EP2812638A2 - Dispositif pompe à chaleur - Google Patents
Dispositif pompe à chaleurInfo
- Publication number
- EP2812638A2 EP2812638A2 EP13707538.8A EP13707538A EP2812638A2 EP 2812638 A2 EP2812638 A2 EP 2812638A2 EP 13707538 A EP13707538 A EP 13707538A EP 2812638 A2 EP2812638 A2 EP 2812638A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- heat pump
- pump device
- collector
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/006—Accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/39—Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
Definitions
- the invention relates to a heat pump device according to the preamble of patent claim 1.
- a heat pump device of the type mentioned is known from JP 2001 153482 A.
- This consists inter alia of a compressor (in particular screw compressor), which is followed by a condenser (also called a condenser), in turn, a refrigerant collector (also called refrigerant tank) is connected downstream.
- the refrigerant collector is connected to the intermediate injection of refrigerant into the compressor with this via a refrigerant line.
- the refrigerant collector nachge ⁇ a controllable expansion valve, which in turn is followed by an evaporator, in turn, the already mentioned compressor is connected downstream.
- the refrigerant circuit of JP 2001 153482 A therefore corresponds ei ⁇ nem very classic refrigeration cycle, but added to the refrigerant collector for intermediate injection of refrigerant in the compressor.
- the invention has for its object to further improve a politicianspumpenvor ⁇ direction of the type mentioned.
- the limits of use or the efficiency of such a heat pump device should be even more expanded or increased.
- a controllable expansion valve is arranged and that the refrigerant line depending on the setting of the expansion valve during the loading ⁇ operation of the heat pump device above and / or below the refrigerant level ausmündende Has refrigerant inlet.
- the heat ⁇ pump device is characterized in particular by the fact that can be adjusted via the expansion valve, the refrigerant level in the refrigerant collector, wherein the refrigerant inflow opening is formed so that it depending on the setting of the expansion ⁇ onsventils either above and / or below the refrigerant ⁇ tel mirror is formed ausmündend.
- the proviso "and / or” means that the refrigerant line is formed with its cold ⁇ medium inflow either either so that the refrigerant inflow either opens above or below the refrigerant level, or that the refrigerant additive Flow opening is formed so that it opens both above and below the refrigerant level, which incheswei ⁇ se may be realized by a correspondingly large refrigerant inlet or by a plurality of refrigerant inflow at the guided into the refrigerant collector refrigerant line.
- the heat pump device In contrast to the heat pump device mentioned above, it is thus possible in the heat pump device according to the invention to supply optionally pure refrigerant vapor, liquid refrigerant or even refrigerant wet steam to the compressor.
- state of aggregation the refrigerant is injected into the compressor can be determined via the controllable Ex ⁇ expansion valve and thus on the refrigerant level in the cold ⁇ means collector.
- liquid refrigerant offers, as mentioned above, the ability to cool the compressor to lower the hot gas ⁇ temperature and thus expand the limits of use.
- a heat pump device in which a comparatively small part of the refrigerant coming from the condenser is branched off and led to the decoupling voltage via a controllable expansion valve to which a heat exchanger (so-called economizer) is connected downstream to transfer heat between the small, already relaxed some of the refrigerant and the rest of kom from the condenser ⁇ Menden refrigerant.
- a heat exchanger so-called economizer
- the expanded refrigerant can be injected to the compressor, wherein festle ⁇ gene can be over the setting of the expansion valve, which physical state (liquid, vapor or wet vapor) has the injected refrigerant.
- Ver ⁇ equal to the described inventive solution in comparison to the refrigerant collector
- harnesseconomiser is required in the solution according to EP 1965154 Bl.
- FIG. 1 is a basic embodiment of the invention
- FIG 2 is an enlarged view of the refrigerant collector according to Figure 1;
- Figure 3 shows the embodiment of Figure 1 with a
- Figure 4 shows an embodiment with a Sauggastagetau ⁇ shear in the refrigerant collector and a 4/2-Wegeum- switching valve
- FIG 5 is an enlarged view of the refrigerant collector according to Figure 4.
- FIG. 6 shows a heat pump device according to the prior art
- the heat pump devices shown in Figures 1, 3, 4 and 6 consist in a known manner from a compressor 1, in particular a so-called screw or Scrollverdich- ter, which is followed by a condenser 2, which is particularly preferably designed as a plate capacitor.
- This condenser is a refrigerant collector 3 (also called high pressure collector) downstream, which is connected to the intermediate injection of refrigerant in the compressor 1 with this via a refrigerant line 4 ⁇ .
- this intermediate injection serves the purpose of improving the efficiency of the heat pump device. tion or to expand the application limits of the heat pump device.
- the refrigerant collector 3 is shown enlarged for better understanding.
- a From ⁇ section 7 of the refrigerant pipe 4 in the refrigerant collector 3 is arranged.
- the refrigerant inflow opening (s) 6 is (are) arranged on the section 7 of the refrigerant line 4.
- the section 7 is tubular and in particular formed as a U-shaped piece of pipe.
- the section 7 also has a vertical extension direction and an open line end 8.
- the ⁇ of fene conduit end 8 forming at least one of the Kälteschzu ⁇ flow openings 6 and is preferably always located, during operation of the heat pump apparatus of the above refrigerant Spie ⁇ gels.
- a plurality of superimposed refrigerant ⁇ inlet openings 6 are provided at section 7.
- the refrigerant collector 3 connected to the expansion valve 5, during the operation of the heat pump ⁇ device opening below the refrigerant level Refrigerant supply port 9 has.
- the refrigerant enters the Kältemit ⁇ telsammler 3.
- the refrigerant collector 3 a 10 ver ⁇ -bound to a second electronically controllable (and reversible working) expansion valve, during operation of the heat pump apparatus below the refrigerant level opening out refrigerant discharge ⁇ connection 11 has.
- this refrigerant discharge port 11 the refrigerant to the second expansion valve 10 is consider ⁇ leads.
- This liquid refrigerant mixes it with the incoming through the üb ⁇ membered refrigerant inflow opening 6 refrigerant vapor into a refrigerant wet steam. Finally, to flood the refrigerant receiver 3 completely, so adjust such a refrigerant level in which all the refrigerant inflow ports ⁇ 6 are positioned in the liquid refrigerant, it would be at the compressor to a fully liquid intermediate Injection, which, as explained, especially desirable ⁇ is worth if you want to cool the compressor.
- a further preferred feature of the invention Lö ⁇ solution consists again with reference to Figures 2 and 5 in that the refrigerant collector exhibiting 3 by at least one through opening 12, in particular oriented vertically arranged partition member 13 and the partition wall (preferably a perforated plate, metal mesh or the like) is formed divided into a first and a second chamber 14, 15, wherein in the first chamber 14, the refrigerant supply port 9 opens and wherein the first chamber 14 of the refrigerant discharge port 11 goes off.
- the flow in the first chamber 14 is highly turbulent.
- the proviso of the separating element 13 leads to a calming of the refrigerant in the second chamber 15, in which the portion 7 of the refrigerant line 4 is arranged, which in turn is favorable for the desired precise adjustment of the ratio zwi ⁇ 's liquid and vapor refrigerant.
- the refrigerant collector 3 a two ⁇ tes electronically controllable expansion valve 10 nachgeschal ⁇ tet which is in turn connected to an evaporator 16 to the compressor 1 (in particular finned evaporator) connected downstream.
- a further specifics ⁇ derheit the solution according to the invention is that a refrigerant-carrying and heat-exchanging with the refrigerant in the refrigerant collector 3 line 17 is disposed in the first chamber 14 of the refrigerant receiver 3, the one hand to the volatilization ⁇ fer 16 and on the other hand connected to the compressor 1. This line 17 forms together with the refrigerant collector.
- a (preferably bi-directional) filter 18 also called Fil ⁇ tertrockner
- a (preferably bidirectionally operating) filter 19 is also between the second expansion valve 10 and the evaporator 16 is arranged.
- gaseous refrigerant is brought to a higher pressure level via the compressor 1, supplied to the condenser 2 via the 4/2-way switching valve, where it is completely condensed and undercooled.
- the liquid Käl ⁇ testoff passes through the filter 18 and then passes the ex ⁇ pansionsventil 5 in which it ge ⁇ is brought to a lower pressure level. In this case, a part of the refrigerant passes into the gas ⁇ shaped state.
- the refrigerant is then fed to the cold ⁇ means collector 3, which is divided into two areas.
- the refrigerant supply port 9 of the Kälteschsamm ⁇ toddlers 3 the refrigerant is very turbulent due to the high speed Strömungsge ⁇ .
- the refrigerant flows via passage opening 12 flows to the separator 13 (see Figure 2) in the traffic area of the coolant collector 3 (chamber 15), where the liquid portion due to gravity un ⁇ th settles.
- the refrigerant inflow opening 6 which ends in the upper region of the coolant collector 3, exclu ⁇ Lich gaseous refrigerant is sucked in and the insects ⁇ spraying of the compressor 1 is supplied.
- the liquid Kältemit ⁇ tel is supplied to the expansion valve 10, via which the pressure on evaporation pressure level is reduced. A part of the refrigerant ⁇ means goes over it in the gaseous state.
- the refrigerant enters the evaporator 16, where it is completely evaporated and overheated.
- the refrigerant is finally fed to the compressor 1 via the 4/2-way switching valve. The cycle closes.
- the solution according to FIG. 4 differs finally from that according to FIG. 3 in that there takes place a heat transfer from the warmer refrigerant in the refrigerant collector 3 to the colder refrigerant in the coil via a pipe coil (line 17) (keyword: suction gas superheating).
- line 17 keyword: suction gas superheating
- the gaseous portion of the refrigerant in the refrigerant ⁇ collector partially or completely condensed, whereby the ratio of liquid to gas increases.
- the line 17 ver ⁇ runs from the evaporator 16 via the 4/2-way valve to the first chamber 14 and from there directly to the compressor first
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL13707538T PL2812638T3 (pl) | 2012-02-09 | 2013-01-30 | Urządzenie pompy ciepła |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102012101041A DE102012101041A1 (de) | 2012-02-09 | 2012-02-09 | Wärmepumpenvorrichtung |
| PCT/DE2013/100033 WO2013117187A2 (fr) | 2012-02-09 | 2013-01-30 | Dispositif pompe à chaleur |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2812638A2 true EP2812638A2 (fr) | 2014-12-17 |
| EP2812638B1 EP2812638B1 (fr) | 2018-04-11 |
Family
ID=47826781
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP13707538.8A Active EP2812638B1 (fr) | 2012-02-09 | 2013-01-30 | Dispositif pompe à chaleur |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP2812638B1 (fr) |
| DE (1) | DE102012101041A1 (fr) |
| DK (1) | DK2812638T3 (fr) |
| ES (1) | ES2669223T3 (fr) |
| PL (1) | PL2812638T3 (fr) |
| WO (1) | WO2013117187A2 (fr) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102017107051A1 (de) | 2017-04-01 | 2018-10-04 | Viessmann Werke Gmbh & Co Kg | Wärmepumpe |
| CN112146314B (zh) * | 2020-09-22 | 2022-03-11 | 华商国际工程有限公司 | 氨泵供液制冷系统及其控制方法 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3329661A1 (de) | 1982-12-14 | 1984-06-14 | VEB Kombinat Luft- und Kältetechnik, DDR 8080 Dresden | Regelung von temperaturen, temperaturdifferenzen bzw. fuellstaenden in kaeltemittelkreislaeufen |
| JPH04371759A (ja) * | 1991-06-21 | 1992-12-24 | Hitachi Ltd | 二段圧縮二段膨張式の冷凍サイクル |
| JP2001056157A (ja) * | 1999-08-16 | 2001-02-27 | Daikin Ind Ltd | 冷凍装置 |
| JP2001153482A (ja) | 1999-11-26 | 2001-06-08 | Mitsubishi Electric Corp | スクリュー冷凍装置 |
| JP2007303709A (ja) * | 2006-05-10 | 2007-11-22 | Sanden Corp | 冷凍サイクル |
| DE202007019159U1 (de) | 2007-03-02 | 2010-10-28 | Stiebel Eltron Gmbh & Co. Kg | Wärmepumpenvorrichtung |
| WO2010039682A2 (fr) * | 2008-10-01 | 2010-04-08 | Carrier Corporation | Séparation de liquide et de vapeur dans un cycle de réfrigérant transcritique |
| DE102010024986A1 (de) * | 2010-06-24 | 2011-12-29 | Stiebel Eltron Gmbh & Co. Kg | Verfahren zum Steuern einer Wärmepumpeneinheit und Wärmepumpeneinheit |
-
2012
- 2012-02-09 DE DE102012101041A patent/DE102012101041A1/de not_active Withdrawn
-
2013
- 2013-01-30 EP EP13707538.8A patent/EP2812638B1/fr active Active
- 2013-01-30 WO PCT/DE2013/100033 patent/WO2013117187A2/fr not_active Ceased
- 2013-01-30 ES ES13707538.8T patent/ES2669223T3/es active Active
- 2013-01-30 PL PL13707538T patent/PL2812638T3/pl unknown
- 2013-01-30 DK DK13707538.8T patent/DK2812638T3/en active
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2013117187A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102012101041A1 (de) | 2013-08-14 |
| WO2013117187A3 (fr) | 2013-11-21 |
| EP2812638B1 (fr) | 2018-04-11 |
| PL2812638T3 (pl) | 2018-09-28 |
| WO2013117187A2 (fr) | 2013-08-15 |
| ES2669223T3 (es) | 2018-05-24 |
| DK2812638T3 (en) | 2018-06-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE2545606C2 (de) | Verfahren zum Betrieb eines Kühlsystems sowie Kühlsystem zur Durchführung des Verfahrens | |
| DE3900692C2 (de) | Kälteanlage | |
| DE102006036549B4 (de) | Ejektorpumpenkreis | |
| DE112016006864T5 (de) | Klimaanlage | |
| DE69714921T2 (de) | Ölabscheider mit zwei Eingängen für einen Kühler | |
| EP2620715B1 (fr) | Procédé de fonctionnement d'un appareil de chauffage et d'aération et appareil de chauffage et d'aération | |
| DE102007001878A1 (de) | Ejektorpumpen-Kühlkreisvorrichtung | |
| DE3422391A1 (de) | Kaelte erzeugende vorrichtung | |
| WO2012065687A1 (fr) | Véhicule doté d'un système de climatisation | |
| DE102012110702A1 (de) | Bidirektional durchströmbarer Wärmeübertrager | |
| DE112019007078T5 (de) | Klimagerät | |
| DE202018002884U1 (de) | Klimaanlage | |
| DE102012110701A1 (de) | Wärmeübertrager für einen Kältemittelkreislauf | |
| EP2500676A1 (fr) | Pompe à chaleur | |
| DE69513765T2 (de) | Kälteanlage | |
| EP2812638B1 (fr) | Dispositif pompe à chaleur | |
| DE202007017723U1 (de) | Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage | |
| DE102007043162B4 (de) | Klimaanlage mit automatischer Kältemittelverlagerung | |
| DE102020121275B4 (de) | Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage | |
| DE102020121274B4 (de) | Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage | |
| DE102011005749B4 (de) | Sammler für Kühl- und/oder Heizsysteme und Kühl- und/oder Heizsystem | |
| EP3583365B1 (fr) | Procédé permettant de faire fonctionner une pompe à chaleur | |
| DE2837696A1 (de) | Verfahren und vorrichtung in einem kuehlmittelkreislauf | |
| DE202011102503U1 (de) | Wärmepumpenanlage | |
| DE102020126580B3 (de) | Kältekreislaufvorrichtung und Verfahren zum Betrieb einer solchen Kältekreislaufvorrichtung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140904 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20151104 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20171113 |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20180105 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 988474 Country of ref document: AT Kind code of ref document: T Effective date: 20180415 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013009893 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2669223 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180524 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20180618 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180712 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180813 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013009893 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| 26N | No opposition filed |
Effective date: 20190114 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190130 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190130 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20191114 Year of fee payment: 8 Ref country code: PL Payment date: 20191223 Year of fee payment: 8 Ref country code: DK Payment date: 20191106 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20200204 Year of fee payment: 8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20200113 Year of fee payment: 8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180811 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130130 |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20210131 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220511 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013009893 Country of ref document: DE Owner name: VIESSMANN CLIMATE SOLUTIONS SE, DE Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013009893 Country of ref document: DE Owner name: VIESSMANN GROUP GMBH & CO. KG, DE Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013009893 Country of ref document: DE Owner name: VIESSMANN HOLDING INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013009893 Country of ref document: DE Owner name: VIESSMANN CLIMATE SOLUTIONS SE, DE Free format text: FORMER OWNER: VIESSMANN GROUP GMBH & CO. KG, 35108 ALLENDORF, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502013009893 Country of ref document: DE Owner name: VIESSMANN HOLDING INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: VIESSMANN GROUP GMBH & CO. KG, 35108 ALLENDORF, DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210130 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230125 Year of fee payment: 11 Ref country code: CH Payment date: 20230113 Year of fee payment: 11 Ref country code: AT Payment date: 20230112 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230109 Year of fee payment: 11 Ref country code: GB Payment date: 20230117 Year of fee payment: 11 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230105 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240123 Year of fee payment: 12 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20240201 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 988474 Country of ref document: AT Kind code of ref document: T Effective date: 20240130 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240130 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240130 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250110 Year of fee payment: 13 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502013009893 Country of ref document: DE Owner name: VIESSMANN HOLDING INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: VIESSMANN CLIMATE SOLUTIONS SE, 35108 ALLENDORF, DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |