EP2816135A1 - Plasma powder spray method for coating of panels for boiler walls in connection with a laser beam apparatus - Google Patents

Plasma powder spray method for coating of panels for boiler walls in connection with a laser beam apparatus Download PDF

Info

Publication number
EP2816135A1
EP2816135A1 EP14001202.2A EP14001202A EP2816135A1 EP 2816135 A1 EP2816135 A1 EP 2816135A1 EP 14001202 A EP14001202 A EP 14001202A EP 2816135 A1 EP2816135 A1 EP 2816135A1
Authority
EP
European Patent Office
Prior art keywords
powder
plasma
coating material
laser beam
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14001202.2A
Other languages
German (de)
French (fr)
Other versions
EP2816135B1 (en
Inventor
Bodo Häuser
Hendrik Häuser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hauser&co GmbH
HAUSER & CO GmbH
Original Assignee
Hauser&co GmbH
HAUSER & CO GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hauser&co GmbH, HAUSER & CO GmbH filed Critical Hauser&co GmbH
Publication of EP2816135A1 publication Critical patent/EP2816135A1/en
Application granted granted Critical
Publication of EP2816135B1 publication Critical patent/EP2816135B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3468Vortex generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • the invention relates to a thermal spraying method for producing a protective layer in the plasma powder spraying method on hot gases, in particular flue gases acted upon metallic walls.
  • the invention also relates to a thermal spray device for carrying out the method.
  • the DE 196 38 228 A1 is concerned with a method for producing a hot gas corrosion resistant connection of pipes thermally sprayed by a corrosion-protected pipe in which the one pipe to be welded is coated with a corrosion-resistant material prior to thermal spraying, for example the plasma spraying process, in the region of its abutting edge adjacent to the second pipe ,
  • the US 4,192,672 relates to metal alloys which have relatively large, hard precipitates as self-fluxing powders, eg nickel-based, in order to improve the wear resistance of such powders.
  • Such powders are to be sprayed by means of plasma spraying, wherein the addition is melted simultaneously or subsequently.
  • the EP 0 223 135 A1 also deals with self-fluxing metal alloys which can be applied by plasma spraying. If not sprayed by plasma spraying, the layer can be melted on site by means of an autogenous flame.
  • the plasma spraying method discloses EP 0 223 135 A1 a melting temperature in a range of 1100 to 1250 ° C.
  • powders as coating material are applied to the materials to be coated, e.g. Applied steel materials.
  • the workpiece to be coated is first cleaned and then blasted with corundum or the like.
  • a preheating of the base material to a temperature of 150 ° C to 250 ° C before blasting is often necessary, said preheating temperature is recommended in particular in the flame spraying with self-fluxing powders.
  • the coating materials have a melting point below the melting temperature of the material to be coated, and are melted after spraying in the base material.
  • the protective layer has a relatively large layer thickness of up to 2 mm at relatively high porosity of 15 to 20% before melting. These factors cause meltdown.
  • the melting is usually carried out with a hard acetylene-oxygen flame, so that the protective layer is heated to a temperature of up to 1200 ° C. As a result of this melting, the layer thickness decreases by about 20% by volume.
  • heat resistant steels such as e.g. From the material 15Mo3, 13CrMo45 or 10CrMo910 the high heat input leads to a disadvantageous structure change.
  • the plasma spraying method according to the DE 42 20 063 C1 alone is not suitable for protective layers
  • the plasma spraying method according to the DE 42 20 063 C1 alone is not suitable for protective layers
  • the residual stresses due to the solidification of the molten particles in the impact on the metallic walls are too high and exceed the binding forces of the mechanical clamping and the adhesion forces.
  • a flaking of the thicker protective layer would be the result.
  • laser deposition welding methods are also known in which a coating material is applied by means of a laser of an energy-intensive laser welding system, for example on rollers.
  • the laser usually heats the workpiece defocused and melts it locally.
  • an inert gas mixed with fine metal powder is supplied.
  • the metal powder melts and combines with the metal of the workpiece.
  • the connection to the base material can z. B. be influenced by the formation of an intermediate layer on the parameters. In most cases, subsequent post-processing steps, such as milling or turning, are necessary.
  • the invention has for its object to improve a thermal spray method of the type mentioned above and an apparatus for performing the method with simple means so that with low heat input into the base material, a protective layer can be produced, which meets the high demands of long life.
  • the object is achieved by a thermal spraying method with the features of claim 1, wherein a thermal spray device with the features of claim 8 solves the objective part of the task.
  • a thermal spraying method for producing a protective layer in the plasma powder spraying method on metallic walls exposed to hot gases, in particular flue gases, with a plasma powder injection device comprises at least the steps of cleaning the wall to be coated; a plasma gas is caused to rotate within the plasma spray device; in that a respective arc root point is set in rotation at a cathode and at an anode, in that a powder as coating material is introduced through two inner feed openings, the coating material being merely melted, and the coating material impinging on the wall to be coated by means of at least one laser beam of a laser beam system is connected without mixing zone formation of a diffusive composite with the base material.
  • the coating material by means of the plasma powder injection so only preheated applied to the wall to be coated.
  • the bonding of the coating material to the base material then takes place by means of a laser process, wherein the diffusive bond between the base material and the coating material is formed.
  • the supposed disadvantage is actually accepted by the invention that the coating material, ie the powder, is not produced so molten that the coating to be applied could be produced properly.
  • This is achieved in the invention only by the step of forming the diffusive composite by means of the laser of the laser beam system.
  • the perceived disadvantages now advantageously result in that the coating material is not molten, but merely preheated, the laser still being able to have only a very low power in comparison to non-preheated powders in order to form the diffusive compound.
  • the protective layer to be applied may have a thickness which is 100% to 200% greater than a layer thickness, which according to the previously known method according to DE 42 20 063 C1 could be applied.
  • the layer thickness according to the invention may have an amount of 0.2 to 0.4 mm, preferably of 0.6 to 1.5 mm.
  • a layer thickness which is high in terms of thickness inevitably leads to a longer service life, which in turn benefits longer plant availability.
  • the coating material that is to say the powder for the process according to the invention, can be coarse-grained and have a grain size of less than 200 .mu.m, preferably less than 125 .mu.m, more preferably between 63 .mu.m and 104 .mu.m. This results in a comparison with fine coating materials Cost savings of approx. 20% regarding the material price.
  • an arc is generated in a known manner, which extends from the anode to the cathode, wherein an arc base point is arranged both at the anode and at the cathode.
  • the respective arc root points are static, so that they wear the cathode but also the anode at fixed locations very quickly. It is advantageous that the plasma gas in the method according to the invention is set into a rotation, that is rotated about the central longitudinal axis, for example, the anode.
  • an acute angle is formed, wherein it is highly preferred that the angle between the perpendicular to the central longitudinal axis and the central axis of the respective mecanical axis of the respective mecanical a tangential angle.
  • the two mecanical struts and the central axis of the respective mecanical axis of the respective mecanical a tangential angle is formed, wherein it is highly preferred that the angle between the perpendicular to the central longitudinal axis and the central axis of the respective mecanical a.
  • the two réellezu GmbH are arranged at least with its mouth opening into the anode relative to the central longitudinal axis exactly opposite one another.
  • the powder feed can be controlled separately by the two inner feed openings.
  • the two réellezu technologicalöticianen can be fed separately controlled, wherein each réellezu Georgia Maschinenmai can also be assigned a separate powder generator.
  • the amount of powder required in each case can advantageously be set with the invention. It is conceivable that both mecaniczu technologicalö réelleen be charged simultaneously with the maximum possible amount. For example, if the two inner feed openings have a diameter amount of 4.2 mm each, 12 to 14 kg / h could be used as an example Powder are applied. It is possible that the same powder is passed through both réellezu Switzerlandö Maschinenen.
  • the powders can not only differ in their (metallurgical) composition, but also in terms of powder morphology (eg agglomerated, melted, atomized in the gas stream ...), the powder form (eg pointed, angular, spherical %), the specific gravity and also, for example, the melting behavior (eg of the white, black or shiny powder) be different.
  • a powder jet can thus produce an intermediate layer corresponding to the alloy of the supplied powder, the other powder jet having, for example, a cover layer with the corresponding properties of the supplied powder alloy.
  • Both powder alloys can be mixed together by the action of the laser or the laser but also according to the desired properties of the protective layer, so be mixed.
  • the composition of the powders can be determined as a function of the existing base material and the subsequent operating conditions, in particular the predetermined temperature ranges.
  • the invention is based on the finding that the deflection of the powder jet out of the central longitudinal axis or not actually depends on the morphology, the powder form, the specific weight and the melting behavior of the respectively supplied powder. Thus, it can be determined at each sample workpieces, which corresponds to the workpiece to be coated, which powder beam is deflected in which composition, and which powder beam is not deflected.
  • both powder jets ie the two on the material to be coated incident powder alloy caterpillars are also treated with one laser to form the diffusive composite.
  • a double laser beam system so also two lasers are provided, wherein the respective laser is associated with the respective impinging powder jet.
  • an 80KW plasma spraying system with internal powder feed can be suitably used.
  • the internal powder supply preferably by both mecanicpulverzu Technologyöticianen simultaneously, the respective powder is focused in the respective plasma jet one hand, on the other hand, a more uniform melting of the powder is achieved.
  • a melting in the context of the invention is thus only a warming, wherein the powder just does not become molten.
  • the laser power can be advantageously reduced, so that thus advantageously a lower heating of the component to be coated is expected.
  • the metallic wall is heated by the laser beam or by the laser beams only to a temperature of 60 ° C, maximum 80 ° C.
  • a further advantage of the invention resides in the fact that the laser of the laser beam system, that is to say the double laser beam system, can have a power of only 2KW to 10KW, preferably of 3KW to 5 KW.
  • a slight distortion of the metallic wall to be coated for example of pipe-web-pipe segments or e.g. be achieved by panels of combustion boiler walls.
  • the corresponding plasma gas nozzle has at least one combined bore, which is formed by two partial bores introduced into one another. It is provided in purposeful embodiment that one of the partial bores with its central axis is congruent to a central axis of the plasma gas nozzle.
  • the other, second partial bore is arranged at an angle to the central axis of the plasma gas nozzle. It is preferably provided that the other second partial bore is arranged at an acute angle, preferably at an angle of 10 to 30 °, more preferably 16.5 ° to the central axis of the plasma gas nozzle.
  • both partial bores have an identical starting point on an outer periphery of the plasma gas nozzle, and open at an inner periphery.
  • an overall mouth opening is achieved on the inner circumference, which of course is greater than such a mouth opening which can be reached with one of the individual partial bores.
  • the inner total orifice is smaller than both partial boreholes considered together.
  • the amount of gas introduced is homogeneously ionizable, since the gas introduced within the plasma torch distributed homogeneously, as set by the quasi eccentrically expanding inner total orifice a soft plasma gas flow.
  • a favorable embodiment can be provided to provide a plurality of combined holes in the plasma gas nozzle.
  • four combined bores are provided which, viewed in the circumferential direction of the plasma gas nozzle, are equally distributed. It is expedient if in particular the second partial bores are in each case equally oriented.
  • the plasma gas is introduced tangentially to the central longitudinal axis in the plasma torch, so that the plasma gas reaches the arc, which is applied between the cathode and anode, rotating about the central longitudinal axis.
  • the powder is now introduced through both mecaniczu Technologyö réelleen, as already described.
  • the impact surfaces of the two powder jets can be influenced in such a way via the parameter selection of gas pressure, gas quantity and powder quantity as a function of the abovementioned powder data such that they adjoin one another optimally and thus with a lower power per Laser can be melted down and diffusively connected to the base material.
  • a further advantage is that the impact surfaces of the two powder jets are changeable. These can, for example, one behind the other, offset from each other or next to each other. For this purpose, only the plasma spray device, so the gun must be rotated according to the desired position of the impact surfaces around the burner axis. Of course, the laser or laser will be adjusted with the optics corresponding to the actual impact surfaces. Ideally, the powder jets are adjustable so that the impact surfaces adjoin one another without overlapping.
  • a device for plasma spraying for producing a protective layer in the plasma spraying process on hot walls, in particular flue gases acted upon metallic walls for carrying out the method according to the invention in its anode two introduced mecaniczu classroomö réelleen, which with respect to a central axis of the plasma powder injection device exactly
  • the two inner feed openings have with their central axis to a perpendicular to the central axis of the plasma powder injection device an acute angle, most preferably of 9 °.
  • a plasma gas nozzle has at least one combined bore, preferably a plurality of combined bores, more preferably four combined bores, through which the gas to be ionized is introduced into the plasma spraying device.
  • at least one laser is combined with the plasma spraying device, which processes the plasma powder merely melted, ie heated, impinging application powder in such a way that the diffusive composite of the protective layer is formed with the base material.
  • the method according to the invention and the device according to the invention are particularly suitable for use, for example, on pipe-web-tube segments and / or, for example, on panels for combustion boiler walls in waste incineration plants, without restricting the application thereof.
  • waste incineration plants can be made of a magnitude high protective layer thickness, which inevitably leads to a longer service life of the coated pipe web segments and / or panels, which in turn benefits a longer plant availability.
  • the invention proposes a method for producing a protective layer on hot gases, in particular flue gases acted and consisting of a given metallic base material walls of incinerators, heat exchangers or similar plants proposed in which by means of a plasma torch and a laser beam system, preferably a double laser beam system a powder of metallic, carbide, oxide ceramic or silicidischen materials or mixtures of these materials is applied to the previously cleaned metallic walls to form the protective layer and diffused by the respective laser beam with the base material.
  • the base materials to be coated in this case can be used as the base materials approved in the plants concerned, with base materials with the designation 15Mo3, 13CrMo45 and / or 10CrMo910 also being mentioned by way of example here should.
  • a laser beam system is used to form the diffusive composite.
  • a laser welding system has a much shorter and very energy-intensive laser beam than the laser beam system, wherein the base material must be melted at a laser welding machine, and wherein the filler metal is supplied in electrode form or cold powder, the laser welding system must be operated at much higher energies than the ideally used laser beam system.
  • FIG. 1 shows a laser plasma powder injection device 1, which has a plasma powder injection device 2 and a double laser beam system 3.
  • the plasma powder injection device 2 generates two split powder jets 4 and 6 which strike a workpiece 7 to be coated.
  • the workpiece 7 to be coated is, for example, a pipe-web-tube segment 8, as shown by way of example in FIG FIG. 4 is shown.
  • the workpiece 7 is acted upon by aggressive, hot flue gases, which arise, for example, in waste incineration algae.
  • One of the powder jets 4 emerges centrically from the central longitudinal axis X1 of the plasma powder injection device 2.
  • the other plasma powder jet 6 emerges distracted from the central axis X1 of the plasma powder injection device 2 out of this.
  • both powder jets 4 and 6 form a total spray cone 9.
  • the two powder jets 4 and 6 strike the workpiece 7 to be coated, wherein the respective powder of the respective powder jet 4 or 6 is only melted in the plasma powder injection device 2, and is not molten before the exit.
  • the double laser beam system 3 is provided which generates two laser beams 11 and 12 corresponding to the two powder jets 4 and 6.
  • FIG. 2 a plasma gas nozzle 13 of the plasma powder injection device 2 is shown in a cross section.
  • the plasma gas nozzle 13 can also be referred to below as injector 13.
  • the plasma powder injection device 2 can also be referred to below as the plasma burner 2.
  • the injector 13 has four combined bores 14, which are distributed identically in the circumferential direction of the injector 13.
  • Each of the combined bores 14 is formed from two partial bores 16 and 17.
  • a first partial bore 16 has a central axis x, which is congruent to a respective central axis of the injector 13.
  • a second partial bore 17 has a central axis y, which is arranged at an angle relative to the central axis x of the first partial bore 16 and thus to the respective central axis of the injector 13. In the most preferred embodiment the angle between the two central axes x and y an amount of 16.5 °.
  • Each of the two partial bores 16 and 17 has a diameter of 1.8 mm by way of example.
  • both partial bores 16 and 17 have a common starting point.
  • the inlet opening 18 on the outer circumference of the injector 13 is identical to the diameter of the two partial bores 16, 17.
  • Both partial bores 16 and 17 form on an inner circumference 18 of the injector 13 an inner total orifice 20. Due to the fact that the second partial bore 17 is introduced at an angle to the first partial bore 16 in the injector 13, the total internal orifice 20 will be larger than the diameter of a single partial bore 16 or 17. At the same time the inner total orifice 20 will be smaller than the sum of the two diameters of the partial bores 16 and 17.
  • a combined bore 14 is produced in each case, which has an eccentric course, with the combined bore 14 starting from the on The outer circumference arranged approach point eccentrically, so quasi semi-conical in the direction of the inner circumference 19 extended. All partial holes 16 and 17 of the four combined holes 14 are each oriented the same.
  • the plasma gas is introduced tangentially to the plasma torch axis (central longitudinal axis X1) in the plasma torch and thus reaches about the central longitudinal axis X1 of the plasma torch 2 rotating an arc 21 between an anode 22 and a cathode 23 (FIGS. FIG. 3 ) of the plasma burner 2.
  • FIG. 3 the anode 22 of the plasma powder injection device 2 is shown.
  • the cathode 23 is accommodated.
  • Both the cathode 23 and the anode 22 are with their central axis X2 and X3 congruent to the central axis X1 of the plasma spraying device 2.
  • the arc 21 is also recognizable, with a representation of the respective arc base points at the anode 22 and the cathode 23 has been omitted.
  • the aim is now that the plasma gas reaches the arc 21 rotating about the central longitudinal axis X1 of the plasma torch 2.
  • the arc 21 is taken around the central longitudinal axis of the plasma torch 2 rotating, which in FIG. 3 is shown by the two arc 21 and 21a.
  • the life of both the anode 22 and the cathode 23 can be extended because the respective Arc base points are no longer statically fixed, but rotate both at the anode 22 and at the cathode 23. It is in FIG. 3 it can be seen that the arc root point attaches to the anode 22 in an upper tip region and not directly to the tip itself.
  • the plasma burner 2 has an internal powder feed.
  • the réellezu Foodö réelleen 24 and 26 are introduced in the anode. Connections to powder encoders are not shown.
  • the réellezu Foodö réelleen 24 and 26 are simultaneously charged with powder with a respective amount of powder through the respective réellezu Foodö réelle 24 and 26 is separately controllable.
  • the respective inner feed opening 24 and 26 each have a central axis X4, which is arranged to a vertical Z on the central axis X1, angularly, most preferably at an angle ⁇ of 9 °.
  • the two réellezu Technologyö réelleen 24 and 26 are equally oriented towards a plasma exit side introduced into the anode 22 and open into the interior of the anode 22, and are arranged with their mouth openings 27 relative to the central axis X1 opposite.
  • the laser plasma powder injection device 1 is a protective layer on hot flue gases acted upon metallic walls, for example, on raw web-tube segments 8, as in FIG. 4 can be applied by way of example.
  • an exemplary pipe-web-tube segment 8 is shown in a longitudinal section.
  • a supervision is shown.
  • FIG. 4 intended to represent a respective possible location of the incident surfaces 28 and 29 of the powder jets 4 and 6.
  • the position of the impact surfaces 28 and 29 is dependent on the rotation of the plasma powder injection device 2, ie from the position of the gun.
  • the laser beams 11 and 12 are aligned accordingly.
  • the landing surfaces 28 and 29 may be arranged side by side, as in the lower part of the figure FIG. 4 recognizable. This position is referred to as a neutral position for the following positions for the sake of simplicity, without this having a limiting effect. It can be seen that the powder jets 4 and 6 do not look like this FIG. 1 could be assumed sharply separated, but each have an overlap region 31.
  • the incident surfaces 28 and 29 By rotating the plasma torch 2 out of its neutral position, the incident surfaces 28 and 29 could be offset from each other, so that one of the others is virtually leading the way. This position is in the middle of the FIG. 4 shown. By further twisting out of the neutral position, the incident surfaces 28 and 29 can also be arranged directly behind one another, as at the top of the FIG. 4 is recognizable.
  • the respectively recognizable overlapping areas 31 can also be variable in their amount, as in FIG FIG. 4 indicated.
  • the two powder jets 4 and 6, so the impact surfaces 28 and 29 may ideally be adjacent without overlap.
  • bends of the pipe web segment 8 can be coated with the method according to the invention.
  • panels for boiler walls can be coated with the proposed method of the invention.
  • a protective layer having a thickness of, for example, 0.6 to 1.5 mm can be produced.
  • two powder jets 4 and 6 are produced, wherein the powder of the respective powder jets is not molten, but merely melted, that is warmed.
  • the lasers with a lower power can cause a diffusion-free, diffusive composite of the applied powder, that is to say coating material, to the base material.
  • the plasma gas is introduced tangentially to the central longitudinal axis and is rotated about the central longitudinal axis X1, so that by the rotating arc quasi also a rotating ionization of the plasma gas is generated.
  • two réellezu Technologyö Anlagen Maschinenen the anode are charged simultaneously with powder, so that the two powder jets 4 and 6 are formed, one of which is still deflected to the central longitudinal axis X1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Die Erfindung betrifft ein thermisches Spritzverfahren zum Herstellen einer Schutzschicht im Plasmapulverspritzverfahren auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten und aus einem vorgegebenen metallischen Grundwerkstoff bestehenden Wänden von Verbrennungsanlagen, insbesondere Müllverbrennungsanlagen. Um eine Schutzschicht mit einer Dicke von 0,6 bis 1,5 mm Dicke herstellen zu können, um so die Standzeit beispielsweise von Rohr-Steg-Rohr-Segmenten zu erhöhen, werden zumindest die Schritte Reinigen der metallischen Wände; Versetzen eines Plasmagases in Rotation um die Mittellängsachse (X1) einer Plasmapulverspritzvorrichtung (2); Innenzuführung eines Beschichtungswerkstoffes als Pulver gleichzeitig durch zwei Innenzuführöffnungen (24,26) hindurch, welche Innenzuführöffnungen (24,26) mit ihren Mündungsöffnungen einander gegenüberliegend angeordnet sind, wobei zumindest ein Pulverstrahl (4,6) erzeugt wird; Aufschmelzen des Beschichtungswerkstoffes; und Verbinden des auf die metallische Wand auftreffenden Beschichtungswerkstoffes mittels zumindest eines Laserstrahles (11,12) einer Laserstrahlanlage (3) unter Ausbildung eines diffusiven Verbundes des Beschichtungswerkstoffes zum Grundwerkstoff der metallischen Wand vorgeschlagen.The invention relates to a thermal spraying method for producing a protective layer in the plasma powder spraying process applied to hot gases, in particular flue gases and consisting of a predetermined metallic base material walls of incinerators, in particular waste incineration plants. In order to produce a protective layer with a thickness of 0.6 to 1.5 mm thickness, so as to increase the service life of, for example, pipe-web-tube segments, at least the steps Cleaning the metallic walls; Placing a plasma gas in rotation about the central longitudinal axis (X1) of a plasma powder injection device (2); Internal feeding of a coating material as powder simultaneously through two inner feed openings (24, 26), which inner feed openings (24, 26) are arranged opposite one another with their mouth openings, at least one powder jet (4, 6) being produced; Melting the coating material; and Connecting the coating material impinging on the metallic wall by means of at least one laser beam (11, 12) of a laser beam system (3) to form a diffusive composite of the coating material relative to the base material of the metallic wall proposed.

Description

Die Erfindung betrifft ein thermisches Spritzverfahren zum Herstellen einer Schutzschicht im Plasmapulverspritzverfahren auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden. Die Erfindung betrifft aber auch eine thermische Spritzvorrichtung zur Durchführung des Verfahrens.The invention relates to a thermal spraying method for producing a protective layer in the plasma powder spraying method on hot gases, in particular flue gases acted upon metallic walls. However, the invention also relates to a thermal spray device for carrying out the method.

Die DE 196 38 228 A1 befasst sich mit einem Verfahren zur Herstellung einer heißgaskorrosionsbeständigen Verbindung von durch eine thermisch gespritzte Schicht korrosionsgeschützten Rohren, bei dem das eine zu verschweißende Rohr im Bereich seiner dem zweiten Rohr benachbarten Stoßkante vor dem thermischen Spritzen, beispielsweise dem Plasmaspritzverfahren durch Auftragschweißen mit einem korrosionsbeständigen Werkstoff beschichtet wird.The DE 196 38 228 A1 is concerned with a method for producing a hot gas corrosion resistant connection of pipes thermally sprayed by a corrosion-protected pipe in which the one pipe to be welded is coated with a corrosion-resistant material prior to thermal spraying, for example the plasma spraying process, in the region of its abutting edge adjacent to the second pipe ,

Die US 4,192,672 betrifft Metalllegierungen, welche als selbstfließende Pulver z.B. auf Nickelbasis relative große, harte Ausfällungen aufweisen, um die Verschleißfestigkeit solcher Pulver zu verbessern. Insbesondere befasst sich die US 4,192,672 mit der Herstellung solcher Pulver. Derartige Pulver sollen mittels Plasmaspritzverfahren verspritzt werden können, wobei die Anlagerung gleichzeitig oder anschließend eingeschmolzen wird.The US 4,192,672 relates to metal alloys which have relatively large, hard precipitates as self-fluxing powders, eg nickel-based, in order to improve the wear resistance of such powders. In particular, the deals US 4,192,672 with the production of such powders. Such powders are to be sprayed by means of plasma spraying, wherein the addition is melted simultaneously or subsequently.

Die EP 0 223 135 A1 befasst sich ebenfalls mit selbstfließenden Metalllegierungen welche im Plasmaspritzverfahren aufgetragen werden können. Wird nicht im Plasmaspritzverfahren aufgespritzt, kann die Schicht mittels einer Autogenflamme vor Ort geschmolzen werden. Zu dem Plasmaspritzverfahren offenbart die EP 0 223 135 A1 eine Schmelztemperatur in einem Bereich von 1100 bis 1250°C.The EP 0 223 135 A1 also deals with self-fluxing metal alloys which can be applied by plasma spraying. If not sprayed by plasma spraying, the layer can be melted on site by means of an autogenous flame. The plasma spraying method discloses EP 0 223 135 A1 a melting temperature in a range of 1100 to 1250 ° C.

In Kraftwerken, insbesondere in Müllverbrennungsanlagen bzw. deren Verbrennungskesseln herrscht eine sehr aggressive, korrosive Umgebung aufgrund der sehr spezifischen Zusammensetzung des Brennstoffs (Abfall). Die Wände der Kessel, aber auch deren Paneele und/oder Rohrbündel bzw. Überhitzerrohrbündel müssen daher insbesondere gegen Varianten der Hochtemperaturkorrosion geschützt werden. Aus einer Vielzahl von Schutzmaßnahmen gegen Hochtemperaturkorrosion und Verschleiß ist zum Beispiel das thermische Spritzen, beispielsweise als Flammspritzen oder auch als Plasmaspritzverfahren bekanntIn power plants, in particular in waste incineration plants or their combustion boilers, there is a very aggressive, corrosive environment due to the very specific composition of the fuel (waste). The walls of the Boilers, but also their panels and / or tube bundles or superheater tube bundles must therefore be protected in particular against variants of high-temperature corrosion. From a variety of protective measures against high temperature corrosion and wear, for example, the thermal spraying, for example as flame spraying or as a plasma spraying known

Mittels des Flammspritzens werden Pulver als Beschichtungswerkstoff auf die zu beschichtenden Werkstoffe, z.B. Stahlwerkstoffe aufgebracht. Hierzu wird das zu beschichtende Werkstück zunächst gereinigt und anschließend mit Korund oder dergleichen gestrahlt. Eine Vorwärmung des Grundwerkstoffs auf eine Temperatur von 150°C bis 250°C vor dem Strahlen ist oft notwendig, wobei die genannte Vorwärmtemperatur insbesondere bei dem Flammspritzen mit selbstfließenden Pulvern empfohlen wird. Die Beschichtungswerkstoffe weisen einen Schmelzpunkt unterhalb der Schmelztemperatur des zu beschichtenden Werkstoffs auf, und werden nach dem Aufspritzen in den Grundwerkstoff eingeschmolzen. Die Schutzschicht weist vor dem Einschmelzen eine relativ große Schichtdicke von bis zu 2 mm bei relativ hoher Porosität von 15 bis 20 % auf. Diese Faktoren bedingen das Einschmelzen. Das Einschmelzen wird üblicherweise mit einer harten Acetylen-Sauerstoffflamme durchgeführt, so dass die Schutzschicht auf eine Temperatur von bis zu 1200°C erwärmt wird. Durch dieses Einschmelzen nimmt die Schichtdicke um ca. 20 Volumenprozent ab. Insbesondere bei Warmfesten Stählen wie z.B. aus dem Werkstoff 15Mo3, 13CrMo45 oder 10CrMo910 führt der hohe Wärmeeintrag zu einer nachteiligen Gefügeänderung.By means of flame spraying, powders as coating material are applied to the materials to be coated, e.g. Applied steel materials. For this purpose, the workpiece to be coated is first cleaned and then blasted with corundum or the like. A preheating of the base material to a temperature of 150 ° C to 250 ° C before blasting is often necessary, said preheating temperature is recommended in particular in the flame spraying with self-fluxing powders. The coating materials have a melting point below the melting temperature of the material to be coated, and are melted after spraying in the base material. The protective layer has a relatively large layer thickness of up to 2 mm at relatively high porosity of 15 to 20% before melting. These factors cause meltdown. The melting is usually carried out with a hard acetylene-oxygen flame, so that the protective layer is heated to a temperature of up to 1200 ° C. As a result of this melting, the layer thickness decreases by about 20% by volume. Especially for heat resistant steels such as e.g. From the material 15Mo3, 13CrMo45 or 10CrMo910 the high heat input leads to a disadvantageous structure change.

Bekannt sind aber auch Plasmaspritzverfahren zur Herstellung der Schutzschicht, wie beispielsweise in der DE 42 20 063 C1 offenbart. Das in der DE 42 20 063 C1 offenbarte Verfahren hat sich in der Praxis dahingehend bewährt als der Verzug von Werkstücken und rißbildende Spannungen im Grundwerkstoff vermieden werden. Allerdings hat sich mittlerweile gezeigt, dass die aufzubringende Schutzschicht doch nur relativ dünn ist. Dies bedeutet, dass die relativ dünne Beschichtung den vielfach gestiegenen Anforderungen der Standzeitverlängerung bei gleichzeitiger erhöhter erosiver und korrosiver Belastung nicht mehr standhält. Das Plasmaspritzverfahren gemäß der DE 42 20 063 C1 eignet sich alleine nicht dafür Schutzschichten entsprechend den gestiegenen Anforderungen in ihrem Betrag zu vergrößern, da die Eigenspannungen durch die Erstarrung der schmelzflüssigen Partikel bei dem Auftreffen auf die metallischen Wände zu hoch werden und die Bindekräfte der mechanischen Verklammerung und der Adhäsionskräfte übertreffen. Ein Abplatzen der dickeren Schutzschicht wäre die Folge.However, plasma spraying processes for producing the protective layer are also known, for example in US Pat DE 42 20 063 C1 disclosed. That in the DE 42 20 063 C1 The disclosed method has proven itself in practice to the effect that the distortion of workpieces and crack-forming stresses in the base material are avoided. However, it has now been shown that the applied protective layer is only relatively thin. This means that the relatively thin coating no longer withstands the multiple increase in service life extension requirements coupled with increased erosive and corrosive stress. The plasma spraying method according to the DE 42 20 063 C1 alone is not suitable for protective layers In accordance with the increased requirements in their amount to increase because the residual stresses due to the solidification of the molten particles in the impact on the metallic walls are too high and exceed the binding forces of the mechanical clamping and the adhesion forces. A flaking of the thicker protective layer would be the result.

Bekannt sind aber auch Laserauftragschweißverfahren, bei denen ein Beschichtungswerkstoff mittels eines Lasers einer energieintensiven Laserschweißanlage zum Beispiel auf Walzen aufgetragen wird. Bei dem Laserauftragschweißen mit Pulver erhitzt der Laser das Werkstück meist defokussiert und schmilzt es lokal auf. Gleichzeitig wird ein inertes Gas gemischt mit feinem Metallpulver zugeführt. An der erhitzten Stelle schmilzt das Metallpulver auf und verbindet sich mit dem Metall des Werkstücks. Die Anbindung an das Grundmaterial kann z. B. durch die Ausbildung einer Zwischenschicht über die Parameter beeinflusst werden. Meistens sind anschließende Nachbearbeitungsschritte, wie Fräsen oder Drehen, notwendig.However, laser deposition welding methods are also known in which a coating material is applied by means of a laser of an energy-intensive laser welding system, for example on rollers. In laser deposition welding with powder, the laser usually heats the workpiece defocused and melts it locally. At the same time, an inert gas mixed with fine metal powder is supplied. At the heated point, the metal powder melts and combines with the metal of the workpiece. The connection to the base material can z. B. be influenced by the formation of an intermediate layer on the parameters. In most cases, subsequent post-processing steps, such as milling or turning, are necessary.

Der Erfindung liegt die Aufgabe zugrunde, ein thermisches Spritzverfahren der eingangs genannten Art sowie eine Vorrichtung zur Durchführung des Verfahrens mit einfachen Mittel so zu verbessern, dass bei geringer Wärmeeinbringung in den Grundwerkstoff eine Schutzschicht herstellbar ist, welche den hohen Anforderungen der langen Standzeit gerecht wird.The invention has for its object to improve a thermal spray method of the type mentioned above and an apparatus for performing the method with simple means so that with low heat input into the base material, a protective layer can be produced, which meets the high demands of long life.

Erfindungsgemäß wird die Aufgabe durch ein thermisches Spritzverfahren mit den Merkmalen des Anspruchs 1 gelöst, wobei eine thermische Spritzvorrichtung mit den Merkmalen des Anspruchs 8 den gegenständlichen Teil der Aufgabe löst.According to the invention the object is achieved by a thermal spraying method with the features of claim 1, wherein a thermal spray device with the features of claim 8 solves the objective part of the task.

Es ist darauf hinzuweisen, dass die in der nachfolgenden Beschreibung einzeln aufgeführten Merkmale in beliebiger, technisch sinnvoller Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung aufzeigen. Die Beschreibung charakterisiert und spezifiziert die Erfindung insbesondere im Zusammenhang mit den Figuren zusätzlich.It should be noted that the features listed individually in the following description can be combined with one another in any technically meaningful manner and show further embodiments of the invention. The description additionally characterizes and specifies the invention, in particular in connection with the figures.

Erfindungsgemäß umfasst ein thermisches Spritzverfahren zum Herstellen einer Schutzschicht im Plasmapulverspritzverfahren auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden mit einer Plasmapulverspritzvorrichtung zumindest die Schritte, dass die zu beschichtende Wand gereinigt wird; dass ein Plasmagas innerhalb der Plasmaspritzvorrichtung in eine Rotation versetzt wird; dass ein jeweiliger Lichtbogenfußpunkt an einer Kathode und an einer Anode in Rotation versetzt wird, dass ein Pulver als Beschichtungswerkstoff durch zwei Innenzuführöffnungen eingeleitet wird, wobei der Beschichtungswerkstoff lediglich aufgeschmolzen wird, und dass der auf die zu beschichtende Wand auftreffende Beschichtungswerkstoff mittels zumindest eines Laserstrahls einer Laserstrahlanlage unter Bildung eines diffusiven Verbundes mit dem Grundwerkstoff aufmischzonenfrei verbunden wird.According to the invention, a thermal spraying method for producing a protective layer in the plasma powder spraying method on metallic walls exposed to hot gases, in particular flue gases, with a plasma powder injection device comprises at least the steps of cleaning the wall to be coated; a plasma gas is caused to rotate within the plasma spray device; in that a respective arc root point is set in rotation at a cathode and at an anode, in that a powder as coating material is introduced through two inner feed openings, the coating material being merely melted, and the coating material impinging on the wall to be coated by means of at least one laser beam of a laser beam system is connected without mixing zone formation of a diffusive composite with the base material.

Mit der Erfindung wird der Beschichtungswerkstoff mittels des Plasmapulverspritzverfahrens also lediglich vorgewärmt auf die zu beschichtenden Wand aufgetragen. Das Verbinden des Beschichtungswerkstoffes mit dem Grundwerkstoff geschieht sodann mit einem Laserverfahren, wobei der diffusive Verbund zwischen dem Grundwerkstoff und dem Beschichtungswerkstoff gebildet wird.With the invention of the coating material by means of the plasma powder injection so only preheated applied to the wall to be coated. The bonding of the coating material to the base material then takes place by means of a laser process, wherein the diffusive bond between the base material and the coating material is formed.

Insofern wird mit der Erfindung eigentlich der vermeintliche Nachteil in Kauf genommen, dass der Beschichtungswerkstoff, also das Pulver nicht so schmelzflüssig hergestellt wird, dass die aufzutragende Beschichtung ordnungsgemäß hergestellt werden könnte. Dies wird bei der Erfindung erst durch den Schritt der Bildung des diffusiven Verbundes mittels des Lasers der Laserstrahlanlage erreicht. Die vermeintlichen Nachteile bewirken nun aber vorteilhaft, dass der Beschichtungswerkstoff nicht schmelzflüssig ist, sondern lediglich vorgewärmt ist, wobei der Laser trotzdem im Vergleich zu nicht vorgewärmten Pulver nur eine sehr geringe Leistung haben kann um den diffusiven Verbund zu bilden.In this respect, the supposed disadvantage is actually accepted by the invention that the coating material, ie the powder, is not produced so molten that the coating to be applied could be produced properly. This is achieved in the invention only by the step of forming the diffusive composite by means of the laser of the laser beam system. However, the perceived disadvantages now advantageously result in that the coating material is not molten, but merely preheated, the laser still being able to have only a very low power in comparison to non-preheated powders in order to form the diffusive compound.

Mit der Erfindung wird so ein diffusiver Übergang des Grundwerkstoffs zum Beschichtungswerkstoff mit einer Dicke von 100µm, bevorzugt von 20µm bis 70µm erzeugt. So kann die aufzubringende Schutzschicht eine Dicke aufweisen, welche 100% bis 200% größer ist als eine Schichtdicke, welche nach dem bisher bekannten Verfahren nach der DE 42 20 063 C1 aufgebracht werden konnte. Die Schichtdicke nach der Erfindung kann einen Betrag von 0,2 bis 0,4 mm, bevorzugt von 0,6 bis 1,5 mm aufweisen. Eine vom Betrag her hohe Schichtdicke führt aber zwangsläufig auch zu einer längeren Standzeit, was wiederum einer längeren Anlagenverfügbarkeit zugutekommt.With the invention, such a diffusive transition of the base material to the coating material with a thickness of 100 .mu.m, preferably from 20 .mu.m to 70 .mu.m generated. Thus, the protective layer to be applied may have a thickness which is 100% to 200% greater than a layer thickness, which according to the previously known method according to DE 42 20 063 C1 could be applied. The layer thickness according to the invention may have an amount of 0.2 to 0.4 mm, preferably of 0.6 to 1.5 mm. However, a layer thickness which is high in terms of thickness inevitably leads to a longer service life, which in turn benefits longer plant availability.

Ein weiterer Vorteil des vermeintlichen in Kauf zunehmenden Nachteils des nicht schmelzflüssigen, sondern lediglich aufgewärmten Beschichtungswerkstoffes, also Pulvers ist auch darin zu sehen, dass ein wesentlich gröberes Pulver eingesetzt werden kann. Ein gröberes Pulver ist natürlich wesentlich preisgünstiger herstellbar als ein feines Pulver, welches mit einer entsprechenden Anzahl an Arbeitsschritten bearbeitet werden muss, um die feine Körnung von beispielsweise 20µm bis 53µm zu erhalten. Vorteilhaft kann der Beschichtungswerkstoff, also das Pulver für das erfindungsgemäße Verfahren grobkörnig sein, und eine Körnung mit einem Betrag von weniger als 200µm, bevorzugt von weniger als 125µm, weiter bevorzugt mit einem Betrag zwischen 63µm und 104µm aufweisen Dies bewirkt im Vergleich zu feinen Beschichtungswerkstoffen eine Kostenersparnis von ca. 20% hinsichtlich des Materialpreises.Another advantage of the alleged purchase-increasing disadvantage of the non-molten, but merely heated coating material, ie powder is also to be seen in the fact that a much coarser powder can be used. A coarser powder is of course much cheaper to produce than a fine powder, which must be processed with a corresponding number of steps in order to obtain the fine grain size, for example 20μm to 53μm. Advantageously, the coating material, that is to say the powder for the process according to the invention, can be coarse-grained and have a grain size of less than 200 .mu.m, preferably less than 125 .mu.m, more preferably between 63 .mu.m and 104 .mu.m. This results in a comparison with fine coating materials Cost savings of approx. 20% regarding the material price.

Bei dem Plasmapulverspritzen wird bekannter Weise ein Lichtbogen erzeugt, welcher sich von der Anode zur Kathode erstreckt, wobei sowohl an der Anode als auch an der Kathode jeweils ein Lichtbogenfußpunkt angeordnet ist. Bei der üblichen laminaren Strömung des Plasmagases sind die jeweiligen Lichtbogenfußpunkte statisch, so dass diese die Kathode aber auch die Anode an fixierten Stellen sehr schnell verschleißen. Vorteilhaft ist, dass das Plasmagas bei dem erfindungsgemäßen Verfahren in eine Rotation versetzt wird, also um die Mittellängsachse beispielsweise der Anode rotiert. So wird erreicht, dass sowohl die Kathode als auch die Anode gleichmäßig verschleißen, da der jeweiligen Lichtbogenfußpunkt in Umfangsrichtung sowohl der Kathode als der Anode gesehen entsprechend der Rotation des Plasmagases quasi mitgenommen wird. Ersichtlich ist, dass ein auf der Umfangsfläche wandernder Lichtbogenfußpunkt einen gleichmäßigen Verschleiß in Umfangsrichtung gesehen bewirkt.In plasma powder spraying, an arc is generated in a known manner, which extends from the anode to the cathode, wherein an arc base point is arranged both at the anode and at the cathode. In the conventional laminar flow of the plasma gas, the respective arc root points are static, so that they wear the cathode but also the anode at fixed locations very quickly. It is advantageous that the plasma gas in the method according to the invention is set into a rotation, that is rotated about the central longitudinal axis, for example, the anode. It is thus achieved that both the cathode and the anode wear evenly, since the respective arc root point in the circumferential direction of both the cathode and the anode, as seen in accordance with the rotation of the plasma gas, is virtually taken along. apparent is that an arc root on the peripheral surface causes a uniform wear seen in the circumferential direction.

So wird auch eine rotierende Ionisation des Plasmagases erzeugt, da ja mit den rotierenden Lichtbogenfußpunkten natürlich auch der Lichtbogen rotiert.Thus, a rotating ionization of the plasma gas is generated, since of course with the rotating arc base also the arc rotates.

Dadurch, dass nun zwei Innenzuführöffnungen zur Zufuhr des Beschichtungswerkstoffes, also des Pulvers vorgesehen sind, werden auch zwei Pulverstrahle erzeugt, welche die Plasmapulverspritzvorrichtung, die auch als Pistole bezeichnet werden kann, verlassen. Überraschend ist dabei, dass einer der Pulverstrahle die Pistole zentrisch entlang der Mittellängsachse verlässt, wohingegen der zweite Pulverstrahl bezogen auf die Mittelachse abgelenkt ist. Dies wird erreicht, indem die beiden Innenzuführöffnungen idealer Weise gleichzeitig mit Beschichtungswerkstoff beschickt werden, wobei zielführend ist, dass die Innenzuführbohrungen mit ihrer Mittelachse jeweils winklig zu einer Senkrechten auf die Mittellängsachse der Anode angeordnet sind. In bevorzugter Ausgestaltung wird ein spitzer Winkel gebildet, wobei sehr bevorzugt ist, dass der Winkel zwischen der Senkrechten auf die Mittellängsachse und der Mittelachse der jeweiligen Innenzuführbohrung einen Winkelbetrag von 5° bis 15°, weiter bevorzugt 9° aufweist. In günstiger Ausgestaltung sind die beiden Innenzuführöffnungen zumindest mit ihrer Mündungsöffnung in die Anode hinein bezogen auf die Mittellängsachse genau gegenüberliegend angeordnet.The fact that now two Innenzuführöffnungen are provided for supplying the coating material, ie the powder, two powder jets are generated, which leave the plasma powder injection device, which can also be referred to as a gun. It is surprising that one of the powder jets leaves the pistol centrically along the central longitudinal axis, whereas the second powder jet is deflected relative to the central axis. This is achieved by the two Innenzuführöffnungen are ideally fed simultaneously with coating material, wherein it is expedient that the Innenzuführbohrungen are arranged with their central axis each angled to a perpendicular to the central longitudinal axis of the anode. In a preferred embodiment, an acute angle is formed, wherein it is highly preferred that the angle between the perpendicular to the central longitudinal axis and the central axis of the respective Innenzuführbohrung an angle of 5 ° to 15 °, more preferably 9 °. In a favorable embodiment, the two Innenzuführöffnungen are arranged at least with its mouth opening into the anode relative to the central longitudinal axis exactly opposite one another.

Vorteilhaft ist, dass die beiden Innenzuführöffnungen in der Anode eingebracht sind, welche idealer Weise gleichzeitig mit Pulver beschickt werden. In zweckmäßiger Ausgestaltung ist die Pulverzufuhr durch beide Innenzuführöffnungen jeweils separat steuerbar. Insofern können die beiden Innenzuführöffnungen separat angesteuert beschickt werden, wobei jeder Innenzuführöffnung auch ein jeweils separater Pulvergeber zugeordnet sein kann. So kann mit der Erfindung vorteilhaft die jeweils benötigte Pulvermenge eingestellt werden. Denkbar ist, dass beide Innenzuführöffnungen gleichzeitig mit der jeweils maximal möglichen Menge beschickt werden. Weisen die beiden Innenzuführöffnungen beispielsweise einen Durchmesserbetrag von jeweils 4,2mm auf, könnten so beispielhaft 12 bis 14kg/h Pulver aufgetragen werden. Möglich ist, dass durch beiden Innenzuführöffnungen das jeweils gleiche Pulver geleitet wird. So treffen beide Pulverstrahle entsprechend der Ablenkung des einen Pulverstrahls aus der Mittellängsachse heraus auch versetzt auf den zu beschichtenden Werkstoff. Da beide Pulver identisch sind, erübrigt sich festzustellen, welcher der beiden Pulverstrahlen abgelenkt wird und welcher nicht. Hier ist aber ein weiterer Vorteil der Erfindung dahin zu sehen, dass durch beide Innenzuführöffnungen auch zwei unterschiedliche Beschichtungswerkstoffe, also Pulver geleitet werden können. Die Pulver können nicht nur in ihrer (metallurgischen) Zusammensetzung unterschiedlich sein, sondern auch hinsichtlich der Pulvermorphologie (z.B. agglomeriert, geschmolzen, im Gasstrom verdüst ...), der Pulverform (z.B. spitz, kantig, kugelig ...), des spezifischen Gewichts und auch z.B. des Aufschmelzverhaltens (z.B. des weißen, schwarzen oder glänzenden Pulvers) unterschiedlich sein. Hinsichtlich der unterschiedlichen Zusammensetzung der beiden Pulver kann so zum Beispiel ein Pulverstrahl eine Zwischenschicht mit entsprechend der Legierung des zugeführten Pulvers erzeugen, wobei der andere Pulverstrahl z.B. eine Deckschicht mit den entsprechenden Eigenschaften der zugeführten Pulverlegierung aufweist. Beide Pulverlegierungen können durch Einwirken des Lasers oder der Laser aber auch entsprechend den gewünschten Eigenschaften der Schutzschicht miteinander vermischt, also aufgemischt werden. Die Zusammensetzung der Pulver kann in Abhängigkeit von dem vorhandenen Grundwerkstoff und den späteren Betriebsbedingungen, insbesondere den vorgegebenen Temperaturbereichen bestimmt werden.It is advantageous that the two Innenzuführöffnungen are introduced into the anode, which are ideally fed simultaneously with powder. In an expedient embodiment, the powder feed can be controlled separately by the two inner feed openings. In this respect, the two Innenzuführöffnungen can be fed separately controlled, wherein each Innenzuführöffnung can also be assigned a separate powder generator. Thus, the amount of powder required in each case can advantageously be set with the invention. It is conceivable that both Innenzuführöffnungen be charged simultaneously with the maximum possible amount. For example, if the two inner feed openings have a diameter amount of 4.2 mm each, 12 to 14 kg / h could be used as an example Powder are applied. It is possible that the same powder is passed through both Innenzuführöffnungen. So meet both powder jets according to the deflection of a powder jet from the central longitudinal axis also offset from the material to be coated. Since both powders are identical, it is unnecessary to determine which of the two powder jets is deflected and which one does not. Here, however, a further advantage of the invention is to be seen in that two different coating materials, ie powder, can be passed through both inner feed openings. The powders can not only differ in their (metallurgical) composition, but also in terms of powder morphology (eg agglomerated, melted, atomized in the gas stream ...), the powder form (eg pointed, angular, spherical ...), the specific gravity and also, for example, the melting behavior (eg of the white, black or shiny powder) be different. With regard to the different composition of the two powders, for example, a powder jet can thus produce an intermediate layer corresponding to the alloy of the supplied powder, the other powder jet having, for example, a cover layer with the corresponding properties of the supplied powder alloy. Both powder alloys can be mixed together by the action of the laser or the laser but also according to the desired properties of the protective layer, so be mixed. The composition of the powders can be determined as a function of the existing base material and the subsequent operating conditions, in particular the predetermined temperature ranges.

Dabei liegt der Erfindung die Erkenntnis zugrunde, dass die Ablenkung des Pulverstrahls aus der Mittellängsachse heraus oder nicht tatsächlich von der Morphologie, der Pulverform, des spezifischen Gewichts und dem Aufschmelzverhalten des jeweils zugeführten Pulvers abhängt. So kann an jeweiligen Probewerkstücken, welche dem zu beschichtenden Werkstück entspricht, festgestellt werden, welcher Pulverstrahl in welcher Zusammensetzung abgelenkt wird, und welcher Pulverstrahl nicht abgelenkt wird.The invention is based on the finding that the deflection of the powder jet out of the central longitudinal axis or not actually depends on the morphology, the powder form, the specific weight and the melting behavior of the respectively supplied powder. Thus, it can be determined at each sample workpieces, which corresponds to the workpiece to be coated, which powder beam is deflected in which composition, and which powder beam is not deflected.

Da mit der Erfindung zwei Pulverstrahle erzeugt werden, ist es zweckmäßig, wenn auch beide Pulverstrahle, also die beiden auf den zu beschichtenden Werkstoff auftreffenden Pulverlegierungsraupen auch mit jeweils einem Laser weiterbehandelt werden, um den diffusiven Verbund zu bilden. Insofern ist vorteilhaft vorgesehen, dass eine Doppel-Laserstrahlanlage, also auch zwei Laser vorgesehen sind, wobei der jeweilige Laser dem jeweils auftreffenden Pulverstrahl zugeordnet ist.Since two powder jets are produced with the invention, it is expedient, if both powder jets, ie the two on the material to be coated incident powder alloy caterpillars are also treated with one laser to form the diffusive composite. In this respect, it is advantageously provided that a double laser beam system, so also two lasers are provided, wherein the respective laser is associated with the respective impinging powder jet.

Zum Aufbringen einer Schutzschicht mit dem erfindungsgemäßen Verfahren ist geeigneter Weise eine 80KW Plasmaspritzanlage mit Innenpulverzuführung einsetzbar. Durch die Innenpulverzufuhr, und zwar bevorzugt durch beide Innenpulverzuführöffnungen gleichzeitig, wird das jeweilige Pulver im jeweiligen Plasmastrahl einerseits fokussiert, wobei andererseits eine gleichmäßigere Aufschmelzung des Pulvers erreicht wird. Ein Aufschmelzen im Sinne der Erfindung ist also lediglich ein Anwärmen, wobei das Pulver eben nicht schmelzflüssig wird. Durch das Aufschmelzen des Beschichtungswerkstoffes, also des Pulvers innerhalb der Pistole kann nun aber vorteilhaft die Laserleistung reduziert werden, so dass somit vorteilhaft eine geringere Erwärmung des zu beschichtenden Bauteils zu erwarten ist. Die metallische Wand wird durch den Laserstrahl bzw. durch die Laserstrahlen lediglich auf eine Temperatur von 60°C, maximal 80°C erwärmt. Insofern liegt ein weiterer Vorteil der Erfindung darin, dass der Laser der Laserstrahlanlage, also die Doppel-Laserstrahlanlage eine Leistung von lediglich 2KW bis 10KW, bevorzugt von 3KW bis 5 KW haben kann. So kann ein geringer Verzug der metallischen zu beschichtenden Wand, beispielsweise von Rohr-Steg-Rohr-Segmenten oder z.B. von Paneelen von Verbrennungskesselwänden erreicht werden.For applying a protective layer with the method according to the invention, an 80KW plasma spraying system with internal powder feed can be suitably used. By the internal powder supply, preferably by both Innenpulverzuführöffnungen simultaneously, the respective powder is focused in the respective plasma jet one hand, on the other hand, a more uniform melting of the powder is achieved. A melting in the context of the invention is thus only a warming, wherein the powder just does not become molten. By melting the coating material, so the powder within the gun but now the laser power can be advantageously reduced, so that thus advantageously a lower heating of the component to be coated is expected. The metallic wall is heated by the laser beam or by the laser beams only to a temperature of 60 ° C, maximum 80 ° C. In this respect, a further advantage of the invention resides in the fact that the laser of the laser beam system, that is to say the double laser beam system, can have a power of only 2KW to 10KW, preferably of 3KW to 5 KW. Thus, a slight distortion of the metallic wall to be coated, for example of pipe-web-pipe segments or e.g. be achieved by panels of combustion boiler walls.

Vorteilhaft ist auch, dass auf ein Aufrauen und/oder Behandeln der zu beschichtenden Wand mit Edelkorund oder dergleichen Strahlmittel verzichtet werden kann; denn die bisher anzustrebende mechanische Verklammerung der schmelzflüssigen Pulverpartikel im Augenblick des Auftreffens als Bindemechanismus wird bei der Erfindung durch die hohe Energiedichte des jeweiligen Lasers im Auftreffpunkt zur Erzeugung eines diffusiven Verbundes ersetzt, ohne dass schädliche Spannungen in den zu beschichtenden Grundwerkstoff eingebracht werden. Gleichwohl kann das zu beschichtenden Werkstück Korrosionsschutzüberzüge haben, wobei diese Korrosionsschutzüberzüge mittels einfachen Reinigungsmitteln entfernbar sind. Auch Schmutz oder dergleichen sollte entfernt werden. Insofern sollte die Oberfläche zwar z.B. von Fett, Öl, Zunder und/oder Walzhaut gereinigt sein, ein Aufrauen und/oder Aktivieren kann bei der Erfindung aber entfallen.It is also advantageous that roughening and / or treating the wall to be coated with corundum or the like blasting agent can be dispensed with; because the hitherto envisaged mechanical clamping of the molten powder particles at the moment of impact as a binding mechanism is replaced in the invention by the high energy density of the respective laser at the point of impact to produce a diffusive composite without damaging stresses are introduced into the base material to be coated. Nevertheless, the workpiece to be coated may have anticorrosion coatings, these anticorrosive coatings by means of simple cleaning agents are removable. Also dirt or the like should be removed. In this respect, the surface should indeed be cleaned, for example, by fat, oil, scale and / or mill scale, but roughening and / or activation can be dispensed with in the invention.

Um die Rotation des Plasmagases innerhalb der Plasmaspritzvorrichtung, also innerhalb der Pistole, insbesondere innerhalb der Anode erreichen zu können weist die entsprechende Plasmagasdüse, also der Injektor zumindest eine kombinierte Bohrung auf, welche durch zwei ineinander eingebrachte Teilbohrungen gebildet wird. Dabei ist in zielführender Ausgestaltung vorgesehen, dass eine der Teilbohrungen mit ihrer Mittelachse deckungsgleich zu einer Mittelachse der Plasmagasdüse ist. Die andere, zweite Teilbohrung ist winklig zu der Mittelachse der Plasmagasdüse angeordnet. Bevorzugt ist vorgesehen dass die andere zweite Teilbohrung in einem spitzen Winkel, bevorzugt in einem Winkel von 10 bis 30°, weiter bevorzugt von 16,5° zur Mittelachse der Plasmagasdüse angeordnet ist. Zielführend ist, dass beide Teilbohrungen einen identischen Ansatzpunkt an einem Außenumfang der Plasmagasdüse haben, und an einem Innenumfang münden. Dabei wird an dem Innenumfang eine Gesamtmündungsöffnung erreicht, welche natürlich größer ist als eine solche Mündungsöffnung die mit einer der einzelnen Teilbohrungen erreichbar ist. Gleichzeitig ist die innere Gesamtmündungsöffnung kleiner als beide Teilbohrungsmündungen zusammen betrachtet. Insofern ist hier ein Vorteil gegenüber einer einzelnen zur Mittelachse der Plasmagasdüse schräg verlaufenden Düsenbohrung, welche einen harten Plasmagasstrahl erzeugen würde, dahin zu sehen, als die kombinierte Bohrung gemäß der Erfindung quasi einen exzentrischen Verlauf aufweist, wobei die innere Gesamtmündungsöffnung größer ist als der Eintritt der kombinierten Bohrung an dem Außenumfang der Plasmagasdüse. So wird vorteilhaft erreicht, dass die eingeleitete Gasmenge homogen ionisierbar ist, da sich das eingeleitete Gas innerhalb des Plasmabrenners homogen verteilt, da sich durch die sich quasi exzentrisch erweiternde innere Gesamtmündungsöffnung ein weicher Plasmagasstrom einstellt. In günstiger Ausgestaltung kann vorgesehen sein, mehrere kombinierte Bohrungen in der Plasmagasdüse vorzusehen. In besonders bevorzugter Ausgestaltung sind vier kombinierte Bohrungen vorgesehen, welche in Umfangsrichtung der Plasmagasdüse gesehen gleich verteilt sind. Zweckmäßig ist, wenn insbesondere die zweiten Teilbohrungen jeweils gleichorientiert sind. Durch diese erfindungsgemäße Ausgestaltung wird erreicht, dass das Plasmagas tangential zur Mittellängsachse in den Plasmabrenner eingeleitet wird, so dass das Plasmagas den Lichtbogen, der zwischen Kathode und Anode angelegt ist, um die Mittellängsachse rotierend erreicht. In diesen rotierenden Plasmastrahl wird nun das Pulver durch beide Innenzuführöffnungen eingeleitet, wie bereits beschrieben wurde.In order to be able to achieve the rotation of the plasma gas within the plasma spraying device, ie within the gun, in particular within the anode, the corresponding plasma gas nozzle, that is to say the injector, has at least one combined bore, which is formed by two partial bores introduced into one another. It is provided in purposeful embodiment that one of the partial bores with its central axis is congruent to a central axis of the plasma gas nozzle. The other, second partial bore is arranged at an angle to the central axis of the plasma gas nozzle. It is preferably provided that the other second partial bore is arranged at an acute angle, preferably at an angle of 10 to 30 °, more preferably 16.5 ° to the central axis of the plasma gas nozzle. The goal is that both partial bores have an identical starting point on an outer periphery of the plasma gas nozzle, and open at an inner periphery. In this case, an overall mouth opening is achieved on the inner circumference, which of course is greater than such a mouth opening which can be reached with one of the individual partial bores. At the same time the inner total orifice is smaller than both partial boreholes considered together. In this respect, an advantage over a single nozzle bore oblique to the central axis of the plasma gas nozzle, which would produce a hard plasma jet, is to be seen in that the combined bore according to the invention has quasi an eccentric profile, wherein the total internal orifice is greater than the inlet of the combined bore on the outer periphery of the plasma gas nozzle. Thus, it is advantageously achieved that the amount of gas introduced is homogeneously ionizable, since the gas introduced within the plasma torch distributed homogeneously, as set by the quasi eccentrically expanding inner total orifice a soft plasma gas flow. In a favorable embodiment can be provided to provide a plurality of combined holes in the plasma gas nozzle. In a particularly preferred embodiment, four combined bores are provided which, viewed in the circumferential direction of the plasma gas nozzle, are equally distributed. It is expedient if in particular the second partial bores are in each case equally oriented. By this embodiment of the invention it is achieved that the plasma gas is introduced tangentially to the central longitudinal axis in the plasma torch, so that the plasma gas reaches the arc, which is applied between the cathode and anode, rotating about the central longitudinal axis. In this rotating plasma jet, the powder is now introduced through both Innenzuführöffnungen, as already described.

Wie bereits erwähnt, wird bei einem bevorzugten Neigungswinkel der Innenzuführöffnung von 9° gegenüber der Plasmastrahlachse in Richtung der Anodenmündung bei dem rotierenden Plasmastrahl eine Aufspaltung des Pulverstrahls in zwei Pulverstrahle erreicht. Bei einem Spritzabstand von 100 bis 180mm, bevorzugt von 130 bis 150mm können über die Parameterwahl von Gasdruck, Gasmenge und Pulvermenge in Abhängigkeit der oben genannten Pulverdaten die Auftreffflächen der beiden Pulverstrahle derart beeinflusst werden, dass diese optimal aneinander grenzen und somit mit einer geringeren Leistung pro Laser eingeschmolzen und diffusiv mit dem Grundwerkstoff verbunden werden können.As already mentioned, with a preferred angle of inclination of the inner feed opening of 9 ° with respect to the plasma jet axis in the direction of the anode orifice in the rotating plasma jet, splitting of the powder jet into two powder jets is achieved. At a spray distance of 100 to 180 mm, preferably from 130 to 150 mm, the impact surfaces of the two powder jets can be influenced in such a way via the parameter selection of gas pressure, gas quantity and powder quantity as a function of the abovementioned powder data such that they adjoin one another optimally and thus with a lower power per Laser can be melted down and diffusively connected to the base material.

Vorteilhaft ist weiter, dass die Auftreffflächen der beiden Pulverstrahle veränderbar sind. Diese können beispielsweise hintereinander, versetzt zueinander oder nebeneinander liegen. Dazu muss lediglich die Plasmaspritzvorrichtung, also die Pistole entsprechend der gewünschten Lage der Auftreffflächen um die Brennerachse gedreht werden. Selbstverständlich wird der Laser bzw. werden die Laser mit deren Optik entsprechend der tatsächlichen Auftreffflächen angepasst eingestellt. Idealer Weise sind die Pulverstrahle so einstellbar, dass die Auftreffflächen überlappungsfrei genau aneinander grenzen.A further advantage is that the impact surfaces of the two powder jets are changeable. These can, for example, one behind the other, offset from each other or next to each other. For this purpose, only the plasma spray device, so the gun must be rotated according to the desired position of the impact surfaces around the burner axis. Of course, the laser or laser will be adjusted with the optics corresponding to the actual impact surfaces. Ideally, the powder jets are adjustable so that the impact surfaces adjoin one another without overlapping.

Erfindungsgemäß weist eine Vorrichtung zum Plasmaspritzen zum Herstellen einer Schutzschicht im Plasmaspritzverfahren auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden zur Durchführung des Verfahrens nach der Erfindung in ihrer Anode zwei eingebrachte Innenzuführöffnungen auf, welche bezogen auf eine Mittelachse der Plasmapulverspritzvorrichtung genau gegenüberliegend angeordnet sind, wobei natürlich Herstellungstoleranzen bezüglich der diametralen Anordnung möglich sind und im Rahmen der Erfindung liegen. Die beiden Innenzuführöffnungen weisen mit ihrer Mittelachse zu einer Senkrechten auf die Mittelachse der Plasmapulverspritzvorrichtung einen spitzen Winkel höchst bevorzugt von 9° auf. Weiter ist vorteilhaft vorgesehen, dass eine Plasmagasdüse zumindest eine kombinierte Bohrung, bevorzugt mehrere kombinierte Bohrungen, weiter bevorzugt vier kombinierte Bohrungen aufweist, durch welche das zu ionisierende Gas in die Plasmaspritzvorrichtung eingeleitet wird. Zudem ist mit der Plasmaspritzvorrichtung zumindest ein Laser kombiniert, welcher das in der Plasmaspritzvorrichtung lediglich aufgeschmolzene, also erwärmte auftreffende Auftragspulver so weiterbearbeitet, dass der diffusive Verbund der Schutzschicht mit dem Grundwerkstoff gebildet ist.According to the invention, a device for plasma spraying for producing a protective layer in the plasma spraying process on hot walls, in particular flue gases acted upon metallic walls for carrying out the method according to the invention in its anode two introduced Innenzuführöffnungen, which with respect to a central axis of the plasma powder injection device exactly Of course, manufacturing tolerances with respect to the diametrical arrangement are possible and are within the scope of the invention. The two inner feed openings have with their central axis to a perpendicular to the central axis of the plasma powder injection device an acute angle, most preferably of 9 °. Furthermore, it is advantageously provided that a plasma gas nozzle has at least one combined bore, preferably a plurality of combined bores, more preferably four combined bores, through which the gas to be ionized is introduced into the plasma spraying device. In addition, at least one laser is combined with the plasma spraying device, which processes the plasma powder merely melted, ie heated, impinging application powder in such a way that the diffusive composite of the protective layer is formed with the base material.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung ist insbesondere zur Anwendung z.B. an Rohr-Steg-Rohr-Segmenten und/oder beispielsweise an Paneelen für Verbrennungskesselwände in Müllverbrennungsanlagen geeignet, ohne die Anwendung hierauf zu beschränken. Insbesondere in Müllverbrennungsanlagen kann so eine vom Betrag her hohe Schutzschichtdicke hergestellt werden, welche zwangsläufig auch zu einer längeren Standzeit der beschichteten Rohr-Steg-Rohr-Segmente und/oder Paneelen führt, was wiederum einer längeren Anlagenverfügbarkeit zugutekommt. Insofern wird mit der Erfindung ein Verfahren zur Herstellung einer Schutzschicht auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten und aus einem vorgegebenen metallischen Grundwerkstoff bestehenden Wänden von Verbrennungsanlagen, Wärmetauschern oder ähnlichen Anlagen vorgeschlagen, bei dem mittels eines Plasmabrenners und einer Laserstrahlanlage, bevorzugt einer Doppel-Laserstrahlanlage ein Pulver aus metallischen, karbidischen, oxidkeramischen oder silicidischen Werkstoffen oder Mischungen dieser Werkstoffe auf die zuvor gereinigten metallischen Wände zur Bildung der Schutzschicht aufgetragen und durch den betreffenden Laserstrahl diffusiv mit dem Grundwerkstoff verbunden wird. Als zu beschichtende Grundwerkstoffe sind dabei die in den betreffenden Anlagen zugelassenen Grundwerkstoffe einsetzbar, wobei hier auch Grundwerkstoffe mit der Bezeichnung 15Mo3, 13CrMo45 und/oder 10CrMo910 beispielhaft genannt sein sollen. Zielführend ist auch, dass bei der Erfindung anstelle einer Laserschweißanlage eine Laserstrahlanlage Einsatz findet um den diffusive Verbund zu bilden. Eine Laserschweißanlage weist einen sehr viel kürzeren und sehr energieintensiven Laserstrahl auf als die Laserstrahlanlage, wobei der Grundwerkstoff bei einer Laserschweißanlage aufgeschmolzen werden muss, und wobei der Schweißzusatzwerkstoff in Elektrodenform oder kaltem Pulver zugeführt wird, wobei die Laserschweißanlage mit sehr viel höheren Energien betrieben werden muss als die idealer Weise eingesetzte Laserstrahlanlage.The method according to the invention and the device according to the invention are particularly suitable for use, for example, on pipe-web-tube segments and / or, for example, on panels for combustion boiler walls in waste incineration plants, without restricting the application thereof. In particular, in waste incineration plants can be made of a magnitude high protective layer thickness, which inevitably leads to a longer service life of the coated pipe web segments and / or panels, which in turn benefits a longer plant availability. In this respect, the invention proposes a method for producing a protective layer on hot gases, in particular flue gases acted and consisting of a given metallic base material walls of incinerators, heat exchangers or similar plants proposed in which by means of a plasma torch and a laser beam system, preferably a double laser beam system a powder of metallic, carbide, oxide ceramic or silicidischen materials or mixtures of these materials is applied to the previously cleaned metallic walls to form the protective layer and diffused by the respective laser beam with the base material. The base materials to be coated in this case can be used as the base materials approved in the plants concerned, with base materials with the designation 15Mo3, 13CrMo45 and / or 10CrMo910 also being mentioned by way of example here should. It is also leading that in the invention instead of a laser welding system, a laser beam system is used to form the diffusive composite. A laser welding system has a much shorter and very energy-intensive laser beam than the laser beam system, wherein the base material must be melted at a laser welding machine, and wherein the filler metal is supplied in electrode form or cold powder, the laser welding system must be operated at much higher energies than the ideally used laser beam system.

Weitere vorteilhafte Einzelheiten und Wirkungen der Erfindung sind im Folgenden anhand von unterschiedlichen, in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
eine Plasmaspritzvorrichtung kombiniert mit einer Doppel-Laserstrahlanlage, als Laser-Plasmabrennervorrichtung in prinzipieller Ansicht,
Fig. 2
einen Querschnitt durch eine Plasmadüse der Plasmaspritzvorrichtung aus Figur 1,
Fig. 3
einen Längsschnitt durch eine Anode der Plasmaspritzvorrichtung aus Figur 1, und
Fig. 4
Beschichtungsbeispiele von Rohr-Steg-Rohr Elementen.
Further advantageous details and effects of the invention are explained in more detail below with reference to exemplary embodiments illustrated in the figures. Show it:
Fig. 1
a plasma spraying device combined with a double laser beam system, as a laser plasma torch device in a basic view,
Fig. 2
a cross section through a plasma nozzle of the plasma spraying device FIG. 1 .
Fig. 3
a longitudinal section through an anode of the plasma spray device FIG. 1 , and
Fig. 4
Coating examples of pipe-web-pipe elements.

In den unterschiedlichen Figuren sind gleiche Teile stets mit denselben Bezugszeichen versehen, so dass diese in der Regel auch nur einmal beschrieben werden.In the different figures, the same parts are always provided with the same reference numerals, so that these are usually described only once.

Figur 1 zeigt eine Laser-Plasmapulverspritzvorrichtung 1, die eine Plasmapulverspritzvorrichtung 2 und eine Doppel-Laserstrahlanlage 3 aufweist. FIG. 1 shows a laser plasma powder injection device 1, which has a plasma powder injection device 2 and a double laser beam system 3.

Die Plasmapulverspritzvorrichtung 2 erzeugt zwei aufgespaltene Pulverstrahle 4 und 6, welche auf ein zu beschichtendes Werkstück 7 treffen. Das zu beschichtende Werkstück 7 ist z.B. ein Rohr-Steg-Rohr-Segment 8, wie dies beispielhaft in Figur 4 dargestellt ist. Das Werkstück 7 wird mit aggressiven, heißen Rauchgasen beaufschlagt, welche z.B. in Müllverbrennungsanalgen entstehen.The plasma powder injection device 2 generates two split powder jets 4 and 6 which strike a workpiece 7 to be coated. The workpiece 7 to be coated is, for example, a pipe-web-tube segment 8, as shown by way of example in FIG FIG. 4 is shown. The workpiece 7 is acted upon by aggressive, hot flue gases, which arise, for example, in waste incineration algae.

Einer der Pulverstrahle 4 tritt zentrisch zur Mittellängsachse X1 der Plasmapulverspritzvorrichtung 2 aus dieser heraus. Der andere Plasmapulverstrahl 6 tritt abgelenkt zur Mittelachse X1 der Plasmapulverspritzvorrichtung 2 aus dieser heraus. Beide Pulverstrahle 4 und 6 bilden jedoch einen Gesamtspritzkegel 9.One of the powder jets 4 emerges centrically from the central longitudinal axis X1 of the plasma powder injection device 2. The other plasma powder jet 6 emerges distracted from the central axis X1 of the plasma powder injection device 2 out of this. However, both powder jets 4 and 6 form a total spray cone 9.

Die beiden Pulverstrahle 4 und 6 treffen auf das zu beschichtende Werkstück 7, wobei das jeweilige Pulver des jeweiligen Pulverstrahls 4 oder 6 in der Plasmapulverspritzvorrichtung 2 lediglich aufgeschmolzen wird, und vor dem Austritt nicht schmelzflüssig ist.The two powder jets 4 and 6 strike the workpiece 7 to be coated, wherein the respective powder of the respective powder jet 4 or 6 is only melted in the plasma powder injection device 2, and is not molten before the exit.

Zur Bildung eines diffusiven Verbundes des aufgetragenen Pulvers, also des Beschichtungswerkstoffes mit dem Werkstück 7, also mit dessen Grundwerkstoff ist die Doppel-Laserstrahlanlage 3 vorgesehen, welche entsprechend der beiden Pulverstrahle 4 und 6 auch zwei Laserstrahle 11 und 12 erzeugt.To form a diffusive composite of the applied powder, ie the coating material with the workpiece 7, ie with its base material, the double laser beam system 3 is provided which generates two laser beams 11 and 12 corresponding to the two powder jets 4 and 6.

In Figur 2 ist eine Plasmagasdüse 13 der Plasmapulverspritzvorrichtung 2 in einem Querschnitt gezeigt. Die Plasmagasdüse 13 kann im Folgenden auch als Injektor 13 bezeichnet werden. Die Plasmapulverspritzvorrichtung 2 kann im Folgenden auch als Plasmabrenner 2 bezeichnet werden.In FIG. 2 a plasma gas nozzle 13 of the plasma powder injection device 2 is shown in a cross section. The plasma gas nozzle 13 can also be referred to below as injector 13. The plasma powder injection device 2 can also be referred to below as the plasma burner 2.

Der Injektor 13 weist beispielhaft vier kombinierte Bohrungen 14 auf, welche in Umfangsrichtung des Injektors 13 gesehen gleich verteilt sind. Jede der kombinierten Bohrungen 14 ist aus zwei Teilbohrungen 16 und 17 gebildet. Eine erste Teilbohrung 16 hat eine Mittelachse x, welche deckungsgleich zu einer jeweiligen Mittelachse des Injektors 13 ist. Eine zweite Teilbohrung 17 hat eine Mittelachse y, welche bezogen auf die Mittelachse x der ersten Teilbohrung 16 und damit zur jeweiligen Mittelachse des Injektors 13 winklig angeordnet ist. In höchst bevorzugter Ausgestaltung weist der Winkel zwischen den beiden Mittelachsen x und y einen Betrag von 16,5 ° auf. Jede der beiden Teilbohrungen 16 und 17 weist einen Durchmesser von beispielhaft 1,8 mm auf. An einem Außenumfang des Injektors 13 weisen beide Teilbohrungen 16 und 17 einen gemeinsamen Ansatzpunkt auf. Insofern ist die Einlassöffnung 18 an dem Außenumfang des Injektors 13 identisch zu dem Durchmesser der beiden Teilbohrungen 16,17. Beide Teilbohrungen 16 und 17 bilden an einem Innenumfang 18 des Injektors 13 eine innere Gesamtmündungsöffnung 20. Dadurch, dass die zweite Teilbohrung 17 winklig zur ersten Teilbohrung 16 in den Injektor 13 eingebracht wird, wird die innere Gesamtmündungsöffnung 20 größer sein als der Durchmesser einer einzelnen Teilbohrung 16 oder 17. Gleichzeitig wird die innere Gesamtmündungsöffnung 20 kleiner sein als die Summe der beiden Durchmesser der Teilbohrungen 16 und 17. Insofern wird jeweils eine kombinierte Bohrung 14 erzeugt, welche quasi eine exzentrischen Verlauf aufweist, wobei sich die kombinierte Bohrung 14 ausgehend von dem an dem Außenumfang angeordneten Ansatzpunkt exzentrisch, also quasi halbkegelförmig i n Richtung zum Innenumfang 19 erweitert. Alle Teilbohrungen 16 und 17 der vier kombinierten Bohrungen 14 sind jeweils gleich orientiert. Mittels dieser Ausgestaltung wird das Plasmagas tangential zur Plasmabrennerachse (Mittellängsachse X1) in den Plasmabrenner eingeleitet und erreicht so um die Mittellängsachse X1 des Plasmabrenners 2 rotierend einen Lichtbogen 21 zwischen einer Anode 22 und einer Kathode 23 (Figur 3) des Plasmabrenners 2.By way of example, the injector 13 has four combined bores 14, which are distributed identically in the circumferential direction of the injector 13. Each of the combined bores 14 is formed from two partial bores 16 and 17. A first partial bore 16 has a central axis x, which is congruent to a respective central axis of the injector 13. A second partial bore 17 has a central axis y, which is arranged at an angle relative to the central axis x of the first partial bore 16 and thus to the respective central axis of the injector 13. In the most preferred embodiment the angle between the two central axes x and y an amount of 16.5 °. Each of the two partial bores 16 and 17 has a diameter of 1.8 mm by way of example. On an outer circumference of the injector 13, both partial bores 16 and 17 have a common starting point. In this respect, the inlet opening 18 on the outer circumference of the injector 13 is identical to the diameter of the two partial bores 16, 17. Both partial bores 16 and 17 form on an inner circumference 18 of the injector 13 an inner total orifice 20. Due to the fact that the second partial bore 17 is introduced at an angle to the first partial bore 16 in the injector 13, the total internal orifice 20 will be larger than the diameter of a single partial bore 16 or 17. At the same time the inner total orifice 20 will be smaller than the sum of the two diameters of the partial bores 16 and 17. Insofar a combined bore 14 is produced in each case, which has an eccentric course, with the combined bore 14 starting from the on The outer circumference arranged approach point eccentrically, so quasi semi-conical in the direction of the inner circumference 19 extended. All partial holes 16 and 17 of the four combined holes 14 are each oriented the same. By means of this configuration, the plasma gas is introduced tangentially to the plasma torch axis (central longitudinal axis X1) in the plasma torch and thus reaches about the central longitudinal axis X1 of the plasma torch 2 rotating an arc 21 between an anode 22 and a cathode 23 (FIGS. FIG. 3 ) of the plasma burner 2.

In Figur 3 ist die Anode 22 der Plasmapulverspritzvorrichtung 2 gezeigt. In der Anode 22 ist die Kathode 23 aufgenommen. Sowohl die Kathode 23 als auch die Anode 22 sind mit ihren Mittelachse X2 und X3 deckungsgleich zur Mittelachse X1 der Plasmaspritzvorrichtung 2. Der Lichtbogen 21 ist ebenfalls erkennbar, wobei auf eine Darstellung der jeweiligen Lichtbogenfußpunkte an der Anode 22 und der Kathode 23 verzichtet wurde. Zielführend ist nun, dass das Plasmagas den Lichtbogen 21 rotierend um die Mittellängsachse X1 des Plasmabrenners 2 erreicht. Damit wird auch der Lichtbogen 21 um die Mittellängsachse des Plasmabrenners 2 rotierend mitgenommen, was in Figur 3 mittels der beiden Lichtbogen 21 und 21a dargestellt ist. Durch den rotierenden Lichtbogen 21 kann die Standzeit sowohl der Anode 22 als auch der Kathode 23 verlängert werden, da die jeweiligen Lichtbogenfußpunkte nicht mehr statisch fixiert sind, sondern sowohl an der Anode 22 als auch an der Kathode 23 umlaufen. Dabei ist in Figur 3 erkennbar, dass der Lichtbogenfußpunkt an der Anode 22 in einem oberen Spitzenbereich und nicht direkt an der Spitze selbst ansetzt.In FIG. 3 the anode 22 of the plasma powder injection device 2 is shown. In the anode 22, the cathode 23 is accommodated. Both the cathode 23 and the anode 22 are with their central axis X2 and X3 congruent to the central axis X1 of the plasma spraying device 2. The arc 21 is also recognizable, with a representation of the respective arc base points at the anode 22 and the cathode 23 has been omitted. The aim is now that the plasma gas reaches the arc 21 rotating about the central longitudinal axis X1 of the plasma torch 2. Thus, the arc 21 is taken around the central longitudinal axis of the plasma torch 2 rotating, which in FIG. 3 is shown by the two arc 21 and 21a. By the rotating arc 21, the life of both the anode 22 and the cathode 23 can be extended because the respective Arc base points are no longer statically fixed, but rotate both at the anode 22 and at the cathode 23. It is in FIG. 3 it can be seen that the arc root point attaches to the anode 22 in an upper tip region and not directly to the tip itself.

Durch das rotierende Plasmagas und den rotierenden Lichtbogen stellt sich auch eine rotierende Ionisation des Plasmagases ein.Due to the rotating plasma gas and the rotating arc, there is also a rotating ionization of the plasma gas.

Der Plasmabrenner 2 weist eine Innenpulverzuführung auf.The plasma burner 2 has an internal powder feed.

Zur Innenpulverzuführung sind in der Anode 22 zwei Innenzuführöffnungen 24 und 26 eingebracht. Anschlüsse zu Pulvergebern sind nicht dargestellt. Die Innenzuführöffnungen 24 und 26 sind gleichzeitig mit Pulver beschickbar wobei eine jeweilige Pulvermenge durch die jeweilige Innenzuführöffnung 24 und 26 separat steuerbar ist. Die jeweilige Innenzuführöffnung 24 und 26 weist jeweils eine Mittelachse X4 auf, die zu einer Senkrechten Z auf die Mittelachse X1, winklig, höchst bevorzugt mit einem Winkel α von 9° angeordnet ist. Die beiden Innenzuführöffnungen 24 und 26 sind gleichorientiert in Richtung zu einer Plasmaaustrittseite in die Anode 22 eingebracht und münden in dem Inneren der Anode 22, und sind mit ihren Mündungsöffnungen 27 bezogen auf die Mittelachse X1 gegenüberliegend angeordnet.For internal powder supply 22 two Innenzuführöffnungen 24 and 26 are introduced in the anode. Connections to powder encoders are not shown. The Innenzuführöffnungen 24 and 26 are simultaneously charged with powder with a respective amount of powder through the respective Innenzuführöffnung 24 and 26 is separately controllable. The respective inner feed opening 24 and 26 each have a central axis X4, which is arranged to a vertical Z on the central axis X1, angularly, most preferably at an angle α of 9 °. The two Innenzuführöffnungen 24 and 26 are equally oriented towards a plasma exit side introduced into the anode 22 and open into the interior of the anode 22, and are arranged with their mouth openings 27 relative to the central axis X1 opposite.

Mit der Laser-Plasmapulverspritzvorrichtung 1 ist eine Schutzschicht auf mit heißen Rauchgasen beaufschlagten metallischen Wänden, beispielsweise auf Roh-Steg-Rohr-Segmenten 8, wie diese in Figur 4 beispielhaft dargestellt sind aufbringbar. An einem rechten Bildrand der Figur 4 ist ein beispielhaftes Rohr-Steg-Rohr-Segment 8 in einem Längsschnitt dargestellt. Daneben ist eine Aufsicht dargestellt.With the laser plasma powder injection device 1 is a protective layer on hot flue gases acted upon metallic walls, for example, on raw web-tube segments 8, as in FIG. 4 can be applied by way of example. At a right edge of the picture FIG. 4 an exemplary pipe-web-tube segment 8 is shown in a longitudinal section. In addition, a supervision is shown.

Figur 4 soll dazu dienen eine jeweils mögliche Lage die Auftreffflächen 28 und 29 der Pulverstrahle 4 und 6 darzustellen. Die Lage der Auftreffflächen 28 und 29 ist dabei abhängig von der Verdrehung der Plasmapulverspritzvorrichtung 2, also von der Position der Pistole. Selbstverständlich sind die Laserstrahle 11 und 12 entsprechend ausgerichtet. FIG. 4 intended to represent a respective possible location of the incident surfaces 28 and 29 of the powder jets 4 and 6. The position of the impact surfaces 28 and 29 is dependent on the rotation of the plasma powder injection device 2, ie from the position of the gun. Of course, the laser beams 11 and 12 are aligned accordingly.

Zunächst können die Auftreffflächen 28 und 29 nebeneinander liegend angeordnet sein, wie im unteren Figurenbereich der Figur 4 erkennbar. Diese Position wird für die Folgenden Positionen der Einfachheit wegen als neutrale Position bezeichnet, ohne dass dies eine einschränkende Wirkung haben soll. Erkennbar ist, dass die Pulverstrahle 4 und 6 dabei nicht wie aus Figur 1 angenommen werden könnte scharf voneinander getrennt sind, sondern jeweils einen Überlappbereich 31 aufweisen.First, the landing surfaces 28 and 29 may be arranged side by side, as in the lower part of the figure FIG. 4 recognizable. This position is referred to as a neutral position for the following positions for the sake of simplicity, without this having a limiting effect. It can be seen that the powder jets 4 and 6 do not look like this FIG. 1 could be assumed sharply separated, but each have an overlap region 31.

Durch Verdrehen des Plasmabrenners 2 aus seiner neutralen Position heraus, könnte die Auftreffflächen 28 und 29 versetzt zueinander sein, so dass eine der anderen quasi voreilt. Diese Position ist in der Mitte der Figur 4 dargestellt. Durch weiteres Verdrehen aus der neutralen Position heraus, können die Auftreffflächen 28 und 29 auch direkt hintereinander angeordnet sein, wie am oberen Bereich der Figur 4 erkennbar ist.By rotating the plasma torch 2 out of its neutral position, the incident surfaces 28 and 29 could be offset from each other, so that one of the others is virtually leading the way. This position is in the middle of the FIG. 4 shown. By further twisting out of the neutral position, the incident surfaces 28 and 29 can also be arranged directly behind one another, as at the top of the FIG. 4 is recognizable.

Die jeweils erkennbaren Überlappbereiche 31 können in ihrem Betrag ebenfalls veränderbar sein, wie in Figur 4 angedeutet. Die beiden Pulverstrahle 4 und 6, also die Auftreffflächen 28 und 29 können idealer Weise auch ohne Überlappung angrenzen.The respectively recognizable overlapping areas 31 can also be variable in their amount, as in FIG FIG. 4 indicated. The two powder jets 4 and 6, so the impact surfaces 28 and 29 may ideally be adjacent without overlap.

Selbstverständlich sind auch die Bögen des Rohr-Steg-Rohr-Segmentes 8 mit dem erfindungsgemäßen Verfahren beschichtbar. Ebenso sind Paneele für Kesselwände mit dem vorgeschlagenen Verfahren der Erfindung beschichtbar.Of course, the bends of the pipe web segment 8 can be coated with the method according to the invention. Likewise, panels for boiler walls can be coated with the proposed method of the invention.

Mit der Laser-Plasmaspritzvorrichtung 1 kann eine Schutzschicht mit einer Dicke von beispielsweise 0,6 bis 1,5 mm erzeugt werden. Dies ist möglich, da zwei Pulverstrahle 4 und 6 erzeugt werden, wobei das Pulver der jeweiligen Pulverstrahle nicht schmelzflüssig ist, sondern lediglich aufgeschmolzen, also angewärmt wird. Dadurch können die Laser mit einer geringeren Leistung einen aufmischzonenfreien, diffusiven Verbund des aufgetragenen Pulvers, also Beschichtungswerkstoffes zum Grundwerkstoff bewirken. Hinzu ist zu sehen, dass das Plasmagas tangential zu Mittellängsachse eingeleitet wird und um die Mittellängsachse X1 rotiert, so dass durch den rotierenden Lichtbogen quasi auch eine rotierende Ionisation des Plasmagases erzeugt wird. Zudem ist vorteilhaft, dass zwei Innenzuführöffnungen der Anode gleichzeitig mit Pulver beschickt werden, so dass die beiden Pulverstrahle 4 und 6 gebildet sind, von denen noch dazu einer zur Mittellängsachse X1 abgelenkt ist.With the laser plasma spraying device 1, a protective layer having a thickness of, for example, 0.6 to 1.5 mm can be produced. This is possible because two powder jets 4 and 6 are produced, wherein the powder of the respective powder jets is not molten, but merely melted, that is warmed. As a result, the lasers with a lower power can cause a diffusion-free, diffusive composite of the applied powder, that is to say coating material, to the base material. In addition, it can be seen that the plasma gas is introduced tangentially to the central longitudinal axis and is rotated about the central longitudinal axis X1, so that by the rotating arc quasi also a rotating ionization of the plasma gas is generated. In addition, it is advantageous that two Innenzuführöffnungen the anode are charged simultaneously with powder, so that the two powder jets 4 and 6 are formed, one of which is still deflected to the central longitudinal axis X1.

Claims (10)

Thermisches Spritzverfahren zum Herstellen einer Schutzschicht im Plasmapulverspritzverfahren auf mit heißen_Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden, umfassend zumindest die Schritte Reinigen der metallischen Wände;
Versetzen eines Plasmagases in Rotation um die Mittellängsachse (X1) einer Plasmapulverspritzvorrichtung (2);
Innenzuführung eines Beschichtungswerkstoffes als Pulver gleichzeitig durch zwei Innenzuführöffnungen (24,26) hindurch, welche Innenzuführöffnungen (24,26) mit ihren Mündungsöffnungen einander gegenüberliegend angeordnet sind, wobei zumindest ein Pulverstrahl (4,6) erzeugt wird;
Aufschmelzen des Beschichtungswerkstoffes; und
Verbinden des auf die metallische Wand auftreffenden Beschichtungswerkstoffes mittels zumindest eines Laserstrahles (11,12) einer Laserstrahlanlage (3) unter Ausbildung eines diffusiven Verbundes des Beschichtungswerkstoffes zum Grundwerkstoff der metallischen Wand.
Thermal spraying method for producing a protective layer in the plasma powder spraying method on hot_gases, in particular flue gases, exposed to metallic walls, comprising at least the steps of cleaning the metallic walls;
Placing a plasma gas in rotation about the central longitudinal axis (X1) of a plasma powder injection device (2);
Internal feeding of a coating material as powder simultaneously through two inner feed openings (24, 26), which inner feed openings (24, 26) are arranged opposite one another with their mouth openings, at least one powder jet (4, 6) being produced;
Melting the coating material; and
Connecting the coating material impinging on the metallic wall by means of at least one laser beam (11, 12) of a laser beam system (3) to form a diffusive composite of the coating material relative to the base material of the metallic wall.
Thermisches Spritzverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der diffusive Verbund des Beschichtungswerkstoffes zum Grundwerkstoff eine Dicke von 100 µm, bevorzugt von 20 bis 70µm aufweist.Thermal spraying method according to claim 1, characterized in that the diffusive composite of the coating material to the base material has a thickness of 100 .mu.m, preferably from 20 to 70 .mu.m. Thermisches Spritzverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schutzschicht nach dem Aufspritzen und nach dem Erstellen des diffusiven Verbundes mit dem Laser eine Schichtdicke von 0,2 bis 0,4 mm, bevorzugt von 0,6 bis 1,5mm aufweist.Thermal spraying method according to claim 1 or 2, characterized in that the protective layer after spraying and after creating the diffusive composite with the laser has a layer thickness of 0.2 to 0.4 mm, preferably from 0.6 to 1.5 mm. Thermisches Spritzverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Pulverstrahle (4,6) erzeugt werden, wobei jeder Pulverstrahl (4,6) mit einem zugeordneten Laserstrahl (11,12) zur Bildung des diffusiven Verbundes bearbeitet wird, wobei einer der Pulverstrahlen (4,6) die Plasmapulverspritzvorrichtung (2) zentrisch zu seiner Mittelachse (X1) verlässt, wobei der andere Pulverstrahl (4,6) die Plasmaspritzvorrichtung (2) abgelenkt zur Mittelachse (X1) die Plasmaspritzvorrichtung (2) verlässt.Thermal spraying method according to one of the preceding claims, characterized in that two powder jets (4, 6) are produced, wherein each powder jet (4, 6) is processed with an associated laser beam (11, 12) to form the diffusive composite, one of the Powder blasting (4,6) the plasma powder injection device (2) centric to its central axis (X1) leaves, wherein the other powder jet (4,6) the Plasma spray device (2) deflected to the central axis (X1) leaves the plasma spray device (2). Thermisches Spritzverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Pulver mit einer groben Körnung weniger als 200µm, bevorzugt weniger als 125µm, weiter bevorzugt zwischen 63 und 104µm aufgetragen wird.Thermal spraying method according to one of the preceding claims, characterized in that a powder having a coarse grain size of less than 200 μm, preferably less than 125 μm, more preferably between 63 and 104 μm is applied. Thermisches Spritzverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Lichtbogen (21) mit seinen Lichtbogenfußpunkten zum einen an einer Anode (22) und zum anderen an einer Kathode (23) entsprechend der Rotation des Plasmagases in Rotation versetzt wird.Thermal spraying method according to one of the preceding claims, characterized in that an arc (21) with its arc base points on one to an anode (22) and the other to a cathode (23) is rotated in accordance with the rotation of the plasma gas. Thermisches Spritzverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das jeweils durch eine der Innenzuführöffnungen (24,26) eingeleitete Pulver identisch zu dem Pulver sein kann, welches durch die andere, gegenüberliegende Innenzuführöffnung (24,26) eingeleitet wird, und dass das jeweils durch eine der Innenzuführöffnungen (24,26) eingeleitete Pulver unterschiedlich zu dem Pulver sein kann, welches durch die andere, gegenüberliegende Innenzuführöffnung (24,26) eingeleitet wird.Thermal spraying method according to one of the preceding claims, characterized in that the powder introduced through one of the inner feed openings (24, 26) can be identical to the powder which is introduced through the other, opposite inner feed opening (24, 26), and in that each introduced through one of the Innenzuführöffnungen (24,26) powder may be different from the powder, which is introduced through the other, opposite Innenzuführöffnung (24,26). Thermische Spritzvorrichtung eingerichtet insbesondere zur Durchführung des thermisches Spritzverfahrens nach einem der vorhergehenden Ansprüche, zum Herstellen einer Schutzschicht im Plasmapulverspritzverfahren auf mit heißen Gasen, insbesondere Rauchgasen beaufschlagten metallischen Wänden, gekennzeichnet durch eine Plasmapulverspritzvorrichtung (2) und eine Laserstrahlanlage (3), wobei als Beschichtungswerkstoff ein Pulver lediglich aufgeschmolzen wird und ein Laserstrahl (11,12) der Laserstrahlanlage (3) einen diffusiven Verbund des auftreffenden Beschichtungswerkstoffes zum Grundwerkstoff erzeugt.Thermal spraying device set up in particular for carrying out the thermal spraying method according to one of the preceding claims, for producing a protective layer in the plasma powder spraying process on metallic walls exposed to hot gases, in particular flue gases, characterized by a plasma powder injection device (2) and a laser beam system (3), wherein as coating material Powder is merely melted and a laser beam (11,12) of the laser beam system (3) produces a diffusive composite of the impinging coating material to the base material. Thermische Spritzvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass eine Plasmagasdüse (13) der Plasmapulverspritzvorrichtung (2) zumindest eine kombinierte Bohrung (14) aufweist, welche aus Teilbohrungen (16, 17) gebildet ist, von denen eine Teilbohrung (17) mit ihrer Mittelachse (y) winklig zur Mittelachse (x) der anderen Teilbohrung (16) angeordnet ist, so dass Plasmagas tangential zur Mittellängsachse (X1) der Plasmapulverspritzvorrichtung (2) in eine Anode (22) der Plasmapulverspritzvorrichtung (2) eingeleitet wird, wobei das Plasmagas einen Lichtbogen (21) rotierend um die Mittellängsachse (X1) der Plasmapulverspritzvorrichtung (2) erreicht.Thermal spraying apparatus according to claim 8, characterized in that a plasma gas nozzle (13) of the plasma powder injection device (2) has at least one combined bore (14) which is formed from partial bores (16, 17), of which a partial bore (17) with its central axis (y) is arranged at an angle to the central axis (x) of the other partial bore (16), so that plasma gas is introduced tangentially to the central longitudinal axis (X1) of the plasma powder injection device (2) in an anode (22) of the plasma powder injection device (2), wherein the plasma gas Arc (21) rotatably around the central longitudinal axis (X1) of the plasma powder injection device (2) achieved. Thermische Spritzvorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass in einer Anode (22) der Plasmapulverspritzvorrichtung (2) zwei Innenzuführöffnungen (24,26) eingebracht sind, deren jeweilige Mittelachse (X4) zu einer Senkrechten auf eine Mittellängsachse (X1) winklig, höchst bevorzugt in einem Winkel von 9° angeordnet ist.Thermal spraying device according to claim 8 or 9, characterized in that in an anode (22) of the plasma powder injection device (2) two Innenzuführöffnungen (24,26) are introduced, the respective central axis (X4) to a perpendicular to a central longitudinal axis (X1) angled, most preferably at an angle of 9 °.
EP14001202.2A 2013-06-18 2014-03-31 Plasma powder spray method for coating of panels for boiler walls in connection with a laser beam apparatus Active EP2816135B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013010126.3A DE102013010126B4 (en) 2013-06-18 2013-06-18 Plasmapulverspritzverfahren and apparatus for coating panels for boiler walls in conjunction with a laser beam device

Publications (2)

Publication Number Publication Date
EP2816135A1 true EP2816135A1 (en) 2014-12-24
EP2816135B1 EP2816135B1 (en) 2019-03-13

Family

ID=50439114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14001202.2A Active EP2816135B1 (en) 2013-06-18 2014-03-31 Plasma powder spray method for coating of panels for boiler walls in connection with a laser beam apparatus

Country Status (3)

Country Link
EP (1) EP2816135B1 (en)
DE (1) DE102013010126B4 (en)
DK (1) DK2816135T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091246A1 (en) * 2016-11-21 2018-05-24 Siemens Aktiengesellschaft Preheating a workpiece during precoating by means of a laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536874B (en) * 2019-01-22 2024-01-09 中国人民解放军陆军装甲兵学院 Inner hole plasma spraying device with deflection angle spraying function

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2144873A1 (en) * 1969-06-18 1973-03-15 Sealectro Corp SPRAY NOZZLE FOR PLASMA GUN AND PROCESS FOR SPRAYING A SUBSTANCE FROM A NOZZLE ON A CARRIER
US4192672A (en) 1978-01-18 1980-03-11 Scm Corporation Spray-and-fuse self-fluxing alloy powders
EP0223135A1 (en) 1985-11-05 1987-05-27 The Perkin-Elmer Corporation Corrosion resistant self-fluxing alloys for thermal spraying
EP0481722A1 (en) * 1990-10-17 1992-04-22 Fujitsu Limited Process and apparatus for production of a coating film
DE4220063C1 (en) 1992-06-19 1993-11-18 Thyssen Guss Ag Process for producing a protective layer on metallic walls exposed to hot gases, in particular flue gases
DE19638228A1 (en) 1996-08-22 1998-02-26 Castolin Sa Method for producing a corrosion-resistant connection of pipes
EP0903423A2 (en) * 1997-09-12 1999-03-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Coating deposition process by plasma spraying
WO2001005198A1 (en) * 1999-07-13 2001-01-18 Duran Technologies Inc. Anode electrode for plasmatron structure
EP1496034A2 (en) * 2003-06-26 2005-01-12 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. High temperature resistant component and method of manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1041579B (en) * 1974-09-03 1980-01-10 Cockerill DISTRIBUTION DEVICE OF A METALLIC POWDER IN A FLAME FOR THE APPLICATION OF A METALLIC COATING
DE4036858A1 (en) * 1990-11-19 1992-05-21 Alexander W Dr Ing Koch Appts. for producing plasma coating beam - by using electrode-free high frequency electric field to heat up gas and produce the plasma
US6933061B2 (en) * 2002-12-12 2005-08-23 General Electric Company Thermal barrier coating protected by thermally glazed layer and method for preparing same
CH696811A5 (en) * 2003-09-26 2007-12-14 Michael Dvorak Dr Ing Dipl Phy Process for coating a substrate surface using a plasma jet.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2144873A1 (en) * 1969-06-18 1973-03-15 Sealectro Corp SPRAY NOZZLE FOR PLASMA GUN AND PROCESS FOR SPRAYING A SUBSTANCE FROM A NOZZLE ON A CARRIER
US4192672A (en) 1978-01-18 1980-03-11 Scm Corporation Spray-and-fuse self-fluxing alloy powders
EP0223135A1 (en) 1985-11-05 1987-05-27 The Perkin-Elmer Corporation Corrosion resistant self-fluxing alloys for thermal spraying
EP0481722A1 (en) * 1990-10-17 1992-04-22 Fujitsu Limited Process and apparatus for production of a coating film
DE4220063C1 (en) 1992-06-19 1993-11-18 Thyssen Guss Ag Process for producing a protective layer on metallic walls exposed to hot gases, in particular flue gases
WO1994000616A1 (en) * 1992-06-19 1994-01-06 Thyssen Guss Ag Process for producing a protective coating on metal walls subject to attack by hot gases, especially flue gases
DE19638228A1 (en) 1996-08-22 1998-02-26 Castolin Sa Method for producing a corrosion-resistant connection of pipes
EP0903423A2 (en) * 1997-09-12 1999-03-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Coating deposition process by plasma spraying
WO2001005198A1 (en) * 1999-07-13 2001-01-18 Duran Technologies Inc. Anode electrode for plasmatron structure
EP1496034A2 (en) * 2003-06-26 2005-01-12 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. High temperature resistant component and method of manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091246A1 (en) * 2016-11-21 2018-05-24 Siemens Aktiengesellschaft Preheating a workpiece during precoating by means of a laser

Also Published As

Publication number Publication date
DK2816135T3 (en) 2019-05-13
DE102013010126A1 (en) 2014-12-18
EP2816135B1 (en) 2019-03-13
DE102013010126B4 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
EP1999297B1 (en) Cold-gas spray gun
DE10137776C1 (en) Process for the production of wear-resistant surface layers
EP1844181B1 (en) Cold gas spraying method
DE102006044906A1 (en) Plasma burner used in the production of coatings on surfaces comprises a secondary gas stream partially flowing around a material feed to focus the material injection into the center of the plasma produced
EP2294249A1 (en) Process and device for cold spraying
EP2106305B1 (en) Device for flame straightening
WO2021047821A1 (en) Material deposition unit having a multiple material focus zone and method for build-up welding
EP2816135B1 (en) Plasma powder spray method for coating of panels for boiler walls in connection with a laser beam apparatus
EP1360342B1 (en) Method for plasma coating a turbine blade and coating device
EP2994572B1 (en) Roll
EP2113578B1 (en) Metal body with metallic protective coating
DE2028050A1 (en) Process for the production of corrosion- and wear-resistant metallic coatings by spraying
DE2544847C2 (en) Plasma spray device
WO2017009093A1 (en) Vacuum sls method for the additive manufacture of metallic components
CH656560A5 (en) METHOD FOR APPLYING A PROTECTIVE LAYER BY THERMAL SPRAYING.
EP2145974A1 (en) Method for high speed flame spraying
DE3715327C2 (en)
EP0824986A1 (en) Manufacturing method of corrosion resistance connecting pipes
EP0694628A1 (en) Process and apparatus for flame spraying
EP2128300A1 (en) Method for high-speed flame spraying
WO2009144109A1 (en) Method for high speed flame spraying
DE102016114014B4 (en) Process for coating a drying cylinder
DE102019209650A1 (en) Method for forming a fusion welded joint on components made of a steel
EP3017888B1 (en) Thermoforming tool
EP3896190B1 (en) Installation and method for producing a metallic coating on a borehole wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014011069

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0004060000

Ipc: C23C0024040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 1/34 20060101ALI20180924BHEP

Ipc: C23C 4/18 20060101ALI20180924BHEP

Ipc: B05B 7/22 20060101ALI20180924BHEP

Ipc: C23C 4/067 20160101ALI20180924BHEP

Ipc: H05H 1/42 20060101ALI20180924BHEP

Ipc: C23C 4/134 20160101ALI20180924BHEP

Ipc: C23C 24/04 20060101AFI20180924BHEP

INTG Intention to grant announced

Effective date: 20181031

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/067 20160101ALI20180924BHEP

Ipc: C23C 4/134 20160101ALI20180924BHEP

Ipc: C23C 24/04 20060101AFI20180924BHEP

Ipc: B05B 7/22 20060101ALI20180924BHEP

Ipc: H05H 1/34 20060101ALI20180924BHEP

Ipc: H05H 1/42 20060101ALI20180924BHEP

Ipc: C23C 4/18 20060101ALI20180924BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1107761

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011069

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190506

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011069

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240319

Year of fee payment: 11

Ref country code: DE

Payment date: 20240220

Year of fee payment: 11

Ref country code: GB

Payment date: 20240322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240321

Year of fee payment: 11

Ref country code: NO

Payment date: 20240227

Year of fee payment: 11

Ref country code: FR

Payment date: 20240320

Year of fee payment: 11

Ref country code: DK

Payment date: 20240321

Year of fee payment: 11

Ref country code: BE

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 11