine Förderpumpe und/oder eine Dosierpumpe vorhanden. Die Förderpumpe kann zum Umwälzen des Mediums als Umwälzpumpe genutzt werden. Die Dosierpumpe dient für einen nachfolgenden Mischer in einer Asphaltmischanlage. Durch ein getrenntes Betreiben der Förderpumpe als Umwälzpumpe und der Dosierpumpe ist eine Sortenvermischung in den Bitumenleitungen der Asphaltmischanlage ausgeschlossen. Es ist auch denkbar, nur die Förderpumpe oder nur die Dosierpumpe zu verwenden, wobei die verwendete Pumpe dann sowohl zum Umwälzen als auch zum Dosieren genutzt wird. Dadurch kann die Anzahl der erforderlichen Komponenten zum Betreiben des Behälters reduziert werden. Insbesondere ist es möglich die erfindungsgemäße Vorrichtung durch Nachrüsten einer bereits bestehenden Vorrichtung mit dem Strahlapparat zu schaffen. Ein derartiges Nachrüsten ist schnell und unkompliziert möglich. Ein Nachrüsten einer bereits bestehenden Vorrichtung zu der erfindungsgemäßen Vorrichtung zur Lagerung von zähflüssigen Medien ist kostengünstig möglich. Als zähflüssiges Medium im Sinne dieser Anmeldung gilt eine mittel- bis hochviskose Flüssigkeit, deren dynamische Viskosität η mehr als 100 mPas und weniger als 10.000 mPas beträgt. Dies ist beispielsweise für Polymerbitumen, Bitumenemulsion und Speiseöl der Fall.
  • Aus statischen Gründen ist es meist nicht möglich, einen bestehenden Behälter mit einem mechanischen Rührwerk nachzurüsten. Insbesondere sind an einer bereits bestehenden Behälteranlage in der Regel mindestens eine Füll- und eine Dosierpumpe vorhanden. Diese Pumpen können als Förderpumpe zum Fördern zumindest eines Teilvolumens des Mediums zur Erzeugung des Rührstrahls verwendet werden.
  • Gemäß einer vorteilhaften Ausgestaltung weist der Strahlapparat eine mit der Förderpumpe verbundene Treibmedium-Eingangsöffnung zum Zuführen von Treibmedium als Treibmediumstrahl in den Strahlapparat und eine Rührmedium-Ausgangsöffnung zum Abgeben des Rührstrahls in den Behälter auf. Die Treibmedium-Eingangsöffnung und die Rührmedium-Ausgangsöffnung sind koaxial zueinander und insbesondere koaxial zu einer Strahlapparat-Längsachse angeordnet. Der Strahlapparat ist kompakt und robust ausgeführt. Insbesondere ist der Strahlapparat kleinbauend ausgeführt und kann dadurch besonders vorteilhaft in dem Behälter integriert und vorteilhaft dort angeordnet sein. Die Treibmedium-Eingangsöffnung weist eine senkrecht zur Strahlapparat-Längsachse orientierte Treibmedium-Querschnittsfläche auf. Die Rührmedium-Ausgangsöffnung weist eine senkrecht zur Strahlapparat-Längsachse orientierte Rührmedium-Querschnittsfläche auf. Insbesondere ist die Treibmedium-Querschnittsfläche kleiner als die Rührmedium-Querschnittsfläche. Insbesondere beträgt die Rührmedium-Querschnittsfläche mindestens das 1,5-fache der Treibmedium-Querschnittsfläche, insbesondere mindestens das Zweifache und insbesondere mindestens das Dreifache.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist der Strahlapparat mindestens eine Saugmedium-Eingangsöffnung zum Einsaugen von Saugmedium in den Strahlapparat auf. Dadurch ist es möglich, besonders vorteilhaft eine Vermischung des Mediums in dem Behälter zu verbessern. Die Saugmedium-Eingangsöffnung ist insbesondere direkt mit dem im Behälter befindlichen Medium verbunden. Das bedeutet, dass die Saugmedium-Eingangsöffnung dem den Strahlapparat umgebenden Medium zugewandt ist. Insbesondere ist die Saugmedium-Eingangsöffnung in einer Außenwand des Strahlapparats vorgesehen. Die Saugmedium-Eingangsöffnung erstreckt sich insbesondere entlang eines Umfangs um die Strahlapparat-Längsachse an einer äußeren Mantelfläche des Strahlapparats. Insbesondere sind mehrere Saugmedium-Eingangsöffnungen beispielsweise entlang eines äußeren Umfangs des Strahlapparats vorgesehen, um das Einsaugen von Saugmedium und damit das Vermischen des Mediums zu verbessern.
  • Gemäß einer weiteren Ausgestaltung weist der Strahlapparat einen Treibdüsen-Abschnitt zum Einspeisen von Treibmedium in den Strahlapparat, einen Saugdüsen-Abschnitt zum Einsaugen von Saugmedium in den Strahlapparat, einen Mischdüsen-Abschnitt zum Mischen von Treibmedium und Saugmedium und einen Diffusor zum Ausströmen des Rührstrahls in den Behälter auf. Entlang einer Strahlapparat-Längsachse sind ausgehend von der Treibmedium-Eingangsöffnung der Treibdüsen-Abschnitt, der Mischdüsen-Abschnitt und der Diffusor hintereinander angeordnet. Bei einer derartigen Strahlapparatausführung sind die Strömungsverhältnisse und das Vermischen des Mediums im Behälter insgesamt verbessert. Der Diffusor erzeugt insbesondere einen Unterdruck im Ansaugbereich, insbesondere in der Mischkammer, sodass die Saugleistung der Mischkammer zusätzlich verbessert ist.
  • Gemäß einer besonders vorteilhaften Ausgestaltung ist in dem Treibdüsen-Abschnitt ein Treibkeil vorgesehen, der zur Erzeugung eines Treibdüsen-Strömungsquerschnitts dient. Der Treibdüsen-Strömungsquerschnitt ist insbesondere ringförmig ausgeführt und bewirkt dadurch, dass erhöhte Strömungsgeschwindigkeiten an einem äußeren Umfang des Treibdüsen-Strömungsquerschnitts vorliegen. Dadurch ist insbesondere ein Vermischen mit dem Saugmedium verbessert. Insbesondere ist der Treibkeil koaxial zur Strahlapparat-Längsachse angeordnet. Der Treibkeil weist insbesondere eine rotationssymmetrische, insbesondere eine kegel- oder kegelstumpfförmige Geometrie auf. Insbesondere weist der Treibkeil entlang der Strahlapparat-Längsachse eine veränderliche, von der Treibmedium-Eingangsöffnung zur Rührmedium-Ausgangsöffnung gerichtet eine ansteigende Querschnittsfläche auf.
  • Besonders vorteilhaft ist es, wenn der Mischdüsen-Abschnitt eine Mischkammer und eine entlang der Strahlapparat-Längsachse nachfolgende Mischstrecke aufweist. Wobei ein Mischkammer-Strömungsquerschnitt entlang der Strahlapparat-Längsachse zur Rührmedium-Ausgangsöffnung hin abnimmt und wobei ein Mischstrecken-Strömungsquerschnitt entlang der Strahlapparat-Längsachse im Wesentlichen konstant ist. Dadurch ist gewährleistet, dass innerhalb des Mischdüsen-Abschnitts über die vorgelagerte Mischkammer aufgrund des abnehmenden Mischkammer-Strömungsquerschnitts eine Saugwirkung auf das Treibmedium und auf das zuvor über Saugmedium-Eingangsöffnungen eingesaugte Saugmedium ausgeübt wird. Anschließend werden die über die Mischkammer der Mischstrecke zugeführten Medienströme innerhalb der Mischstrecke miteinander vermischt und an den Diffusor weitergegeben.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Verhältnis von Mischstrecken-Strömungsquerschnitt zu Treibdüsen-Strömungsquerschnitt im Bereich von 4 bis 15, insbesondere im Bereich von 6 bis 12 und beträgt insbesondere etwa 9. Ein derartiges Verhältnis ermöglicht eine besonders vorteilhafte Aufweitung des Rührstrahls gegenüber dem Treibmediumstrahl.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist der Diffusor einen aufweitenden Diffusor-Strömungsquerschnitt auf. Das bedeutet, dass der Diffusor-Strömungsquerschnitt entlang der Strahlapparat-Längsachse zu der Rührmedium-Ausgangsöffnung hin sich vergrößert. Insbesondere ist der Diffusor-Strömungsquerschnitt kegel- oder kegelstumpfförmig ausgeführt. Es ist auch möglich, dass der Diffusor-Strömungsquerschnitt kein Vollquerschnitt sondern ein Hohl-Querschnitt ist, insbesondere dann, wenn im Bereich des Diffusors ein Treibkeil vorgesehen ist.
  • Besonders vorteilhaft ist es, wenn eine Diffusor-Länge in Abhängigkeit eines Radius einer Diffusor-Eintrittsöffnung festgelegt ist. Insbesondere beträgt die entlang der Strahlapparat-Längsachse orientierte Diffusor-Länge mindestens 80 % und höchstens 230 % des Radius, insbesondere mindestens 100 % und höchstens 200 % des Radius und insbesondere beträgt die Diffusor-Länge das 1,6-fache des Radius der Diffusor-Eintrittsöffnung.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist der Strahlapparat keine beweglichen Teile auf. Insbesondere gegenüber mechanischen Rührwerken ist die Vorrichtung dahingehend vereinfacht, dass bewegliche und mechanische Teile entfallen. Der Verschleiß der gesamten Vorrichtung und der erforderliche Aufwand für Wartungs- und/oder Reparaturarbeiten ist reduziert. Aufgrund der entfallenden Wartungsarbeiten ist insbesondere auch die Unfallgefahr reduziert. Insbesondere ist es nicht erforderlich, außen am Behälter Aufstiegsleitern anzubringen, über die die Zugänglichkeit zur Wartung von Rührwerken in dem Behälter ermöglicht ist. Dadurch, dass den Behälter durchdringende Antriebswellen nicht erforderlich sind, ist der Energieverlust beim Durchmischen des Mediums in dem Behälter reduziert. Bei einer üblichen Temperaturdifferenz von etwa 150 K zwischen dem gelagerten Medium und der Umgebung sind bei einem Rührwerk Wärmeverluste über einen Laternenflansch nicht vermeidbar. Ein derartiger Wärmeverlust tritt bei der erfindungsgemäßen Vorrichtung nicht auf. Insbesondere ist der bei Rührwerken auftretende Wärmeverlust größer als eine Antriebsleistung der Förderpumpe bei der erfindungsgemäßen Vorrichtung, insbesondere bei kurzen Rührintervallen und/oder bei langen Ruhezeiten, wie dies insbesondere bei der Polymerbitumenlagerung üblich ist. Das bedeutet, dass trotz der zusätzlichen Antriebsleistung für die Förderpumpe die erfindungsgemäße Vorrichtung gegenüber einem Lagerbehälter mit mechanischem Rührwerk einen reduzierten Energieverbrauch aufweist. Die Energiebilanz ist positiv. Insbesondere bei lösemittelhaltigen Medien kann die Lagertemperatur über dem Flammpunkt des jeweiligen Mediums liegen. Die Gefahr einer Funkenbildung, die bei mechanischen Rührwerken durch Lagerreibung oder durch Materialbruch möglich ist, ist bei der vorliegenden Vorrichtung ausgeschlossen. Die Medienmischung mit der erfindungsgemäßen Vorrichtung erfolgt derart, dass die Oberfläche des Mediums unabhängig vom Füllstand in dem Behälter weitgehend glatt ist. Dadurch ist der Kontakt des Mediums mit Verdrängungsluft reduziert. Die Gefahr einer Oxidation ist verringert. Insbesondere gegenüber mechanischen Rührwerken, die beispielsweise an der Oberfläche des Mediums arbeiten und einen Wellengang verursachen, ist die Gefahr der Oxidation reduziert. Insbesondere ist die Inertisierung von Verdrängungsluft und/oder die druckstoßfeste Ausführung des Behälters nicht erforderlich. Die erfindungsgemäße Vorrichtung, insbesondere die Strahldüse und die dafür erforderlichen Verbindungsleitungen können vorteilhaft insbesondere in einem unteren Bereich des Behälters, der insbesondere vertikal orientiert aufgestellt ist, angeordnet sein. Insbesondere sind im oberen Bereich des Behälters keine zusätzlichen Komponenten vorgesehen. In- und Aufbauten zur Begehung des oberen Bereichs des Behälters wie beispielsweise ein oberes Mannloch, innere und äußere Leitern, eine Rundbühne und/oder ein Laternenflansch können entfallen. Die Ausführung eines derartigen Behälters ist vereinfacht und insbesondere kostengünstig. Darüber hinaus ermöglicht die erfindungsgemäße Vorrichtung ein vorteilhaftes, energieeffizientes Betreiben der Lagerung und Durchmischung des Mediums. Es ist möglich, über die Strahldüse ein Durchmischen und insbesondere Erwärmen des in dem Behälter bevorrateten Mediums zu ermöglichen, auch wenn nicht das gesamte Medienvolumen in flüssiger Form vorliegt. Ein Vermischen kann lokal im Bereich des Strahlapparats beginnen und über eine Wärmezufuhr zu einem verbesserten Wärmeeintrag in dem Bereich der Strahldüse führen. Dadurch ist die Heizkapazität vorteilhaft ausgenutzt. Der Wärmeaustausch ist durch das Mischen mittels des Strahlapparats verbessert. Insbesondere ist es nicht erforderlich, ein Vermischen erst dann zu starten, wenn das gelagerte Medium vollständig in flüssiger Form vorliegt, wie dies bei einem mechanischen Rührwerk erforderlich wäre.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung ist der Strahlapparat wartungsfrei. Insbesondere ist die gesamte Vorrichtung im Wesentlichen wartungsfrei, wobei lediglich die Förderpumpe gegebenenfalls einer Wartung bedarf, die Förderpumpe ist aber insbesondere außerhalb des Behälters und insbesondere von außen zugänglich angeordnet. Insbesondere dann, wenn das zu lagernde Fluid ohne abrasive Bestandteile ausgeführt ist, ist die Standzeit des Strahlapparats im Wesentlichen unbegrenzt. Es hat sich gezeigt, dass Zahnradpumpenund Drehschieberpumpen besonders geeignete Bauformen für die Realisierung der Förderpumpe sind. Insbesondere ist dadurch eine Erhöhung der Standzeit der Förderpumpe ermöglicht. Zahnrad- und Drehscheibenpumpen können beispielsweise einen Wirkungsgrad von 70 % aufweisen und ermöglichen die Erzeugung eines Treibmediumstrahls mit einem Volumenstrom von 40 m3/h bei einem Druck von 3 bar. Ausgehend von einer Antriebsleistung von etwa 5 kW können somit etwa 50 bis 100 m3 des Mediums in dem Behälter zuverlässig und homogen durchmischt werden.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist der Strahlapparat eine erste Strahldüse und eine zweite Strahldüse auf, die entlang der Strahlapparat-Längsachse hintereinander angeordnet sind. Die erste Strahldüse ist also der zweiten Strahldüse entlang der Strömungsrichtung des Mediums in dem Strahlapparat vorgeschaltet. Die erste Strahldüse weist einen ersten Treibdüsen-Abschnitt, einen ersten Saugdüsen-Abschnitt, einen ersten Mischdüsen-Abschnitt und einen ersten Diffusor auf. Die zweite Strahldüse weist einen zweiten Treibdüsen-Abschnitt, einen zweiten Saugdüsen-Abschnitt, einen zweiten Mischdüsen-Abschnitt und einen zweiten Diffusor auf. Eine derartige Kaskadierung von zwei Strahldüsen in ein und demselben Strahlapparat ermöglicht das Erzeugen eines besonders effektiven Rührstrahls. Dabei wird ausgenutzt, dass der Rührstrahl der ersten Strahldüse als Treibmediumstrahl für die zweite Strahldüse genutzt werden kann. Besonders vorteilhaft ist es, wenn der erste Diffusor und der zweite Treibdüsen-Abschnitt eine integrale, insbesondere einstückige, Baukomponente sind. Insbesondere sind der erste Diffusor und der zweite Treibdüsen-Abschnitt ein und dieselbe, also die identische Komponente. Die Anzahl der Komponenten für den Strahlapparat ist dadurch reduziert. Insbesondere ist ein derartiger Strahlapparat besonders kompakt und robust ausgeführt. Die Baugröße des Strahlapparats ist reduziert. Insbesondere ist die Baulänge entlang der Strahlapparat-Längsachse reduziert. Durch die Hintereinanderschaltung von zwei Strahldüsen in dem Strahlapparat multipliziert sich die maximal erreichbare Volumenvergrößerung für den Rührstrahl. Insbesondere beträgt das Volumen des Rührstrahls das zehnfache gegenüber dem Volumen des Treibmediumstrahls. Es ist möglich, eine weitere, also eine dritte, Strahldüse in dem Strahlapparat zu integrieren, um eine weitere Volumenvergrößerung des Rührstrahls zu bewirken.
  • Gemäß einer vorteilhaften Ausgestaltung ist der Strahlapparat mit der Strahlapparat-Längsachse parallel zu einer Behälter-Längsachse orientiert. Dadurch ist die Vermischung des Mediums in dem Behälter verbessert. Insbesondere ist der Behälter mit der Behälter-Längsachse vertikal orientiert gegenüber dem Untergrund aufgestellt.
  • Besonders vorteilhaft ist es, wenn mehrere Strahlapparate in dem Behälter angeordnet sind. Die Durchmischung ist dadurch zusätzlich verbessert. Es ist möglich, mehrere Strahlapparate in einer Ebene senkrecht zur Behälter-Längsachse, insbesondere entlang einer Innenwand des Behälters anzuordnen. Es ist auch denkbar, mehrere Strahlapparate entlang der Behälter-Längsachse hintereinander anzuordnen.
  • Weitere vorteilhafte Ausgestaltungen, zusätzliche Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung. Es zeigen:
  • Fig. 1
    eine schematische Darstellung der erfindungsgemäßen Vorrichtung und
    Fig. 2
    eine vergrößerte Schnittdarstellung eines Strahlapparats der erfindungsgemäßen Vorrichtung.
  • Die in Fig. 1 schematisch dargestellte Vorrichtung 1 dient zum Lagern von zähflüssigen Medien, insbesondere von mittel- bis hochviskosen Medien wie beispielsweise Polymerbitumen. Die Vorrichtung 1 umfasst einen Behälter 2, in dem das Medium 3 bevorratet ist. Über einen Füllanschluss 4 kann das Medium 3 einer Zuführleitung 5 zugeführt werden. Eine Förderpumpe 6 fördert das in der Zuführleitung 5 befindliche Medium 3 zu dem Behälter 2. Ein erstes betätigbares Sperrventil 7 dient zum Trennen des Füllanschlusses 4 von der Zuführleitung 5, insbesondere dann, wenn gerade kein Nachfüllen des Behälters 2 erforderlich ist.
  • Der Füllpumpe 6 ist entlang einer Förderrichtung 8 ein weiteres, zweites Sperrventil 9 angeordnet. Hinter dem zweiten Sperrventil 9 ist ein Temperaturfühler 10 vorgesehen, der zur Temperaturmessung des in der Zuführleitung 5 befindlichen Mediums 3 dient. Weiterhin ist eine Probenentnahmestelle 11 vorgesehen, um eine Probe des Mediums 3 in der Zuführleitung 5 zu entnehmen. Eine derartige Probe kann anschließend einer weitergehenden Untersuchung unterzogen werden. Eine derartige Untersuchung dient zur Analyse beispielsweise der Zusammensetzung des Mediums. Die Zuführleitung 5 führt entlang der Förderrichtung 8 von der Förderpumpe 6 zu dem Behälter 2. Innerhalb des Behälters 2 sind ein erster Strahlapparat 12 und ein zweiter Strahlapparat 13 angeordnet und jeweils unabhängig voneinander mit der Zuführleitung 5 verbunden. Dazu weist die Zuführleitung 5 eine erste Weiche 14 auf, die insbesondere außerhalb des Behälters 2 angeordnet ist. Ein drittes Sperrventil 15 ist entlang der Fördervorrichtung 8 vor der ersten Weiche 14 angeordnet. Mit dem dritten Sperrventil 15 kann die Förderverbindung von der Förderpumpe 6 zu den beiden Strahlapparaten 12, 13 unterbrochen werden. Sofern das dritte Sperrventil 15 eine Förderung des Mediums 3 zulässt, ist zumindest der erste Strahlapparat 12 in Förderverbindung mit der Förderpumpe 6. Der zweite Strahlapparat 13 kann über ein viertes Sperrventil 16, das entlang der Förderrichtung 8 der ersten Weiche 14 nachgeordnet ist, separat geschalten werden. Es ist also möglich, dass entweder beide Strahlapparate 12, 13, nur der erste Strahlapparat 12 oder keiner der Strahlapparate 12, 13 mit der Förderpumpe 6 in Förderverbindung stehen.
  • Der Behälter 2 weist eine Behälter-Längsachse 17 auf. Der Behälter 2 ist mit der Behälter-Längsachse 17 vertikal orientiert aufgestellt. Die erste Strahlapparat 12 weist eine Strahlapparat-Längsachse 18 auf, die vertikal orientiert ist. Der zweite Strahlapparat 13 weist eine Strahlapparat-Längsachse 19 auf, die vertikal orientiert ist. Die Behälter-Längsachse 17 und die Strahlapparat-Längsachsen 18, 19 sind parallel zueinander orientiert. Entlang der Behälter-Längsachse 17 ist der erste Strahlapparat 12 vor dem zweiten Strahlapparat 13 angeordnet.
  • Gemäß dem gezeigten Ausführungsbeispiel in Fig. 1 ist der Füllstand des Mediums 3 derart, dass der erste Strahlapparat 12 vom Medium 3 umgeben ist. Der zweite Strahlapparat 13 ist in einem Höhenbereich des Behälters 2 angeordnet, der oberhalb des Füllstands liegt. In dieser Anordnung ist der zweite Strahlapparat 13 inaktiv, d.h. der zweite Strahlapparat 13 dient nicht zum Umpumpen des Mediums 3. Das Medium 3 wird ausschließlich von dem ersten Strahlapparat 12 umgewälzt.
  • An dem Behälter 2 ist ein Füllstandssensor 49 vorgesehen, der zur Überwachung des aktuellen Füllstands mit Medium 3 in dem Behälter 2 dient. In Abhängigkeit des Füllstands, kann der Füllstandssensor 49 ein Signal an eine Steuereinheit 50 übermitteln, die dann beispielsweise die Förderpumpe 6 und/oder mindestens eines der Sperrventile 15, 16 zur Versorgung der Strahlapparate 12, 13 steuert. Dazu steht die Steuereinheit 50 mit der Förderpumpe 6 und den Sperrventilen 15, 16 in Signalverbindung. Die Steuereinheit 50 steht auch mit dem Füllstandssensor 49 in Signalverbindung.
  • Gemäß dem gezeigten Zustand in Fig. 1 ist das vierte Sperrventil 16 derart geschalten, dass der zweite Strahlapparat 13 von der Zuführleitung 5 getrennt ist. Dagegen ist der erste Strahlapparat 12 mit der Förderpumpe 6 in Förderverbindung. Die Steuereinheit 50 kann auch bewirken, dass das erste Sperrventil 7 geöffnet und über den Füllanschluss 4 und die Zuführleitung 5 Medium 3 in den Behälter 2 nachgefüllt wird. Es ist insbesondere denkbar, dass die Füllstandsüberwachung geregelt derart erfolgt, dass ein vorgegebener Mindestfüllstand im Behälter 2 nicht unterschritten wird. Dies ist beispielsweise dadurch möglich, dass die Regelung zum Nachfüllen des Behälters 2 mit Medium 3 bei Erreichen und/oder Unterschreiten eines kritischen Mindestfüllstands ausgelöst wird.
  • Weiterhin ist in dem Behälter 2 ein Strömungssensor 51 vorgesehen. Der Strömungssensor 51 ist in dem Behälter 2 ortsfest angebracht und beispielsweise fest mit einer Innenwand des Behälters 2 verbunden, insbesondere daran angeschweißt. Der Strömungssensor 51 ist benachbart zu dem ersten Strahlapparat 12 entlang der Strahlapparat-Längsachse 18 angeordnet. Der Strömungssensor 51 erfasst die Strömung des Mediums 3 innerhalb des Behälters 2. Der Strömungssensor 51 kann auch an einer anderen Stelle in dem Behälter 2 angeordnet sein, um die Strömungsverhältnisse innerhalb des Behälters 2 zu erfassen. Der Strömungssensor 51 ist mit der Steuereinheit 50 in Signalverbindung. Der Strömungssensor 51 übermittelt an die Steuereinheit 50 ein Signal, das zur Steuerung und insbesondere zur Regelung der Drehzahl der Förderpumpe 6 verwendet wird. Dazu kann entlang der Signalverbindung zwischen der Steuereinheit 50 und der Förderpumpe 6 ein Frequenzumrichter 52 vorgesehen sein. In die Antriebsleistung der Förderpumpe 6 geht die Drehzahl der Förderpumpe 6 mit der dritten Potenz ein. Eine Reduzierung der Drehzahl der Förderpumpe 6 bewirkt eine erhebliche Einsparung bei der Antriebsleistung der Förderpumpe 6. Mittels des Strömungssensors 51 ist es möglich, die Vorrichtung 1 besonders effizient und wirtschaftlich zu betreiben.
  • Weiterhin in Förderverbindung mit der Zuführleitung 5 ist ein Zuführanschluss 20, über den das Medium 3 direkt in den Behälter 2 gepumpt werden kann. Dem Zuführanschluss 20 ist ein fünftes Sperrventil 21 zugeordnet. Zur Versorgung des Zuführanschlusses 20 mit Medium 3 ist an der Zuführleitung 5 eine zweite Weiche 22 vorgesehen, die entlang der Förderrichtung 8 dem dritten Sperrventil 15 vorgelagert ist. Es ist also insbesondere möglich, Medium 3 mittels der Förderpumpe 6 über den Zuführanschluss 20 direkt in den Behälter 2 zu fördern, ohne dass das Medium 3 zusätzlich durch mindestens einen der Strahlapparate 12, 13 strömen muss. Dadurch ist ein schnelles, direktes und unkompliziertes Füllen des Behälters möglich.
  • An dem Behälter 2 ist eine Entnahmeöffnung 23 vorgesehen, der ein sechstes Sperrventil 24 zugeordnet ist. Ausgehend von der Entnahmeöffnung 23 kann Medium 3 aus dem Behälter 2 entlang der Förderrichtung 8 rückgepumpt und über die Förderpumpe 6 wieder in Umlauf gebracht werden. Für ein Mischen des Mediums 3 in dem Behälter 2 ist es also möglich, in dem Behälter 2 befindliches Medium 3 über die Entnahmeöffnung 23 in eine Entnahmeleitung 25 zu fördern. Die Entnahmeleitung 25 ist im Bereich der Förderpumpe 6 der Zuführleitung 5 zugeführt, sodass das entnommene Medium über die Förderpumpe in der Zuführleitung 5 entlang der Förderrichtung 8 des ersten Strahlapparats 12 und/oder des zweiten Strahlapparats 13 zugeführt werden kann. Ausgehend von dem Behälter 2, die Entnahmeöffnung 23, die Entnahmeleitung 25, die Förderpumpe 6, die Zuführleitung 5 und den Strahlapparaten 12, 13 ist ein geschlossener Kreislauf für die Medienumwälzung gebildet.
  • Im Folgenden wird anhand von Fig. 2 die konkrete Ausgestaltung des ersten Strahlapparats 12, der in Fig. 1 rein schematisch dargestellt ist, näher erläutert. Die Strahlapparate 12, 13 sind identisch ausgeführt.
  • Der erste Strahlapparat 12 ist rotationssymmetrisch bezüglich der Strahlapparat-Längsachse 18 ausgeführt. Fig. 2 zeigt einen Längsschnitt in einer Ebene, die die Strahlapparat-Längsachse 18 enthält. Der Strahlapparat 12 weist eine in Fig. 2 links dargestellte Treibmedium-Eingangsöffnung 26 auf, die zum Zuführen des Mediums 3 als Treibmedium in Form eines Treibmediumstrahls in den Strahlapparat 12 dient. An einem der Treibmedium-Eingangsöffnung 26 gegenüberliegenden Ende des Strahlapparats 12 ist eine Rührmedium-Ausgangsöffnung 27 vorgesehen, um einen Rührstrahl in den Behälter 2 abzugeben. Der Rührstrahl dient zum Rühren des Mediums 3.
  • Gemäß dem gezeigten Ausführungsbeispiel umfasst der Strahlapparat 12 eine erste Strahldüse 28 und eine entlang der Strahlapparat-Längsachse 18 dahinter angeordnete zweite Strahldüse 29. Die erste Strahldüse 28 umfasst einen ersten Treibdüsen-Abschnitt 30, einem ersten Saugdüsen-Abschnitt 53, einen ersten Mischdüsen-Abschnitt 31 und einen ersten Diffusor 32. Die zweite Strahldüse 29 umfasst einen zweiten Treibdüsen-Abschnitt 33, einen zweiten Saugdüsen-Abschnitt 54, einen zweiten Mischdüsen-Abschnitt 34 und einen zweiten Diffusor 35. Die jeweiligen Treibdüsen-Abschnitte 30, 33, Saugdüsen-Abschnitte 53, 54, Mischdüsen-Abschnitte 31, 34 und Diffusoren 32, 35 der Strahldüsen 28, 29 sind im Wesentlichen funktionsgleich. Wesentlich ist, dass entlang der Strahlapparat-Längsachse 18 entlang einer Medien-Durchströmrichtung 36 hintereinander jeweils zunächst der Treibdüsen-Abschnitt 30, 33, der Saugdüsen-Abschnitt 53, 54, der Mischdüsen-Abschnitt 31, 34 und dann der Diffusor 32, 35 angeordnet sind.
  • Der Treibdüsen-Abschnitt 30, 33 dient zum Einspeisen von Treibmedium 3 in die jeweiligen Strahldüsen 28, 29. Bei dem ersten Treibdüsen-Abschnitt 30, der der Treibmedium-Eingangsöffnung 26 zugewandt ist, wird das Treibmedium von der Zuführleitung 5 dem Strahlapparat 12 zugeführt. Bei dem zweiten Treibdüsen-Abschnitt 33, der identisch ist mit dem ersten Diffusor 32 wird als Treibmedium für die zweite Strahldüse 29 der am ersten Diffusor 32 der ersten Strahldüse 28 austretende Treibmedienstrahl verwendet.
  • Im Bereich des ersten Treibdüsen-Abschnitts 30, 33 ist koaxial zur Strahlapparat-Längsachse 18 ein Treibkeil 37 angeordnet, der von dem einströmenden Treibmedium umströmt wird. Der Treibkeil 37 dient zur Erzeugung eines ringförmigen Treibdüsen-Strömungsquerschnitts. Ein derart erzeugter Treibdüsen-Strömungsquerschnitt weist insbesondere in einem Umfangsbereich der senkrecht zur Strahlapparat-Längsachse 18 orientierten Ringfläche eine erhöhte Strömungsgeschwindigkeit auf, sodass eine Vermischung mit einem an dem Strahlapparat 12 eingesaugten Saugmedium verbessert ist.
  • Ein Einsaugen von Saugmedium erfolgt über mehrere Saugmedium-Eingangsöffnungen 38, die in der Außenwand des Strahlapparats 12 angeordnet sind. Mit dem gezeigten Ausführungsbeispiel sind vier Saugmedium-Eingangsöffnungen 38 vorgesehen, die gleichmäßig verteilt am äußeren Umfang des Strahlapparats 12 vorgesehen sind. Die Saugmedium-Eingangsöffnungen 38 sind jeweils durch nicht dargestellte Trennstege 55 in der Außenwand des Strahlapparats 12 getrennt. Die Saugmedium-Eingangsöffnungen 38 erstrecken sich entlang eines Umfangswinkels um die Strahlapparat-Längsachse 18 um nahezu 90°. Eine von den Saugmedium-Eingangsöffnungen 38 gebildete Einströmfläche für das Saugmedium entspricht im Wesentlichen der äußeren Oberfläche des Strahlapparats. Die Saugmedium-Eingangsöffnungen 38 sind im Saugdüsen-Abschnitt 53 angeordnet. Die Strömung des Saugmediums 3 durch die Saugmedium-Eingangsöffnungen 38 in den ersten Mischdüsen-Abschnitt 31 ist durch die Pfeile 39 dargestellt.
  • Der erste Mischdüsen-Abschnitt 31 dient zum Mischen von Treibmedium und Saugmedium. Es ist klar, dass es sich bei dem Treibmedium und dem Saugmedium um ein und dasselbe Medium 3, insbesondere Polymerbitumen, handelt. Treibmedium wird durch die Treibmediumströmung 40 über die Treibmedium-Eingangsöffnung 26 der ersten Strahldüse 28 zugeführt. Saugmedium wird über die Saugmedium-Eingangsöffnungen 38 als Saugströmung 39 zugeführt.
  • Der erste Mischdüsen-Abschnitt 31 weist eine erste Mischkammer 41 und eine entlang der Mediendurchströmrichtung 36 nachfolgende erste Mischstrecke 42 auf. Die erste Mischkammer 41 weist einen Mischkammer-Strömungsquerschnitt auf, der entlang der Mediendurchströmrichtung 36, also entlang der Strahlapparat-Längsachse 18 zur Rührmedium-Ausgangsöffnung 27 hingerichtet abnimmt. Dadurch wird die Strömungsgeschwindigkeit des Mediums erhöht und eine Vermischung von Treibmedium und Saugmedium verbessert. Das Vermischen der Medienströme 39, 40 erfolgt dann insbesondere in der ersten Mischstrecke 42, die entlang der Strahlapparat-Längsachse 18 einen Mischstrecken-Strömungsquerschnitt aufweist, der im Wesentlichen konstant ist.
  • Ein Verhältnis von Mischstrecken-Strömungsquerschnitt zu Treibdüsen-Strömungsquerschnitt liegt im Bereich von 4 bis 15. Es ist vorteilhaft wenn dieses Verhältnis im Bereich von 6 bis 12 liegt. Gemäß dem gezeigten Ausführungsbeispiel beträgt das Verhältnis etwa 9.
  • Der erste Diffusor 32 weist einen aufweitenden Diffusor-Strömungsquerschnitt auf, der entlang der Strahlapparat-Längsachse 18 eine äußere kegelförmige oder kegelstumpfförmige Kontur aufweist. Gemäß dem gezeigten Ausführungsbeispiel ist im Bereich des ersten Diffusors 32 ein weiterer Treibkeil 43 vorgesehen. Der Treibkeil 43 erfüllt im Wesentlichen die gleiche Funktion wie der Treibkeil 37 im Bereich des ersten Treibdüsen-Abschnitts 30. Der Grund hierfür liegt darin, dass der erste Diffusor 32 integral in ein und demselben Bauteil ausgeführt ist wie der zweite Treibdüsen-Abschnitt. Dadurch kann die Baulänge des Strahlapparats 12 insgesamt reduziert werden. Aufgrund des Treibkeils 43 ist der Diffusor-Strömungsquerschnitt des ersten Diffusors 32 ein ringförmiger Strahl. Die im Bereich des ersten Diffusors 32 austretende Medienströmung dient als Treibströmung 40 für die zweite Strahldüse 29.
  • Die zweite Strahldüse 29 ist im Wesentlichen identisch zu der ersten Strahldüse 28 ausgeführt. Insbesondere sind die Dimensionen, insbesondere der jeweilige Durchmesser der Querschnittsflächen senkrecht zur Strahlapparat-Längsachse 18 sowie die Längen entlang der Strahlapparat-Längsachse 18 gegenüber den entsprechenden Abmessungen der ersten Strahldüse 28 vergrößert. Der zweite Saugdüsen-Abschnitt 54 weist vier entlang des äußeren Umfangs des Strahlapparats 12 regelmäßig verteilt angeordnete Saugmedium-Eingangsöffnungen 44 auf. Der zweite Mischdüsen-Abschnitt 34 weist eine zweite Mischkammer 45 und eine zweite Mischstrecke 46 auf. Zwei benachbarte Saugmedium-Eingangsöffnungen 44 sind jeweils durch einen Trennsteg 56 voneinander getrennt. Über den zweiten Diffusor wird das Medium 3 als Rührstrahl 48 zum Rühren des Mediums 3 in dem Behälter 2 aus dem Strahlapparat 12 abgegeben.
  • Im Bereich des zweiten Diffusors 35 ist kein Treibkeil vorgesehen. Das bedeutet, dass der von dem Strahlapparat 12 abgegebene Rührstrahl 48 ein vollflächiges Strömungsprofil aufweist. Der an dem zweiten Diffusor 35 abgegebene Diffusor-Strömungsquerschnitt ist vollflächig. Dadurch, dass der Diffusor 35 entlang der Strahlapparat-Längsachse 18 aufweitend ausgeführt ist und insbesondere eine Kegelstumpfform aufweist, ist der Rührstrahl 48 aufgeweitet. Insbesondere ist der aus dem Strahlapparat 12 abgegebene Rührstrahl 48 bezogen auf den in den Strahlapparat 12 zugeführten Treibmediumstrahl 40 vergrößert. Das bedeutet, der Rührstrahl 48 weist ein vergrößertes Volumen auf und bewirkt gleichzeitig aufgrund der verringerten Strömungsgeschwindigkeit einen verlängerten Impulsverlust. Der so erzeugte Rührstrahl 48 ist besonders gut geeignet, um das Medium 3 in dem Behälter 2 vollständig, homogen und zuverlässig zu durchmischen. Durch die gezeigte Kaskadierung der Strahldüsen 28, 29 kann der aufgeweitete Diffusor-Strömungsquerschnitt des ersten Diffusors 32 vorteilhaft als Eingangsströmung für die zweite Strahldüse 29 genutzt werden. Insbesondere ist es ausreichend, wenn ein einziger Strahlapparat 12 in einem Behälter 2 angeordnet ist. Dadurch, dass der Strahlapparat 12 keine beweglichen Teile aufweist, ist ein Verschleiß reduziert. Insbesondere ist der Strahlapparat 12 wartungsfrei ausgeführt.
  • Der zweite Diffusor 35 weist eine Diffusor-Länge LD auf, die entlang der Strahlapparat-Längsachse 18 orientiert ist. Der zweite Diffusor 35 weist zudem einen Radius r1 der Diffusor-Eintrittsöffnung 47 auf. Es gilt: 0,8.r1 ≤ LD ≤ 2,3.r1, insbesondere 1,0·r1 ≤ LD ≤ 2,0·r1, insbesondere LD = 1,6·r1.
  • Es ist denkbar, an dem Strahlapparat 12 die Zufuhr eines Kühlmediums, insbesondere von flüssigem Wasser vorzusehen. Insbesondere erfolgt die Zufuhr des Kühlmediums im Bereich der Rührmedium-Ausgangsöffnung 27. Insbesondere wird eine geringe Menge zugeführt, insbesondere höchstens 5 % des Volumens des abgegebenen Rührstrahls 48, insbesondere höchstens 3 % des Volumen des abgegebenen Rührstrahls 48 und insbesondere höchstens 1 % des Volumens des abgegebenen Rührstrahls 48. Das injizierte Wasser wird aufgrund der erhöhten Temperatur des Mediums, insbesondere des Polymerbitumens, verdampft. Aufgrund der Phasenänderungsenthalpie wird die Temperatur des Mediums 3 reduziert. Gleichzeitig wird der Impuls des Rührstrahls 48 erhöht. Dadurch ist die Mischwirkung des Rührstrahls 48 zusätzlich verbessert. Ein derartiger Rührstrahl 48 mit injiziertem Wasser weist eine verbesserte Effizienz auf. Insbesondere ist es möglich, das flüssige Wasser über eine nicht dargestellte Zuführleitung dem Strahlapparat 12 im Bereich des zweiten Diffusors 35 an einer äußeren Mantelfläche radial zur Strahlapparat-Längsachse 18 zuzuführen. Es ist auch denkbar, die Zuführleitung derart in den Strahlapparat 12 zu integrieren, dass eine Zuführöffnung für das Wasser koaxial zur Strahlapparat-längsachse 18 angeordnet ist. Es können auch mehrere Zuführöffnungen vorgesehen sein, die dann beispielsweise konzentrisch zur Strahlapparat-längsachse 18 in einer Ebene senkrecht zur Strahlapparat-Längsachse 18 beabstandet zur Strahlapparat-Längsachse 18 angeordnet sind.

Claims (15)

  1. Vorrichtung zur Lagerung von zähflüssigen Medien, insbesondere Polymerbitumen, wobei die Vorrichtung (1) umfasst
    a. einen Behälter (2) zum Bevorraten des Mediums (3),
    b. eine Förderpumpe (6) zum Fördern zumindest eines Teilvolumens des Mediums (3),
    c. einen mindestens eine Strahldüse (28, 29) aufweisenden, in dem Behälter (2) angeordneten, mit der Förderpumpe (6) in Förderverbindung stehenden Strahlapparat (12, 13), der einen Rührstrahl (48) zum Rühren des Mediums (3) ermöglicht, wobei der aus dem Strahlapparat (12, 13) abzugebende Rührstrahl (48) bezogen auf einen in den Strahlapparat (12, 13) zuzuführenden Treibmediumstrahl ein vergrößertes Volumen aufweist und/oder einen verringerten Impulsverlust auf das zu rührende Medium (3) bewirkt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Strahlapparat (12, 13) eine mit der Förderpumpe (6) verbundene Treibmedium-Eingangsöffnung (26) zum Zuführen von Treibmedium als Treibmediumstrahl in den Strahlapparat (12, 13) und eine Rührmedium-Ausgangsöffnung (27) zum Abgeben des Rührstrahls (48) in den Behälter (2) aufweist, wobei die Treibmedium-Eingangsöffnung (26) und die Rührmedium-Ausgangsöffnung (27) koaxial zueinander angeordnet sind.
  3. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Strahlapparat (12, 13) mindestens eine Saugmedium-Eingangsöffnung (38, 44) zum Einsaugen von Saugmedium in den Strahlapparat (12, 13) aufweist.
  4. Vorrichtung nach einem der vorstehenden Ansprüche, gekennzeichnet durch entlang einer Strahlapparat-Längsachse (18, 19) des Strahlapparats (12, 13) einen Treibdüsen-Abschnitt (30, 33) zum Einspeisen von Treibmedium in den Strahlapparat (12, 13), einen Saugdüsen-Abschnitt (53, 54) zum Einsaugen von Saugmedium in den Strahlapparat (12, 13), einen Mischdüsen-Abschnitt (31, 34) zum Mischen von Treibmedium und Saugmedium und einen Diffusor (32, 35) zum Ausströmen des Rührstrahls (48) in den Behälter (2).
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Treibdüsen-Abschnitt (30, 33) einen, insbesondere koaxial zur Strahlapparat-Längsachse (18, 19) angeordneten, Treibkeil (37, 43) zur Erzeugung eines, insbesondere ringförmigen, Treibdüsen-Strömungsquerschnitts aufweist.
  6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Mischdüsen-Abschnitt (31, 34) eine Mischkammer (41, 45) und eine entlang der Strahlapparat-Längsachse (18, 19) nachfolgende Mischstrecke (42, 46) aufweist, wobei ein Mischkammer-Strömungsquerschnitt entlang der Strahlapparat-Längsachse (18, 19) zur Rührmedium-Ausgangsöffnung (27) hin gerichtet abnimmt und wobei ein Mischstrecken-Strömungsquerschnitt entlang der Strahlapparat-Längsachse (18, 19) im Wesentlichen konstant ist.
  7. Vorrichtung nach den Ansprüchen 5 und 6, gekennzeichnet durch ein Verhältnis von Mischstrecken-Strömungsquerschnitt zu Treibdüsen-Strömungsquerschnitt im Bereich von 4 bis 15, insbesondere von 6 bis 12 und insbesondere von etwa 9.
  8. Vorrichtung nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass der Diffusor (32, 35) einen entlang der Strahlapparat-Längsachse (18, 19), insbesondere kegelförmig oder kegelstumpfförmig, aufweitenden Diffusor-Strömungsquerschnitt aufweist.
  9. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass der Diffusor (32, 35) eine Diffusor-Länge (LD) aufweist, wobei gilt 0,8·r1 ≤ LD ≤ 2,3.r1, insbesondere 1,0-r1 ≤ LD ≤ 2,0.r1, insbesondere LD = 1,6·r1, wobei r1 der Radius einer Diffusor-Eintritts öffnung (47) ist.
  10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Strahlapparat (12, 13) keine beweglichen Teile aufweist.
  11. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Strahlapparat (12, 13) wartungsfrei ausgeführt ist.
  12. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Strahlapparat (12, 13) eine erste Strahldüse (28) umfassend einen ersten Treibdüsen-Abschnitt (30), einen ersten Saugdüsen-Abschnitt (53), einen ersten Mischdüsen-Abschnitt (31) und einen ersten Diffusor (32) sowie eine entlang der Strahlapparat-Längsachse (18, 19) dahinter angeordneten zweite Strahldüse (29) umfassend einen zweiten Treibdüsen-Abschnitt (33), einen zweiten Saugdüsen-Abschnitt (54), einen zweiten Mischdüsen-Abschnitt (34) und einen zweiten Diffusor (35) aufweist.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der erste Diffusor (32) und der zweite Treibdüsen-Abschnitt (33) eine integrale Komponente sind.
  14. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Strahlapparat (12, 13) mit der Strahlapparat-Längsachse (18, 19) parallel zu einer, insbesondere vertikal orientierten, Behälter-Längsachse (17) orientiert ist.
  15. Vorrichtung nach einem der vorstehenden Ansprüche, gekennzeichnet durch mehrere Strahlapparate (12, 13).
EP14172654.7A 2013-06-26 2014-06-17 Vorrichtung zur Lagerung von zähflüssigen Medien Active EP2818234B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013212163.6A DE102013212163B4 (de) 2013-06-26 2013-06-26 Vorrichtung zur Lagerung von zähflüssigen Medien

Publications (2)

Publication Number Publication Date
EP2818234A1 true EP2818234A1 (de) 2014-12-31
EP2818234B1 EP2818234B1 (de) 2016-09-14

Family

ID=50942185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14172654.7A Active EP2818234B1 (de) 2013-06-26 2014-06-17 Vorrichtung zur Lagerung von zähflüssigen Medien

Country Status (4)

Country Link
EP (1) EP2818234B1 (de)
DE (1) DE102013212163B4 (de)
DK (1) DK2818234T3 (de)
ES (1) ES2600000T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646237A (zh) * 2022-12-26 2023-01-31 常州金襄新材料科技有限公司 低温烧结多面球体银包铜粉导电浆料工艺及生产装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121340A1 (de) 2022-08-23 2024-02-29 Jura Elektroapparate Ag Befüllvorrichtung, korrespondierende Verwendung und korrespondierendes Set

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166020A (en) * 1961-09-20 1965-01-19 Hypro Engineering Inc Venturi mixer nozzle
DE2644378A1 (de) * 1976-10-01 1978-04-06 Fuellpack Dipl Brauerei Ing Di Verfahren zur einleitung von gas, insbesondere kohlendioxidgas, in eine in einer leitung stroemende fluessigkeit, insbesondere ein getraenk, sowie einrichtung zur durchfuehrung des verfahrens
EP0209095A2 (de) * 1985-07-17 1987-01-21 Waagner-Biro Aktiengesellschaft Verfahren zur Begasung und Einrichtung zur Durchführung desselben
WO2008034783A1 (de) * 2006-09-21 2008-03-27 Basf Se Verfahren zum durchmischen einer in einem abgeschlossenen behälter befindlichen flüssigkeit und einem feinteiligen feststoff, dergestalter behälter, ejektorstrahldüse sowie verwendung einer dergestalten düse

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100614A (en) * 1976-06-18 1978-07-11 Houdaille Industries, Inc. Method for polymer dissolution
US8931948B2 (en) * 2008-10-01 2015-01-13 Bp Corporation North America Inc. Process and apparatus for mixing a fluid within a vessel
DE102010029469A1 (de) * 2010-05-28 2011-12-01 Gea Brewery Systems Gmbh Huppmann Tuchenhagen Vorrichtung zur Vermischung eines Tankinhalts
EP2422873A1 (de) * 2010-08-26 2012-02-29 Hans Edgar Puth Verfahren und Vorrichtung zum Zusammenführen und Mischen oder Lösen von flüssigen, festen und gasförmigen Stoffen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166020A (en) * 1961-09-20 1965-01-19 Hypro Engineering Inc Venturi mixer nozzle
DE2644378A1 (de) * 1976-10-01 1978-04-06 Fuellpack Dipl Brauerei Ing Di Verfahren zur einleitung von gas, insbesondere kohlendioxidgas, in eine in einer leitung stroemende fluessigkeit, insbesondere ein getraenk, sowie einrichtung zur durchfuehrung des verfahrens
EP0209095A2 (de) * 1985-07-17 1987-01-21 Waagner-Biro Aktiengesellschaft Verfahren zur Begasung und Einrichtung zur Durchführung desselben
WO2008034783A1 (de) * 2006-09-21 2008-03-27 Basf Se Verfahren zum durchmischen einer in einem abgeschlossenen behälter befindlichen flüssigkeit und einem feinteiligen feststoff, dergestalter behälter, ejektorstrahldüse sowie verwendung einer dergestalten düse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115646237A (zh) * 2022-12-26 2023-01-31 常州金襄新材料科技有限公司 低温烧结多面球体银包铜粉导电浆料工艺及生产装置

Also Published As

Publication number Publication date
EP2818234B1 (de) 2016-09-14
DK2818234T3 (en) 2017-01-09
DE102013212163A1 (de) 2014-12-31
DE102013212163B4 (de) 2023-05-04
ES2600000T3 (es) 2017-02-06

Similar Documents

Publication Publication Date Title
EP2566609B1 (de) Emulgiereinrichtung zur kontinuierlichen herstellung von emulsionen und/oder dispersionen
EP2827975B1 (de) System und verfahren zum anfahren von rührwerken in einem sediment
EP2262582B1 (de) Rührkesselreaktor sowie verfahren zur durchführung einer polymerisationsreaktion unter verwendung eines solchen rührkesselreaktors
EP3505230B1 (de) Mischvorrichtung mit integrierter förderpumpe
EP2331244B1 (de) Zwischenstück für eine rotor-stator-dispergiermaschine
EP2819774B1 (de) Vorrichtung zum mischen mindestens zweier fluider komponenten, drehangetriebener mischereinsatz dafür und system aus beidem
WO2018115260A2 (de) Produktionsanlage und verfahren
DE202016000169U1 (de) Pump- und/oder Mischeinrichtung zum Fördern, Homogenisieren und/oder Dispergieren fließfähiger Produkte
EP2818234B1 (de) Vorrichtung zur Lagerung von zähflüssigen Medien
DE102009056967A1 (de) Mischvorrichtung
EP1964604A2 (de) Vorrichtung und Verfahren zur kontinuierlichen Herstellung einer Mischung aus wenigstens zwei fließfähigen Phasen
EP3334519B1 (de) Vorrichtung und verfahren zum dispergieren mindestens einer substanz in einem fluid
EP3093336A1 (de) Fermenter zur herstellung eines strukturviskosen mediums
DE102005007175A1 (de) Vorrichtung und Verfahren zum Homogenisieren
EP2683487B1 (de) Rührwerkskugelmühle
EP3290094B1 (de) Vorrichtung sowie verfahren zum entgasen einer flüssigkeit
DE4127873C2 (de) Kneteinrichtung für eine zu knetende Masse
DE2300475A1 (de) Verfahren und vorrichtung zum mischen von materialien
DE202012002102U1 (de) Vorrichtung zum Mischen mindestens zweier fluider Komponenten, drehangetriebener Mischereinsatz dafür und System aus beidem
EP1920822B1 (de) Vorrichtung und Verfahren zur kontinuierlichen Mischung und Entgasung von festen und/oder flüssigen Substanzen
EP1758672A1 (de) Mischeinrichtung sowie verfahren zur zugabe eines zusatzmittels zu einem pumpfähigen gemisch
DE102013017887B4 (de) Mischvorrichtung
WO2024100447A2 (de) Homogenisator sowie vakuumprozessanlage und verfahren damit
WO2023144015A1 (de) Vorrichtung, system und verfahren zum homogenisieren und/oder dispergieren fliessfähiger stoffe
CH718147A2 (de) Vorrichtung zum Dispergieren von Medien, insbesondere eines Stoffes in einer Flüssigkeit.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150311

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 828311

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001430

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2600000

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170116

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014001430

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170617

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001430

Country of ref document: DE

Owner name: BENNINGHOVEN ZWEIGNIEDERLASSUNG DER WIRTGEN MI, DE

Free format text: FORMER OWNER: BENNINGHOVEN GMBH & CO. KG MUELHEIM, 54486 MUELHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014001430

Country of ref document: DE

Representative=s name: RAU, SCHNECK & HUEBNER PATENTANWAELTE RECHTSAN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001430

Country of ref document: DE

Owner name: BENNINGHOVEN GMBH & CO. KG, DE

Free format text: FORMER OWNER: BENNINGHOVEN GMBH & CO. KG MUELHEIM, 54486 MUELHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200608

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 828311

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014001430

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005020000

Ipc: B01F0025200000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014001430

Country of ref document: DE

Owner name: BENNINGHOVEN ZWEIGNIEDERLASSUNG DER WIRTGEN MI, DE

Free format text: FORMER OWNER: BENNINGHOVEN GMBH & CO. KG, 54516 WITTLICH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220623

Year of fee payment: 9

Ref country code: DK

Payment date: 20220623

Year of fee payment: 9

Ref country code: DE

Payment date: 20220617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220613

Year of fee payment: 9

Ref country code: FI

Payment date: 20220617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 9

Ref country code: ES

Payment date: 20220719

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220702

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014001430

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630