EP2794832A1 - Isotropic liquid detergents comprising soil release polymer - Google Patents
Isotropic liquid detergents comprising soil release polymerInfo
- Publication number
- EP2794832A1 EP2794832A1 EP12790866.3A EP12790866A EP2794832A1 EP 2794832 A1 EP2794832 A1 EP 2794832A1 EP 12790866 A EP12790866 A EP 12790866A EP 2794832 A1 EP2794832 A1 EP 2794832A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- acid
- composition according
- bottle
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 62
- 239000003599 detergent Substances 0.000 title claims abstract description 41
- 229920000642 polymer Polymers 0.000 title claims abstract description 34
- 239000002689 soil Substances 0.000 title claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 120
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000004094 surface-active agent Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000002253 acid Substances 0.000 claims abstract description 24
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 23
- 239000000194 fatty acid Substances 0.000 claims abstract description 23
- 229930195729 fatty acid Natural products 0.000 claims abstract description 23
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 125000000129 anionic group Chemical group 0.000 claims abstract description 10
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229910021653 sulphate ion Inorganic materials 0.000 claims abstract description 7
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims abstract description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 39
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 36
- -1 terephthalic acid ester Chemical class 0.000 claims description 19
- 229920002873 Polyethylenimine Polymers 0.000 claims description 12
- 239000003752 hydrotrope Substances 0.000 claims description 12
- 239000003945 anionic surfactant Substances 0.000 claims description 11
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 claims description 11
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 6
- 229960004063 propylene glycol Drugs 0.000 claims description 6
- 235000013772 propylene glycol Nutrition 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 5
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N benzene-dicarboxylic acid Natural products OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 2
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 150000002009 diols Chemical class 0.000 claims description 2
- 102000004882 Lipase Human genes 0.000 description 24
- 108090001060 Lipase Proteins 0.000 description 24
- 108010055059 beta-Mannosidase Proteins 0.000 description 20
- 102000004190 Enzymes Human genes 0.000 description 19
- 108090000790 Enzymes Proteins 0.000 description 19
- 229940088598 enzyme Drugs 0.000 description 19
- 239000002304 perfume Substances 0.000 description 19
- 239000004367 Lipase Substances 0.000 description 17
- 235000019421 lipase Nutrition 0.000 description 17
- 229920001732 Lignosulfonate Polymers 0.000 description 15
- 102100032487 Beta-mannosidase Human genes 0.000 description 14
- 150000001412 amines Chemical class 0.000 description 14
- 229920005610 lignin Polymers 0.000 description 14
- 108010087558 pectate lyase Proteins 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- 239000000975 dye Substances 0.000 description 11
- 239000000872 buffer Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 230000002378 acidificating effect Effects 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 230000002538 fungal effect Effects 0.000 description 8
- 239000002736 nonionic surfactant Substances 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 239000000344 soap Substances 0.000 description 8
- 239000007844 bleaching agent Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 241000193830 Bacillus <bacterium> Species 0.000 description 6
- 241000223198 Humicola Species 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 108010065511 Amylases Proteins 0.000 description 5
- 102000013142 Amylases Human genes 0.000 description 5
- 108010084185 Cellulases Proteins 0.000 description 5
- 102000005575 Cellulases Human genes 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 108700020962 Peroxidase Proteins 0.000 description 5
- 102000003992 Peroxidases Human genes 0.000 description 5
- 108010064785 Phospholipases Proteins 0.000 description 5
- 102000015439 Phospholipases Human genes 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 235000019418 amylase Nutrition 0.000 description 5
- 230000003139 buffering effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 4
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical group OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 108010005400 cutinase Proteins 0.000 description 4
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 239000003352 sequestering agent Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical group C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical class C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 3
- 241001480714 Humicola insolens Species 0.000 description 3
- 241000589516 Pseudomonas Species 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 241000223258 Thermomyces lanuginosus Species 0.000 description 3
- 229940025131 amylases Drugs 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical group CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229920006261 self reinforced polyphenylene Polymers 0.000 description 3
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000194103 Bacillus pumilus Species 0.000 description 2
- 244000063299 Bacillus subtilis Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102000011720 Lysophospholipase Human genes 0.000 description 2
- 108020002496 Lysophospholipase Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 2
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- 125000001924 fatty-acyl group Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical class OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001444 polymaleic acid Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- VXWBQOJISHAKKM-UHFFFAOYSA-N (4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=O)C=C1 VXWBQOJISHAKKM-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- ZMLPKJYZRQZLDA-UHFFFAOYSA-N 1-(2-phenylethenyl)-4-[4-(2-phenylethenyl)phenyl]benzene Chemical group C=1C=CC=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC1=CC=CC=C1 ZMLPKJYZRQZLDA-UHFFFAOYSA-N 0.000 description 1
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical class OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- BITAPBDLHJQAID-MDZDMXLPSA-N 2-[2-hydroxyethyl-[(e)-octadec-9-enyl]amino]ethanol Chemical compound CCCCCCCC\C=C\CCCCCCCCN(CCO)CCO BITAPBDLHJQAID-MDZDMXLPSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical compound CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 1
- MXMWUQAFMKOTIQ-UHFFFAOYSA-N 4-(carboxymethoxy)-4-oxobutanoic acid Chemical class OC(=O)CCC(=O)OCC(O)=O MXMWUQAFMKOTIQ-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 1
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 101100313763 Arabidopsis thaliana TIM22-2 gene Proteins 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228215 Aspergillus aculeatus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001328122 Bacillus clausii Species 0.000 description 1
- 241000006382 Bacillus halodurans Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241000589513 Burkholderia cepacia Species 0.000 description 1
- 101100148121 Caenorhabditis elegans rsp-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- 244000251987 Coprinus macrorhizus Species 0.000 description 1
- BRDJPCFGLMKJRU-UHFFFAOYSA-N DDAO Chemical compound ClC1=C(O)C(Cl)=C2C(C)(C)C3=CC(=O)C=CC3=NC2=C1 BRDJPCFGLMKJRU-UHFFFAOYSA-N 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 244000287680 Garcinia dulcis Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 102100027612 Kallikrein-11 Human genes 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000194105 Paenibacillus polymyxa Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000011420 Phospholipase D Human genes 0.000 description 1
- 108090000553 Phospholipase D Proteins 0.000 description 1
- 102000000571 Phospholipases A Human genes 0.000 description 1
- 108010002176 Phospholipases A Proteins 0.000 description 1
- 102000006447 Phospholipases A2 Human genes 0.000 description 1
- 108010058864 Phospholipases A2 Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 241000168225 Pseudomonas alcaligenes Species 0.000 description 1
- 241000589540 Pseudomonas fluorescens Species 0.000 description 1
- 241000589630 Pseudomonas pseudoalcaligenes Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 241000577556 Pseudomonas wisconsinensis Species 0.000 description 1
- 229910006127 SO3X Inorganic materials 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001292348 Salipaludibacillus agaradhaerens Species 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 241000223257 Thermomyces Species 0.000 description 1
- 241001313536 Thermothelomyces thermophila Species 0.000 description 1
- 241001494489 Thielavia Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 241000592342 Tracheophyta Species 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 101710152431 Trypsin-like protease Proteins 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 241000589634 Xanthomonas Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- RYAGRZNBULDMBW-UHFFFAOYSA-L calcium;3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Ca+2].COC1=CC=CC(CC(CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O RYAGRZNBULDMBW-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YDEXUEFDPVHGHE-GGMCWBHBSA-L disodium;(2r)-3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical compound [Na+].[Na+].COC1=CC=CC(C[C@H](CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O YDEXUEFDPVHGHE-GGMCWBHBSA-L 0.000 description 1
- VUJGKADZTYCLIL-YHPRVSEPSA-L disodium;5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S([O-])(=O)=O)C(S(=O)(=O)[O-])=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 VUJGKADZTYCLIL-YHPRVSEPSA-L 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- BZDOEVMUXJTHPS-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)hexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+]([O-])(CCO)CCO BZDOEVMUXJTHPS-UHFFFAOYSA-N 0.000 description 1
- CBLJNXZOFGRDAC-UHFFFAOYSA-N n,n-bis(2-hydroxyethyl)octadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCCCC[N+]([O-])(CCO)CCO CBLJNXZOFGRDAC-UHFFFAOYSA-N 0.000 description 1
- IBOBFGGLRNWLIL-UHFFFAOYSA-N n,n-dimethylhexadecan-1-amine oxide Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)[O-] IBOBFGGLRNWLIL-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229920000847 nonoxynol Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical class OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000004289 sodium hydrogen sulphite Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- GIPRGFRQMWSHAK-UHFFFAOYSA-M sodium;2-propan-2-ylbenzenesulfonate Chemical compound [Na+].CC(C)C1=CC=CC=C1S([O-])(=O)=O GIPRGFRQMWSHAK-UHFFFAOYSA-M 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/37—Mixtures of compounds all of which are anionic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D10/00—Compositions of detergents, not provided for by one single preceding group
- C11D10/04—Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
- C11D10/042—Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap based on anionic surface-active compounds and soap
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/30—Amines; Substituted amines ; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3715—Polyesters or polycarbonates
Definitions
- This invention relates to isotropic liquid detergent compositions comprising water, hydrotrope, anionic sulphonate or sulphate surfactant and a polyester based soil release polymer.
- WO09153184 suggests that a laundry detergent liquid concentrate may be designed by replacing surfactant with a mixture of more weight efficient ingredients selected from polymers and enzymes.
- a preferred composition uses a combination of ethoxylated polyethylene imine (EPEI) and a polyester soil release polymer (SRP) to achieve excellent oily soil and particulate detergency at significantly lower in-wash surfactant levels than would normally be delivered from a high performance liquid.
- EPEI ethoxylated polyethylene imine
- SRP polyester soil release polymer
- the exemplified compositions comprise anionic surfactant comprising linear alkyl benzene sulphonate neutralised with sodium hydroxide and further comprise soap formed by neutralisation of fatty acid by sodium hydroxide.
- the compositions are alkaline.
- a liquid softening and antistatic nonionic detergent composition comprises as essential ingredients a nonionic detergent an anionic detergent a cationic fabric softener-anti-static agent and a soil release promoting polymer of a water-soluble fraction of the
- alkaline material include mono-, di- and trialkanolamines, alkyl amines, ammonium hydroxide and alkali metal hydroxides. Of these the preferred materials are the alkanolamines, preferably the
- the pH of the final liquid detergent, containing such a basic material will usually be neutral or slightly basic. Satisfactory pH ranges are from 7 to 10, preferably about 7.5 to 9.5.
- WO9742286 (P&G) teaches on p3 that laundry detergents typically have a pH greater than 7.5. According to p9 SRP containing compositions it discloses have a pH of from about 7.2 to about 8.9 when measured as a 10% solution in water.
- US4785060 discloses PET POET SRPs of high molecular weight made using a mixed catalyst system. These SRPs are said to retain their performance at high in wash pH in the presence of a detergency builder. They are taught to be included in both solid and liquid detergent compositions. The disclosure teaches to minimise the inclusion of alkanolamines such as TEA and ionisable salts such as Na. It is taught at column 10 lines 13 to 15 that it is preferred that the neutralizing agent employed, usually to increase the pH of the liquid detergent mixture, will be sodium hydroxide. At lines 17 to 18 it continues that "Triethanolamine salts and free triethanolamine should generally be avoided”.
- US4759876 discloses a soil release promoting liquid detergent composition
- the composition further comprises a stabilizing proportion of a stabilizer for enzyme(s) which also acts as a buffer for the liquid detergent composition to maintain the pH in a certain neutral or slightly acidic range to stabilize the SRP and the fluorescent brightener. It is said that the composition "substantially retains" its soil hydrolyzing fluorescent brightening and soil release promoting characteristics on storage so that laundry washed with it is effectively cleaned brightened and treated.
- US51 10506 shows that the performance was not as good as suggested by '876.
- Example 1 appears to be an example of the second type of composition. It comprises oleic acid TEA salt 1 .5% and SRP 5% (from table 1 ). This is found to be an alkaline composition.
- US441 1831 discloses a stable aqueous detergent composition having enhanced soil release properties and consisting essentially of SRP (with LAS and nonionic and a buffer sufficient to maintain the pH of the aqueous composition within the range of 5.0 to 9.0.pref 6.5 to 7.5.
- the examples used Zelcon 4780 SRP in a main wash composition comprising LAS and nonionic and pH adjusted to 7. SXS was used as hydrotrope. No TEA or soap is used in the examples.
- the disclosure teaches that the comparative liquids without buffer generate an acid pH on storage. The acid pH is said to be detrimental to brighteners. We understand that the acid pH is generated due to decomposition of the SRP.
- Suitable buffers are taught to include bicarbonates, orthophosphate borates and alkanolamine hydrochlorides.
- US4713194 discusses the vulnerability of SRP to degradation in alkaline environments and proposes to protect the SRP by enrobing if it is to be used in granular compositions, or by adjusting the product pH to be between 7.0 and 8.5 if it is to be used in liquid compositions.
- the examples contain coco fatty acid at high levels.
- US6262007 P&G describes acidic detergent liquids which include SRP to reduce the increase of viscosity as the temperature drops. Some examples include TEA but not with hydrotrope or fatty acid. There is a need for concentrated liquid detergent compositions comprising SRP that give excellent cleaning even after prolonged storage.
- detersive surfactant including at least 5 wt% anionic sulphonate and /or sulphate surfactant comprising surfactant acid neutralised with one or more materials the pKa of whose conjugate acid(s) lies more than 2 units higher than the in-bottle pH of the detergent liquid composition
- the composition has an in-bottle pH of 6.3 to 6.7.
- in-bottle we mean in whatever container or pack the liquid is stored. It could be a plastic pack in the form of a bottle, squeezable or rigid, stored upright or inverted, or a unit dose format such as a soluble pouch, or a sachet.
- Fatty acid provides buffering capacity but its inclusion leads to phase separation of acidic compositions at low temperature. Thus it can only be included at relatively low levels.
- the anionic surfactant a preferably sodium hydroxide or monsethanolamine (MEA)
- MEA monsethanolamine
- the fatty acid is saturated. Most preferably it is used in an amount of from 0.5 to 1 .5 wt%.
- Use of TEA aids the stability of the fatty acid and TEA is therefore included at as high a level as can be tolerated by the SRP.
- the amount of TEA is preferably up to 3.7 wt%, and most preferably lies in the range 2.0 to 3.5 wt%.
- the one or more materials the pKa of whose conjugate acid(s) lies more than 2 units higher than the in-bottle pH of the detergent liquid
- composition comprises 0.08 to 0.25 wt% NaOH and/or monoethanolamine (MEA), preferably 0.1 to 0.23 wt% (or MEA).
- MEA monoethanolamine
- This definition of the non-buffering component is intended to cover all common weak and strong bases which lie outside the buffering region of interest (mildly acidic: 6.0 to less than 7).
- the material used to neutralise anionic surfactant acid to make anionic surfactant a) which material the pKa of whose conjugate acid(s) lies more than 2 units higher than the in-bottle pH of the detergent liquid composition, does not act significantly as a buffer at the in-bottle pH at which the composition is stored.
- the TEA does act as a buffer at the mildly acidic in-bottle pH.
- the SRP is of the type that deposits from a wash solution onto polyester. It preferably has a polyester substantive part formed by condensation of terephthalic acid ester and diol, preferably 1 ,2 propanediol, and further comprises an end cap hydrophilic part comprising repeat units of ethylene oxide capped with an alkyl group. It may be used in an amount of more than 0.5 wt% and may be present up to a level of 15 wt%. Mixtures of different SRPs may be used.
- the liquid will typically comprise a hydrotrope.
- the level of hydrotrope will be at least 5 wt%, preferably at least 9 wt%, more preferably at least 14 wt%.
- the amount of hydrotrope is preferably less than 25 wt% and most preferably less than 20 wt% of the compositions.
- a preferred hydrotrope is 1 ,2 propanediol (MPG).
- MPG propanediol
- the composition comprises at least 3, preferably at least 5 wt% ethoxylated polyethylene imine (EPEI) to improve particulate soil removal.
- EPEI ethoxylated polyethylene imine
- compositions of the invention may contain other ingredients.
- ingredients include viscosity modifiers, foam boosting agents, preservatives (e.g. bactericides), pH buffering agents, polyelectrolytes, anti-shrinking agents, anti-wrinkle agents, anti-oxidants, sunscreens, anti- corrosion agents, drape imparting agents, anti-static agents and ironing aids, colorants, pearlisers and/or opacifiers, and shading dye.
- the isotropic liquids The amount of detersive surfactant makes up at least 10 wt% of the total liquid composition, preferably it makes up from 12 to 60 wt%.
- the compositions according to the invention most preferably have total active detersive surfactant levels of at least 15 wt%.
- the compositions may be concentrated compositions designed to be added to a 10 litre wash in small doses that require them to be diluted in at least 500 times their own volume of water to form a main wash liquor comprising at most 0.5 g/l surfactant. They may also be concentrated compositions designed for hand wash or top loading automatic washing machines. In hand wash less water may be used and in top loading automatic washing machines a higher amount of water would normally be used. The dose of detergent liquid is adjusted accordingly to give similar wash liquor concentrations.
- Surfactants are also be concentrated compositions designed to be added to a 10 litre wash in small doses that require them to be diluted in at least 500 times their own volume of water to form a main wash liquor comprising at most 0.5
- Surfactants assist in removing soil from the textile materials and also assist in maintaining removed soil in solution or suspension in the wash liquor.
- Anionic or blends of anionic and nonionic surfactants are a preferred feature of the present invention.
- the amount of anionic surfactant is preferably at least 5 wt%.
- the anionic surfactant forms the majority of the non soap surfactant (a).
- Preferred alkyi sulphonates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyi chain length of C 8 -C-
- the counter ion for anionic surfactants is generally an alkali metal, typically sodium, although other counter-ions such as MEA, TEA or ammonium can be used.
- Preferred linear alkyi benzene sulphonate surfactants are Detal LAS with an alkyi chain length of from 8 to 15, more preferably 12 to 14.
- composition comprises an alkyi polyethoxylate sulphate anionic surfactant of the formula (I):
- R is an alkyi chain having from 12 to 16 carbon atoms
- M is Sodium and x averages from 1 to 3, preferably x is 3;
- SLES sodium lauryl ether sulphate
- It is the sodium salt of lauryl ether sulphonic acid in which the predominantly C12 lauryl alkyl group has been ethoxylated with an average of 3 moles of ethylene oxide per mole.
- Nonionic surfactants include primary and secondary alcohol ethoxylates, especially C 8 -C 2 o aliphatic alcohol ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C10-C-15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
- Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide). Mixtures of nonionic surfactant may be used.
- the composition contains from 0.2 wt% to 40 wt%, preferably 1 wt% to 20 wt%, more preferably 5 to 15 wt% of a non-ionic surfactant, such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides").
- a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
- Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C20 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the C-10-C-15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
- composition may comprise up to 10 wt% of an amine oxide of the formula:
- R 1 N(O)(CH 2 R 2 ) 2
- R 1 is a long chain moiety each CH 2 R 2 are short chain moieties.
- R 2 is preferably selected from hydrogen, methyl and -CH 2 OH.
- R 1 is a primary or branched hydrocarbyl moiety which can be saturated or unsaturated, preferably, R 1 is a primary alkyl moiety.
- R 1 is a hydrocarbyl moiety having chain length of from about 8 to about 18.
- Preferred amine oxides have R 1 is C 8 -C 8 alkyl, and R 2 is H. These amine oxides are illustrated by C12-14 alkyldimethyl amine oxide, hexadecyl dimethylamine oxide, octadecylamine oxide.
- a preferred amine oxide material is Lauryl dimethylamine oxide, also known as dodecyldimethylamine oxide or DDAO.
- DDAO dodecyldimethylamine oxide
- Such an amine oxide material is commercially available from Hunstman under the trade name Empigen® OB.
- Amine oxides suitable for use herein are also available from Akzo Chemie and Ethyl Corp. See McCutcheon's compilation and Kirk-Othmer review article for alternate amine oxide manufacturers.
- R 2 is H
- R 2 may be CH 2 OH, such as: hexadecylbis(2- hydroxyethyl)amine oxide, tallowbis(2-hydroxyethyl)amine oxide, stearylbis(2- hydroxyethyl)amine oxide and oleylbis(2- hydroxyethyl)amine oxide.
- Preferred amine oxides have the formula:
- Nonionic-free systems with up to 95 %wt LAS can be made provided that some zwitterionic surfactant, such as carbobetaine, is present.
- a preferred zwitterionic material is a carbobetaine available from Huntsman under the name Empigen® BB. Carbobetaines, improve particulate soil detergency in the compositions of the invention.
- compositions comprise at least 1 wt% of amine oxide or carbobetaine or mixtures thereof.
- cationic surfactants are preferably substantially absent.
- alkyl sulphate surfactant may be used, especially the non-ethoxylated C-12-15 primary and secondary alkyl sulphates.
- a particularly preferred class of polymer for use in combination with the polyester soil release polymer (SRP) is ethoxylated polyethyleneimine (EPEI).
- EPEI ethoxylated polyethyleneimine
- Polyethylene imines are materials composed of ethylene imine units -CH2CH2NH- and, where branched, the hydrogen on the nitrogen is replaced by another chain of ethylene imine units.
- These polyethyleneimines can be prepared, for example, by polymerizing ethyleneimine in the presence of a catalyst such as carbon dioxide, sodium bisulphite, sulphuric acid, hydrogen peroxide, hydrochloric acid, acetic acid, and the like. Specific methods for preparing these polyamine backbones are disclosed in U.S. Pat. No. 2,182,306, Ulrich et al., issued Dec. 5, 1939; U.S. Pat. No. 3,033,746, Mayle et al., issued May 8, 1962; U.S. Pat. No. 2,208,095,
- the EPEI comprises a polyethyleneimine backbone of about 300 to about 10000 weight average molecular weight; wherein the modification of the polyethyleneimine backbone is intended to leave the polymer without
- nonionic EPEI may be represented as
- PEI(X)YEO where X represents the molecular weight of the unmodified PEI and Y represents the average moles of ethoxylation per nitrogen atom in the
- the ethoxylation may range from 9 to 40 ethoxy moieties per modification, preferably it is in the range of 16 to 26, most preferably 18 to 22.
- the EPEI polymer When used the EPEI polymer is present in the composition preferably at a level of up to 25 wt%, and preferably at a level of at least 3 wt% more preferably from 4 to 15 wt% and most preferably at least 5 wt%.
- the ratio of non-soap surfactant to EPEI is from 2:1 to 7:1 , preferably from 3:1 to 6:1 , or even to 5:1 .
- polyester soil release polymer there may be used dye transfer inhibition polymers, anti redeposition polymers and cotton soil release polymers, especially those based on modified cellulosic materials. Hydrotrope
- a hydrotrope is a solvent that is neither water nor conventional surfactant that aids the solubilisation of the surfactants and other components in the aqueous liquid to render it isotropic.
- suitable hydrotropes there may be mentioned as preferred: MPG (monopropylene glycol), glycerol, sodium cumene sulphonate, ethanol, other glycols, e.g. di propylene glycol, diethers and urea.
- At least one or more enzymes may be present in the compositions.
- at least two, more preferably at least three different classes of enzymes are used in combination.
- Lipase is a particularly preferred enzyme.
- the composition may comprise from about 50 to about 20000 LU/g of a lipase. Preferably at least 800LU/g.
- Preferred lipase enzymes include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included.
- useful lipases include lipases from Humicola, more preferably ones which comprise a polypeptide having an amino acid sequence which has at least 90% sequence identity with the wild-type lipase derived from Humicola lanuginose, most preferably strain DSM 4109. The amount in the composition is higher than typically found in liquid detergents. This can be seen by the ratio of non-soap surfactant to lipase enzyme, in particular.
- a particularly preferred lipase enzyme is available under the trademark LipocleanTM from Novozymes.
- suitable lipases include those of bacterial or fungal origin.
- lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp.
- strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et
- lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
- lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM and LipocleanTM (Novozymes A/S).
- lipase one or more other enzymes may be present.
- compositions of the invention has a beneficial effect on the turnover of certain enzymes, particularly lipase enzymes and preferably lipases from Humicola.
- the preferred lipases include first wash lipases derived from Humicola lanuginosa strain DSM 4109 available under the LipexTM brand from Novozymes. A similar enzyme from Novozymes but believed to fall outside of the above definition is sold by Novozymes under the name LipocleanTM and this is also preferred.
- Phospholipase Phospholipase:
- the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1 .1 .4 and/or EC 3.1 .1 .32.
- phospholipase classified as EC 3.1 .1 .4 and/or EC 3.1 .1 .32 As used herein, the term
- phospholipase is an enzyme which has activity towards phospholipids.
- Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
- Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases A and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form
- lysophospholipid lysophospholipid
- lysophospholipase or phospholipase B which can hydrolyze the remaining fatty acyl group in lysophospholipid.
- Phospholipase C and phospholipase D release diacyl glycerol or
- proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
- the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
- Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM,
- DuralaseTM DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM,
- the method of the invention may be carried out in the presence of cutinase.
- cutinase used according to the invention may be of any origin.
- cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM,
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens,
- Commercially available cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
- Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include GuardzymeTM and
- NovozymTM 51004 Novozymes A/S.
- Pectate lyases also called polygalacturonate lyases
- pectate lyases include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas, as well as from Bacillus subtilis (Nasser et al. (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al. (1994) Biosci. Biotech. Biochem. 58:947-949).
- the pectate lyase comprises the pectate lyase disclosed in Heffron et al., (1 995) Mol. Plant-Microbe Interact. 8: 331 -334 and Henrissat et al., (1 995) Plant Physiol. 1 07: 963-976.
- pectate lyases are disclosed in WO 99/27083 and WO 99/27084.
- Other specifically contemplated pectate lyases (derived from Bacillus licheniformis) are disclosed in US patent no. 6,284,524 (which document is hereby incorporated by reference).
- Specifically contemplated pectate lyase variants are disclosed in WO 02/006442, especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference).
- Examples of commercially available alkaline pectate lyases include BIOPREPTM and SCOURZYMETM L from Novozymes A/S, Denmark.
- Mannanases examples of mannanases (EC 3.2.1 .78) include mannanases of bacterial and fungal origin. In a specific embodiment the mannanase is derived from a strain of the filamentous fungus genus Aspergillus, preferably Aspergillus niger or Aspergillus aculeatus (WO 94/25576). WO 93/24622 discloses a mannanase isolated from Trichoderma reseei. Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al., Appl. Environ. Microbiol., Vol.56, No. 1 1 , pp.
- beta-mannanase derived from Bacillus stearothermophilus Mendoza et al., World J. Microbiol. Biotech., Vol. 1 0, No. 5, pp. 551 -555 (1 994) describes a beta- mannanase derived from Bacillus subtilis.
- JP-A-03047076 discloses a beta- mannanase derived from Bacillus sp.
- JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase.
- JP-A-63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta- mannosidase.
- JP-A-08051 975 discloses alkaline beta-mannanases from Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta- mannosidase.
- JP-A-08051 975 discloses alkaline beta-mannanases from
- amyloliquefaciens is disclosed in WO 97/1 1 1 64.
- WO 91 ⁇ 8974 describes a hemicellulase such as a glucanase, xylanase or mannanase active.
- Contemplated are the alkaline family 5 and 26 mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619.
- Especially contemplated are the Bacillus sp. mannanases concerned in the Examples in WO 99/64619.
- mannanases examples include MannawayTM available from Novozymes A/S Denmark.
- the enzyme and any perfume/fragrance or pro-fragrance present may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme and pro-fragrance and/or other segregation within the product.
- Enzyme Stabilizers include MannawayTM available from Novozymes A/S Denmark.
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
- a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
- a lignin compound may be used in the composition in an amount that can be optimised by trial and error.
- Lignin is a component of all vascular plants, found mostly between cellular structures but also within the cells and in the cell walls.
- the lignin compound comprises a lignin polymer and more preferably it is a modified lignin polymer.
- a modified lignin polymer as used herein is lignin that has been subjected to a chemical reaction to covalently attach chemical moieties to the lignin. The attached chemical moieties are preferably randomly substituted.
- Preferred modified lignin polymers are lignins that have been substituted with anionic, cationic or alkoxy groups, or mixtures thereof. Preferably the substitution occurs on the aliphatic portion of the lignin and is random.
- the modified lignin polymer is substituted with an anionic group, and preferably it is a sulfonate.
- a preferred cationic group is a quanternary amine.
- Preferred alkoxy groups are polyalkylene oxide chains having repeat units of alkoxy moieties in the range from 5 to 30, most preferably ethoxy.
- the modified lignin sulfonate is substituted with anionic or alkoxy groups.
- Modified lignin polymers are discussed in WO/2010/033743. Most preferably the modified lignin polymer is lignin sulfonate (lignosulfonate). Lignin sulfonate may be obtained by the Howard process.
- Exemplary lignin sulfonate may be obtained from a variety of sources including hardwoods, softwoods and recycling or effluent streams.
- the lignin sulfonate may be utilized in crude or pure forms, e.g., in an "as is” or whole liquor condition, or in a purified lignin sulfonate form from which or in which sugars and other saccharide constituents have been removed or destroyed, or from which or in which inorganic constituents have been partially or fully eliminated.
- the lignin sulfonate may be utilized in salt forms including calcium lignin sulfonate, sodium lignin sulfonate, ammonium lignin sulfonate, potassium lignin sulfonate, magnesium lignin sulfonate and mixtures or blends thereof.
- the lignin sulfonate preferably has a weight average molecular weight of from 2000 to 100000.
- Their basic structural unit is phenylpropane.
- the degree of sulfonation is preferably from 0.3 and 1 .0 sulfate groups per phenylpropane unit.
- Lignin sulfonate are available from a number of suppliers including Borregaard LignoTech, Georgia-Pacific Corporation, Lenzing AG and Tembec Inc.
- Fluorescent Agents It may be advantageous to include fluorescer in the compositions. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.5 wt %.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
- Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
- Pyrazoline compounds e.g. Blankophor SN.
- Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2- d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5- triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6- morpholino-1 ,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'- bis(2-sulfoslyryl)biphenyl.
- Detergent compositions according to the invention may comprise a weight efficient bleach system. Such systems typically do not utilise the conventional
- the present invention may be used in a formulation that is used to bleach via air, or an air bleach catalyst system.
- Suitable complexes and organic molecule (ligand) precursors for forming complexes are available to the skilled worker, for example, from: WO 98/39098; WO 98/39406, WO 97/48787, WO 00/29537; WO 00/52124, and WO00/60045, incorporated by reference.
- An example of a preferred catalyst is a transition metal complex of MeN4Py ligand (N,N-bis(pyridin- 2-yl-methyl)-1 -,1 -bis(pyridin-2-yl)-1 -aminoethane).
- Photobleaches may also be employed.
- a "photobleach" is any chemical species that forms a reactive bleaching species on exposure to sunlight, and preferably is not permanently consumed in the reaction.
- Preferred photo-bleaches include singlet oxygen photo-bleaches and radical photo-bleaches.
- Suitable singlet oxygen photo-bleaches may be selected from, water soluble phthalocyanine compounds, particularly metallated phthalocyanine compounds where the metal is Zn or AI-Z1 where Z1 is a halide, sulphate, nitrate, carboxylate, alkanolate or hydroxyl ion.
- the phthalocyanin has 1 -4 SO 3 X groups covalently bonded to it where X is an alkali metal or ammonium ion.
- Such compounds are described in WO2005/014769 (Ciba).
- the bleach catalyst is typically incorporated at a level of about 0.0001 to about 10wt%, preferably about 0.001 to about 5wt%.
- the catalyst may be protected, for example by encapsulation.
- composition of the present invention is designed to be used at very low levels of product dosage, it is advantageous to ensure that perfume is employed efficiently.
- a particularly preferred way of ensuring that perfume is employed efficiently is to use an encapsulated perfume.
- Use of a perfume that is encapsulated reduces the amount of perfume vapour that is produced by the composition before it is diluted. This is important when the perfume concentration is increased to allow the amount of perfume per wash to be kept at a reasonably high level.
- the perfume is not only encapsulated but also that the encapsulated perfume is provided with a deposition aid to increase the efficiency of perfume deposition and retention on fabrics.
- the deposition aid is preferably attached to the encapsulate by means of a covalent bond,
- Shading dye can be used to improve the performance of the compositions used in the method of the present invention.
- the deposition of shading dye onto fabric is improved when they are used in compositions of the invention and according to the process of the invention.
- Preferred dyes are violet or blue. It is believed that the deposition on fabrics of a low level of a dye of these shades, masks yellowing of fabrics.
- a further advantage of shading dyes is that they can be used to mask any yellow tint in the composition itself.
- Suitable and preferred classes of dyes are as described in WO09/153184.
- Shading dye can be used in the absence of fluorescer, but it is especially preferred to use a shading dye in combination with a fluorescer, for example in order to reduce yellowing due to chemical changes in adsorbed fluorescer.
- the detergent compositions may also optionally contain relatively low levels of organic detergent builder or sequestrant material.
- organic detergent builder or sequestrant material examples include the alkali metal, citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates.
- specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene
- polycarboxylic acids and citric acid.
- DEQUESTTM organic phosphonate type sequestering agents sold by Thermphos and alkanehydroxy phosphonates.
- a particularly preferred sequestrant is HEDP sold by Thermphos as Dequest® 2010 and also known as 1 -Hydroxyethylidene -1 , 1 ,-diphosphonic acid.
- Dequest® 2066 Diethylenetriamine penta(methylene phosphonic acid or Heptasodium DTPMP.
- suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties. For example, such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts, such as those sold by BASF under the name
- the organic builder materials may comprise from about 0.5% to 20 wt%, preferably from 1 wt% to 10 wt%, of the composition.
- the preferred builder level is less than 10 wt% and preferably less than 5 wt% of the composition.
- compositions may have their rheology modified by use of a material or materials that form a structuring network within the composition.
- Suitable structurants include hydrogenated castor oil, microfibrous cellulose and natural based structurants such as citrus pulp fibre. Citrus pulp fibre is particularly preferred especially if lipase enzyme is included in the composition.
- compositions may, and preferably do, comprise visual cues of solid material that is not dissolved in the composition. Preferably they are used in combination with an external structurant to ensure that they remain in suspension.
- visual cues are lamellar cues formed from polymer film and possibly comprising functional ingredients that may not be as stable if exposed to the alkaline liquid. Enzymes and bleach catalysts are examples of such ingredients. Also perfume, particularly microencapsulated perfume.
- the liquids may be packaged as unit doses in polymeric film adapted to be insoluble until added to the wash water. More preferred the liquids are supplied in multiuse plastics packs with a top or bottom closure. A dosing measure may be supplied with the pack either as a part of the cap or as an integrated system.
- liquids according to the invention are intended to be formulated to allow them to be dosed to a typical front loading automatic washing machine at a dosage level of 20ml.
- the low in wash surfactant level being compensated by the presence of enzymes, the stable soil release polymer and optional additional high efficacy cleaning ingredients, such as EPEI.
- the invention is also suitable for the more conventional dosage levels of about 35 ml.
- To obtain suitable liquids of this type all that is necessary is to add further water and possibly perfume to the 20ml type of liquid.
- the soil release polymers claimed are also stable in these more dilute compositions.
- MPG is mono propylene glycol
- TEA is triethanolamine
- Nl 7EO is C12-15 alcohol ethoxylate 7EO nonionic
- Neodol® 25-7 (ex Shell Chemicals).
- LAS acid is C12-14 linear alkylbenzene sulphonic acid.
- Prifac® 5908 is saturated lauric fatty acid ex Croda.
- SLES 3EO is sodium lauryl ether sulphate with 3 moles EO.
- Empigen® BB is an alkyl betaine ex Huntsman (Coco dimethyl
- EPEI Sokalan HP20 - ethoxylated polyethylene imine
- Perfume is free oil perfume.
- SRP soil release polymer
- Prifac® 5908 is saturated lauric fatty acid ex Croda.
- MEA is Monoethanolamine.
- NaOH is 47% sodium hydroxide solution.
- Dequest® 2066 is Diethylenetriamine penta(methylene phosphonic acid
- Dequest® 2010 is HEDP (1 -Hydroxyethylidene -1 ,1 ,-diphosphonic acid).
- Lipex® is Lipex 100L ex Novozymes.
- Carezyme® is a cellulase ex Novozymes.
- Stainzyme 12L is an amylase formulated for liquids ex Novozymes.
- Mann away is a mannanase ex Novozymes.
- a detergent liquid should be pH robust on a plus or minus 5 wt% ingredient to allow for manufacturing variability. To obtain that robustness it is necessary to include buffer into the liquid.
- the buffers used are TEA (pKa 7.8) and Prifac 5908 fatty acid (pKa unknown because it is a mixture).
- Prifac 5908 was used. At this level the fatty acid has a direct impact on low temperature instability, consequently the level of fatty acid has been reduced to improve the low temperature stability (in 20 ml liquid to 1 .71 % and correspondingly 0.85% for 35 ml compositions). The impact on antifoaming was checked and found to be acceptable. The impact of reduced Prifac 5908 on buffering and pH control was also checked with the 20ml compositions given in table 3 and found to be acceptable (table 4).
- Acceptable pH control can be achieved with 1 .5% Prifac 5908 and at least 1 % TEA. With 0% TEA the upper pH region is controlled but the lower pH region drops to significantly below pH 6.0 which results in unacceptable low temperature stability performance.
- the two low temperature criteria are robustness at 5°C (with recovery at ambient) for up to 12-weeks and freeze/thaw (with recovery at ambient) for 1 -week.
- the level of fatty acid used is a key aspect of low temperature instability and this is made increasingly worse at lower pHs (as the ratio of fatty acid to soap is increased).
- the addition of TEA and MPG can overcome this instability if added at the required levels.
- the starting point for the 20 ml liquid composition based on SRP hydrolytic stability and pH control is a target pH of 6.5 with a minimum of 1 % TEA and 1 .5% Prifac 5908.
- the actual TEA requirement is defined in table 5 and the MPG requirement is defined in table 6.
- the preferred wt% TEA is 3.5% and the preferred wt% MPG is 20% for the liquid as defined in table 1 .
- the starting point for a more dilute 35ml composition is the same pH requirement and 2% TEA.
- the level of MPG required for low temperature stability is shown in table 7.
- the wt% MPG required is 15% for the 35 ml liquid.
- Table 7 Low temperature stability profile for Table 6 liquid as a function of pH and MPG level.
- R Fail at 5°C, but becomes Isotropic on warming to RT
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12790866.3A EP2794832B1 (en) | 2011-12-20 | 2012-11-19 | Isotropic liquid detergents comprising soil release polymer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11194487 | 2011-12-20 | ||
PCT/EP2012/072974 WO2013092052A1 (en) | 2011-12-20 | 2012-11-19 | Isotropic liquid detergents comprising soil release polymer |
EP12790866.3A EP2794832B1 (en) | 2011-12-20 | 2012-11-19 | Isotropic liquid detergents comprising soil release polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2794832A1 true EP2794832A1 (en) | 2014-10-29 |
EP2794832B1 EP2794832B1 (en) | 2016-05-25 |
Family
ID=47222077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12790866.3A Active EP2794832B1 (en) | 2011-12-20 | 2012-11-19 | Isotropic liquid detergents comprising soil release polymer |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2794832B1 (en) |
CN (1) | CN104011192B (en) |
AR (1) | AR089289A1 (en) |
AU (1) | AU2012358647B2 (en) |
BR (1) | BR112014013942B1 (en) |
CL (1) | CL2014001603A1 (en) |
ES (1) | ES2587861T3 (en) |
WO (1) | WO2013092052A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017202922A1 (en) * | 2016-05-27 | 2017-11-30 | Unilever Plc | Laundry composition |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201520128D0 (en) * | 2015-11-16 | 2015-12-30 | Reckitt Benckiser Vanish Bv | Composition |
EP3472291B1 (en) * | 2016-06-16 | 2023-12-20 | Henkel AG & Co. KGaA | Concentrated isotropic liquid detergents containing polymers |
EP3472290B1 (en) * | 2016-06-16 | 2023-05-03 | Henkel AG & Co. KGaA | Concentrated isotropic liquid detergents containing polymers |
US10808206B2 (en) | 2017-11-14 | 2020-10-20 | Henkel IP & Holding GmbH | Detergent boosters, detergent systems that include a detergent booster, and methods of laundering fabric |
WO2022034150A1 (en) | 2020-08-12 | 2022-02-17 | Unilever Ip Holdings B.V. | Process for making laundry liquid detergent composition |
EP4196560A1 (en) | 2020-08-12 | 2023-06-21 | Unilever IP Holdings B.V. | Laundry detergent composition |
WO2022033855A1 (en) | 2020-08-12 | 2022-02-17 | Unilever Ip Holdings B.V. | Laundry detergent composition |
US20230303950A1 (en) * | 2020-08-12 | 2023-09-28 | Conopco, Inc., D/B/A Unilever | Laundry detergent composition |
WO2022033857A1 (en) * | 2020-08-12 | 2022-02-17 | Unilever Ip Holdings B.V. | Laundry detergent composition |
WO2022033997A1 (en) | 2020-08-12 | 2022-02-17 | Unilever Ip Holdings B.V. | Process for making laundry liquid detergent composition |
WO2022033986A1 (en) | 2020-08-12 | 2022-02-17 | Unilever Ip Holdings B.V. | Laundry detergent composition |
CN113481714B (en) * | 2021-06-14 | 2023-04-25 | 山东贝润防水材料有限公司 | Water seepage-proof polyester tire and preparation method thereof |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2182306A (en) | 1935-05-10 | 1939-12-05 | Ig Farbenindustrie Ag | Polymerization of ethylene imines |
US2208095A (en) | 1937-01-05 | 1940-07-16 | Ig Farbenindustrie Ag | Process of producing insoluble condensation products containing sulphur and nitrogen |
US2553696A (en) | 1944-01-12 | 1951-05-22 | Union Carbide & Carbon Corp | Method for making water-soluble polymers of lower alkylene imines |
US2806839A (en) | 1953-02-24 | 1957-09-17 | Arnold Hoffman & Co Inc | Preparation of polyimines from 2-oxazolidone |
BE615597A (en) | 1958-06-19 | |||
GB1296839A (en) | 1969-05-29 | 1972-11-22 | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
CA989557A (en) | 1971-10-28 | 1976-05-25 | The Procter And Gamble Company | Compositions and process for imparting renewable soil release finish to polyester-containing fabrics |
CA1049367A (en) | 1974-06-25 | 1979-02-27 | The Procter And Gamble Company | Liquid detergent compositions having soil release properties |
DK187280A (en) | 1980-04-30 | 1981-10-31 | Novo Industri As | RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY |
US4411831A (en) | 1981-12-02 | 1983-10-25 | Purex Industries, Inc. | Stable liquid anionic detergent compositions having soil, release properties |
US4759876A (en) | 1985-03-19 | 1988-07-26 | Colgate-Palmolive Company | Stable soil release promoting enzymatic liquid detergent composition |
ATE98674T1 (en) * | 1985-04-15 | 1994-01-15 | Procter & Gamble | STABLE LIQUID DETERGENT. |
EP0218272B1 (en) | 1985-08-09 | 1992-03-18 | Gist-Brocades N.V. | Novel lipolytic enzymes and their use in detergent compositions |
US4713194A (en) * | 1986-04-15 | 1987-12-15 | The Procter & Gamble Company | Block polyester and like compounds having branched hydrophilic capping groups useful as soil release agents in detergent compositions |
JPS6356289A (en) | 1986-07-30 | 1988-03-10 | Res Dev Corp Of Japan | Beta-mannanase and production thereof |
JPS6336775A (en) | 1986-07-31 | 1988-02-17 | Res Dev Corp Of Japan | Novel alkalophilic strain of bacillus genus capable of producing beta-mannanase and beta-mannosidase and use thereof |
US4785060A (en) | 1986-08-28 | 1988-11-15 | Colgate-Palmolive Company | Soil release promoting pet-poet copolymer, method of producing same and use thereof in detergent composition having soil release promoting property |
US4810414A (en) | 1986-08-29 | 1989-03-07 | Novo Industri A/S | Enzymatic detergent additive |
NZ221627A (en) | 1986-09-09 | 1993-04-28 | Genencor Inc | Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios |
EP0294893A3 (en) | 1987-06-10 | 1989-11-02 | The Procter & Gamble Company | Conditioning agents and compositions containing same |
ATE125865T1 (en) | 1987-08-28 | 1995-08-15 | Novo Nordisk As | RECOMBINANT HUMICOLA LIPASE AND METHOD FOR PRODUCING RECOMBINANT HUMICOLA LIPASES. |
JPS6474992A (en) | 1987-09-16 | 1989-03-20 | Fuji Oil Co Ltd | Dna sequence, plasmid and production of lipase |
US5110506A (en) | 1987-10-27 | 1992-05-05 | Colgate-Palmolive Company | Soil release promoting liquid detergent composition containing a PET-POET copolymer and a narrow range alcohol ethoxylate |
JP3079276B2 (en) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same |
WO1989009259A1 (en) | 1988-03-24 | 1989-10-05 | Novo-Nordisk A/S | A cellulase preparation |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
GB8915658D0 (en) | 1989-07-07 | 1989-08-23 | Unilever Plc | Enzymes,their production and use |
JPH0347076A (en) | 1989-08-25 | 1991-02-28 | Res Dev Corp Of Japan | Beta-mannase and production thereof |
EP0528828B2 (en) | 1990-04-14 | 1997-12-03 | Genencor International GmbH | Alkaline bacillus lipases, coding dna sequences therefor and bacilli which produce these lipases |
US5290475A (en) | 1990-05-08 | 1994-03-01 | Colgate Palmolive | Liquid softening and anti-static nonionic detergent composition with soil release promoting PET-POET copolymer |
AU8060091A (en) | 1990-05-29 | 1991-12-31 | Chemgen Corporation | Hemicellulase active at extremes of ph and temperature and the means for the production thereof |
ES2121786T3 (en) | 1990-09-13 | 1998-12-16 | Novo Nordisk As | LIPASE VARIANTS. |
ATE136055T1 (en) | 1991-04-30 | 1996-04-15 | Procter & Gamble | LIQUID DETERGENTS CONTAINING BRACKETS WITH BORIC ACID-POLYOL COMPLEX FOR PTOTEOLYTIC ENZYMIN INHIBITION |
EP0511456A1 (en) | 1991-04-30 | 1992-11-04 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
US6262007B1 (en) | 1991-06-14 | 2001-07-17 | The Procter & Gamble Company | Self-thickened cleaning compositions |
JP2626662B2 (en) | 1991-10-09 | 1997-07-02 | 科学技術振興事業団 | Novel β-mannanase and method for producing the same |
FI931193A0 (en) | 1992-05-22 | 1993-03-17 | Valtion Teknillinen | MANNANASENZYMER, GENER SOM KODAR FOER DEM OCH FOERFARANDEN FOER ISOLERINGAV GENERNA SAMT FOERFARANDE FOER BLEKNING AV LIGNOCELLULOSAHALTIG MASSA |
DK72992D0 (en) | 1992-06-01 | 1992-06-01 | Novo Nordisk As | ENZYME |
DK88892D0 (en) | 1992-07-06 | 1992-07-06 | Novo Nordisk As | CONNECTION |
CA2138519C (en) | 1993-04-27 | 2007-06-12 | Jan Metske Van Der Laan | New lipase variants for use in detergent applications |
DK48693D0 (en) | 1993-04-30 | 1993-04-30 | Novo Nordisk As | ENZYME |
JP2859520B2 (en) | 1993-08-30 | 1999-02-17 | ノボ ノルディスク アクティーゼルスカブ | Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase |
KR100338786B1 (en) | 1993-10-13 | 2002-12-02 | 노보자임스 에이/에스 | H2o2-stable peroxidase variants |
JPH07143883A (en) | 1993-11-24 | 1995-06-06 | Showa Denko Kk | Lipase gene and mutant lipase |
AU1806795A (en) | 1994-02-22 | 1995-09-04 | Novo Nordisk A/S | A method of preparing a variant of a lipolytic enzyme |
AU2067795A (en) | 1994-03-29 | 1995-10-17 | Novo Nordisk A/S | Alkaline bacillus amylase |
CA2189441C (en) | 1994-05-04 | 2009-06-30 | Wolfgang Aehle | Lipases with improved surfactant resistance |
AU2884595A (en) | 1994-06-20 | 1996-01-15 | Unilever Plc | Modified pseudomonas lipases and their use |
WO1996000292A1 (en) | 1994-06-23 | 1996-01-04 | Unilever N.V. | Modified pseudomonas lipases and their use |
BE1008998A3 (en) | 1994-10-14 | 1996-10-01 | Solvay | Lipase, microorganism producing the preparation process for the lipase and uses thereof. |
WO1996013580A1 (en) | 1994-10-26 | 1996-05-09 | Novo Nordisk A/S | An enzyme with lipolytic activity |
JPH08228778A (en) | 1995-02-27 | 1996-09-10 | Showa Denko Kk | New lipase gene and production of lipase using the same |
ATE315083T1 (en) | 1995-03-17 | 2006-02-15 | Novozymes As | NEW ENDOGLUCANASE |
CA2226255A1 (en) * | 1995-07-07 | 1997-01-30 | Darwin Molecular Corporation | Chromosome 1 gene and gene products related to alzheimer's disease |
GB2303146A (en) * | 1995-07-08 | 1997-02-12 | Procter & Gamble | Detergent compositions |
CN1193346A (en) | 1995-07-14 | 1998-09-16 | 诺沃挪第克公司 | Modified enzyme with lipolytic activity |
ATE267248T1 (en) | 1995-08-11 | 2004-06-15 | Novozymes As | NOVEL LIPOLYTIC ENZYMES |
DE69628656D1 (en) | 1995-09-20 | 2003-07-17 | Genencor Int | MANNASE OF BACILLUS AMYLOLIQUEFACIENS AND METHOD FOR YOUR PREPARATION |
BR9710658A (en) | 1996-05-03 | 1999-08-17 | Procter & Gamble | Liquid laundry detergent compositions comprising polymers to release cotton dirt |
EP0906402A1 (en) | 1996-06-19 | 1999-04-07 | Unilever N.V. | Bleach activation |
CN101085985B (en) | 1996-09-17 | 2012-05-16 | 诺沃奇梅兹有限公司 | Cellulase variants |
CN1232384A (en) | 1996-10-08 | 1999-10-20 | 诺沃挪第克公司 | Diaminobenzoic acid derivatives as dye precursors |
ZA981883B (en) | 1997-03-07 | 1998-09-01 | Univ Kansas | Catalysts and methods for catalytic oxidation |
MA24594A1 (en) | 1997-03-07 | 1999-04-01 | Procter & Gamble | BLEACHING COMPOSITIONS |
DE19725508A1 (en) * | 1997-06-17 | 1998-12-24 | Clariant Gmbh | Detergents and cleaning agents |
WO1999027083A1 (en) | 1997-11-24 | 1999-06-03 | Novo Nordisk A/S | PECTIN DEGRADING ENZYMES FROM $i(BACILLUS LICHENIFORMIS) |
BR9815007A (en) | 1997-11-24 | 2000-10-03 | Novo Nordisk As | Pectate lyase, isolated polynucleotide molecule encoding a polypeptide, expression vector, cultured cell into which an expression vector was introduced, isolated and fused polypeptides, enzyme preparation, processes for producing a polypeptide showing pectate lyase activity, for the cleaning of a hard surface, for the treatment of fabrics by machine, to improve the properties of cellulosic fibers, yarn, woven or nonwoven fabric, for the degradation or modification of plant material, for preparing animal food, and for processing wine or juice, isolated enzyme showing pectate lyase activity, and detergent composition |
US6124127A (en) | 1997-11-24 | 2000-09-26 | Novo Nordisk A/S | Pectate lyase |
CN101024826B (en) | 1998-06-10 | 2014-09-03 | 诺沃奇梅兹有限公司 | Novel mannanases |
DE69926390T2 (en) | 1998-11-13 | 2006-03-30 | The Procter & Gamble Company, Cincinnati | BLEACH COMPOSITIONS |
AU772358B2 (en) | 1999-03-02 | 2004-04-22 | Procter & Gamble Company, The | Stabilized bleach compositions |
CN1234854C (en) | 1999-03-31 | 2006-01-04 | 诺维信公司 | Polypeptides having alkaline alpha-amylase activity and uncleic acids encoding same |
WO2000060045A1 (en) | 1999-04-01 | 2000-10-12 | The Procter & Gamble Company | Transition metal bleaching agents |
DE60137510D1 (en) | 2000-07-19 | 2009-03-12 | Novozymes As | CELL WALL-ABOLISHING ENZYME VARIANTS |
GB0030673D0 (en) | 2000-12-15 | 2001-01-31 | Unilever Plc | Ligand and complex for catalytically bleaching a substrate |
US8293695B2 (en) | 2003-08-06 | 2012-10-23 | Basf Se | Shading composition |
US20080015135A1 (en) * | 2006-05-05 | 2008-01-17 | De Buzzaccarini Francesco | Compact fluid laundry detergent composition |
EP2300586B1 (en) | 2008-06-16 | 2015-04-08 | Unilever PLC | Improvements relating to fabric cleaning |
BRPI0918813A2 (en) | 2008-09-19 | 2015-12-01 | Procter & Gamble | modified lignin biopolymer useful in cleaning compositions |
US8900328B2 (en) | 2009-03-16 | 2014-12-02 | The Procter & Gamble Company | Cleaning method |
EP2522714A1 (en) * | 2011-05-13 | 2012-11-14 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Aqueous concentrated laundry detergent compositions |
-
2012
- 2012-11-19 CN CN201280063058.XA patent/CN104011192B/en active Active
- 2012-11-19 ES ES12790866.3T patent/ES2587861T3/en active Active
- 2012-11-19 AU AU2012358647A patent/AU2012358647B2/en not_active Ceased
- 2012-11-19 EP EP12790866.3A patent/EP2794832B1/en active Active
- 2012-11-19 WO PCT/EP2012/072974 patent/WO2013092052A1/en active Application Filing
- 2012-11-19 BR BR112014013942-3A patent/BR112014013942B1/en active IP Right Grant
- 2012-12-18 AR ARP120104781A patent/AR089289A1/en not_active Application Discontinuation
-
2014
- 2014-06-18 CL CL2014001603A patent/CL2014001603A1/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2013092052A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017202922A1 (en) * | 2016-05-27 | 2017-11-30 | Unilever Plc | Laundry composition |
Also Published As
Publication number | Publication date |
---|---|
CN104011192A (en) | 2014-08-27 |
AU2012358647B2 (en) | 2015-01-15 |
BR112014013942A2 (en) | 2017-06-13 |
ES2587861T3 (en) | 2016-10-27 |
AR089289A1 (en) | 2014-08-13 |
AU2012358647A1 (en) | 2014-07-03 |
CN104011192B (en) | 2017-08-25 |
WO2013092052A1 (en) | 2013-06-27 |
CL2014001603A1 (en) | 2014-08-22 |
EP2794832B1 (en) | 2016-05-25 |
BR112014013942B1 (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2794832B1 (en) | Isotropic liquid detergents comprising soil release polymer | |
AU2012238950B2 (en) | Method of laundering fabric | |
EP2300586B1 (en) | Improvements relating to fabric cleaning | |
EP2707472B1 (en) | Aqueous concentrated laundry detergent compositions | |
EP2670788B1 (en) | Alkaline liquid detergent compositions | |
US9150993B2 (en) | Methods and compositions for fabric cleaning | |
EP2522714A1 (en) | Aqueous concentrated laundry detergent compositions | |
EP3277784A1 (en) | Composition | |
EP2522715A1 (en) | Aqueous concentrated laundry detergent compositions | |
EP2534237B1 (en) | Laundry treatment composition comprising bis-azo shading dyes | |
WO2017133879A1 (en) | Detergent liquid | |
EP3469048A1 (en) | Laundry products | |
WO2019038186A1 (en) | Improvements relating to fabric cleaning | |
WO2019038187A1 (en) | Improvements relating to fabric cleaning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140618 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150814 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151221 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PARRY, ALYN, JAMES Inventor name: WELLS, JOHN, FRANCIS Inventor name: CHOPRA-GANDHI, SEEMA Inventor name: GREEN, ANDREW, DAVID |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 802346 Country of ref document: AT Kind code of ref document: T Effective date: 20160615 Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012019008 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2587861 Country of ref document: ES Kind code of ref document: T3 Effective date: 20161027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160825 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 802346 Country of ref document: AT Kind code of ref document: T Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160826 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012019008 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160525 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: UNILEVER IP HOLDINGS B.V.; NL Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: UNILEVER N.V. Effective date: 20210607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602012019008 Country of ref document: DE Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: UNILEVER IP HOLDINGS B.V. Effective date: 20211228 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220127 AND 20220202 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230428 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231117 Year of fee payment: 12 Ref country code: FR Payment date: 20231120 Year of fee payment: 12 Ref country code: DE Payment date: 20231121 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231120 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240126 Year of fee payment: 12 |