EP2812638A2 - Dispositif pompe à chaleur - Google Patents

Dispositif pompe à chaleur

Info

Publication number
EP2812638A2
EP2812638A2 EP13707538.8A EP13707538A EP2812638A2 EP 2812638 A2 EP2812638 A2 EP 2812638A2 EP 13707538 A EP13707538 A EP 13707538A EP 2812638 A2 EP2812638 A2 EP 2812638A2
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat pump
pump device
collector
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13707538.8A
Other languages
German (de)
English (en)
Other versions
EP2812638B1 (fr
Inventor
Ulrich Hafner
Markus IMMEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Generations Group GmbH and Co KG
Original Assignee
Viessmann Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viessmann Werke GmbH and Co KG filed Critical Viessmann Werke GmbH and Co KG
Priority to PL13707538T priority Critical patent/PL2812638T3/pl
Publication of EP2812638A2 publication Critical patent/EP2812638A2/fr
Application granted granted Critical
Publication of EP2812638B1 publication Critical patent/EP2812638B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the invention relates to a heat pump device according to the preamble of patent claim 1.
  • a heat pump device of the type mentioned is known from JP 2001 153482 A.
  • This consists inter alia of a compressor (in particular screw compressor), which is followed by a condenser (also called a condenser), in turn, a refrigerant collector (also called refrigerant tank) is connected downstream.
  • the refrigerant collector is connected to the intermediate injection of refrigerant into the compressor with this via a refrigerant line.
  • the refrigerant collector nachge ⁇ a controllable expansion valve, which in turn is followed by an evaporator, in turn, the already mentioned compressor is connected downstream.
  • the refrigerant circuit of JP 2001 153482 A therefore corresponds ei ⁇ nem very classic refrigeration cycle, but added to the refrigerant collector for intermediate injection of refrigerant in the compressor.
  • the invention has for its object to further improve a politicianspumpenvor ⁇ direction of the type mentioned.
  • the limits of use or the efficiency of such a heat pump device should be even more expanded or increased.
  • a controllable expansion valve is arranged and that the refrigerant line depending on the setting of the expansion valve during the loading ⁇ operation of the heat pump device above and / or below the refrigerant level ausmündende Has refrigerant inlet.
  • the heat ⁇ pump device is characterized in particular by the fact that can be adjusted via the expansion valve, the refrigerant level in the refrigerant collector, wherein the refrigerant inflow opening is formed so that it depending on the setting of the expansion ⁇ onsventils either above and / or below the refrigerant ⁇ tel mirror is formed ausmündend.
  • the proviso "and / or” means that the refrigerant line is formed with its cold ⁇ medium inflow either either so that the refrigerant inflow either opens above or below the refrigerant level, or that the refrigerant additive Flow opening is formed so that it opens both above and below the refrigerant level, which incheswei ⁇ se may be realized by a correspondingly large refrigerant inlet or by a plurality of refrigerant inflow at the guided into the refrigerant collector refrigerant line.
  • the heat pump device In contrast to the heat pump device mentioned above, it is thus possible in the heat pump device according to the invention to supply optionally pure refrigerant vapor, liquid refrigerant or even refrigerant wet steam to the compressor.
  • state of aggregation the refrigerant is injected into the compressor can be determined via the controllable Ex ⁇ expansion valve and thus on the refrigerant level in the cold ⁇ means collector.
  • liquid refrigerant offers, as mentioned above, the ability to cool the compressor to lower the hot gas ⁇ temperature and thus expand the limits of use.
  • a heat pump device in which a comparatively small part of the refrigerant coming from the condenser is branched off and led to the decoupling voltage via a controllable expansion valve to which a heat exchanger (so-called economizer) is connected downstream to transfer heat between the small, already relaxed some of the refrigerant and the rest of kom from the condenser ⁇ Menden refrigerant.
  • a heat exchanger so-called economizer
  • the expanded refrigerant can be injected to the compressor, wherein festle ⁇ gene can be over the setting of the expansion valve, which physical state (liquid, vapor or wet vapor) has the injected refrigerant.
  • Ver ⁇ equal to the described inventive solution in comparison to the refrigerant collector
  • harnesseconomiser is required in the solution according to EP 1965154 Bl.
  • FIG. 1 is a basic embodiment of the invention
  • FIG 2 is an enlarged view of the refrigerant collector according to Figure 1;
  • Figure 3 shows the embodiment of Figure 1 with a
  • Figure 4 shows an embodiment with a Sauggastagetau ⁇ shear in the refrigerant collector and a 4/2-Wegeum- switching valve
  • FIG 5 is an enlarged view of the refrigerant collector according to Figure 4.
  • FIG. 6 shows a heat pump device according to the prior art
  • the heat pump devices shown in Figures 1, 3, 4 and 6 consist in a known manner from a compressor 1, in particular a so-called screw or Scrollverdich- ter, which is followed by a condenser 2, which is particularly preferably designed as a plate capacitor.
  • This condenser is a refrigerant collector 3 (also called high pressure collector) downstream, which is connected to the intermediate injection of refrigerant in the compressor 1 with this via a refrigerant line 4 ⁇ .
  • this intermediate injection serves the purpose of improving the efficiency of the heat pump device. tion or to expand the application limits of the heat pump device.
  • the refrigerant collector 3 is shown enlarged for better understanding.
  • a From ⁇ section 7 of the refrigerant pipe 4 in the refrigerant collector 3 is arranged.
  • the refrigerant inflow opening (s) 6 is (are) arranged on the section 7 of the refrigerant line 4.
  • the section 7 is tubular and in particular formed as a U-shaped piece of pipe.
  • the section 7 also has a vertical extension direction and an open line end 8.
  • the ⁇ of fene conduit end 8 forming at least one of the Kälteschzu ⁇ flow openings 6 and is preferably always located, during operation of the heat pump apparatus of the above refrigerant Spie ⁇ gels.
  • a plurality of superimposed refrigerant ⁇ inlet openings 6 are provided at section 7.
  • the refrigerant collector 3 connected to the expansion valve 5, during the operation of the heat pump ⁇ device opening below the refrigerant level Refrigerant supply port 9 has.
  • the refrigerant enters the Kältemit ⁇ telsammler 3.
  • the refrigerant collector 3 a 10 ver ⁇ -bound to a second electronically controllable (and reversible working) expansion valve, during operation of the heat pump apparatus below the refrigerant level opening out refrigerant discharge ⁇ connection 11 has.
  • this refrigerant discharge port 11 the refrigerant to the second expansion valve 10 is consider ⁇ leads.
  • This liquid refrigerant mixes it with the incoming through the üb ⁇ membered refrigerant inflow opening 6 refrigerant vapor into a refrigerant wet steam. Finally, to flood the refrigerant receiver 3 completely, so adjust such a refrigerant level in which all the refrigerant inflow ports ⁇ 6 are positioned in the liquid refrigerant, it would be at the compressor to a fully liquid intermediate Injection, which, as explained, especially desirable ⁇ is worth if you want to cool the compressor.
  • a further preferred feature of the invention Lö ⁇ solution consists again with reference to Figures 2 and 5 in that the refrigerant collector exhibiting 3 by at least one through opening 12, in particular oriented vertically arranged partition member 13 and the partition wall (preferably a perforated plate, metal mesh or the like) is formed divided into a first and a second chamber 14, 15, wherein in the first chamber 14, the refrigerant supply port 9 opens and wherein the first chamber 14 of the refrigerant discharge port 11 goes off.
  • the flow in the first chamber 14 is highly turbulent.
  • the proviso of the separating element 13 leads to a calming of the refrigerant in the second chamber 15, in which the portion 7 of the refrigerant line 4 is arranged, which in turn is favorable for the desired precise adjustment of the ratio zwi ⁇ 's liquid and vapor refrigerant.
  • the refrigerant collector 3 a two ⁇ tes electronically controllable expansion valve 10 nachgeschal ⁇ tet which is in turn connected to an evaporator 16 to the compressor 1 (in particular finned evaporator) connected downstream.
  • a further specifics ⁇ derheit the solution according to the invention is that a refrigerant-carrying and heat-exchanging with the refrigerant in the refrigerant collector 3 line 17 is disposed in the first chamber 14 of the refrigerant receiver 3, the one hand to the volatilization ⁇ fer 16 and on the other hand connected to the compressor 1. This line 17 forms together with the refrigerant collector.
  • a (preferably bi-directional) filter 18 also called Fil ⁇ tertrockner
  • a (preferably bidirectionally operating) filter 19 is also between the second expansion valve 10 and the evaporator 16 is arranged.
  • gaseous refrigerant is brought to a higher pressure level via the compressor 1, supplied to the condenser 2 via the 4/2-way switching valve, where it is completely condensed and undercooled.
  • the liquid Käl ⁇ testoff passes through the filter 18 and then passes the ex ⁇ pansionsventil 5 in which it ge ⁇ is brought to a lower pressure level. In this case, a part of the refrigerant passes into the gas ⁇ shaped state.
  • the refrigerant is then fed to the cold ⁇ means collector 3, which is divided into two areas.
  • the refrigerant supply port 9 of the Kälteschsamm ⁇ toddlers 3 the refrigerant is very turbulent due to the high speed Strömungsge ⁇ .
  • the refrigerant flows via passage opening 12 flows to the separator 13 (see Figure 2) in the traffic area of the coolant collector 3 (chamber 15), where the liquid portion due to gravity un ⁇ th settles.
  • the refrigerant inflow opening 6 which ends in the upper region of the coolant collector 3, exclu ⁇ Lich gaseous refrigerant is sucked in and the insects ⁇ spraying of the compressor 1 is supplied.
  • the liquid Kältemit ⁇ tel is supplied to the expansion valve 10, via which the pressure on evaporation pressure level is reduced. A part of the refrigerant ⁇ means goes over it in the gaseous state.
  • the refrigerant enters the evaporator 16, where it is completely evaporated and overheated.
  • the refrigerant is finally fed to the compressor 1 via the 4/2-way switching valve. The cycle closes.
  • the solution according to FIG. 4 differs finally from that according to FIG. 3 in that there takes place a heat transfer from the warmer refrigerant in the refrigerant collector 3 to the colder refrigerant in the coil via a pipe coil (line 17) (keyword: suction gas superheating).
  • line 17 keyword: suction gas superheating
  • the gaseous portion of the refrigerant in the refrigerant ⁇ collector partially or completely condensed, whereby the ratio of liquid to gas increases.
  • the line 17 ver ⁇ runs from the evaporator 16 via the 4/2-way valve to the first chamber 14 and from there directly to the compressor first

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
EP13707538.8A 2012-02-09 2013-01-30 Dispositif pompe à chaleur Active EP2812638B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13707538T PL2812638T3 (pl) 2012-02-09 2013-01-30 Urządzenie pompy ciepła

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012101041A DE102012101041A1 (de) 2012-02-09 2012-02-09 Wärmepumpenvorrichtung
PCT/DE2013/100033 WO2013117187A2 (fr) 2012-02-09 2013-01-30 Dispositif pompe à chaleur

Publications (2)

Publication Number Publication Date
EP2812638A2 true EP2812638A2 (fr) 2014-12-17
EP2812638B1 EP2812638B1 (fr) 2018-04-11

Family

ID=47826781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13707538.8A Active EP2812638B1 (fr) 2012-02-09 2013-01-30 Dispositif pompe à chaleur

Country Status (6)

Country Link
EP (1) EP2812638B1 (fr)
DE (1) DE102012101041A1 (fr)
DK (1) DK2812638T3 (fr)
ES (1) ES2669223T3 (fr)
PL (1) PL2812638T3 (fr)
WO (1) WO2013117187A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107051A1 (de) 2017-04-01 2018-10-04 Viessmann Werke Gmbh & Co Kg Wärmepumpe
CN112146314B (zh) * 2020-09-22 2022-03-11 华商国际工程有限公司 氨泵供液制冷系统及其控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329661A1 (de) 1982-12-14 1984-06-14 VEB Kombinat Luft- und Kältetechnik, DDR 8080 Dresden Regelung von temperaturen, temperaturdifferenzen bzw. fuellstaenden in kaeltemittelkreislaeufen
JPH04371759A (ja) * 1991-06-21 1992-12-24 Hitachi Ltd 二段圧縮二段膨張式の冷凍サイクル
JP2001056157A (ja) * 1999-08-16 2001-02-27 Daikin Ind Ltd 冷凍装置
JP2001153482A (ja) 1999-11-26 2001-06-08 Mitsubishi Electric Corp スクリュー冷凍装置
JP2007303709A (ja) * 2006-05-10 2007-11-22 Sanden Corp 冷凍サイクル
DE202007019159U1 (de) 2007-03-02 2010-10-28 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenvorrichtung
WO2010039682A2 (fr) * 2008-10-01 2010-04-08 Carrier Corporation Séparation de liquide et de vapeur dans un cycle de réfrigérant transcritique
DE102010024986A1 (de) * 2010-06-24 2011-12-29 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Steuern einer Wärmepumpeneinheit und Wärmepumpeneinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013117187A2 *

Also Published As

Publication number Publication date
DE102012101041A1 (de) 2013-08-14
WO2013117187A3 (fr) 2013-11-21
EP2812638B1 (fr) 2018-04-11
PL2812638T3 (pl) 2018-09-28
WO2013117187A2 (fr) 2013-08-15
ES2669223T3 (es) 2018-05-24
DK2812638T3 (en) 2018-06-25

Similar Documents

Publication Publication Date Title
DE2545606C2 (de) Verfahren zum Betrieb eines Kühlsystems sowie Kühlsystem zur Durchführung des Verfahrens
DE3900692C2 (de) Kälteanlage
DE102006036549B4 (de) Ejektorpumpenkreis
DE112016006864T5 (de) Klimaanlage
DE69714921T2 (de) Ölabscheider mit zwei Eingängen für einen Kühler
EP2620715B1 (fr) Procédé de fonctionnement d'un appareil de chauffage et d'aération et appareil de chauffage et d'aération
DE102007001878A1 (de) Ejektorpumpen-Kühlkreisvorrichtung
DE3422391A1 (de) Kaelte erzeugende vorrichtung
WO2012065687A1 (fr) Véhicule doté d'un système de climatisation
DE102012110702A1 (de) Bidirektional durchströmbarer Wärmeübertrager
DE112019007078T5 (de) Klimagerät
DE202018002884U1 (de) Klimaanlage
DE102012110701A1 (de) Wärmeübertrager für einen Kältemittelkreislauf
EP2500676A1 (fr) Pompe à chaleur
DE69513765T2 (de) Kälteanlage
EP2812638B1 (fr) Dispositif pompe à chaleur
DE202007017723U1 (de) Anlage für die Kälte-, Heiz- oder Klimatechnik, insbesondere Kälteanlage
DE102007043162B4 (de) Klimaanlage mit automatischer Kältemittelverlagerung
DE102020121275B4 (de) Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage
DE102020121274B4 (de) Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage
DE102011005749B4 (de) Sammler für Kühl- und/oder Heizsysteme und Kühl- und/oder Heizsystem
EP3583365B1 (fr) Procédé permettant de faire fonctionner une pompe à chaleur
DE2837696A1 (de) Verfahren und vorrichtung in einem kuehlmittelkreislauf
DE202011102503U1 (de) Wärmepumpenanlage
DE102020126580B3 (de) Kältekreislaufvorrichtung und Verfahren zum Betrieb einer solchen Kältekreislaufvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140904

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171113

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009893

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2669223

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180524

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180618

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009893

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191114

Year of fee payment: 8

Ref country code: PL

Payment date: 20191223

Year of fee payment: 8

Ref country code: DK

Payment date: 20191106

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200204

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200113

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130130

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210131

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN CLIMATE SOLUTIONS SE, DE

Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN GROUP GMBH & CO. KG, DE

Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN HOLDING INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN CLIMATE SOLUTIONS SE, DE

Free format text: FORMER OWNER: VIESSMANN GROUP GMBH & CO. KG, 35108 ALLENDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN HOLDING INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VIESSMANN GROUP GMBH & CO. KG, 35108 ALLENDORF, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 11

Ref country code: CH

Payment date: 20230113

Year of fee payment: 11

Ref country code: AT

Payment date: 20230112

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230109

Year of fee payment: 11

Ref country code: GB

Payment date: 20230117

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230105

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240123

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20240201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 988474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20240130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250110

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN HOLDING INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: VIESSMANN CLIMATE SOLUTIONS SE, 35108 ALLENDORF, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240131