EP2798721B1 - System und verfahren zum gewährleisten einer ordentlichen verdrahtung eines neutralleiters in einem elektrischen system - Google Patents

System und verfahren zum gewährleisten einer ordentlichen verdrahtung eines neutralleiters in einem elektrischen system Download PDF

Info

Publication number
EP2798721B1
EP2798721B1 EP12824939.8A EP12824939A EP2798721B1 EP 2798721 B1 EP2798721 B1 EP 2798721B1 EP 12824939 A EP12824939 A EP 12824939A EP 2798721 B1 EP2798721 B1 EP 2798721B1
Authority
EP
European Patent Office
Prior art keywords
ups
input
signal
output
analysis circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12824939.8A
Other languages
English (en)
French (fr)
Other versions
EP2798721A2 (de
Inventor
Rajesh Ghosh
Mahima Agrawal
Pradeep TOLAKANAHALLI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric IT Corp
Original Assignee
Schneider Electric IT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric IT Corp filed Critical Schneider Electric IT Corp
Publication of EP2798721A2 publication Critical patent/EP2798721A2/de
Application granted granted Critical
Publication of EP2798721B1 publication Critical patent/EP2798721B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/55Testing for incorrect line connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • H02J9/063Common neutral, e.g. AC input neutral line connected to AC output neutral line and DC middle point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • At least one example in accordance with the present invention relates generally to the protection of a parallel UPS system against phase-neutral reversal due to incorrect wiring.
  • UPS Uninterruptible Power Supplies
  • two UPS's may be electrically connected to form a single parallel UPS system with one output.
  • the combination of two UPS's may provide increased power capacity to a load attached to the parallel UPS system.
  • the second one of the UPS's coupled in parallel may function as a redundant backup unit for the failed UPS.
  • Patent publication JP 2008 048576 A discusses information that is useful for understanding the background of the invention.
  • generating a first signal includes monitoring zero-crossing information of the input power received by the first UPS, and generating the first signal containing zero-crossing information of the input power received by the first UPS.
  • analyzing includes comparing the first signal containing zero-crossing information with the second signal, the second signal containing zero-crossing information of the input power received by the device.
  • generating a first signal includes monitoring polarity information of the input power received by the first UPS, and generating the first signal containing polarity information of the input power received by the first UPS.
  • analyzing includes comparing the first signal containing polarity information with the second signal, the second signal containing polarity information of the input power received by the device.
  • receiving the second signal includes receiving the second signal from the second analysis circuit via a communication bus coupled between the first UPS and the second analysis circuit. In another embodiment, receiving the second signal further includes receiving the second signal from the device, wherein the device is a second UPS coupled to the power source. In one embodiment, receiving the second signal further includes receiving the second signal from the second analysis circuit, wherein the second analysis circuit is within a PSBP panel coupled to the power source.
  • the method further comprises transmitting the first signal to the second analysis circuit via the communication bus.
  • de-energizing the first UPS includes de-coupling the first UPS from the power source.
  • the method further comprises detecting, at an output of the first UPS, output power provided to a load, generating, with the analysis circuitry, a third signal containing information indicative of a signal characteristic of the output power detected at the output of the first UPS, receiving, at the analysis circuitry, a fourth signal from a second UPS, the fourth signal containing information indicative of a signal characteristic of output power detected at an output of the second UPS, analyzing, with the analysis circuitry, the third signal and the fourth signal, determining, in response to analyzing, whether an improper wiring condition exists at the output of the first UPS, in response to a determination that an improper wiring condition doest not exist at the output, providing output power to the output of the first UPS; and in response to a determination that an improper wiring condition does exist at the output, de-energizing the first UPS.
  • a UPS comprising an input to receive input power from a power source, an output to provide output power to a load, a first analysis circuit coupled to the input and configured to be coupled to a communication bus, and control circuitry coupled to the first analysis circuit, wherein the first analysis circuit is configured to generate a first signal containing information indicative of a signal characteristic of the input power at the input, receive via the communication bus a second signal from a second analysis circuit coupled to the power source, the second signal containing information indicative of a signal characteristic of input power received at the second analysis circuit, analyze the first signal and the second signal, and determine, based on the first and second signal analysis, whether an improper wiring condition exists at the input, wherein, in response to a determination that an improper wiring condition does not exist at the input, the control circuitry is configured to operate the UPS to provide output power to the output, and wherein, in response to a determination that an improper wiring condition does exist at the input, the control circuitry is configured to de-energize the UPS.
  • the UPS further comprises a relay coupled to the input and the control circuitry, wherein in response to a determination by the first analysis circuit that the first and second signals are in phase, the control circuitry is configured to close the relay, allowing that the UPS to provide output power to the output, and wherein, in response to a determination by the first analysis circuit that the first and second signals are out of phase, the control circuitry is configured to open the relay to de-energize the UPS.
  • the first analysis circuit is further coupled to the output and is further configured to generate a third signal containing information indicative of a signal characteristic of the output power at the output, receive via the communication bus a fourth signal from the second analysis circuit, the fourth signal containing information indicative of a signal characteristic of output power at a second UPS containing the second analysis circuit, analyze the third signal and the fourth signal, and determine, based on the third and fourth signal analysis, whether an improper wiring condition exists at the output, wherein, in response to a determination that an improper wiring condition does not exist at the output, the control circuitry is configured to close the relay so that the UPS provides output power to the output, and wherein, in response to a determination that an improper wiring condition does exist at the output, the control circuitry is configured to open the relay to de-energize the UPS.
  • the first analysis circuit comprises a first zero-crossing detector coupled to the input, and a wrong wiring detector coupled to the zero-crossing detector, the control circuitry and the communication bus, wherein the first zero-crossing detector is configured to monitor zero-crossing information of input power received at the input and generate the first signal, the first signal containing zero-crossing information of the input power received at the input, and wherein the wrong wiring detector is configured to compare the first signal containing zero-crossing information with the second signal, the second signal containing zero-crossing information of the input power received by the second analysis circuit.
  • the wrong wiring detector is further configured to receive the second signal containing zero-crossing information from a second zero-crossing detector within a second UPS coupled to the power source.
  • the wrong wiring detector is further configured to receive the second signal containing zero-crossing information from a second zero-crossing detector within a PSBP coupled to the power source.
  • the first analysis circuit comprises a first DSP coupled to the input, wherein the DSP is configured to monitor polarity information of input power received at the input, generate the first signal containing polarity information of the input power received at the input, and compare the first signal containing polarity information with the second signal, the second signal containing polarity information of the input power received by the second analysis circuit.
  • the first DSP is further configured to receive the second signal containing polarity information from a second DSP within a second UPS coupled to the power source.
  • One aspect in accord with the present invention is directed to a parallel UPS system, the system comprising a plurality of UPS's coupled in parallel, each UPS including at least one phase input coupled to a power source via a mains bus, a neutral input coupled to the power source via the mains bus, at least one phase output coupled to a load via a load bus, a neutral output coupled to the load via the load bus, and means for identifying incorrect wiring of the at least one phase input and the neutral input to the mains bus and the at least one phase output and the neutral output to the load bus.
  • Embodiments of the invention are not limited to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. Embodiments of the invention are capable of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including,” “comprising,” or “having,” “containing”, “involving”, and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
  • UPS Parallel Service Bypass Panel
  • PSBP Parallel Service Bypass Panel
  • the inputs and outputs of each UPS are routed through the PSBP panel and the PSBP panel is configured to isolate individual UPS units for maintenance.
  • the input and output power cable connections to the UPS and/or PSBP are hardwired.
  • the phase and neutral terminals at the terminal block of any UPS and/or PSBP are reversed due to incorrect wiring.
  • a parallel UPS system if an input of a first UPS is coupled to an input phase line and the input of a second UPS is coupled to an input neutral line, there may exist a direct phase to neutral short circuit through the UPS units.
  • an output of a first UPS is coupled to an output phase line and the output of a second UPS is coupled to an output neutral line
  • the output terminals of each UPS may also be shorted. Incorrect wiring, and any resulting short circuits, may result in the failure of the parallel UPS system or even damage to the parallel UPS system or attached loads.
  • each UPS is typically fed through a circuit breaker which is configured to trip in the event of a short circuit.
  • a circuit breaker which is configured to trip in the event of a short circuit.
  • power to the critical load is interrupted.
  • the short circuit current will pass through each UPS unit before the circuit breaker trips.
  • At least some embodiments described herein provide a scheme that identifies incorrect wiring in a parallel UPS system prior to a short circuit situation arising, therefore reducing the need to interrupt power to a critical load and preventing the short circuit current from being fed to the UPS units.
  • FIG. 1 is a circuit diagram of a parallel UPS system 100 in accordance with one aspect of the present invention.
  • the parallel UPS system 100 includes a first UPS 102 and a second UPS 202 coupled in parallel.
  • the specific components of the first UPS 102 will now be described in greater detail.
  • the first UPS 102 is substantially the same as the second UPS 202 and like components are labeled using similar reference numbers, except that reference numbers for components of the first UPS start with the number one and reference numbers for components of the second UPS start with the number two.
  • the first UPS 102 is coupled to an external power source (not shown) via the mains bus 101.
  • the first UPS 102 includes a phase input 104 coupled to a phase line 103 of the mains bus 101 and a neutral input 106 coupled to a neutral line 105 of the mains bus 101. Both the phase input 104 and the neutral input 106 are coupled to a Power Factor Correction (PFC) circuit 110 via a back-feed relay 108.
  • the PFC circuit 110 is coupled to an inverter 112 via a split DC bus 114.
  • the split DC bus 114 is coupled to a common neutral point 116 via capacitors C1 and C2.
  • the inverter 112 has a neutral output 120 which is coupled to the neutral line 224 of a load bus 221 and a phase output 118 which is coupled to the phase line 222 of the load bus 221 via a relay 119.
  • the load bus 221 is coupled to an external load (not shown).
  • the phase input 104 is also coupled to the phase output 118 via a bypass line 126 and a relay 128.
  • the neutral input 106 and the neutral output 120 are also coupled to ground 116.
  • a battery 130 is coupled between the PFC 110 and the neutral point 116.
  • the first UPS 102 also includes a controller 132 which is coupled to the backfeed relay 108, the PFC 110, the inverter 112, the relays 128 and 119, and the neural 116.
  • the controller 132 is also coupled to a wrong wiring detector 136.
  • the wrong wiring detector 136 is coupled to an input Zero Crossing Detector (ZCD) 134 and an output ZCD 138.
  • the input ZCD 134 is coupled to the phase input 104 and the neutral input 105.
  • the output ZCD 138 is coupled to the phase output 118 and the neutral output 120.
  • the wrong wiring detector 136 is also coupled to a transmission line 142 and a receive line 144.
  • the parallel UPS system 100 also includes a communication bus 140.
  • the communication bus 140 is connected to each UPS 100 via a General Purpose Input/Output (GPIO), analog communication or any type of digital serial communication (e.g., such as CAN, RS232 and RS485).
  • GPIO General Purpose Input/Output
  • the communication bus is coupled to the transmission line 142, 242 and receive line 144, 244 of each UPS 102, 104.
  • UPS 102 and UPS 202 AC Power received by the mains line 101 from the external power source is provided to the phase input 104, 204 of each UPS 102, 202.
  • the PFC 110, 210 converts the AC power into DC power and provides the DC power to the split DC bus 114, 214.
  • the battery 130, 230 provides DC power to the split DC bus 114, 214.
  • the inverter 112, 212 converts the DC power into regulated AC power and provides the regulated AC power to the phase line 222 via phase output 118, 218.
  • the feedback relay 108, 208 and the relay 128, 228 are closed, the AC power from the phase input 104, 204 is provided directly to the phase output 118, 218 via the bypass line 126, 226, so that unregulated AC power is provided to the phase line 222.
  • the neutral input 106, 206 and the neutral output 120, 220 are coupled together to the common neutral point 116, 216.
  • the controller 132, 232 of each UPS 102, 202 controls the operation (i.e. which relays are closed) of each UPS 102, 202.
  • the controller 132, 232 is an analog controller, a digital controller or both.
  • the input ZCD 134, 234 of each UPS 102, 202 monitors the zero crossings of the input voltage at the phase input 104, 204.
  • the output ZCD 138, 238 of each UPS 102, 202 monitors the zero crossings of the output voltage at the phase output 118, 218.
  • the zero-crossing information of each UPS is provided to the transmission line 142, 242 and is transmitted to the other UPS via the communications bus 140.
  • the wrong wiring detector 136, 236 of each UPS 102, 202 receives, via the receive line 144, 244, the zero-crossing information of the other UPS.
  • the wrong wiring detector 136, 236 compares the zero-crossing information of its own UPS with the received zero-crossing information from the other UPS.
  • phase inputs 104, 204 and phase outputs 118, 218 are designed to be coupled to the same phase lines 103 and 222 respectively, the zero-crossing information from the first UPS 102 and the second UPS 202 should be in phase if the parallel UPS system is wired correctly.
  • the wrong wiring detector 136, 236 determines whether the input and output wiring of the parallel UPS system 100 is correct.
  • FIG. 2A is a graph 200 illustrating input zero-crossing information received by the wrong wiring detector 136 of the first UPS 102 corresponding to correct input wiring.
  • the graph 200 displays zero-crossing detection pulses 202 received from the input ZCD 134, and zero-crossing detection pulses 204 received from the second UPS 202 via the communication bus 140.
  • the pulses 202, 204 are in phase, indicating that the wiring of the first UPS 102, and second UPS 202 is correct.
  • the controller 132 closes the backfeed relay 108 and the first UPS 102 begins providing power to the load bus 221.
  • the wrong wiring detector 236 of the second UPS 202 also determines that the wiring of the parallel UPS system 100 is accurate (based on zero-crossing information from its own UPS and from the first UPS 102) and the controller 232 closes the backfeed relay 208 so that the second UPS 202 also begins to provide power to the load bus 221.
  • FIG. 2B is a graph 210 illustrating input zero-crossing information received by the wrong wiring detector 136 of the first UPS 102 corresponding to incorrect input wiring.
  • the graph 210 displays zero-crossing detection pulses 212 received from the input ZCD 134, and zero-crossing detection pulses 214 received from the second UPS 202 via the communication bus 140.
  • the pulses 212, 244 are out of phase, indicating that the wiring of the parallel UPS system 100 is incorrect.
  • the backfeed relay 108 remains open to prevent a short circuit current from passing through the UPS 102 and a user is informed of the incorrect wiring (e.g., through a front panel display (not shown)).
  • the wrong wiring detector 236 of the second UPS 202 also determines that the wiring of the parallel UPS system 100 is incorrect (based on zero-crossing information from its own UPS and from the first UPS 102) and the backfeed relay 208 also remains open.
  • FIG. 3 is a flow chart 300 illustrating one embodiment of a process for identifying incorrect input wiring in the parallel UPS system 100.
  • the second UPS 202 is providing power to a load via the load bus 221 while the first UPS 101 is off.
  • the input ZCD 234 of the second UPS 202 is capable of generating zero-crossing information based on received power; however, the wrong wiring detector 236 cannot compare the zero-crossing information of the UPS 202 with other zero-crossing information as no other UPS is currently operating (i.e. no zero-crossing information is being transmitted to the UPS 202).
  • a user turns on the first UPS 102.
  • the input ZCD 134 and the wrong wiring detector 136 of the first UPS 102 are energized.
  • the input ZCD 134 of the first UPS 102 generates input zero-crossing information based on the AC power received by the first UPS 102.
  • the input ZCD 234 of the second UPS 102 generates input zero-crossing information based on the AC power received by the second UPS 202.
  • the wrong wiring detector 136 of the first UPS 102 receives input zero crossing information from its own UPS (i.e. from the input ZCD 134 of the first UPS 102) and transmits the input zero-crossing information to the wrong wiring detector 236 of the second UPS 202 via the communication bus 140.
  • the wrong wiring detector 236 of the second UPS 202 receives input zero crossing information from its own UPS (i.e. from the input ZCD 234 of the second UPS 202) and transmits the input zero-crossing information to the wrong wiring detector 136 of the first UPS 102 via the communication bus 140.
  • the wrong wiring detector 136 of the first UPS 102 receives the input zero crossing information from the second UPS 202 and compares the received input zero crossing information with the zero-crossing information from the first UPS 102.
  • the wrong wiring detector 236 of the second UPS 202 receives the input zero crossing information from the first UPS 102 and compares the received input zero crossing information with the zero-crossing information from the second UPS 202.
  • the wrong wiring detector 136 of the first UPS determines whether the zero-crossing information of the first UPS 102 is in phase with the zero-crossing information of the second UPS 202.
  • the controller 132 closes the backfeed relay 108, allowing the UPS 102 to provide power to the load bus 221.
  • the controller 132 keeps the backfeed relay 108 open and informs the user of the wiring error.
  • the wrong wiring detector 236 of the second UPS determines whether the zero-crossing information of the second UPS 202 is in phase with the zero-crossing information of the first UPS 102.
  • the controller 232 maintains the backfeed relay 208 closed, allowing the UPS 202 to continue to provide power to the load bus 221.
  • the controller 232 in response to a determination that the zero-crossing information is out of phase, the controller 232 still maintains the backfeed relay 208 closed in order to continue to provide power to the load bus 221 and informs the user of the wiring error.
  • both UPS's 102, 202 also include an output ZCD 138, 238 which is configured to monitor the zero crossing of signals at the phase output 118, 218 in order to identify faulty wiring at the outputs 118, 120, 218, 220.
  • the process of identifying faulty wiring at the outputs 118, 120, 218, 220 utilizing zero-crossing information is substantially the same as the process of identifying faulty wiring at the input 104, 105, 204, 206 utilizing zero-crossing information (as discussed above), except that the output ZCD's 138, 238 are utilized to generate the zero-crossing information rather than the input ZCD's 134, 234.
  • the controller 132, 232 is a Digital Signal Processor (DSP) (e.g., a microcontroller or Field Programmable Gate Array (FPGA)).
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the DSP 132, 232 may be configured to directly monitor the input and output voltage signals at the phase input 104, 204 and output 118, 218 respectively.
  • the DSP includes an Analog to Digital Converter channel coupled to the phase input 104, 204 and phase output 118, 218 and dedicated to input and output voltage monitoring.
  • the ZCD circuits 134, 138, 234, 238 and wrong wiring detectors may not be necessary as the voltage monitoring and faulty wiring identification are performed directly by the DSP 132, 232.
  • the DSP 132, 232 of each UPS 102, 202 is configured to communication with the DSP 132, 232 of the other UPS 102, 202 via the communication bus 140.
  • each DSP 132, 232 Around the peak (positive or negative) of the monitored input or output voltage, each DSP 132, 232 generates voltage polarity information of the input and output voltage signals and sends the polarity information to the other DSP 132, 232 via the communication bus 140.
  • the polarity information is transmitted once or twice per line cycle; however, in other embodiments, the DSP 132, 232 is configured to transmit polarity information at any defined intervals.
  • Each DSP 132, 232 compares the polarity information of its own UPS 102, 202 with the received polarity information from the other UPS 102, 202.
  • phase inputs 104, 204 and phase outputs 118, 218 are designed to be coupled to the same phase lines 103 and 222 respectively, the polarity information of the first UPS 102 and the second UPS 202 should be in phase if wired correctly.
  • the DSP determines whether the input and output wiring of the parallel UPS system 100 is correct.
  • FIG. 4A is a graph 400 illustrating input polarity information received by the DSP (i.e. controller) 132 of the first UPS 102 corresponding to correct input wiring.
  • the graph 400 displays an input voltage sample 402 monitored by the DSP 132, and an input voltage sample 404 received from the DSP 232 of the second UPS 202 via the communication bus 140.
  • the polarities of the input voltage samples 402, 404 are the same, indicating that the wiring of the first UPS 102, and second UPS 202 is correct.
  • the DSP 132 closes the backfeed relay 108 and the first UPS 102 begins providing power to the load bus 221.
  • the DSP 232 of the second UPS 202 also determines that the wiring of the parallel UPS system 100 is accurate (based on polarity information from its own UPS and from the first UPS 102) and the DSP 232 closes the backfeed relay 208 so that the second UPS 202 also begins to provide power to the load bus 221.
  • FIG. 4B is a graph 410 illustrating polarity information received by the DSP 132 of the first UPS 102 corresponding to incorrect input wiring.
  • the graph 410 displays an input voltage sample 412 monitored by the DSP 132 and an input voltage sample 414 received from the second UPS 202 via the communication bus 140.
  • the polarities of the input voltage samples 412, 414 are out of phase, indicating that the wiring of the parallel UPS system 100 is incorrect.
  • the backfeed relay 108 remains open to prevent a short circuit current from passing through the UPS 102 and a user is informed of the incorrect wiring (e.g., through a front panel display (not shown)).
  • the DSP 232 of the second UPS 202 also determines that the wiring of the parallel UPS system 100 is incorrect (based on polarity information from its own UPS and from the first UPS 102) and the backfeed relay 208 also remains open.
  • FIG. 5 is a flow chart 500 illustrating another embodiment of a process for identifying incorrect input wiring in the parallel UPS system 100.
  • the second UPS 202 is providing power to a load via the load bus 221 while the first UPS 101 is off.
  • the DSP 232 of the second UPS 202 is capable of generating polarity information based on received power; however, the DSP 232 cannot compare the polarity information of the UPS 202 with other polarity information as no other UPS is currently operating (i.e. no polarity information is being transmitted to the UPS 202).
  • a user turns on the first UPS 102.
  • the DSP 132 of the first UPS 102 is energized.
  • the DSP 132 of the first UPS 102 takes input voltage samples of the AC power received by the first UPS 102.
  • the DSP 232 of the second UPS 102 takes input voltage samples of the AC power received by the second UPS 202.
  • the DSP 132 of the first UPS 102 generates input polarity information and transmits the input polarity information to the DSP 232 of the second UPS 202 via the communication bus 140.
  • the DSP 232 of the second UPS 202 generates input polarity information and transmits the input polarity information to the DSP 132 of the first UPS 102 via the communication bus 140.
  • the DSP 132 of the first UPS 102 receives the input polarity information from the second UPS 202 and compares the received input polarity information with the input polarity information from the first UPS 102.
  • the DSP 232 of the second UPS 202 receives the input polarity information from the first UPS 102 and compares the received input polarity information with the input polarity information from the second UPS 202.
  • the DSP 132 of the first UPS 102 determines whether the input polarity information of the first UPS 102 is in phase with the input polarity information of the second UPS 202.
  • the DSP 132 closes the backfeed relay 108, allowing the UPS 102 to provide power to the load bus 221.
  • the DSP 132 keeps the backfeed relay 108 open and informs the user of the wiring error.
  • the DSP 232 of the second UPS 202 determines whether the input polarity information of the second UPS 202 is in phase with the input polarity information of the first UPS 102.
  • the DSP 232 in response to a determination that the input polarity information is in phase, the DSP 232 maintains the backfeed relay 208 closed, allowing the UPS 202 to continue to provide power to the load bus 221.
  • the DSP 232 in response to a determination that the input polarity information is out of phase, the DSP 232 maintains the backfeed relay 208 closed in order to continue to provide power to the load bus 221 and informs the user of the wiring error.
  • the DSP's 132, 232 are also configured to monitor the polarity of signals at the phase output 118, 218 to identify faulty wiring at the outputs 118, 120, 218, 220.
  • the process of identifying faulty wiring at the outputs 118, 120, 218, 220 utilizing polarity information is substantially the same as the process of identifying faulty wiring at the input 104, 106, 204, 206 utilizing polarity information (as described above), except that the voltage samples are taken from the outputs 118, 120, 218, 220 rather than the inputs 104, 106, 204, 206.
  • FIG. 6 is a circuit diagram of a parallel UPS system 600 utilizing a PSBP in accordance with aspects of the present invention.
  • the parallel UPS system 600 includes the first UPS 102 and the second UPS 202, as previously described.
  • the input 602 of the parallel UPS system (and hence the input to each UPS 102, 202) and the output 604 of the parallel UPS system (to be provided to an external load) are both routed through a PSBP panel 601.
  • the PSBP panel 601 includes a service bypass switch 606 coupled between the input 602 and the output 604.
  • the PSBP panel 601 also includes a plurality of circuit breakers/isolators.
  • a first circuit breaker/isolator 608 is coupled between the input 602 and the backfeed relay 108 of the first UPS 102.
  • a second circuit breaker/isolator 610 is coupled between the input 602 and the backfeed relay 208 of the second UPS 202.
  • a third circuit breaker/isolator 612 is coupled between the service bypass switch 606 and the relays 129, 119.
  • a fourth circuit breaker/isolator 614 is coupled between the service bypass switch 606 and the relays 228, 219.
  • the service bypass switch 606 controls whether the parallel UPS system 600 is operating in normal or bypass mode by selectively coupling the input 602 to the output 604 (i.e. bypass mode) or selectively coupling the output 604 to the third 612 and fourth 614 circuit breaker/isolators (i.e. normal mode).
  • Each of the plurality of circuit breaker/isolators can be operated to isolate each UPS 102, 202 in case of maintenance.
  • the PSBP panel 601 includes an input ZCD 616 and an output ZCD 618.
  • the input ZCD 616 is coupled to the input 602 of the PSBP 601, the input ZCD 134 of the first UPS 102 and the input ZCD 234 of the second UPS 202.
  • the output ZCD 618 is coupled to the output 604, the output ZCD 138 of the first UPS 102 and the output ZCD 238 of the second UPS 202.
  • the input and output ZCD's 616, 618 of the PSBP monitor zero-crossing information of signals received at the input 602 and output 604 of the PSBP respectively.
  • This zero-crossing information is transmitted to both the first UPS 102 and the second UPS 202, via a GPIO or other form of serial communication.
  • each UPS 102, 202 Prior to closing the backfeed relay 108, 208, each UPS 102, 202 performs input and output zero-crossing phase analysis (as described above) by comparing its own zero-crossing information (generated from the input ZCD's 134, 234 and the output ZCD's 138, 238) with the zero-crossing information received from the PSBP 601. In this way, each UPS can independently determine whether it is wired correctly, without having to receive signals from the other UPS.
  • FIG. 7 is a flow chart 700 illustrating one embodiment of a process for identifying incorrect input wiring in the parallel UPS system 600 while the parallel UPS system 600 is operating in normal mode.
  • the PSBP panel 601 generates input zero-crossing information with the input ZCD 616, based on signals received at the input 602.
  • the PSBP panel 601 transmits the input zero-crossing information to each UPS 102, 202.
  • the input ZCD 134 of the first UPS 102 generates input zero-crossing information based on the AC power received by the first UPS 102.
  • the input ZCD 234 of the second UPS 102 generates input zero-crossing information based on the AC power received by the second UPS 202.
  • the wrong wiring detector 136 of the first UPS 102 receives input zero crossing information from its own UPS (i.e. from the input ZCD 134 of the first UPS 102) and from the input ZCD 616 of the PSBP panel 601.
  • the wrong wiring detector 236 of the second UPS 202 receives input zero crossing information from its own UPS (i.e. from the input ZCD 234 of the second UPS 202) and from the input ZCD 616 of the PSBP panel 601.
  • the wrong wiring detector 136 of the first UPS 102 compares the received input zero crossing information from the ZCD 616 with the zero-crossing information from the first UPS 102.
  • the wrong wiring detector 236 of the second UPS 202 compares the received input zero crossing information from the ZCD 616 with the zero-crossing information from the second UPS 202.
  • the wrong wiring detector 136 of the first UPS determines whether the zero-crossing information of the first UPS 102 is in phase with the zero-crossing information from the PSBO 601.
  • the controller 132 closes the backfeed relay 108, allowing the UPS 102 to provide power to the load bus 221.
  • the controller 132 keeps the backfeed relay 108 open and informs the user of the wiring error.
  • the wrong wiring detector 236 of the second UPS determines whether the zero-crossing information of the second UPS 202 is in phase with the zero-crossing information from the PSBP 601.
  • the controller 232 maintains the backfeed relay 208 closed, allowing the UPS 202 to continue to provide power to the load bus 221.
  • the controller 232 still maintains the backfeed relay 208 closed in order to continue to provide power to the load bus 221 and informs the user of the wiring error.
  • the PSBP panel in addition to an input ZCD 616 which is configured to monitor zero-crossing information of signals at the input 602 and transmit the zero-crossing information to each UPS 102, 202 in order to identify faulty wiring at the inputs 104, 106, 204, 206, the PSBP panel also includes an output ZCD 618 which is configured to monitor zero-crossing information of signals at the output 604 and transmit the zero-crossing information to each UPS 102, 202 in order to identify faulty wiring at the outputs 118, 120, 218, 220.
  • the process of identifying faulty wiring at the outputs 118, 120, 218, 220 utilizing zero-crossing information from the PSBP 601 is substantially the same as the process of identifying faulty wiring at the input 104, 105, 204, 206 utilizing zero-crossing information from the PSBP 601 (as discussed above), except that the output ZCD 618 is utilized to generate the zero-crossing information from the PSBP rather than the input ZCD 616.
  • each UPS 102, 202 is coupled to a single phase power supply and accompanying phase and neutral lines 103, 105, 222, 224; however, in other embodiments, each UPS 102, 202 may be coupled to a different type of power supply (e.g., a three phase power supply) and may include an appropriate number of phase lines.
  • a different type of power supply e.g., a three phase power supply
  • each UPS 102, 202 includes both an input ZCD 134, 234 and an output ZCD 138, 238; however, in other embodiments, a UPS may include only one ZCD to monitor the wiring of either the input or the output.
  • the PSBP panel 601 includes both an input ZCD 616 and an output ZCD 618; however, in other embodiments, the PSBP 601 may include only one ZCD for monitoring the wiring of either the input or the output.
  • each UPS 102, 202 includes both an analog controller 132, 232 and a DSP, where the analog controller 132, 232 is configured to operate the UPS 102, 202 and the DSP is configured to analyze input and output signals (as discussed above).
  • the parallel UPS system 100, 500 includes two UPS's; however, in other embodiments, a parallel UPS system may include any number of UPS's.
  • the scheme for identifying incorrect wiring is utilized within a parallel UPS system; however, in other embodiments, the scheme may be utilized in other types of power supply systems where multiple systems are coupled in parallel.
  • a parallel UPS system utilizes signal analysis circuitry (e.g., the ZCD's, wrong wiring detector and/or DSP) to analyze input and output signal characteristics (such as zero-crossing and polarity information) of UPS's coupled in parallel to identify incorrect wiring in the parallel UPS system, prior to energizing each UPS within the system.
  • signal analysis circuitry e.g., the ZCD's, wrong wiring detector and/or DSP
  • input and output signal characteristics such as zero-crossing and polarity information

Claims (13)

  1. Ein Verfahren zum Betreiben eines unterbrechungsfreien Stromversorgungssystems (USV-System) mit einer ersten USV (102) und einer zweiten USV (202), wobei das Verfahren Folgendes beinhaltet:
    Empfangen, an einem Eingang der ersten USV (102), von Eingangsleistung von einer Leistungsquelle;
    Erzeugen, mit einer ersten Analyseschaltung innerhalb der ersten USV, eines ersten Signals, das Informationen enthält, die auf eine Signaleigenschaft der von der ersten USV empfangenen Eingangsleistung hinweisen;
    Empfangen, an der ersten Analyseschaltung, eines zweiten Signals von einer zweiten Analyseschaltung der zweiten USV (202), die mit der Leistungsquelle gekoppelt ist, wobei das zweite Signal Informationen enthält, die auf eine Signaleigenschaft der Eingangsleistung von der Leistungsquelle, empfangen an der zweiten Analyseschaltung, hinweisen;
    Vergleichen, mit der ersten Analyseschaltung, des ersten Signals mit dem zweiten Signal;
    Bestimmen, als Reaktion auf das Vergleichen, ob an dem Eingang der ersten USV ein unsachgemäßer Verdrahtungszustand besteht, wobei der unsachgemäße Verdrahtungszustand eine umgekehrte Verbindung von Phasen- und Nullleiterklemmen ist;
    als Reaktion auf eine Bestimmung, dass an dem Eingang kein unsachgemäßer Verdrahtungszustand besteht, Bereitstellen von Ausgangsleistung für einen Ausgang der ersten USV (102); und
    als Reaktion auf eine Bestimmung, dass an dem Eingang ein unsachgemäßer Verdrahtungszustand besteht, Öffnen eines zwischen die Leistungsquelle und die erste USV (102) gekoppelten Relais (108), um die erste USV (102) von der Leistungsquelle zu entkoppeln und die erste USV (102) auszuschalten.
  2. Ein Verfahren zum Betreiben eines USV-Systems mit einer ersten USV (102) und einer zweiten USV (202), wobei das Verfahren Folgendes beinhaltet:
    Detektieren, an einem Ausgang der ersten USV (102), einer Ausgangsleistung, die einer Last bereitgestellt wird;
    Erzeugen, mit einer ersten Analyseschaltung innerhalb der ersten USV, eines dritten Signals, das Informationen enthält, die auf eine Signaleigenschaft der an dem Ausgang der ersten USV detektierten Ausgangsleistung hinweisen;
    Empfangen, an der ersten Analyseschaltung, eines vierten Signals von einer zweiten Analyseschaltung der zweiten USV (202), die mit der Leistungsquelle gekoppelt ist, wobei das vierte Signal Informationen enthält, die auf eine Signaleigenschaft der der Last bereitgestellten Ausgangsleistung, die an der zweiten Analyseschaltung detektiert wird, hinweisen;
    Vergleichen, mit der ersten Analyseschaltung, des dritten Signals mit dem vierten Signal;
    Bestimmen, als Reaktion auf das Vergleichen, ob an dem Ausgang der ersten USV ein unsachgemäßer Verdrahtungszustand besteht, wobei der unsachgemäße Verdrahtungszustand eine umgekehrte Verbindung von Phasen- und Nullleiterklemmen ist;
    als Reaktion auf eine Bestimmung, dass an dem Ausgang kein unsachgemäßer Verdrahtungszustand besteht, Bereitstellen von Ausgangsleistung für einen Ausgang der ersten USV (102); und
    als Reaktion auf eine Bestimmung, dass an dem Ausgang ein unsachgemäßer Verdrahtungszustand besteht, Öffnen eines zwischen die Leistungsquelle und die erste USV (102) gekoppelten Relais (108), um die erste USV (102) von der Leistungsquelle zu entkoppeln und die erste USV (102) auszuschalten.
  3. Verfahren gemäß Anspruch 1 oder 2, wobei die Informationen, die auf die Signaleigenschaft hinweisen, Nulldurchgangsinformationen sind und wobei das Erzeugen des ersten, zweiten, dritten und vierten Signals das Überwachen der Nulldurchgangsinformationen der von der ersten USV (102) oder der zweiten USV (202) empfangenen Eingangsleistung oder der an dem Ausgang der ersten USV oder der zweiten USV detektierten Ausgangsleistung umfasst.
  4. Verfahren gemäß Anspruch 1 oder 2, wobei die Informationen, die auf die Signaleigenschaft hinweisen, Polaritätsinformationen sind und wobei das Erzeugen eines ersten Signals das Überwachen von Polaritätsinformationen der von der ersten USV (102) oder der zweiten USV (202) empfangenen Eingangsleistung oder der an dem Ausgang der ersten USV (102) oder der zweiten USV (202) detektierten Ausgangsleistung umfasst.
  5. Verfahren gemäß Anspruch 1 oder 2, wobei das Empfangen des zweiten oder des vierten Signals das Empfangen des zweiten oder des vierten Signals von der zweiten Analyseschaltung über einen zwischen die erste USV (102) und die zweite USV (202) gekoppelten Kommunikationsbus (140) umfasst.
  6. Verfahren gemäß Anspruch 5, ferner beinhaltend das Übertragen des ersten oder des dritten Signals an die zweite Analyseschaltung über den Kommunikationsbus (140).
  7. Verfahren gemäß Anspruch 5, wobei das Empfangen des zweiten oder des vierten Signals ferner das Empfangen des zweiten oder des vierten Signals von der zweiten Analyseschaltung umfasst, wobei sich die zweite Analyseschaltung innerhalb eines mit der Leistungsquelle gekoppelten Parallelwartungsbypasselements (Parallel Service Bypass Panel) befindet.
  8. Eine erste USV (102), die Folgendes beinhaltet:
    einen Eingang, um von einer Leistungsquelle Eingangsleistung zu empfangen;
    einen Ausgang, um einer Last Ausgangsleistung bereitzustellen;
    eine erste Analyseschaltung, die mit dem Eingang gekoppelt ist und konfiguriert ist, um mit einem Kommunikationsbus gekoppelt zu werden;
    einen Steuerschaltkreis, der mit der ersten Analyseschaltung gekoppelt ist; und ein Relais, das mit dem Eingang und dem Steuerschaltkreis gekoppelt ist und konfiguriert ist, um den Eingang selektiv mit der Leistungsquelle zu koppeln;
    wobei die erste Analyseschaltung für Folgendes konfiguriert ist: Erzeugen eines ersten Signals, das Informationen enthält, die auf eine Signaleigenschaft der Eingangsleistung an dem Eingang hinweisen, Empfangen eines zweiten Signals über den Kommunikationsbus von einer zweiten Analyseschaltung einer zweiten USV (202), die mit der Leistungsquelle gekoppelt ist, wobei das zweite Signal Informationen enthält, die auf eine Signaleigenschaft der Eingangsleistung von der Leistungsquelle, empfangen an der zweiten Analyseschaltung, hinweisen, Vergleichen des ersten Signals mit dem zweiten Signal und Bestimmen, auf der Basis des Vergleichs des ersten mit dem zweiten Signal, ob an dem Eingang ein unsachgemäßer Verdrahtungszustand besteht, wobei der unsachgemäße Verdrahtungszustand eine umgekehrte Verbindung von Phasen- und Nullleiterklemmen ist,
    wobei als Reaktion auf eine Bestimmung, dass an dem Eingang kein unsachgemäßer Verdrahtungszustand besteht, der Steuerschaltkreis konfiguriert ist, um das Relais zu schließen und die erste USV (102) zu betreiben, um dem Ausgang Ausgangsleistung bereitzustellen, und
    wobei als Reaktion auf eine Bestimmung, dass an dem Eingang ein unsachgemäßer Verdrahtungszustand besteht, der Steuerschaltkreis konfiguriert ist, um das Relais zu öffnen, um den Eingang von der Leistungsquelle zu entkoppeln und die erste USV (102) auszuschalten.
  9. Eine erste USV (102), die Folgendes beinhaltet:
    einen Eingang, um von einer Leistungsquelle Eingangsleistung zu empfangen;
    einen Ausgang, um einer Last Ausgangsleistung bereitzustellen;
    eine erste Analyseschaltung, die mit dem Ausgang gekoppelt ist und konfiguriert ist, um mit einem Kommunikationsbus gekoppelt zu werden;
    einen Steuerschaltkreis, der mit der ersten Analyseschaltung gekoppelt ist; und ein Relais, das mit dem Eingang und dem Steuerschaltkreis gekoppelt ist und konfiguriert ist, um den Eingang selektiv mit der Leistungsquelle zu koppeln;
    wobei die erste Analyseschaltung für Folgendes konfiguriert ist: Erzeugen eines dritten Signals, das Informationen enthält, die auf eine Signaleigenschaft der Ausgangsleistung an dem Ausgang hinweisen, Empfangen eines vierten Signals über den Kommunikationsbus von einer zweiten Analyseschaltung einer zweiten USV (202), die mit der Leistungsquelle gekoppelt ist, wobei das vierte Signal Informationen enthält, die auf eine Signaleigenschaft der der Last bereitgestellten Ausgangsleistung, detektiert an der zweiten Analyseschaltung, hinweisen, Vergleichen des dritten Signals mit dem vierten Signal und Bestimmen, auf der Basis des Vergleichs des dritten mit dem vierten Signal, ob an dem Eingang ein unsachgemäßer Verdrahtungszustand besteht, wobei der unsachgemäße Verdrahtungszustand eine umgekehrte Verbindung von Phasen- und Nullleiterklemmen ist,
    wobei als Reaktion auf eine Bestimmung, dass an dem Eingang kein unsachgemäßer Verdrahtungszustand besteht, der Steuerschaltkreis konfiguriert ist, um das Relais (108) zu schließen und die erste USV (102) zu betreiben, um dem Ausgang Ausgangsleistung bereitzustellen, und
    wobei als Reaktion auf eine Bestimmung, dass an dem Ausgang ein unsachgemäßer Verdrahtungszustand besteht, der Steuerschaltkreis konfiguriert ist, um das Relais (108) zu öffnen, um den Eingang von der Leistungsquelle zu entkoppeln und die erste USV (102) auszuschalten.
  10. Erste USV gemäß Anspruch 8, wobei die erste Analyseschaltung Folgendes beinhaltet:
    einen ersten Eingangsnulldurchgangsdetektor (134), der mit dem Eingang gekoppelt ist; und
    einen Falschverdrahtungsdetektor (136), der mit dem ersten Nulldurchgangsdetektor (134), dem Steuerschaltkreis und dem Kommunikationsbus (140) gekoppelt ist,
    wobei der erste Eingangsnulldurchgangsdetektor (134) konfiguriert ist, um Nulldurchgangsinformationen von Eingangsleistung, empfangen an dem Eingang, zu überwachen und das erste Signal zu erzeugen, wobei das erste Signal Nulldurchgangsinformationen der Eingangsleistung, empfangen an dem Eingang, enthält und
    wobei der Falschverdrahtungsdetektor (136) konfiguriert ist, um das erste Signal, das Nulldurchgangsinformationen enthält, mit dem zweiten Signal zu vergleichen, wobei das zweite Signal Nulldurchgangsinformationen der Eingangsleistung, empfangen von der zweiten Analyseschaltung, enthält.
  11. Erste USV gemäß Anspruch 8, wobei die erste Analyseschaltung Folgendes beinhaltet:
    einen ersten digitalen Signalprozessor DSP (132), der mit dem Eingang gekoppelt ist,
    wobei der erste DSP (132) für Folgendes konfiguriert ist: Überwachen von Polaritätsinformationen von Eingangsleistung, empfangen an dem Eingang, Erzeugen des ersten Signals, das Polaritätsinformationen der Eingangsleistung, empfangen an dem Eingang, enthält, und Vergleichen des ersten Signals, das Polaritätsinformationen enthält, mit dem zweiten Signal, wobei das zweite Signal Polaritätsinformationen der Eingangsleistung, empfangen von der zweiten Analyseschaltung, enthält.
  12. Erste USV gemäß Anspruch 9, wobei die erste Analyseschaltung Folgendes beinhaltet:
    einen ersten Ausgangsnulldurchgangsdetektor (138), der mit dem Ausgang gekoppelt ist; und
    einen Falschverdrahtungsdetektor (136), der mit dem ersten Ausgangsnulldurchgangsdetektor (138), dem Steuerschaltkreis und dem Kommunikationsbus (140) gekoppelt ist,
    wobei der erste Ausgangsnulldurchgangsdetektor (138) konfiguriert ist, um Nulldurchgangsinformationen von Ausgangsleistung, detektiert an dem Ausgang, zu überwachen und das dritte Signal zu erzeugen, wobei das dritte Signal Nulldurchgangsinformationen der Ausgangsleistung, detektiert an dem Ausgang, enthält und
    wobei der Falschverdrahtungsdetektor (136) konfiguriert ist, um das dritte Signal, das Nulldurchgangsinformationen enthält, mit dem vierten Signal zu vergleichen, wobei das vierte Signal Nulldurchgangsinformationen der Ausgangsleistung, detektiert von der zweiten Analyseschaltung, enthält.
  13. Erste USV gemäß Anspruch 9, wobei die erste Analyseschaltung Folgendes beinhaltet:
    einen ersten digitalen Signalprozessor DSP (132), der mit dem Ausgang gekoppelt ist,
    wobei der erste DSP (132) für Folgendes konfiguriert ist: Überwachen von Polaritätsinformationen von Ausgangsleistung, detektiert an dem Ausgang, Erzeugen des dritten Signals, das Polaritätsinformationen der Ausgangsleistung, detektiert an dem Ausgang, enthält, und Vergleichen des dritten Signals, das Polaritätsinformationen enthält, mit dem vierten Signal, wobei das vierte Signal Polaritätsinformationen der Ausgangsleistung, detektiert von der zweiten Analyseschaltung, enthält.
EP12824939.8A 2011-12-26 2012-12-07 System und verfahren zum gewährleisten einer ordentlichen verdrahtung eines neutralleiters in einem elektrischen system Active EP2798721B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN4564CH2011 2011-12-26
PCT/US2012/068475 WO2013101432A2 (en) 2011-12-26 2012-12-07 System and method for maintaining proper phase neutral wiring in a power system

Publications (2)

Publication Number Publication Date
EP2798721A2 EP2798721A2 (de) 2014-11-05
EP2798721B1 true EP2798721B1 (de) 2018-06-06

Family

ID=47741246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12824939.8A Active EP2798721B1 (de) 2011-12-26 2012-12-07 System und verfahren zum gewährleisten einer ordentlichen verdrahtung eines neutralleiters in einem elektrischen system

Country Status (6)

Country Link
US (1) US9667097B2 (de)
EP (1) EP2798721B1 (de)
CN (1) CN104137383B (de)
AU (1) AU2012362971B2 (de)
DK (1) DK2798721T3 (de)
WO (1) WO2013101432A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779561B2 (ja) * 2012-09-10 2015-09-16 株式会社日立製作所 電力変換システム
US10608428B2 (en) 2014-07-30 2020-03-31 Abb Schweiz Ag Systems and methods for hybrid voltage and current control in static UPS systems
EP3142222B1 (de) 2015-09-11 2018-08-01 ABB Schweiz AG Unterbrechungsfreie stromversorgung mit schaltbarer referenz
ES2765652T3 (es) 2016-08-08 2020-06-10 Abb Schweiz Ag Instalación energética con SAI
US11569751B1 (en) * 2021-12-22 2023-01-31 Microsoft Technology Licensing, Llc Systems and methods for combining power sources in datacenters

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3540830A1 (de) 1984-11-16 1986-05-22 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Verfahren zum stufenweisen einstellen einer an einem an spannung ueber einen schalter liegenden widerstand anfallenden elektrischen leistung und schaltungsanordnung zur durchfuehrung des verfahrens
US4879624A (en) * 1987-12-24 1989-11-07 Sundstrand Corporation Power controller
US5602462A (en) * 1995-02-21 1997-02-11 Best Power Technology, Incorporated Uninterruptible power system
US5744932A (en) * 1995-11-30 1998-04-28 Kissel; William G. Apparatus and method for monitoring backup battery flow charge
JP3656478B2 (ja) * 1999-09-22 2005-06-08 三菱電機株式会社 電源高調波抑制装置
US6465910B2 (en) * 2001-02-13 2002-10-15 Utc Fuel Cells, Llc System for providing assured power to a critical load
DE10214738B4 (de) * 2002-04-03 2014-11-20 BSH Bosch und Siemens Hausgeräte GmbH Falschanschlusserkennungsschaltung und Verfahren zur Erkennung eines Falschanschlusses
JP2004028773A (ja) * 2002-06-25 2004-01-29 Hitachi Industrial Equipment Systems Co Ltd 誤配線検知装置
JP2005033923A (ja) * 2003-07-14 2005-02-03 Sanken Electric Co Ltd 無停電電源装置の並列運転制御システム
US7352083B2 (en) * 2005-09-16 2008-04-01 American Power Conversion Corporation Apparatus for and method of UPS operation
JP4844290B2 (ja) * 2006-08-21 2011-12-28 サンケン電気株式会社 誤接続検出装置
US7514932B2 (en) * 2007-01-04 2009-04-07 Trane International Inc. Method of recognizing signal mis-wiring of a three-phase circuit
DE102007021089B3 (de) * 2007-05-03 2008-12-11 Piller Power Systems Gmbh Verfahren zur Steuerung parallel geschalteter Ersatzstromquellen und Vorrichtung mit parallel geschalteten Ersatzstromquellen
EP1990929A1 (de) * 2007-05-08 2008-11-12 Feelux Co., Ltd. Netzkommunikationsgerät sowie Verfahren und Vorrichtung zur Steuerung von Elektrogeräten
US7924537B2 (en) * 2008-07-09 2011-04-12 Leviton Manufacturing Company, Inc. Miswiring circuit coupled to an electrical fault interrupter
US8674544B2 (en) * 2009-01-26 2014-03-18 Geneva Cleantech, Inc. Methods and apparatus for power factor correction and reduction of distortion in and noise in a power supply delivery network
CN101635459B (zh) * 2009-08-14 2011-08-10 深圳和而泰智能控制股份有限公司 一种单相线进出的开关
US8866345B1 (en) * 2011-05-27 2014-10-21 Shawn P. Wright Electrical current managing system
US9172271B2 (en) * 2011-09-19 2015-10-27 Schneider Electric It Corporation Parallel control and protection for UPS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK2798721T3 (en) 2018-09-10
WO2013101432A2 (en) 2013-07-04
US9667097B2 (en) 2017-05-30
AU2012362971B2 (en) 2017-04-13
EP2798721A2 (de) 2014-11-05
CN104137383B (zh) 2017-05-03
US20140333138A1 (en) 2014-11-13
AU2012362971A1 (en) 2014-07-24
WO2013101432A3 (en) 2013-12-05
CN104137383A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
US7446433B2 (en) Methods and apparatus for providing uninterruptible power
EP2798721B1 (de) System und verfahren zum gewährleisten einer ordentlichen verdrahtung eines neutralleiters in einem elektrischen system
AU2012312714B2 (en) Parallel control and protection for UPS
EP3048663B1 (de) Energiespeichersystem und verfahren zur erhaltung eines energiespeichersystems
KR20150078489A (ko) Hvdc 시스템의 전원 이중화 장치 및 그 제어방법
KR101094434B1 (ko) 전원 이상 감지 장치
US20240113552A1 (en) Method to detect back-feed and mis-wiring events by a ups system
KR101417940B1 (ko) 이상전압 발생 시 재해 방재 분배전반 및 그 방법
KR20180024673A (ko) 태양광발전 채널별 감시장치
US7282813B2 (en) AC power backfeed protection based on phase shift
KR102137978B1 (ko) 모터 보호 장치를 구비하는 전동기 제어반
RU2693937C1 (ru) Способ релейной защиты и управления электрической подстанции и устройство для его осуществления
KR101253218B1 (ko) 배전반의 아크 방지 장치 및 그 방법
KR101033822B1 (ko) 중성선 대체기능이 구비된 모터제어반 및 중성선 대체방법
KR101395551B1 (ko) 이상전압 발생 시 재해 방재 분배전반(분전반, 저압반, 고압반, 전동기제어반) 및 그 방법
KR20190096633A (ko) 모터 보호 계전기와 이를 포함하는 모터 보호 시스템
JPH09233736A (ja) 配電線開閉器用の子局装置
CN104967110A (zh) 多电源并联供电系统
JP2000253584A (ja) 分散電源システム
KR20160138596A (ko) 콘덴셔구비체
JPH04121033A (ja) 停電保護装置付き電子機器
EP1093679A1 (de) Unterbrechungsfreie stromversorgungseinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140717

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171117

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180329

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1007112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012047256

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180903

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1007112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012047256

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181207

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181207

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121207

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20231222

Year of fee payment: 12