EP2808104B1 - Casting valve with a final compression piston - Google Patents

Casting valve with a final compression piston Download PDF

Info

Publication number
EP2808104B1
EP2808104B1 EP14167787.2A EP14167787A EP2808104B1 EP 2808104 B1 EP2808104 B1 EP 2808104B1 EP 14167787 A EP14167787 A EP 14167787A EP 2808104 B1 EP2808104 B1 EP 2808104B1
Authority
EP
European Patent Office
Prior art keywords
valve
casting
piston
melt
casting valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14167787.2A
Other languages
German (de)
French (fr)
Other versions
EP2808104A1 (en
Inventor
Jürgen Fahrenbach
Martin Gaebges
Michael Richter
Tobias Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L Schuler GmbH
Original Assignee
L Schuler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L Schuler GmbH filed Critical L Schuler GmbH
Publication of EP2808104A1 publication Critical patent/EP2808104A1/en
Application granted granted Critical
Publication of EP2808104B1 publication Critical patent/EP2808104B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/203Injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2069Exerting after-pressure on the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2076Cutting-off equipment for sprues or ingates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations

Definitions

  • the invention relates to a pouring valve for supplying melt of a casting device with a valve housing, which has a melt channel connection as inlet and a valve outlet as outlet, with a valve cell for receiving the melt and with a closing means for changing the Ventilauslassqueritess Structure.
  • the invention further relates to a casting apparatus with such a casting valve and a casting method for producing castings with this casting apparatus.
  • DE 10 2007 047 545 A1 discloses a pouring valve which is closable by means of a piston.
  • the piston is axially movable in a valve housing. This gap accuracy due to concentricity errors of the piston does not lead to inhomogeneous mass flows and a reliable closing of the pouring valve is ensured, the piston skirt surface has a larger angle to the valve main axis than the valve housing in the outlet region. In the closed state, the piston thus forms an annular bearing surface with the housing wall.
  • Both latter casting valves can be used to reliably fill a casting cavity with a predetermined amount of melt.
  • melt must continue to be supplied.
  • the above-mentioned pouring valves can not close until the shrinking process has been completed, which requires heating at least until they close and makes precise metering more difficult.
  • a second mechanism is required which fills and recompresses the hollow volume resulting from the shrinkage process by means of a melt replenishment.
  • the pouring valve and the Nachverdichtungsmechanismus must be coordinated with each other, which is complex, the caster can be built expansively and thus increases the energy required for heating.
  • a die casting machine has at least one movable and one stationary mold part, which are divided along a parting plane, and a mold cavity enclosed by these mold parts.
  • a metal to be cast is injected via a runner of the mold with the aid of a casting piston.
  • the casting piston is displaceable in a casting chamber, into which the metal can be introduced, by means of a drive along the longitudinal axis of the casting chamber.
  • at least one Nachverêtrkolben acting on the injected metal is provided, which can be moved out of a cavity receiving it on the metal.
  • At least one Nachverêtrkolben is hineinbewegbar in a staggered to the longitudinal axis of the casting chamber position in the runner.
  • Object of the present invention to improve the prior art and in particular to provide a pouring valve for a casting apparatus, which avoids the disadvantages mentioned above. Furthermore, it is a particular object of the invention to provide a die-casting method for metallic melts, which enables rapid casting while minimizing the supply of heat.
  • a pouring valve for supplying melt of a pouring device, wherein the pouring valve comprises a valve housing having a melt channel connection as inlet and a valve outlet as outlet, a valve cell for receiving the melt and a closing means for changing the Ventilauslassqueritess Structure and wherein the valve cell can be connected via a melt channel connection with a melt channel, which can be prestressed by means of casting pressure, and the casting valve has a recompression piston for recompressing the melt after the mold has been filled.
  • the integration of the recompression piston as squeeze pin in the pouring valve space-saving arrangement is created, which emits relatively little heat due to their compactness. Due to the fact that the melt for the filling of the casting cavity and the melt for recompression come from the same valve cell or according to the valve outlet downstream of the valve cell, the number of required heating means and pipelines can also be kept low.
  • the valve cell of the casting valve can be connected to a melt reservoir or a casting chamber via the melt channel connection. If the pouring valve is part of a die casting device, the melt channel connection, the valve cell and the valve outlet are pressure-resistant.
  • the valve cell can also have a plurality of melt channel connections, via which the melt can flow.
  • valve cell has a plurality of melt channel connections, it can be provided that the melt flows out again during casting via at least one channel.
  • the valve cell thus does not form the end of the melt channel, but is also flowed through by melt during the casting process, which does not leave the pouring valve via the valve outlet.
  • the heating means which is arranged in or on the casting valve can be made smaller or possibly omitted entirely.
  • the pouring valve may be integrated into the die-cast channel such that the valve cell passes through a part of the melt channel can be prestressed by means of casting pressure.
  • the valve cell may have a storage volume, which is advantageously completely enclosed by the valve housing, so that it can be heated as located in the casting valve hot cell. An unwanted solidification can be easily avoided.
  • valve cell occupies a certain volume;
  • the pouring valve can be integrated in a melt channel particularly well if the cross-sectional area of the valve cell corresponds to the sum of the cross-sectional areas of the feeding melt channel connections. In this case, it is not enlarged in diameter compared to the melt channel and thus provides no additional volume
  • the pouring valve preferably has as closing means a valve piston which is movable axially in the direction of the valve outlet and can close it.
  • the valve housing and the valve piston are preferably designed so that the diameter of the effective Ventilauslassqueritess founded is steadily reduced when ancestors of the valve piston.
  • the effective Ventilauslassqueritess simulation is the surface which is flowed through during the casting vertically from the melt.
  • valve piston and the valve piston enclosing housing portion preferably form a conical valve seat.
  • At least one of the two components valve piston or housing wall thus has a chamfer or a chamfer in such a way that the Ventilauslassqueritess Structure tapers in the direction of the valve outlet.
  • the melt flow can take place through an annular opening which allows a relatively vortex-free melt flow. The effect is exacerbated when both components, the valve piston lateral surface and the housing bottom are seen in the sectional view provided with bevels.
  • the bevels do not necessarily have to be conical.
  • the housing inner wall or the piston skirt surface may be partially conical or curved in the axial direction. If the piston skirt surface or the valve seat are crowned, concentricity errors of the valve piston can be compensated particularly well, so that despite possible gap dimensions, the mass flow in the closed state is minimized.
  • the crown also causes a line contact to form between these components when closing. Jamming of the valve piston can be reliably prevented by the thus lack of surface contact and possibly remaining between the surfaces solidifying melt material, which prevents damage to the valve piston and the valve housing. In the valve gap may have penetrated melt material due to the temperature gradient to the environment cool down and melted at the valve opening for the next casting process again.
  • valve piston and the housing wall may be formed in the axial direction specific to the casting so that the tapered valve outlet cross-sectional area formed by the two components is designed so that the desired mold filling speed can be influenced by moving the valve piston.
  • a large flow cross-section may be provided, which is required for the rapid filling of the casting cavity and to avoid trapped air, which is reduced with increasing degree of filling according to the shape of the casting cavity.
  • the valve piston has a variable diameter over its axial length, with a correspondingly shaped valve housing, only a temporary reduction in the flow cross-section can take place, which is widened again before the final closing of the pouring valve.
  • valve piston and the valve outlet are preferably arranged centrally in the valve housing.
  • the valve piston drive can connect to the side facing away from the valve outlet and be integrated into the housing of the pouring valve. If the secondary compression piston can be moved via a separate drive, this can also be integrated into the valve housing.
  • the melt channel connection In order to prevent a temperature drop of the melt and thus unwanted crystallization processes, can the melt channel connection, the valve outlet or other melt-contacting areas can be made heatable in the pouring valve. Each melting section is preferably heated separately.
  • An electrically operated heater has a low inertia behavior and allows good control or regulation of the heating power.
  • the channel walls themselves may be heated or covered by coils.
  • the valve cell can also be heated.
  • the valve piston also takes over the function of Nachverêtns.
  • the same component then forms both the closing piston and the Nachverdichtungskolben.
  • the valve piston is designed, for example, as a circular cylinder which forms a valve seat with a valve housing wall.
  • the valve housing wall may initially have a conical shape and then be tubular, so that the valve piston initially throttles the melt inflow during the process in the tubular section, closes the valve upon reaching the tubular section and then recompresses during the process within the tubular section.
  • the casting valve on two pistons which are at least temporarily movable relative to each other.
  • the first piston is formed by the valve piston, with which the pouring valve is closable, and the second piston is designed as a secondary compression piston separately from the valve piston.
  • the two pistons are arranged coaxially with each other, wherein the Nachverdichtungskolben is located inside.
  • the housing wall is designed so that the valve piston in this Can move arrangement on the valve wall, is prevented from further movement and due to the smaller diameter of the Nachverdichtungskolbens whose further movement still possible.
  • the secondary compression piston may have its own piston drive for the relative movement to the valve piston. As a result, it can be controlled separately from the valve piston, and it can be matched in its performance to the recompression.
  • piston actuators for the Nachverdichtungskolben and the valve piston for example, hydraulic drives or electric spindles come into question.
  • the two piston drives can also be formed by different drive types.
  • a particularly compact pouring valve can be achieved if both pistons are movable by the same drive. Via drive valves or other control mechanisms it can be provided that only one of the pistons or both pistons are displaced simultaneously at a certain point in time. If a relative displacement is undesirable, at least in phases, as in the closing of the pouring valve, both pistons can also be connected to one another by suitable coupling means, so that they can only be moved together.
  • the two pistons are coupled to each other and can only be moved to each other by increased effort. As long as the valve piston has not moved to block and thus closes the valve seat on the valve, then move both pistons together. By the then leaps and bounds increasing force dissolves the Nachverdichtungskolben of the valve piston and can then be moved alone. A piston drive is sufficient for this variant. A complex control unit is not required in this embodiment.
  • the piston drive is preferably carried out hydraulically and is arranged for thermal reasons on the opposite side of the valve outlet.
  • the pouring valve may have the pressure force transmitting decoupling means.
  • the decoupling means are disposed between the piston heads and the piston drives and may be formed by ceramic layers or other sufficiently strong thermal insulators.
  • the heat transfer can be reduced by a suitable mechanical structure.
  • thin-walled intermediate bolts which connect the piston head to the piston drive, transmit less total heat and allow the arrangement of coolants in the spaces thus created.
  • the pouring valve according to the invention is preferably installed in a die casting apparatus for metallic melts, but can also be used in other casting methods, such as in continuous casting or casting of non-metallic melts.
  • the amount of circulating material is thereby reduces filling and recompression via the same pouring valve.
  • a casting device preferably has the pouring valve according to the invention directly on the gate area of the casting or on the casting itself.
  • the proportion of Sprue and the amount of circulating material can be further reduced.
  • casting compositions of less than 20% of the casting mass can be achieved thereby.
  • the sprue system can be compact.
  • the sprue material can be reused as circulating material. The fact that less sprue material must be melted and the hot melt in the loop is always close to the mold cavity available, less time is required for the casting cycle, so that the timing is improved.
  • the invention also relates to a method for die casting with a die casting device and a casting valve having a valve piston, which provides the following steps: providing a cleaned and prepared for a mold filling casting cavity with a closed pouring valve, opening the pouring valve for pouring, closing the pouring valve after Form Sprintde, removing the Casting and re-compression during the cooling process and before the removal of the casting by means of a built-in the pouring valve piston.
  • the proposed method allows the filling and the recompression via the same gate opening, so that the number of gate areas is reduced compared to separately arranged to the casting valve squeeze pins.
  • the required post-processing of the casting is thus reduced.
  • FIG. 1 schematically shows a part of a casting apparatus 1 for die casting of metallic melts 2 such as magnesium or aluminum melts.
  • the casting apparatus 1 has a casting chamber 4, which can be filled from a melt reservoir, not shown, via a melt valve 19.
  • the melt 2 is conveyed from the horizontally oriented casting chamber 4 by a hydraulically moved, in the horizontal advancing casting piston 6 in a melt channel 11 and pressurized.
  • the melt channel 11 is surrounded by heating means 5 in the form of coils, which prevent cooling of the melt 2. From the heated melt channel 11, the melt 2 passes through a melt channel connection 12 into the valve cell 8 (FIG. FIG. 2 ) of the pouring valve 7 and from there via the valve outlet 10 into the casting cavity 3.
  • the casting cavity 3 itself is formed by two half-molds 15, 16 and is formed in a known manner by the enlarged by the Schwindmann negative mold of the casting to be produced.
  • the half-molds 15, 16 are separable from each other at a parting surface 9, so that the finished casting can be removed.
  • FIG. 2 shows a pouring valve 7 with a valve housing 13 which has a fillable via the melt channel connection 12 valve cell 8, which is part of the melt channel 11 itself and in comparison to this and the melt channel connection 12 has no enlarged cross-section.
  • the valve piston 14 Centrally in the valve housing 13, the valve piston 14 is arranged, via which the valve outlet 10 is closed.
  • the inner wall 21 of the valve housing 13, which adjoins the Ventilauslass 10 has an inclination relative to the main valve axis 22, which is greater than that of the lateral surface 18.
  • valve piston 14 is driven by a first piston drive 24, which operates hydraulically and is arranged axially offset from the valve piston 14. Since the valve piston 14 is in contact with the hot melt 2, decoupling means 26 are provided in the form of intermediate bolts as spacers mechanically and thus thermally decouple the piston drive 24 with the piston plate 28 from the piston head 29 of the valve piston 14, but the pressure force on the Nevertheless, piston head 29 is transferred.
  • the valve piston 14 is formed as a hollow cylinder and has co-axial to the direction of a Nachverdichtungskolben 23.
  • the recompression piston 23 has a second piston drive 25 which is operable independently of the first piston drive 24. Its hydraulic chambers 30 are connected axially to those of the first piston drive 24.
  • the casting cavity 3 is closed so tightly that it withstands the melt pressure of the subsequent die casting process.
  • the inner recompression piston 23 returns to its starting position, which is set back so far from the valve piston 14 closing the valve outlet 10 that a blind hole 27 is created between the inner walls of the valve piston 14.
  • the blind hole depth corresponds approximately to the stroke of the valve piston 14th
  • valve piston 14 By retracting the valve piston 14, the actual casting process is initiated as a third phase.
  • the valve piston 14 releases from its annular valve seat, and by the now flowing, hot melt 2 is possibly at this point cooled material melted. Due to the ring-line contact and any heating located on the pouring valve 7, the solidified amount of melt is so small that it is completely melted and does not make opening the valve piston 14 difficult or only insignificantly difficult.
  • the valve outlet 10 is opened to the maximum, and the melt 2 can flow annularly between the pistons 14, 23 and the inner wall 21 of the valve housing 13 in the Gussteilkavmaschine 3. The envisaged for filling amount of melt is pushed by the advancing casting piston 6 via the melt channel 11.
  • the casting solidifies and the casting chamber 4 is prepared for a new mold filling operation.
  • the consequent shrinkage of material is compensated for by the secondary compression piston 23 which presses the melt 2 located in the blind hole 27 and the immediately adjacent region into the casting cavity. If the amount of melt required for the re-compaction 2 the Blind hole volume corresponds, the adjoining the valve outlet 10 runner can be particularly short or possibly even eliminated.
  • the solidification process can be accelerated by supplying cooling power via cooling channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Fuel Cell (AREA)

Description

Die Erfindung betrifft ein Gießventil zur Zuführung von Schmelzen einer Gießvorrichtung mit einem Ventilgehäuse, das einen Schmelzekanalanschluss als Zulauf und einen Ventilauslass als Auslauf aufweist, mit einer Ventilzelle zur Aufnahme der Schmelze und mit einem Schließmittel zur Veränderung der Ventilauslassquerschnittsfläche. Die Erfindung betrifft weiterhin eine Gießvorrichtung mit einem derartigen Gießventil und ein Gießverfahren zur Herstellung von Gussteilen mit dieser Gießvorrichtung.The invention relates to a pouring valve for supplying melt of a casting device with a valve housing, which has a melt channel connection as inlet and a valve outlet as outlet, with a valve cell for receiving the melt and with a closing means for changing the Ventilauslassquerschnittsfläche. The invention further relates to a casting apparatus with such a casting valve and a casting method for producing castings with this casting apparatus.

Aus dem Stand der Technik sind zahlreiche Maßnahmen bekannt, um den Formfüllvorgang von Gussteilkavitäten zu beeinflussen. Für jeden Schmelzetyp sind bestimmte Anschnittgeschwindigkeiten und Angusssysteme geeignet. Da eine maximale Anschnittgeschwindigkeit nicht überschritten werden darf, ist es erforderlich, den Querschnitt der Anschnittfläche und damit den Teil des Angusssystems, der nach dem Gießvorgang die Abtrennung des Angussteils von der Druckgussform ermöglicht, hinreichend groß zu dimensionieren. Diese Anforderung führt bei flächigen und dünnwandigen Gussteilen zu einem hohen Anteil an Umlaufmaterial, dessen Masse in der Größenordnung der Gussteilmasse selbst liegen kann. Das Umlaufmaterial wird anschließend wieder geschmolzen, was eine erhebliche externe Energiezufuhr erfordert.From the prior art numerous measures are known to influence the mold filling process of casting cavities. For each type of melt, certain gate speeds and gate systems are suitable. Since a maximum gate speed must not be exceeded, it is necessary to dimension the cross-section of the gate surface and thus the part of the gate system, which allows the separation of the gate from the die after casting, sufficiently large. This requirement leads in flat and thin-walled castings to a high proportion of circulating material, the mass of which may be in the order of the casting material itself. The circulating material is then melted again, which requires a considerable external energy supply.

Um die Menge des Umlaufmaterials zu reduzieren, lehrt die DE 10 2011 050 149 A1 , ein Gießventil in Form einer Druckgussdüse unmittelbar am Angussbereich der Druckgussform anzuordnen. Durch eine Widerstandsheizung wird das Gießventil zunächst offen gehalten. Ein Ausschalten der Heizung führt zur Pfropfenbildung und damit zum Schließen des Gießventils. Ein kontrolliertes oder ein temperaturunabhängiges Schließen des Ventils ist nicht möglich. Zum Öffnen muss der Pfropfen zuverlässig wieder aufgeschmolzen werden, was die Prozessdauer verlängert und aufgrund der Temperaturschwankungen insgesamt eine höhere Energiezufuhr pro Gussteil erfordert.To reduce the amount of circulating material, the teaches DE 10 2011 050 149 A1 , a pouring valve in the form of a die-casting nozzle directly at the sprue of the To arrange die casting mold. By a resistance heater, the pouring valve is initially kept open. Turning off the heater leads to plug formation and thus to closing of the pouring valve. Controlled or temperature-independent closing of the valve is not possible. To open the plug must be reliably melted again, which prolongs the process duration and due to the temperature fluctuations requires a higher total energy input per casting.

Ein anderes, steuerbares Gießventil für metallische Schmelzen ist in DE 34 27 940 A1 offenbart. Induktiv wird durch das Gießventil die Schmelzemenge dosiert zugeführt, und in Verbindung mit Raumbegrenzungselementen erfolgt eine Absperrung.Another controllable pouring valve for metallic melts is in DE 34 27 940 A1 disclosed. Inductively, the amount of melt is metered fed through the pouring valve, and in conjunction with room boundary elements is a barrier.

DE 10 2007 047 545 A1 offenbart ein Gießventil, das mittels eines Kolbens verschließbar ist. Der Kolben ist axial in einem Ventilgehäuse bewegbar. Damit Spaltmaßgenauigkeiten aufgrund von Rundlauffehlern des Kolbens nicht zu inhomogenen Masseströmen führen und ein zuverlässiges Verschließen des Gießventils gewährleistet wird, weist die Kolbenmantelfläche einen größeren Winkel zur Ventilhauptachse auf als das Ventilgehäuse im Auslaufbereich. Im verschlossenen Zustand bildet der Kolben somit eine kreisringförmige Auflagefläche mit der Gehäusewand. DE 10 2007 047 545 A1 discloses a pouring valve which is closable by means of a piston. The piston is axially movable in a valve housing. This gap accuracy due to concentricity errors of the piston does not lead to inhomogeneous mass flows and a reliable closing of the pouring valve is ensured, the piston skirt surface has a larger angle to the valve main axis than the valve housing in the outlet region. In the closed state, the piston thus forms an annular bearing surface with the housing wall.

Beide letztgenannten Gießventile können zur zuverlässigen Befüllung einer Gussteilkavität mit einer vorbestimmten Schmelzemenge verwendet werden. Um den Materialschwund beim Erstarren des Gussteils auszugleichen, muss jedoch weiterhin Schmelze zugeführt werden. Entweder können die vorgenannten Gießventile erst schließen, wenn der Schrumpfungsprozess abgeschlossen ist, was ein Beheizen zumindest bis zum Schließen erfordert und eine exakte Dosierung erschwert. Oder es ist ein zweiter Mechanismus erforderlich, der das aufgrund des Schrumpfungsprozesses entstehende Hohlvolumen durch eine Schmelzenachspeisung füllt und nachverdichtet. Das Gießventil und der Nachverdichtungsmechanismus müssen aufeinander abgestimmt werden, was aufwändig ist, die Gießvorrichtung ausladend bauen lässt und damit die zum Beheizen erforderliche Energie erhöht.Both latter casting valves can be used to reliably fill a casting cavity with a predetermined amount of melt. In order to compensate for the shrinkage of material during the solidification of the casting, however, melt must continue to be supplied. Either The above-mentioned pouring valves can not close until the shrinking process has been completed, which requires heating at least until they close and makes precise metering more difficult. Or a second mechanism is required which fills and recompresses the hollow volume resulting from the shrinkage process by means of a melt replenishment. The pouring valve and the Nachverdichtungsmechanismus must be coordinated with each other, which is complex, the caster can be built expansively and thus increases the energy required for heating.

Eine Druckgießmaschine gemäß DE 195 08 867 A1 weist wenigstens einen beweglichen und einen stationären Formteil auf, die entlang einer Trennebene geteilt sind, und einem von diesen Formteilen umschlossenen Formhohlraum. In diesen Formhohlraum wird ein zu vergießendes Metall über einen Angußkanal der Form mit Hilfe eines Gießkolbens eingeschossen. Der Gießkolben ist in einer Gießkammer, in die das Metall einführbar ist, mit Hilfe eines Antriebes entlang der Längsachse der Gießkammer verschiebbar. Ferner ist mindestens ein auf das eingeschossene Metall einwirkender Nachverdichterkolben vorgesehen, der aus einem ihn aufnehmenden Hohlraum heraus auf das Metall zu bewegbar ist. Wenigstens ein Nachverdichterkolben ist in einer zur Längsachse der Gießkammer versetzten Lage in den Angußkanal hineinbewegbar.A die casting machine according to DE 195 08 867 A1 has at least one movable and one stationary mold part, which are divided along a parting plane, and a mold cavity enclosed by these mold parts. In this mold cavity, a metal to be cast is injected via a runner of the mold with the aid of a casting piston. The casting piston is displaceable in a casting chamber, into which the metal can be introduced, by means of a drive along the longitudinal axis of the casting chamber. Furthermore, at least one Nachverdichterkolben acting on the injected metal is provided, which can be moved out of a cavity receiving it on the metal. At least one Nachverdichterkolben is hineinbewegbar in a staggered to the longitudinal axis of the casting chamber position in the runner.

Nach der DE 195 33 447 C1 wird zum Befüllen eines Gießwerkzeugs mit einer Metallschmelze, die Metallschmelze dem Formhohlraum des Gießwerkzeugs über eine Ringkammer zugeführt, die über ihren gesamten Umfang im Außenbereich des Formhohlraumes in diesen einmündet. Die Zuführung der Metallschmelze in die Ringkammer wird durch einen in der Ringkammer verschiebbar gelagerten Kolben unterbrochen. Die Metallschmelze kann über einen großen Zuführquerschnitt zugeführt werden, wodurch sich bei geringer Zuflußgeschwindigkeit eine kurze Füllzeit ergibt.After DE 195 33 447 C1 is used for filling a casting mold with a molten metal, the molten metal fed to the mold cavity of the casting tool via an annular chamber, which opens into its outer periphery of the mold cavity over its entire circumference. The supply of the molten metal into the annular chamber is interrupted by a piston displaceably mounted in the annular chamber. The molten metal can over a large feed cross section be supplied, resulting in a low filling rate, a short filling time.

Aufgabe der vorliegenden Erfindung es, den Stand der Technik zu verbessern und insbesondere ein Gießventil für eine Gießvorrichtung bereitzustellen, welche die vorstehend genannten Nachteile vermeidet. Weiterhin ist es insbesondere Aufgabe der Erfindung, ein Druckgussverfahren für metallische Schmelzen bereitzustellen, welches ein schnelles Gießen bei gleichzeitig minimierter Wärmezufuhr ermöglicht.Object of the present invention to improve the prior art and in particular to provide a pouring valve for a casting apparatus, which avoids the disadvantages mentioned above. Furthermore, it is a particular object of the invention to provide a die-casting method for metallic melts, which enables rapid casting while minimizing the supply of heat.

Die Aufgabe wird durch ein Gießventil zur Zuführung von Schmelzen einer Gießvorrichtung gelöst, wobei das Gießventil ein Ventilgehäuse, das einen Schmelzekanalanschluss als Zulauf und einen Ventilauslass als Auslauf aufweist, eine Ventilzelle zur Aufnahme der Schmelze und ein Schließmittel zur Veränderung der Ventilauslassquerschnittsfläche umfasst und wobei die Ventilzelle über einen Schmelzekanalanschluss mit einem mittels Gießdruck vorspannbaren Schmelzekanal verbindbar ist und das Gießventil einen Nachverdichtungskolben zur Nachverdichtung der Schmelze nach Formfüllende aufweist.The object is achieved by a pouring valve for supplying melt of a pouring device, wherein the pouring valve comprises a valve housing having a melt channel connection as inlet and a valve outlet as outlet, a valve cell for receiving the melt and a closing means for changing the Ventilauslassquerschnittsfläche and wherein the valve cell can be connected via a melt channel connection with a melt channel, which can be prestressed by means of casting pressure, and the casting valve has a recompression piston for recompressing the melt after the mold has been filled.

Durch die Integration des Nachverdichtungskolbens als Squeeze-Pin in das Gießventil ist eine bauraumsparende Anordnung geschaffen, die aufgrund ihrer Kompaktheit verhältnismäßig wenig Wärme abstrahlt. Dadurch dass die Schmelze für das Befüllen der Gussteilkavität und die Schmelze zur Nachverdichtung aus der gleichen Ventilzelle oder entsprechend dem der Ventilzelle nachgeschalteten Ventilauslass stammen, kann zudem die Anzahl der erforderlichen Heizmittel und Rohrleitungen gering gehalten werden.The integration of the recompression piston as squeeze pin in the pouring valve space-saving arrangement is created, which emits relatively little heat due to their compactness. Due to the fact that the melt for the filling of the casting cavity and the melt for recompression come from the same valve cell or according to the valve outlet downstream of the valve cell, the number of required heating means and pipelines can also be kept low.

Die Ventilzelle des Gießventils ist über den Schmelzekanalanschluss mit einem Schmelzereservoir oder einer Gießkammer verbindbar. Sofern das Gießventil Teil einer Druckgießvorrichtung ist, sind der Schmelzekanalanschluss, die Ventilzelle und der Ventilauslass druckfest ausgebildet. Die Ventilzelle kann auch mehrere Schmelzekanalanschlüsse aufweisen, über die die Schmelze einströmen kann.The valve cell of the casting valve can be connected to a melt reservoir or a casting chamber via the melt channel connection. If the pouring valve is part of a die casting device, the melt channel connection, the valve cell and the valve outlet are pressure-resistant. The valve cell can also have a plurality of melt channel connections, via which the melt can flow.

Weist die Ventilzelle mehrere Schmelzekanalanschlüsse auf, kann vorgesehen sein, dass die Schmelze beim Gießen über mindestens einen Kanal wieder ausströmt. Die Ventilzelle bildet damit nicht das Ende des Schmelzekanals, sondern wird während des Gießvorgangs auch von Schmelze durchströmt, die das Gießventil nicht über den Ventilauslass verlässt. Dadurch ist ein kontinuierlicher Wärmeeintrag während des Gießens sichergestellt, und das Heizmittel, das im oder am Gießventil angeordnet ist, kann kleiner dimensioniert werden oder ggf. gänzlich entfallen.If the valve cell has a plurality of melt channel connections, it can be provided that the melt flows out again during casting via at least one channel. The valve cell thus does not form the end of the melt channel, but is also flowed through by melt during the casting process, which does not leave the pouring valve via the valve outlet. As a result, a continuous heat input is ensured during the casting, and the heating means, which is arranged in or on the casting valve can be made smaller or possibly omitted entirely.

In einer Ausgestaltung kann das Gießventil so in den Druckgusskanal integriert sein, dass die Ventilzelle durch einen Teil des mittels Gießdruck vorspannbaren Schmelzekanals gebildet ist. Die Ventilzelle kann ein Vorratsvolumen aufweisen, das vorteilhafterweise vom Ventilgehäuse vollständig eingefasst ist, so dass es sich als im Gießventil befindliche heiße Zelle beheizen lassen kann. Ein unerwünschtes Erstarren kann dadurch leichter vermieden werden.In one embodiment, the pouring valve may be integrated into the die-cast channel such that the valve cell passes through a part of the melt channel can be prestressed by means of casting pressure. The valve cell may have a storage volume, which is advantageously completely enclosed by the valve housing, so that it can be heated as located in the casting valve hot cell. An unwanted solidification can be easily avoided.

Es ist nicht erforderlich, dass die Ventilzelle ein bestimmtes Volumen einnimmt; besonders gut lässt sich das Gießventil in einen Schmelzekanal integrieren, wenn die Querschnittsfläche der Ventilzelle der Summe der Querschnittsflächen der zuführenden Schmelzekanalanschlüsse entspricht. In diesem Fall ist sie in ihrem Durchmesser im Vergleich zum Schmelzekanal nicht vergrößert und stellt somit kein zusätzliches Volumen bereitIt is not necessary that the valve cell occupies a certain volume; The pouring valve can be integrated in a melt channel particularly well if the cross-sectional area of the valve cell corresponds to the sum of the cross-sectional areas of the feeding melt channel connections. In this case, it is not enlarged in diameter compared to the melt channel and thus provides no additional volume

Das Gießventil weist als Schließmittel vorzugsweise einen Ventilkolben auf, der axial in Richtung des Ventilauslasses beweglich ist und diesen verschließen kann. Das Ventilgehäuse und der Ventilkolben sind vorzugsweise so ausgebildet, dass beim Vorfahren des Ventilkolbens der Durchmesser der effektiven Ventilauslassquerschnittsfläche stetig vermindert wird. Die effektive Ventilauslassquerschnittsfläche ist dabei die Fläche, die während des Gießens senkrecht von der Schmelze durchströmte wird. Beim Schließen des Gießventils wird zumindest nach einer Anfangsphase die Ventilauslassquerschnittsfläche verringert, so dass sich aufgrund des gleichbleibenden Drucks ebenfalls die strömende Schmelzemenge verringert. Schließlich wird der Durchlass so verengt, dass der Schmelzestrom abreißt oder sich so verringert, dass die Schmelze erkaltet und ein weiterer Durchfluss ohne externe Temperaturzufuhr verhindert ist.The pouring valve preferably has as closing means a valve piston which is movable axially in the direction of the valve outlet and can close it. The valve housing and the valve piston are preferably designed so that the diameter of the effective Ventilauslassquerschnittsfläche is steadily reduced when ancestors of the valve piston. The effective Ventilauslassquerschnittsfläche is the surface which is flowed through during the casting vertically from the melt. When closing the pouring valve, the Ventilauslassquerschnittsfläche is reduced at least after an initial phase, so that also reduces the flowing amount of melt due to the constant pressure. Finally, the passage is narrowed so that the melt stream breaks off or decreases so that the Melt cooled and another flow is prevented without external temperature supply.

Der Ventilkolben und der den Ventilkolben einfassende Gehäuseabschnitt bilden vorzugsweise einen konischen Ventilsitz. Zumindest einer der beiden Bauteile Ventilkolben oder Gehäusewand weist folglich eine Fase oder eine Abschrägung derart auf, dass sich die Ventilauslassquerschnittsfläche in Richtung des Ventilauslasses verjüngt. Dadurch kann bei Annäherung des Ventilkolbens an den Gehäuseboden der Schmelzefluss durch eine ringförmige Öffnung erfolgen, die einen relativ wirbelfreien Schmelzestrom zulässt. Der Effekt wird noch verstärkt, wenn beide Bauteile, die Ventilkolbenmantelfläche und der Gehäuseboden in der Schnittdarstellung gesehen mit Abschrägungen versehen sind.The valve piston and the valve piston enclosing housing portion preferably form a conical valve seat. At least one of the two components valve piston or housing wall thus has a chamfer or a chamfer in such a way that the Ventilauslassquerschnittsfläche tapers in the direction of the valve outlet. As a result, when the valve piston approaches the housing bottom, the melt flow can take place through an annular opening which allows a relatively vortex-free melt flow. The effect is exacerbated when both components, the valve piston lateral surface and the housing bottom are seen in the sectional view provided with bevels.

Die Abschrägungen müssen nicht notwendigerweise kegelförmig verlaufen. So können die Gehäuseinnenwand oder die Kolbenmantelfläche abschnittsweise konisch ausgebildet sein oder in Axialrichtung gekrümmt verlaufen. Sind die Kolbenmantelfläche oder der Ventilsitz ballig ausgeführt, lassen sich Rundlauffehler des Ventilkolbens besonders gut kompensieren, so dass trotz möglicher Spaltmaße der Massenstrom im geschlossenen Zustand minimiert ist. In vorteilhafter Weise bewirkt die Balligkeit auch, dass sich beim Schließen zwischen diesen Bauteilen ein Linienkontakt ausbildet. Ein Verklemmen des Ventilkolbens kann durch die somit fehlende Flächenkontaktierung und dem ggf. zwischen den Flächen verbleibendem erstarrenden Schmelzematerial zuverlässig vermieden werden, was Beschädigungen am Ventilkolben und am Ventilgehäuse vorbeugt. In den Ventilspalt eventuell eingedrungenes Schmelzematerial kann aufgrund des Temperaturgradienten zur Umgebung erkalten und bei Ventilöffnung für den nächsten Gießvorgang wieder aufgeschmolzen werden.The bevels do not necessarily have to be conical. Thus, the housing inner wall or the piston skirt surface may be partially conical or curved in the axial direction. If the piston skirt surface or the valve seat are crowned, concentricity errors of the valve piston can be compensated particularly well, so that despite possible gap dimensions, the mass flow in the closed state is minimized. Advantageously, the crown also causes a line contact to form between these components when closing. Jamming of the valve piston can be reliably prevented by the thus lack of surface contact and possibly remaining between the surfaces solidifying melt material, which prevents damage to the valve piston and the valve housing. In the valve gap may have penetrated melt material due to the temperature gradient to the environment cool down and melted at the valve opening for the next casting process again.

Der Ventilkolben und die Gehäusewand können in axialer Richtung gussteilspezifisch so ausgebildet sein, dass die durch die beiden Bauteile gebildete, sich verjüngende Ventilauslassquerschnittsfläche so ausgebildet ist, dass mit dem Bewegen des Ventilkolbens Einfluss auf die gewünschte Formfüllgeschwindigkeit genommen werden kann. So kann zu Gießbeginn eine großer Durchflussquerschnitt vorgesehen sein, der für die schnelle Füllung der Gussteilkavität und zur Vermeidung von Lufteinschlüssen erforderlich ist, der mit zunehmendem Füllungsgrad entsprechend der Form der Gussteilkavität verringert wird. Weist der Ventilkolben auf seiner axialen Länge einen veränderlichen Durchmesser auf, kann bei entsprechend geformtem Ventilgehäuse auch ein lediglich zeitweises Verringern des Durchflussquerschnitts erfolgen, der vor dem endgültigen Schließen des Gießventils noch einmal geweitet wird.The valve piston and the housing wall may be formed in the axial direction specific to the casting so that the tapered valve outlet cross-sectional area formed by the two components is designed so that the desired mold filling speed can be influenced by moving the valve piston. Thus, at the start of casting a large flow cross-section may be provided, which is required for the rapid filling of the casting cavity and to avoid trapped air, which is reduced with increasing degree of filling according to the shape of the casting cavity. If the valve piston has a variable diameter over its axial length, with a correspondingly shaped valve housing, only a temporary reduction in the flow cross-section can take place, which is widened again before the final closing of the pouring valve.

Der Ventilkolben und der Ventilauslass sind vorzugsweise mittig im Ventilgehäuse angeordnet. Dadurch baut das Gießventil kompakt. Axial an den Ventilkolben kann sich an der dem Ventilauslass abgewandten Seite der Ventilkolbenantrieb anschließen und in das Gehäuse des Gießventils integriert sein. Ist der Nachverdichtungskolben über einen separaten Antrieb bewegbar, kann dieser ebenfalls in das Ventilgehäuse integriert sein.The valve piston and the valve outlet are preferably arranged centrally in the valve housing. As a result, the pouring valve builds compact. Axially on the valve piston, the valve piston drive can connect to the side facing away from the valve outlet and be integrated into the housing of the pouring valve. If the secondary compression piston can be moved via a separate drive, this can also be integrated into the valve housing.

Um eine Temperaturabsenkung der Schmelze und damit unerwünschte Kristallisationsprozesse zu verhindern, können der Schmelzekanalanschluss, der Ventilauslass oder andere schmelzekontaktierende Bereiche im Gießventil beheizbar ausgeführt sein. Jeder Schmelzeabschnitt ist vorzugsweise separat beheizt. Eine elektrisch betriebene Heizung weist ein geringes Trägheitsverhalten auf und ermöglicht eine gute Steuerung oder Regelung der Heizleistung. Beispielsweise können die Kanalwände selbst beheizt oder von Spulen umfasst sein. Auch die Ventilzelle kann beheizt sein.In order to prevent a temperature drop of the melt and thus unwanted crystallization processes, can the melt channel connection, the valve outlet or other melt-contacting areas can be made heatable in the pouring valve. Each melting section is preferably heated separately. An electrically operated heater has a low inertia behavior and allows good control or regulation of the heating power. For example, the channel walls themselves may be heated or covered by coils. The valve cell can also be heated.

In einer Ausgestaltung der Erfindung übernimmt der Ventilkolben ebenso die Funktion des Nachverdichtens. Das gleiche Bauteil bildet dann sowohl den Schließkolben als auch den Nachverdichtungskolben. Dazu ist der Ventilkolben beispielsweise als ein Kreiszylinder ausgebildet, der mit einer Ventilgehäusewand einen Ventilsitz bildet. Die Ventilgehäusewand kann zunächst konisch verlaufen und anschließend rohrförmig ausgebildet sein, so dass der Ventilkolben beim Verfahren in den rohrförmigen Abschnitt zunächst den Schmelzezufluss sukzessive drosselt, beim Erreichen des rohrförmigen Abschnitts das Ventil verschließt und anschließend beim Verfahren innerhalb des rohrförmigen Abschnitts eine Nachverdichtung erfolgt.In one embodiment of the invention, the valve piston also takes over the function of Nachverdichtens. The same component then forms both the closing piston and the Nachverdichtungskolben. For this purpose, the valve piston is designed, for example, as a circular cylinder which forms a valve seat with a valve housing wall. The valve housing wall may initially have a conical shape and then be tubular, so that the valve piston initially throttles the melt inflow during the process in the tubular section, closes the valve upon reaching the tubular section and then recompresses during the process within the tubular section.

In einer anderen Ausgestaltung weist das Gießventil zwei Kolben auf, die zumindest zeitweise zueinander beweglich sind. Der erste Kolben wird durch den Ventilkolben gebildet, mit dem das Gießventil verschließbar ist, und der zweite Kolben ist als Nachverdichtungskolben separat zum Ventilkolben ausgebildet. Vorzugsweise sind die beiden Kolben zueinander koaxial angeordnet, wobei der Nachverdichtungskolben innenliegend ist. Die Gehäusewand ist dabei so ausgebildet, dass der Ventilkolben in dieser Anordnung auf die Ventilwand fahren kann, an einer Weiterbewegung gehindert ist und aufgrund des geringeren Durchmessers des Nachverdichtungskolbens dessen weitere Bewegung dennoch möglich.In another embodiment, the casting valve on two pistons, which are at least temporarily movable relative to each other. The first piston is formed by the valve piston, with which the pouring valve is closable, and the second piston is designed as a secondary compression piston separately from the valve piston. Preferably, the two pistons are arranged coaxially with each other, wherein the Nachverdichtungskolben is located inside. The housing wall is designed so that the valve piston in this Can move arrangement on the valve wall, is prevented from further movement and due to the smaller diameter of the Nachverdichtungskolbens whose further movement still possible.

Der Nachverdichtungskolben kann für die Relativbewegung zum Ventilkolben einen eigenen Kolbenantrieb aufweisen. Dadurch ist er separat vom Ventilkolben ansteuerbar, und er kann in seiner Leistung auf das Nachverdichten abgestimmt werden. Als Kolbenantriebe für den Nachverdichtungskolben und den Ventilkolben kommen beispielsweise hydraulische Antriebe oder elektrische Spindeln in Frage. Die beiden Kolbenantriebe können auch durch unterschiedliche Antriebsarten gebildet sein.The secondary compression piston may have its own piston drive for the relative movement to the valve piston. As a result, it can be controlled separately from the valve piston, and it can be matched in its performance to the recompression. As piston actuators for the Nachverdichtungskolben and the valve piston, for example, hydraulic drives or electric spindles come into question. The two piston drives can also be formed by different drive types.

Ein besonders kompaktes Gießventil lässt sich erreichen, wenn beide Kolben durch den gleichen Antrieb bewegbar sind. Über Antriebsventile oder andere Steuerungsmechanismen kann vorgesehen sein, dass zu einem bestimmten Zeitpunkt nur einer der Kolben oder beide Kolben gleichzeitig verschoben werden. Ist eine Relativverschiebung zumindest phasenweise unerwünscht wie beim Schließen des Gießventils, lassen sich auch beide Kolben miteinander durch geeignete Koppelmittel verbinden, so dass sie nur gemeinsam bewegt werden können.A particularly compact pouring valve can be achieved if both pistons are movable by the same drive. Via drive valves or other control mechanisms it can be provided that only one of the pistons or both pistons are displaced simultaneously at a certain point in time. If a relative displacement is undesirable, at least in phases, as in the closing of the pouring valve, both pistons can also be connected to one another by suitable coupling means, so that they can only be moved together.

In einer anderen Variante sind die beiden Kolben aneinander gekoppelt und können nur durch erhöhten Kraftaufwand zueinander verschoben werden. Solange der Ventilkolben noch nicht auf Block gefahren ist und damit am Ventilsitz das Ventil verschließt, verschieben sich dann beide Kolben gemeinsam. Durch die dann sprunghaft ansteigende Kraft löst sich der Nachverdichtungskolben vom Ventilkolben und kann dann allein weiter bewegt werden. Ein Kolbenantrieb ist für diese Variante ausreichend. Eine aufwendige Steuerungs- oder Regeleinheit ist in dieser Ausführungsform nicht erforderlich.In another variant, the two pistons are coupled to each other and can only be moved to each other by increased effort. As long as the valve piston has not moved to block and thus closes the valve seat on the valve, then move both pistons together. By the then leaps and bounds increasing force dissolves the Nachverdichtungskolben of the valve piston and can then be moved alone. A piston drive is sufficient for this variant. A complex control unit is not required in this embodiment.

Der Kolbenantrieb erfolgt vorzugsweise hydraulisch und ist aus thermischen Gründen auf der dem Ventilauslass gegenüberliegenden Seite angeordnet. Um die Antriebseinheit nicht den hohen Temperaturen der heißen Schmelze auszusetzen, kann das Gießventil die Druckkraft übertragende Entkopplungsmittel aufweisen. Die Entkopplungsmittel sind zwischen den Kolbenköpfen und den Kolbenantrieben angeordnet und können durch keramische Schichten oder andere hinreichend feste thermische Isolatoren gebildet werden.The piston drive is preferably carried out hydraulically and is arranged for thermal reasons on the opposite side of the valve outlet. In order not to expose the drive unit to the high temperatures of the hot melt, the pouring valve may have the pressure force transmitting decoupling means. The decoupling means are disposed between the piston heads and the piston drives and may be formed by ceramic layers or other sufficiently strong thermal insulators.

Zusätzlich oder stattdessen kann die Wärmeübertragung durch einen geeigneten mechanischen Aufbau vermindert werden. Im Vergleich zum Kolbendurchmesser dünnwandige Zwischenbolzen, die den Kolbenkopf mit dem Kolbenantrieb verbinden, übertragen insgesamt weniger Wärme und ermöglichen in den so entstehenden Zwischenräumen die Anordnung von Kühlmitteln.In addition or instead, the heat transfer can be reduced by a suitable mechanical structure. Compared to the piston diameter, thin-walled intermediate bolts which connect the piston head to the piston drive, transmit less total heat and allow the arrangement of coolants in the spaces thus created.

Das erfindungsgemäße Gießventil wird bevorzugt in einer Druckgießvorrichtung für metallische Schmelzen verbaut, ist aber auch in anderen Gießverfahren wie beim Stranggießen oder Gießen nicht-metallischer Schmelzen einsetzbar.The pouring valve according to the invention is preferably installed in a die casting apparatus for metallic melts, but can also be used in other casting methods, such as in continuous casting or casting of non-metallic melts.

Bei einer Gießvorrichtung mit einem erfindungsgemäßen Gießventil wird die Menge des Umlaufmaterials dadurch verringert, dass das Befüllen und die Nachverdichtung über dasselbe Gießventil erfolgen. Eine Gießvorrichtung weist das erfindungsgemäße Gießventil vorzugsweise unmittelbar am Anschnittbereich des Gussteils oder am Gussteil selbst auf. Durch die räumlich sehr nahe Anordnung am Gussteil können dann der Anteil des Angussmaterials und die Menge des Umlaufmaterials weiter reduziert werden. Insbesondere bei flächigen Strukturteilen sind dadurch Angussmassen von weniger als 20% der Gussteilmasse erreichbar. Gleichzeitig kann das Angusssystem kompakt ausfallen. Das Angussmaterial kann als Umlaufmaterial wiederverwendet werden. Dadurch dass weniger Angussmaterial aufgeschmolzen werden muss und die heiße Schmelze in der Ringleitung stets formkavitätsnah zur Verfügung steht, wird auch weniger Zeit für den Gießzyklus benötigt, so dass die Taktung verbessert wird.In a casting apparatus with a pouring valve according to the invention, the amount of circulating material is thereby reduces filling and recompression via the same pouring valve. A casting device preferably has the pouring valve according to the invention directly on the gate area of the casting or on the casting itself. By spatially very close arrangement of the casting then the proportion of Sprue and the amount of circulating material can be further reduced. In particular, in the case of planar structural parts, casting compositions of less than 20% of the casting mass can be achieved thereby. At the same time, the sprue system can be compact. The sprue material can be reused as circulating material. The fact that less sprue material must be melted and the hot melt in the loop is always close to the mold cavity available, less time is required for the casting cycle, so that the timing is improved.

Die Erfindung betrifft ebenfalls ein Verfahren zum Druckgießen mit einer Druckgießvorrichtung und einem einen Ventilkolben aufweisenden Gießventil, das folgende Schritte vorsieht: Bereitstellen einer gereinigten und für einen Formfüllvorgang vorbereiteten Gussteilkavität bei geschlossenem Gießventil, Öffnen des Gießventils zum Gießen, Schließen des Gießventils nach Formfüllende, Entnehmen des Gussteils und Nachverdichten während des Abkühlvorgangs und vor der Entnahme des Gussteils mittels eines in das Gießventil integrierten Kolbens.The invention also relates to a method for die casting with a die casting device and a casting valve having a valve piston, which provides the following steps: providing a cleaned and prepared for a mold filling casting cavity with a closed pouring valve, opening the pouring valve for pouring, closing the pouring valve after Formfüllende, removing the Casting and re-compression during the cooling process and before the removal of the casting by means of a built-in the pouring valve piston.

Das vorgeschlagene Verfahren ermöglicht die Befüllung und die Nachverdichtung über dieselbe Angussöffnung, so dass die Anzahl der Anschnittbereiche gegenüber separat zum Gießventil angeordneten Squeeze-Pins reduziert ist. Die erforderliche Nachbearbeitung des Gussteils verringert sich somit. Dadurch dass der Nachverdichtungskolben und der Ventilkolben raumnah zueinander angeordnet sind, sind die auftretenden Wärmeverluste minimiert und die Abstimmung zwischen den Phasen, in denen die beiden Kolben betätigt werden, erleichtert.The proposed method allows the filling and the recompression via the same gate opening, so that the number of gate areas is reduced compared to separately arranged to the casting valve squeeze pins. The required post-processing of the casting is thus reduced. The fact that the Nachverdichtungskolben and the Valve piston are arranged close to each other to space, the heat losses occurring are minimized and facilitates the coordination between the phases in which the two pistons are actuated.

Nachfolgend werden das Gießventil und das Arbeitsverfahren zum Betreiben des Gießventils in einer Gießvorrichtung anhand von Zeichnungen näher beschrieben. Die einzelnen Figuren zeigen:

Figur 1
einen Teil einer erfindungsgemäßen Gießvorrichtung mit einer Gießkammer und einem Gießventil im Längsschnitt in schematischer Darstellung,
Figur 2
einen Längsschnitt eines erfindungsgemäßen Gießventils mit zwei konzentrischen Kolben sowie
Figur 3a
das erfindungsgemäße Verfahren zum Betreiben des Gießventils durch eine schematischen Darstellung der Stellung des Ventilkolbens zum Zeitpunkt der Reinigung der Gussteilformkavität,
Figur 3b
eine schematische Darstellung der Stellung des Ventilkolbens vor dem Gießvorgang,
Figur 3c
eine schematische Darstellung der Stellung des Ventilkolbens während des Gießens,
Figur 3d
eine schematische Darstellung der Stellung des Ventilkolbens nach Formfüllende,
Figur 3e
eine schematische Darstellung der Stellung des Ventilkolbens während des Abkühlens und
Figur 3f
eine schematische Darstellung der Stellung des Ventilkolbens unmittelbar vor der Gussteilentnahme.
Hereinafter, the pouring valve and the working method for operating the pouring valve in a casting apparatus will be described with reference to drawings. The individual figures show:
FIG. 1
a part of a casting device according to the invention with a casting chamber and a pouring valve in longitudinal section in a schematic representation,
FIG. 2
a longitudinal section of a pouring valve according to the invention with two concentric pistons and
FIG. 3a
the method according to the invention for operating the pouring valve by a schematic representation of the position of the valve piston at the time of cleaning the casting mold cavity,
FIG. 3b
a schematic representation of the position of the valve piston before the casting process,
Figure 3c
a schematic representation of the position of the valve piston during casting,
3d figure
a schematic representation of the position of the valve piston after Formfüllende,
FIG. 3e
a schematic representation of the position of the valve piston during cooling and
FIG. 3f
a schematic representation of the position of the valve piston immediately before the casting removal.

Figur 1 zeigt schematisch einen Teil einer Gießvorrichtung 1 zum Druckgießen von metallischen Schmelzen 2 wie Magnesium- oder Aluminiumschmelzen. Die Gießvorrichtung 1 weist eine Gießkammer 4 auf, die aus einem nicht dargestellten Schmelzereservoir über ein Schmelzeventil 19 befüllbar ist. Die Schmelze 2 wird aus der horizontal orientierten Gießkammer 4 durch einen hydraulisch bewegten, in der Waagerechte vorfahrenden Gießkolben 6 in einen Schmelzekanal 11 befördert und mit Druck beaufschlagt. FIG. 1 schematically shows a part of a casting apparatus 1 for die casting of metallic melts 2 such as magnesium or aluminum melts. The casting apparatus 1 has a casting chamber 4, which can be filled from a melt reservoir, not shown, via a melt valve 19. The melt 2 is conveyed from the horizontally oriented casting chamber 4 by a hydraulically moved, in the horizontal advancing casting piston 6 in a melt channel 11 and pressurized.

Der Schmelzekanal 11 ist mit Heizmitteln 5 in Form von Spulen umgeben, die ein Auskühlen der Schmelze 2 verhindern. Vom beheizten Schmelzekanal 11 gelangt die Schmelze 2 über einen Schmelzekanalanschluss 12 in die Ventilzelle 8 (Figur 2) des Gießventils 7 und von dort über den Ventilauslass 10 in die Gussteilkavität 3. Die Gussteilkavität 3 selbst wird durch zwei Gussformhalbschalen 15, 16 gebildet und ist in bekannter Weise durch das um das Schwindmaß vergrößerte Negativform des herzustellenden Gussteils gebildet. Die Gussformhalbschalen 15, 16 sind an einer Trennfläche 9 voneinander trennbar, so dass das fertige Gussteil entnommen werden kann.The melt channel 11 is surrounded by heating means 5 in the form of coils, which prevent cooling of the melt 2. From the heated melt channel 11, the melt 2 passes through a melt channel connection 12 into the valve cell 8 (FIG. FIG. 2 ) of the pouring valve 7 and from there via the valve outlet 10 into the casting cavity 3. The casting cavity 3 itself is formed by two half-molds 15, 16 and is formed in a known manner by the enlarged by the Schwindmaß negative mold of the casting to be produced. The half-molds 15, 16 are separable from each other at a parting surface 9, so that the finished casting can be removed.

Figur 2 zeigt ein Gießventil 7 mit einem Ventilgehäuse 13, das eine über den Schmelzekanalanschluss 12 befüllbare Ventilzelle 8 aufweist, die Teil des Schmelzekanals 11 selbst ist und im Vergleich zu diesem und zum Schmelzekanalanschluss 12 keinen vergrößerten Querschnitt aufweist. Zentrisch im Ventilgehäuse 13 ist der Ventilkolben 14 angeordnet, über den der Ventilauslass 10 verschließbar ist. An der Stirnseite 17 des Ventilkolbens 14 schließt sich eine ballige Mantelfläche 18 des Ventilhauptkegels an, der axial in einen anschließenden Zylinderabschnitt 20 übergeht. Die Innenwand 21 des Ventilgehäuses 13, die an den Ventilauslass 10 anschließt weist eine Neigung gegenüber der Ventilhauptachse 22 auf, die größer ist als die der Mantelfläche 18. Beim Schließen des Gießventils 7 bilden der Ventilkolben 7 und Innenwand 21 des Ventilgehäuses 13 daher einen Ringspalt und im verschlossenen Zustand aufgrund der Balligkeit einen kreisförmigen Linienkontakt als Ventilsitz. FIG. 2 shows a pouring valve 7 with a valve housing 13 which has a fillable via the melt channel connection 12 valve cell 8, which is part of the melt channel 11 itself and in comparison to this and the melt channel connection 12 has no enlarged cross-section. Centrally in the valve housing 13, the valve piston 14 is arranged, via which the valve outlet 10 is closed. On the end face 17 of the valve piston 14, a convex lateral surface 18 of the valve main cone connects, which merges axially into a subsequent cylinder section 20. The inner wall 21 of the valve housing 13, which adjoins the Ventilauslass 10 has an inclination relative to the main valve axis 22, which is greater than that of the lateral surface 18. When closing the Gießventils 7 of the valve piston 7 and inner wall 21 of the valve housing 13 therefore form an annular gap and in the closed state due to the crowning a circular line contact as a valve seat.

Angetrieben wird der Ventilkolben 14 durch einen ersten Kolbenantrieb 24, der hydraulisch arbeitet und axial versetzt zum Ventilkolben 14 angeordnet ist. Da der Ventilkolben 14 mit der heißen Schmelze 2 in Kontakt steht, sind Entkopplungsmittel 26 in Form von Zwischenbolzen als Abstandshalter vorgesehen, die den Kolbenantrieb 24 mit der Kolbenplatte 28 vom Kolbenkopf 29 des Ventilkolbens 14 mechanisch und damit auch thermisch entkoppeln, die Druckkraft aber auf den Kolbenkopf 29 dennoch übertragen.The valve piston 14 is driven by a first piston drive 24, which operates hydraulically and is arranged axially offset from the valve piston 14. Since the valve piston 14 is in contact with the hot melt 2, decoupling means 26 are provided in the form of intermediate bolts as spacers mechanically and thus thermally decouple the piston drive 24 with the piston plate 28 from the piston head 29 of the valve piston 14, but the pressure force on the Nevertheless, piston head 29 is transferred.

Der Ventilkolben 14 ist als Hohlzylinder ausgebildet und weist koaxial zur Verschieberichtung einen Nachverdichtungskolben 23 auf. In gleicher Weise wie der Ventilkolben 14 weist der Nachverdichtungskolben 23 einen zweiten Kolbenantrieb 25 auf, der unabhängig vom ersten Kolbenantrieb 24 betreibbar ist. Dessen Hydraulikkammern 30 schließen sich axial an die des ersten Kolbenantriebs 24 an.The valve piston 14 is formed as a hollow cylinder and has co-axial to the direction of a Nachverdichtungskolben 23. In the same way as the valve piston 14, the recompression piston 23 has a second piston drive 25 which is operable independently of the first piston drive 24. Its hydraulic chambers 30 are connected axially to those of the first piston drive 24.

Der Betrieb des in den Figuren 1 und 2 dargestellten Gießventils 1 gliedert sich in sechs verschiedene Phasen. In der in Figur 3a dargestellten, ersten Phase, der Ausgangsstellung, die nach der Entnahme des Gussstücks des vorausgegangenen Gießzyklus' erreicht ist, sind der Ventilkolben 14 und der Nachverdichtungskolben 23 geschlossen und so weit wie möglich in Richtung des Ventilauslasses 10 gefahren. Der Schmelzekanal 11 ist daher von der Gussteilkavität 3 getrennt, die daher gereinigt werden und durch einen Sprühvorgang für das nächste Gießen vorbereitet werden kann.The operation of the in the Figures 1 and 2 illustrated pouring valve 1 is divided into six different phases. In the in FIG. 3a shown, the initial position, which is reached after the removal of the casting of the previous casting cycle ', the valve piston 14 and the Nachverdichtungskolben 23 are closed and as far as possible in the direction of the valve outlet 10 driven. The melt channel 11 is therefore separate from the casting cavity 3, which therefore can be cleaned and prepared by a spray process for the next casting.

Vor dem nächsten Gießvorgang wird die Gussteilkavität 3 so fest verschlossen, dass sie dem Schmelzedruck des anschließenden Druckgießprozesses standhält. Der innere Nachverdichtungskolben 23 fährt in dieser zweiten Phase in seine Ausgangsstellung zurück, die gegenüber dem den Ventilauslass 10 verschließenden Ventilkolben 14 so weit zurückgesetzt ist, dass zwischen den Innenwänden des Ventilkolbens 14 ein Sackloch 27 entsteht. Die Sacklochtiefe entspricht in etwa dem Hub des Ventilkolbens 14.Before the next casting process, the casting cavity 3 is closed so tightly that it withstands the melt pressure of the subsequent die casting process. In this second phase, the inner recompression piston 23 returns to its starting position, which is set back so far from the valve piston 14 closing the valve outlet 10 that a blind hole 27 is created between the inner walls of the valve piston 14. The blind hole depth corresponds approximately to the stroke of the valve piston 14th

Durch Zurückziehen des Ventilkolbens 14 wird der eigentliche Gießprozess als dritte Phase eingeleitet. Der Ventilkolben 14 löst sich von seinem ringlinienförmigen Ventilsitz, und durch die nun einströmende, heiße Schmelze 2 wird eventuell an dieser Stelle erkaltetes Material aufgeschmolzen. Aufgrund des Ringlinienkontakts und einer eventuell am Gießventil 7 befindlichen Heizung ist die erstarrte Schmelzemenge so gering, dass sie vollständig aufgeschmolzen wird und ein Öffnen des Ventilkolbens 14 nicht oder nur unwesentlich erschwert. Der Ventilauslass 10 wird maximal geöffnet, und die Schmelze 2 kann ringförmig zwischen den Kolben 14, 23 und der Innenwand 21 des Ventilgehäuses 13 in die Gussteilkavität 3 strömen. Die zum Befüllen vorgesehene Schmelzemenge wird durch den vorfahrenden Gießkolben 6 über den Schmelzekanal 11 nachgeschoben.By retracting the valve piston 14, the actual casting process is initiated as a third phase. The valve piston 14 releases from its annular valve seat, and by the now flowing, hot melt 2 is possibly at this point cooled material melted. Due to the ring-line contact and any heating located on the pouring valve 7, the solidified amount of melt is so small that it is completely melted and does not make opening the valve piston 14 difficult or only insignificantly difficult. The valve outlet 10 is opened to the maximum, and the melt 2 can flow annularly between the pistons 14, 23 and the inner wall 21 of the valve housing 13 in the Gussteilkavität 3. The envisaged for filling amount of melt is pushed by the advancing casting piston 6 via the melt channel 11.

Nach Abschluss des Formfüllvorgangs werden die Gießventile 7, von denen in Figur 1 nur eines dargestellt ist, durch Vorfahren des Ventilkolbens 14 geschlossen (vierte Phase, Figur 4). Durch die Relativbewegung des Ventilkolbens 14 und des nicht-mitbewegten Nachverdichtungskolbens 23 bildet sich wieder das stirnseitige Sackloch 27 aus, und das Gussstück kann erkalten. Da aufgrund des geschlossenen Ventilkolbens 14 der Schmelzedruck nicht mehr durch den Gießkolben 6 der Gießkammer 4 aufgebracht werden kann, wird der erforderliche Gießdruck nunmehr von dem Nachverdichtungskolben 23 erzeugt.Upon completion of the mold filling operation, the pouring valves 7, of which in FIG. 1 only one is shown, closed by ancestors of the valve piston 14 (fourth phase, Figure 4). Due to the relative movement of the valve piston 14 and the non-moving Nachverdichtungskolbens 23 again forms the end-side blind hole 27, and the casting can cool. Since, due to the closed valve piston 14, the melt pressure can no longer be applied through the casting piston 6 of the casting chamber 4, the required casting pressure is now generated by the secondary compression piston 23.

In der fünften Abkühlungsphase erstarrt das Gussstück, und die Gießkammer 4 wird für einen neuen Formfüllvorgang vorbereitet. Während des Erkaltens wird die dadurch bedingte Materialschrumpfung ausgeglichen, indem der Nachverdichtungskolben 23 die sich in dem Sackloch 27 und dem daran unmittelbar anschließenden Bereich befindliche Schmelze 2 in die Gussteilkavität presst. Wenn die Menge der für die Nachverdichtung benötigten Schmelze 2 dem Sacklochvolumen entspricht, kann der an den Ventilauslass 10 anschließende Angusskanal besonders kurz ausfallen oder gegebenenfalls sogar entfallen. Wie in Figur 3e dargestellt, fährt in dieser Ausführungsform der Nachverdichtungskolben 23 über die Stirnseite 17 des Ventilkolbens 14 hinaus in die Gussteilkavität 3 hinein. Der Erstarrungsprozess kann durch Zuführung von Kühlleistung über Kühlkanäle beschleunigt werden.In the fifth cooling phase, the casting solidifies and the casting chamber 4 is prepared for a new mold filling operation. During cooling, the consequent shrinkage of material is compensated for by the secondary compression piston 23 which presses the melt 2 located in the blind hole 27 and the immediately adjacent region into the casting cavity. If the amount of melt required for the re-compaction 2 the Blind hole volume corresponds, the adjoining the valve outlet 10 runner can be particularly short or possibly even eliminated. As in FIG. 3e shown moves in this embodiment, the Nachverdichtungskolben 23 beyond the end face 17 of the valve piston 14 out into the Gussteilkavität 3 into it. The solidification process can be accelerated by supplying cooling power via cooling channels.

Vor der Öffnung der Gussteilkavität 3 und der Entnahme des Gussteils erfolgt in der letzten Phase (Figur 3f) ein Rückzug des Nachverdichtungskolbens 23; der Ventilkolben 14 bleibt weiterhin geschlossen.Prior to the opening of the casting cavity 3 and the removal of the casting, in the last phase ( FIG. 3f ) a retraction of the recompression piston 23; the valve piston 14 remains closed.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Gießvorrichtungcaster
22
Schmelzemelt
33
GussteilkavitätGussteilkavität
44
Gießkammercasting chamber
55
Heizmittelheating
66
Gießkolbencasting plunger
77
Gießventilcasting valve
88th
Ventilzellevalve cell
99
Trennflächeinterface
1010
Ventilauslassvalve outlet
1111
Schmelzekanalmelt channel
1212
SchmelzekanalanschlussMelt channel connection
1313
Ventilgehäusevalve housing
1414
Ventilkolbenplunger
1515
GussformhalbschaleMold half shell
1616
GussformhalbschaleMold half shell
1717
Stirnseitefront
1818
Mantelflächelateral surface
1919
Schmelzeventilmelt valve
2020
Zylinderabschnittcylinder section
2121
Innenwandinner wall
2222
VentilhauptachseValve main axis
2323
NachverdichtungskolbenNachverdichtungskolben
2424
erster Kolbenantriebfirst piston drive
2525
zweiter Kolbenantriebsecond piston drive
2626
Entkopplungsmitteldecoupling means
2727
Sacklochblind
2828
Kolbenplattepiston plate
2929
Kolbenkopfpiston head
3030
Hydraulikkammerhydraulic chamber

Claims (10)

  1. A casting valve (7) for supplying melts (2) to a casting device (1), comprising:
    - a valve housing (13) comprising a melt channel connection (12) as an inlet and a valve outlet (10) as a run-out,
    - a valve compartment (8) for receiving the melt (2) ;
    - a closing means for modifying a cross-sectional surface of the valve outlet, wherein
    - the valve compartment (8) is connectable via the melt channel connection (12) with a melt channel (11) that is pressurizable by means of a casting pressure; and
    - the casting valve (7) comprises a post-compression piston (23) configured to post-compress the melt (2) after completion of a mold filling.
  2. The casting valve according to claim 1, characterized in that the closing means is designed as a valve piston (14) and forms a cone-shaped valve seat together with a part of the inner wall (21) of the valve housing (13).
  3. The casting valve according to claim 2, characterized in that the cone-shaped part of the inner wall (21) is conical and the valve piston (14) has a crowned piston lateral surface (18), which forms a linear contact with the inner wall (21) during closing.
  4. The casting valve according to claim 2 or 3, characterized in that the casting valve (7) has a post-compression piston (23), which is disposed coaxially with the valve piston (17) and is movable relative to it.
  5. The casting valve according to claim 4, characterized in that the casting valve (7) has separate piston drives (24, 25) for the pistons (17, 23).
  6. The casting valve according to claim 5, characterized in that one of the piston drives (24, 25) is designed as a hydraulic drive.
  7. The casting valve according to claim 1, characterized in that the casting valve (7) has a heating means (5) for heating the valve compartment (8).
  8. The casting valve according to claim 1, characterized in that the casting valve (7) has insulation means (26) for thermal insulation of the valve piston (17) from the piston drive (24).
  9. A casting device (1) for die casting with a mold cavity (3) and a casting valve (7) according to one of the afore-mentioned claims, characterized in that the casting valve (7) is disposed directly on the gate area or directly on the cast part cavity (3).
  10. A method for die casting with a casting device (1) and a casting valve (7) having a valve piston (14), which comprises the following steps:
    - providing a mold cavity (3), which is cleaned and prepared for a mold filling process, with the casting valve (7) in a closed position;
    - opening the casting valve (7) for casting;
    - closing the casting valve (7) after filling the mold;
    - removing the cast part, characterized in that
    - a post-compression is carried out by means of a post-compression piston (23) integrated in the casting valve (7) during the cooling process and before removing the cast part.
EP14167787.2A 2013-05-27 2014-05-09 Casting valve with a final compression piston Active EP2808104B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013105435.8A DE102013105435B3 (en) 2013-05-27 2013-05-27 Casting valve with a recompression piston

Publications (2)

Publication Number Publication Date
EP2808104A1 EP2808104A1 (en) 2014-12-03
EP2808104B1 true EP2808104B1 (en) 2016-11-23

Family

ID=50679946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14167787.2A Active EP2808104B1 (en) 2013-05-27 2014-05-09 Casting valve with a final compression piston

Country Status (5)

Country Link
US (2) US9457400B2 (en)
EP (1) EP2808104B1 (en)
CN (1) CN104308115B (en)
DE (1) DE102013105435B3 (en)
ES (1) ES2609381T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013105433B3 (en) * 2013-05-27 2014-05-22 Schuler Pressen Gmbh Casting device with a loop and casting process
DE102013105435B3 (en) * 2013-05-27 2014-07-10 Schuler Pressen Gmbh Casting valve with a recompression piston
DE102014205388A1 (en) * 2014-03-24 2015-09-24 Bayerische Motoren Werke Aktiengesellschaft Device for die casting a metallic component
DE102014111032B3 (en) 2014-08-04 2015-10-01 Schuler Pressen Gmbh Casting valve and pouring device
JP6455840B2 (en) * 2015-09-07 2019-01-23 株式会社アルテックス Squeeze pin operation determination device and squeeze pin operation determination method
JP7254619B2 (en) * 2019-05-17 2023-04-10 芝浦機械株式会社 die casting machine
CN114030143B (en) * 2021-11-17 2022-07-22 徐州云泰精密技术有限公司 Collecting ring water gap punching device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1847509U (en) * 1961-09-12 1962-03-01 Odenwaelder Kunststoffwerk Dr SLIDING NOZZLE WITH NEEDLE CONNECTOR FOR INJECTION MOLDING MACHINES.
US3960201A (en) * 1974-12-13 1976-06-01 Societe De Vente De L'aluminium Pechiney Injection device for molding machines
DE3427940C2 (en) * 1984-07-28 1995-01-19 Friedhelm Prof Dr Ing Kahn Methods and devices for controlling the filling of spaces by metal melting with the aid of electromagnetic fields
JP2504099B2 (en) * 1987-02-28 1996-06-05 日本電装株式会社 Die casting method and die casting apparatus
US4860818A (en) * 1987-09-21 1989-08-29 Ube Industries, Ltd. Die casting apparatus
CH689156A5 (en) * 1994-06-01 1998-11-13 Buehler Ag Diecasting.
DE19533447C1 (en) 1995-09-09 1996-12-05 Bbs Kraftfahrzeugtechnik Method for filling die with metal melt
JP3477124B2 (en) * 1999-10-21 2003-12-10 株式会社日本製鋼所 Method of applying release agent in metal injection molding machine and metal injection mold
DE10001088A1 (en) * 2000-01-13 2001-07-19 Bayerische Motoren Werke Ag Die casting tool comprises a casting runner which can be interrupted by a sliding valve
DE10305756A1 (en) * 2003-02-11 2004-08-19 Günther Gmbh & Co., Metallverarbeitung Concentric feed needle for injection molding with gas blowing includes annular seal in polymer duct to give deep needle penetration into mold space
DE20302845U1 (en) * 2003-02-20 2003-05-22 Günther GmbH & Co., Metallverarbeitung, 35066 Frankenberg needle valve nozzle
ATE355145T1 (en) * 2003-10-15 2006-03-15 Fondarex Sa PRINTING OR INJECTION MOLDING MACHINE
DE102006049073A1 (en) * 2006-10-13 2008-04-17 Hasco Hasenclever Gmbh + Co Kg Injection nozzle for guiding melt mass in a plastic injection mold
DE102007047545A1 (en) * 2007-09-29 2009-04-02 Eglass Production & Trade Gmbh Device for dosing and supplying low-viscous melts such as glass melts, comprises a dosing cell with a reception chamber, a dosing piston arranged within the reception chamber for altering outgoing mass-flow of the melt, and a piping system
DE102009057197B3 (en) * 2009-11-30 2011-05-19 Oskar Frech Gmbh + Co. Kg Casting unit for a die casting machine
JP5120429B2 (en) * 2010-08-24 2013-01-16 株式会社デンソー Vacuum die casting equipment
DE102011050149A1 (en) 2010-11-17 2012-05-24 Ferrofacta Gmbh Die casting nozzle and die casting process
DE102013105435B3 (en) * 2013-05-27 2014-07-10 Schuler Pressen Gmbh Casting valve with a recompression piston

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160129500A1 (en) 2016-05-12
EP2808104A1 (en) 2014-12-03
ES2609381T3 (en) 2017-04-20
US9643245B2 (en) 2017-05-09
DE102013105435B3 (en) 2014-07-10
US9457400B2 (en) 2016-10-04
CN104308115B (en) 2018-11-09
US20140345824A1 (en) 2014-11-27
CN104308115A (en) 2015-01-28

Similar Documents

Publication Publication Date Title
EP2808104B1 (en) Casting valve with a final compression piston
EP1201335B1 (en) Device for producing pressure die castings, especially from non-ferrous metals
DE69832538T2 (en) MAGNESIUM CASTING
DE60209505T3 (en) METHOD FOR INJECTION MOLDING
DE2753157A1 (en) DIE CASTING MACHINE
AT512229B1 (en) DEVICE, APPARATUS AND METHOD FOR THE PRESSURE GASING OF METALLIC MATERIAL IN THE THIXOTROPIC CONDITION
DE3926357A1 (en) INJECTION MOLDING DEVICE WITH A NEEDLE CLOSURE
EP3645192B1 (en) Method, casting mold and device for producing a vehicle wheel
DE4137720C2 (en) Injection molding nozzle with conical heating element near the gate
EP3191287B1 (en) Method and injection-moulding nozzle for producing injection-moulded parts from plastic
DE4137664B4 (en) Injection molding with a separate heating element in the mold cavity forming insert
DE69812502T2 (en) Casting chamber for a die casting machine and a method for removing impurities
EP3308933A1 (en) Tube head and device and method for manufacturing a tube head
EP2145747B1 (en) Molding device and method for producing hollow objects with a projectile formed during the molding process
WO2015155170A1 (en) Die-casting machine and die-casting process for producing a plurality of castings
DE3780067T2 (en) METHOD AND DEVICE FOR SHAPING RIM-LIKE SHAPED PIECES.
EP3423215B1 (en) Diecasting die system
EP3771506B1 (en) Casting method with a shaping contour for producing a core, component and system for producing a component
EP3697554A1 (en) Die casting mold for casting cylinder crankcases or crankcase subparts
DE7634550U1 (en) EXTRUDING DEVICE FOR MANUFACTURING LONG ELEVATED BODIES FROM NON-FERROUS METALS
EP3523069B1 (en) Mold divider for installing in a mold
EP4197668A1 (en) Casting mould, hot chamber system, method for the pressure casting of metal and use of a casting mould
DE102014111032B3 (en) Casting valve and pouring device
AT517860B1 (en) Method and device for producing at least one molded part
EP3511090A1 (en) Cold chamber pressure casting method and cold chamber pressure casting machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141208

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 27/11 20060101ALI20160603BHEP

Ipc: B22D 17/20 20060101AFI20160603BHEP

Ipc: B22D 17/30 20060101ALI20160603BHEP

INTG Intention to grant announced

Effective date: 20160622

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 847407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014002021

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014002021

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2609381

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014002021

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 10

Ref country code: FR

Payment date: 20230517

Year of fee payment: 10

Ref country code: ES

Payment date: 20230621

Year of fee payment: 10

Ref country code: DE

Payment date: 20230421

Year of fee payment: 10

Ref country code: CH

Payment date: 20230605

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230516

Year of fee payment: 10