AU772358B2 - Stabilized bleach compositions - Google Patents

Stabilized bleach compositions Download PDF

Info

Publication number
AU772358B2
AU772358B2 AU36127/00A AU3612700A AU772358B2 AU 772358 B2 AU772358 B2 AU 772358B2 AU 36127/00 A AU36127/00 A AU 36127/00A AU 3612700 A AU3612700 A AU 3612700A AU 772358 B2 AU772358 B2 AU 772358B2
Authority
AU
Australia
Prior art keywords
organic
transition
formula
ligand
donor atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU36127/00A
Other versions
AU3612700A (en
Inventor
Regine Labeque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of AU3612700A publication Critical patent/AU3612700A/en
Application granted granted Critical
Publication of AU772358B2 publication Critical patent/AU772358B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0084Antioxidants; Free-radical scavengers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0042Reducing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/168Organometallic compounds or orgometallic complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes

Description

WO 00/52124 PCT/US00/05291 STABILIZED BLEACH COMPOSITIONS FIELD OF THE INVENTION The present invention relates to stabilized bleaching and detergent compositions which comprise a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand and an anti-oxidant or reducing agent which serves to stabilize said catalyst. The present invention further relates to a method for bleaching/cleaning fabric with a catalytically effective amount of said stabilized transition-metal bleach catalyst wherein the method is performed substantially free of any organic or inorganic peroxygen compound or precursors to any organic or inorganic peroxygen compound.
BACKGROUND OF THE INVENTION Bleaching of fabric is essentially exposing soiled or stained fabric to a chemical reaction the purpose of which is to eliminate the soil or stain. At one point in time, bleaching involved exposure of fabric to a solution of hypochlorite. Therefore, fabric which was colored or dyed via sensitive pigments were excluded from treatment with bleach. To the benefit of the consumer, formulators developed various forms of bleach inter alia peroxygen bleaching systems which typically comprise a source of hydrogen peroxide and a bleach activator. This combination of source of hydrogen peroxide and activator plays a dominating role in effective, safe bleaching compositions. An effective example of this peroxygen bleaching system employs perborate (peroxygen source) and nonanoyloxybenzene sulfonate (activator).
In order to boost the performance of bleaching agents and to develop bleaching systems which are safe to any type of dyed or colored fabric inter alia silk, polyester blends, cotton, nylon, formulators have continued to develop peroxygen bleaching systems, as well as new methods of forming activated oxygen.
However, there still remains a need in the art for a stable bleaching system which will effectively bleach fabric without the need for reactive chemicals such as peroxides, sources of peroxide, and/or mixtures thereof. Said stable bleaching system will comprise a transition-metal catalyst which does not loose its effectiveness due to the instability of the catalyst to oxidation and/or reduction post formulation.
SUMMARY OF THE NVENTION WO 00/52124 PCT/US00/05291 2 The present invention meets the aforementioned needs in that it has been surprisingly discovered that bleaching systems comprising a transition-metal catalyst which are capable of bleaching soils and stains in the absence of a source of hydrogen peroxide or other peroxygen bleaching agent can be successfully stabilized against the unwanted degradation of the transitionmetal catalyst. In other words, it has been surprisingly discovered that the addition of an effective amount of an anti-oxidant and/or free radical scavenger or an reducing agent can stabilize a nil hydrogen peroxide bleaching system.
A first aspect of the present invention relates to stabilized bleaching compositions comprising: A) a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; B) an effective amount of a stabilizing agent, said agent selected from i) one or more anti-oxidants; ii) one or more reducing agents; iii) and mixtures thereof; and C) the balance carriers and other adjunct ingredients; provided said composition is substantially free of any organic or inorganic peroxygen compounds.
The present invention further relates to a method for cleaning and/or bleaching soils and stains on fabrics, said method comprising the step of contacting the fabric in need of cleaning and/or bleaching with an aqueous solution containing a composition which is substantially free of a peroxygen source and which comprises: a) a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; b) an effective amount of a stabilizing agent, said agent selected from i) one or more anti-oxidants; ii) one or more reducing agents; iii) and mixtures thereof; and c) the balance carriers and other adjunct ingredients; provided the concentration of said transition metal bleach catalyst in the aqueous solution is at least about 0.01 ppb and said composition is substantially free of any organic or inorganic peroxygen compounds.
The compositions and methods of the present invention are suitable for cleaning/bleaching any surface in need of stain removal. For example, hard surface cleaners and WO 00/52124 PCT/US00/05291 3 automatic dishwashing compositions can employ the bleach catalysts of the present invention in applications which are substantially free of any organic or inorganic peroxygen compounds.
These and other objects, features, and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims.
All percentages, ratios and proportions herein are by weight, unless otherwise specified.
All temperatures are in degrees Celsius (0 C) unless otherwise specified. All documents cited are in relevant part, incorporated herein by reference.
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the surprising discovery that transition-metal catalysts which are capable of bleaching of soils and stains in the absence of an added peroxygen bleach can be suitably stabilized by the addition of one or more stabilizing agents. The stabilizing agents suitable for use in the present invention are present at varying level depending upon the formulation inter alia liquid, solid, gel, and the concentration of the transition-metal present.
Absence of Peroxygen Sources The compositions of the present invention, as well as the methods for cleaning and/or bleaching of fabric which utilize the compositions of the present invention are substantially free of any peroxygen source such as hydrogen peroxide, peroxyacid etc. The compositions of the present invention need only have an effective amount of the herein below described catalyst present for effective bleaching. For the purposes of the present invention the term "substantially free" is defined as "the formulator does not include in the composition any peroxygen compound or source ofperoxygen at a level required for either effective bleaching without a transition metal catalyst, or which would provide an increase in effectiveness of bleaching in the presence of a transition metal catalyst as defined herein." Therefore, as will be further described herein below, effective bleaching of stains can be accomplished by simply adding an aqueous or non-aqueous solution of a catalyst as described herein to fabric which is stained, preferably the fabric is in an aqueous solution when contacted with the catalyst. However, it is recognized that because of factors outside the control of the formulator inter alia source of product raw materials, unwanted decomposition of one or more ingredients, that a source of peroxygen may be introduced and/or formed unknowingly in the product. The compositions of the present invention do not require any peroxygen source, but the presence of any minor amounts will not effect the performance of the bleaching compositions described herein.
WO 00/52124 PCT/USOO/05291 4 Formulators may typically include a small amount of a source of hydrogen peroxide into compositions for the purposes of stabilizing enzymes, for example, a minor amount of perborate may be added. However, this amount of perborate is typically so minor that it has no effect on the bleaching capacity of the compositions of the present invention. In cases where the formulator has added a minor amount of an oxidant, or other source of peroxide for the purposes of stabilizing an adjunct ingredient, for the purposes of the present invention, those compositions are still defined as "substantially free" of a source ofperoxygen as defined herein above if they do not provide additional bleaching activity on stains under typical use conditions. For example, a "substantially free" composition can include an amount of peroxygen source provided the degree to which the catalyst is effective is substantially the same as if the source of peroxygen were absent. For the purposes of the present invention, any composition which comprises less than preferably less than 0.01% of a primary oxidant, such as a pre-formed peracid or a source of hydrogen peroxide is considered "substantially free" as further defined herein above.
Additionally, any laundry liquor, laundry wash water, pre-soak bath, or other fabric or surface cleaning solution, wherein the present catalysts are used and which comprises less than 0.001% by weight of a source of peroxygen, pre-formed or otherwise formed in situ, is defined herein as "substantially free" as defined herein above. Stated otherwise, if the catalysts of the present invention are used to bleach stains on fabric, or otherwise clean/bleach a hard surface or dishware, and the solution containing the catalyst has a concentration of a source of peroxygen less than 0.001%, that solution is defined herein as "substantially free" of a source of peroxygen.
Bleach Catalyst The compositions of the present invention comprise an effective amount of a bleach catalyst. The term "an effective amount" is defined as "an amount of the transition-metal bleach catalyst present in the present invention compositions, or during use according to the present invention methods, that is sufficient, under whatever comparative or use conditions are employed, to result in at least partial oxidation of the material sought to be oxidized by the composition or method." Typically the material to be oxidized is an unwanted substance inter alia food and beverage stains, greasy/oily stains, body soils on fabric, however, this is not the limitation to which the invention is applicable. Oxidation in the absence of a source of peroxygen has wide applicability and the present invention is not limited solely to bleaching andior cleaning of fabric. For example, automatic dishwashing compositions are an embodiment of the present invention wherein bleaching of a stain with a composition and/or with a solution which is "substantially free'" of a source of peroxygen is a part of the present invention. The WO 00/52124 PCT/USOO/05291 same is equally true for hard surface cleaning compositions and solutions which comprise hard surface cleaning compositions which are "substantially free" of a source of peroxygen.
Preferably the compositions of the present invention comprise from about 1 ppb (0.0000001%), more preferably from about 100 ppb (0.00001%), yet more preferably from about 500 ppb (0.00005%), still more preferably from about 1 ppm (0.0001%) to about 99.9%, more preferably to about 50%, yet more preferably to about still more preferably to about 500 ppm by weight of the composition, of a transition-metal bleach catalyst as described herein below.
In the broadest view, the transition-metal bleach catalyst of the present invention comprises: i) a transition metal selected from the group consisting of Mn(II), Mn(lI), Mn(IV), Mn(V), Fe(II), Fe(II), Fe(IV), Co(I), Co(II), Co(III), Ni(I), Ni(I), Ni(II), Cu(I), Cu(I), Cu(mI), Cr(II), Cr(III), Cr(IV), Cr(V), Cr(VI), V(IV), V(V), Mo(IV), Mo(V), Mo(VI), W(IV), W(VI), Pd(I), Ru(I), Ru(II), and Ru(IV), preferably Mn(II), Mn(III), Mn(IV), Fe(II), Fe(ll), Fe(IV), Cr(II), Cr(Ifl), Cr(IV), Cr(V), Cr(VI), and mixtures thereof; and ii) a cross-bridged macropolycyclic ligand being coordinated by four or five donor atoms to the same transition metal, said ligand comprising: a) an organic macrocycle ring containing four or more donor atoms (preferably at least 3, more preferably at least 4, of these donor atoms are N) separated from each other by covalent linkages of 2 or 3 non-donor atoms, two to five (preferably three to four, more preferably four) of these donor atoms being coordinated to the same transition metal atom in the complex; b) a cross-bridged chain which covalently connects at least 2 non-adjacent donor atoms of the organic macrocycle ring, said covalently connected non-adjacent donor atoms being bridgehead donor atoms which are coordinated to the same transition metal in the complex, and wherein said cross-bridged chain comprises from 2 to about 10 atoms (preferably the cross-bridged chain is selected from 2, 3 or 4 non-donor atoms, and 4-6 non-donor atoms with a further donor atom); c) optionally, one or more non-macropolycyclic ligands, preferably selected from the group consisting of ll20, ROH, NR3, RCN, OH', OOH', RS', RO', RCOO OCN', SCN'. N3-. CN', Cl', Br', 02", N03", N02 WO 00/52124 PCT/US00/05291 6 2- 2- 3- S04 2 S03 2 P04 organic phosphates, organic phosphonates, organic sulfates, organic sulfonates, and aromatic N donors such as pyridines, pyrazines, pyrazoles, imidazoles, benzimidazoles, pyrimidines, triazoles and thiazoles with R being H, optionally substituted alkyl, optionally substituted aryl.
The preferred cross-bridged macropolycyclic ligands are is selected from the group consisting of: a) a cross-bridged macropolycyclic ligand of formula having denticity of 4 or b) a cross-bridged macropolycyclic ligand of formula (II) having denticity of 5 or 6:
(II);
c) the cross-bridged macropolycyclic ligand of formula (II) having denticity of 6 or 7: WO 00/52124 PCT[USOO/05291 7 Rn' I /E E Rn' R DN,,
DI
z G E D G D E D E Rn' (InI); wherein each E unit represents the moiety having the formula: (CRn)a-X-(CRn)a' wherein X is selected from the group consisting of oxygen, sulfur, -NR-, phosphorous, or X represents a covalent bond wherein E has the formula: (CRn)a-(CRn)a' for each E units the sum ofa a' is independently selected from 1 to 5; each G unit is a moiety (CRn)b; each R unit is independently selected from H, alkyl, alkenyl, alkynyl, aryl, alkylaryl, and heteroaryl, or two or more R units are covalently bonded to form an aromatic, heteroaromatic, cycloalkyl, or heterocycloalkyl ring; each D unit is a donor atom independently selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorous, and at least two atoms which comprise D units are bridgehead donor atoms coordinated to the transition metal; B units are a carbon atom, a D unit, or a cycloalkyl or heterocyclic ring; each n is an integer independently selected from 1 and 2, completing the valence of the carbon atoms to which the R units are covalently bonded; each n' is an integer independently selected from 0 and 1, completing the valence of the D donor atoms to which the R moieties are covalently bonded; each n" is an integer independently selected from 0, 1, and 2 completing the valence of the B atoms to which the R moieties are covalently bonded; each a and a' is an integer independently selected from 0 to 5, wherein the sum of all a a' values in the ligand of formula is within the range of from about 8 to about 12; the sum of all a a' values in the ligand of formula (II) is within the range of WO 00/52124 PCT/US00/05291 8 from about 10 to about 15; and the sum of all a a' values in the ligand of formula (III) is within the range of from about 12 to about 18; each b is an integer independently selected from 0 to 9, or in any of the above formulas, one or more of the (CRn)b moieties covalently bonded from any D to the B atom is absent as long as at least two (CRn)b covalently bond two of the D donor atoms to the B atom in the formula, and the sum of all b indices is within the range of from about 2 to about A further description of the bleach catalysts of the present invention can be found in WO 98/39406 Al, published September 11, 1998, WO 98/39098 Al, published September 11, 1998, and WO 98/39335 Al, published September 11, 1998, all of which are included herein by reference.
The nomenclature used throughout this patent to describe the transition-metal bleach catalysts is the same nomenclature style used in the above-identified references. However, the chemical names of one or more of the herein described ligands may vary from the chemical name assigned under the rules of the International Union of Pure and Applied Chemistry (IUPAC). For example, a preferred ligand for the purposes of the present invention, 5,12-dimethyl-1,5,8,12tetraaza-bicyclo[6.6.2]hexadecane, has the IUPAC name 4,1 1-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane.
Transition-metal bleach catalysts useful in the invention compositions can in general include known compounds where they conform with the invention definition, as well as, more preferably, any of a large number of novel compounds expressly designed for the present laundry or cleaning uses. Non-limiting examples of suitable catalysts according to the present invention include: Dichloro-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Dichloro-4,10-dimethyl-l,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(I) Diaquo-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(H) Hexafluorophosphate Aquo-hydroxy-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(im) Hexafluorophosphate Diaquo-4,10-dimethyl-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane Manganese(I) Hexafluorophosphate Diaquo-5,12-dimethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Tetrafluoroborate WO 00/52124 WO 0052124PCTUSOO/05291 9 Diaquo-4, 1 0-dimethyl- 1,4,7,1 O-tetraazabicyclo[5.5 .2]tetradecane Manganese(ll) Tetrafluoroborate 12-dimethyl- 1,5,8; 12-tetraazabicyclo [6.6.2]hexadecane Manganese(Ill) Hexafluorophosphate Dichloro-5,1I2-di-n-butyl- 1,5,8,1 2-tetraaza- bicyclo[6.6.2]hexadecane Manganese(II) 12-dibenzyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(HI) 12-methyl-I ,5,8,1I2-tetraaza- bicyclo[6.6.2]hexadecane Manganese(ll) 1 2-methyl-I ,5 ,8,1I2-tetraaza- bicyclo[6.6.2]hexadecane Manganese(ll) -n-butyl- 12-methyl-I ,5,8,1I2-tetraaza- bicyclo[6.6.2]hexadecane Manganese(ll) Dichloro-5,1I2-dimethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Iron(ll) Dichloro-4,1I0-dimethyl- 1,4,7,1 0-tetraazabicyclo[5 .5.2]tetradecane Iron(ll) Dichloro-5,1I2-dimethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Copper(H) Dichloro-4, 10-dimethyl- 1,4,7,1 0-tetraazabicyclo[5 .5 .2]tetradecane Copper(ll) Dichloro-5,1I2-dimethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Cobalt(ll) Dichloro-4, 10-dimethyl- 1,4,7,1 0-tetraazabicyclo tetradecane Cobalt(ll) Dichloro 5,1 2-dimethyl--4-phenyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(ll) Dichloro-4, 10-dimethyl-3-phenyl- 1,4,7,1 O-tetraazabicyclo[5 .5 .2]tetradecane Manganese(H) Dichloro-5,1I2-dimethyl-4,9-diphenyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(fl) Dichloro-4, 10-dimethyl-3 ,8-diphenyl- 1,4,7,1 0-tetraazabicyclo[5 .5 .2]tetradecane Manganese (II) Dichloro-5,1I2-dimethyl-2,1 II-diphenyl-I 12-tetraazabicyclo[6.6.2]hexadecane Manganese(HI) Dichloro-4,1I0-dimethyl-4,9-diphenyl- 1,4,7,1 0-tetraazabicyclo [5.5 .2]tetradecane Manganese(ll) Dichloro-2,4,5 11,1 2-hexamethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(ll) Dichloro-2,3 ,5 10,1 2-hexamethyl-I ,5,8,1I2-tetraazabicyclo[6.6.2]hexadecane Manganese(H) Dichloro-2,2,4,5 ,9,9,11,I 2-octamethyl-1 ,5,8,1I2-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Dichloro-2,2 ,4,5,9,11,1I,1 2-octarnethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Dichloro-3,3 ,5,I0,10,1 2-hexamethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(ll) WO 00/52124 PCT/USOO/05291 Dichloro-3 ,5,1 0,1 2-tetramethyl- 1,5,8,1 2-tetraazabicyclo hexadecane Manganese(ll) Dichloro-3-butyl-5,10,l 2-trimethyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(II) Dichloro- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(H) Dichloro- 1,4,7, 1O-tetraazabicyclo[5 .5 .2]tetradecane Manganese(H) Dichloro-1 ,5,8,1I2-tetraazabicyclo[6.6.2]hexadecane Iron(II) Dichioro- 1,4,7,1 0-tetraazabicyclo[5 .5 .2]tetradecane Iron(II) Aquo-chloro-2-(2-hydroxyphenyl)-5,1I2-dimethy 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(ll) Aquo-chloro-1I0-(2-hydroxybenzyl)-4,1I0-dimethyl- 1.4,7,1 O-tetraazabicyclo[5 .5 .2]tetradecane Manganese(ll) Chloro-2-(2-hydroxybenzyl)-5-methy 1,5,8,1 2-tetraazabicyclo [6.6.2]hexadecane Manganese(HI) Chioro- 10-(2-hydroxybenzyl)-4-methyl- 1,4,7,1 0-tetraazabicyclo[5 .5 .2]tetradecane Manganese(ll) Chloro-5-methyl-1I2-(2-picolyl)-1 ,5 ,8,1I2-tetraazabicyc Io[6.6.2]hexadecane Manganese(ll) Chloride Chloro-4-methyl-1I0-(2-picolyl)-1 ,4,7,1I0-tetraazabicyclo[5.5 .2]tetradecane Manganese(fl) Chloride Dichloro-5-(2-sulfato)dodecyl- 12-methyl-i ,5,8,1I2-tetraazabicyclo[6.6.2]hexadecane Manganese(1HI) -(2-sulfato)dodecyl-1 2-methyl- 1,5,8.1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(H) -sulfonopropyl)- 12-methyl-i ,5 .8.1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(ll) -(Trimethylammoniopropyl)dodecyl- 12-methyl- 1,5,8,1 2-tetraazabicyclo[6.6.2]hexadecane Manganese(ff) Chloride Dichloro-5,1I2-dimethyl-1 10,1 3-pentaazabicycloj 8.5 .2]heptadecane Manganese(fl) Dichloro-1 4,20-dimethyl-1 ,10, 14,20-tetraazatrivc lo 8 .6.6]docosa-3(8),4,6-triene Manganese(ll) Dichloro-4, 1-dimethyl-1,4,7, I 1-tetraazabicyclo(6.5 .2 Ipentadecane Manganese(fl) 12-dimethyl- 1,5,8,1 2-tetraazabicyclo( 7.6.21 heptadecane Manganese(HI) Dichloro-5, 13-dimethyl-1 ,5 13 -tetraazabicyc lo( 7.7.21 heptadecane Manganese(ll) Dichloro-3 ,1I0-bis(butylcarboxy)-5 ,1I2-dimethyl- 1.5.8.1 2.tetraazabicyclo[6.6.2]hexadecale Manganese(fl) Diaquo-3,1I0-dicarboxy-5,1I2-dimethyl- 1,5,8,1 2-tetraazabicyc lo[6.6.2]hexadecane Manganese(II) WO 00/52124 PCT/US00/05291 11 1,9,20,24,25 -pentaaza-tetracyclo[ 7.7.7.13,7.111,15.]pentacosa- 3,5,7(24),11,13,15(25)-hexaene manganese(II) Hexafluorophosphate Trifluoromethanesulfono-20-methyl-1,9,20,24,25-pentaaza-tetracyclo[7.7.7.13,7.111,15.]pentacosa- 3,5,7(24),11,13,15(25)-hexaene Manganese(II) Trifluoromethanesulfonate Trifluoromethanesulfono-20-methyl-1,9,20,24,25-pentaaza-tetracyclo[7.7.7.13,7.111,15.]pentacosa- 3,5,7(24),11,13,15(25)-hexaene Iron(II) Trifluoromethanesulfonate Chloro-5,12,17-trimethyl-1,5,8,12,17-pentaazabicyclo[6.6.5]nonadecane Manganese(II) Hexafluorophosphate Chloro-4,10,15-trimethyl-1,4,7,10,15-pentaazabicyclo[5.5.5]heptadecane Manganese(II) Hexafluorophosphate Chloro-5,12,17-trimethyl-1,5,8,12,17-pentaazabicyclo[6.6.5]nonadecane Manganese(II) Chloride Chloro-4,10,15-trimethyl-1,4,7,10,15-pentaazabicyclo[5.5.5]heptadecane Manganese(II) Chloride Dichloro 5,12,15,16-tetramethyl-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(Il) Chloro 5-methyl-1 2-(2'-oxybenzyl)-1,5,8,12-tetraazabicyclo[6.6.2]hexadecane Manganese(H) Preferred complexes useful as transition-metal bleach catalysts more generally include not only monometallic, mononuclear kinds such as those illustrated hereinabove but also bimetallic, trimetallic or cluster kinds. Monometallic, mononuclear complexes are preferred. As defined herein, a monometallic transition-metal bleach catalyst contains only one transition metal atom per mole of complex. A monometallic, mononuclear complex is one in which any donor atoms of the essential macrocyclic ligand are bonded to the same transition metal atom, that is, the essential ligand does not "bridge" across two or more transition-metal atoms.
Stabilization Agents Anti-oxidants One type of preferred stabilization agent according to the present invention are antioxidants. The compositions of the present invention will comprise an effective amount of the anti-oxidant, preferably from about 0.01%, more preferably from about most preferably from about 0.2% to about 10%, preferably to about more preferably to about 1% by weight of an anti-oxidant. Preferably the anti-oxidant is a free radical scavenger.
One class of anti-oxidants suitable for use in the present invention are the alkylated phenols having the general formula: WO 00/52124 PCTIUS00/05291 12
OH
R
wherein R is C 1
-C
2 2 linear or branched alkyl, preferably methyl or branched C 3
-C
6 alkyl; C 3
-C
6 alkoxy, preferably methoxy; R' is a C 3
-C
6 branched alkyl, preferably tert-butyl; x is 1 or 2.
Another class of anti-oxidants suitable for use in the present invention are benzofuran derivatives having the formula: 4
R
5 0O X
R
2
R
wherein R' and R 2 are each independently C 1
-C
4 alkyl or R' and R 2 can be taken together to form a C 5
-C
6 cyclic hydrocarbyl moiety; R 4 is CI-C 6 alkyl; Rs is hydrogen or -C(O)R 3 wherein R is hydrogen or C 1
-C
9 alkyl; R 6 is C 1
-C
6 alkyl; R 7 is hydrogen or C 1 -C alkyl; X is -CH 2 0H, or
CH
2 A wherein A is a nitrogen comprising unit, phenyl, or substituted phenyl. Preferred nitrogen comprising A units include amino, pyrrolidino, piperidino, morpholino, piperazino, and mixtures thereof.
Non-limiting examples of anti-oxidants suitable for use in the present invention include phenols inter alia 2,6-di-tert-butylphenol. 2,6-di-tert-butyl4-methylphenol. mixtures of 2 and 3tert-butyl-4-methoxyphenol. and other ingredients including include propyl gallate. terbutylhydroquinone. benzoic acid derivatives such as methoxy benzoic acid. methylbenzoic acid, dichloro benzoic acid, dimethyl benzoic acid. 5-hydroxy-2,2.4,6,7-pentamethyl-2,3-dihydro-1benzofuran-3-one, 5-hydroxy-3-methylene-2,2,4,6.7-pentamethyl-2,3-dihydro-benzofuran, benzyloxy-3-hydroxymethyl-2,2.4,6,7-pentamethyl-2,3-dihydro- -benzofuran, 3-hydroxymethyl- 5-methoxy-2.2,4,6.7-pentamethyl-2,3-dihydro- I-benzofuran.
Reducing Agents One type of preferred stabilization agent according to the present invention are reducing agents.
The compositions of the present invention will comprise an effective amount of one or more reducing agents, preferably from about 0.001%, more preferably from about 0.01%, most WO 00/52124 PCT/USOO/05291 13 preferably from about 0.02% to about preferably to about more preferably to about 0.1% by weight of a reducing agent. Preferably the reducing agent is an inorganic compound.
Non-limiting examples of reducing agents include compounds capable of yielding sulfite ions such as sodium sulfite, potassium sulfite, ammonium sulfite, sodium hydrogen sulfite, sodium metabisulfite, potassium metabisulfite, potassium hydrogen sulfite, pyrosulphite salts, sodium borohydride, lithium borohydride, lithium aluminum isopropoxide, and mixtures thereof.
METHOD OF USE The present invention further relates to a method for using stabilized bleach catalysts without the requirement of a peroxygen source of peroxygen to clean soil from and stains from fabric.
The present invention, therefore, relates to a method for bleaching soils and stains on fabric in the absence of a bleaching agent, said method comprising the step of contacting fabric in need of cleaning with an aqueous or non-aqueous solution containing a composition which is substantially free of a peroxygen source, comprising: a) a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; b) an effective amount of a stabilizing agent, said agent selected from i) one or more anti-oxidants; ii) one or more reducing agents; iii) and mixtures thereof; and c) the balance carriers and other adjunct ingredients; provided the concentration of said transition metal bleach catalyst in the solution is at least about 0.01 ppb and said composition is substantially free of any organic or inorganic peroxygen compounds..
Preferably the solution which comprises the transition-metal bleach catalyst has a solution concentration of catalyst of from about 1 ppb, more preferably from about 10 ppb, yet more preferably from about 100 ppb. For example, 100 ppb (parts per billion) is a solution which comprises 0.00001% by weight, of a catalyst. As defined herein above, solutions which comprises less than 0.001% of a source of peroxygen are solutions which are "substantially free" of any organic or inorganic peroxygen compounds.
Methods directed entirely to large scale bleaching per se, for example, an industrial or manufacturing process, may utilized a higher concentration of catalyst, for example, 1 ppm or higher in order to reduce the contact time of the fabric with the catalyst containing solution.
WO 00/52124 PCT/US00/05291 14 ADJUNCT INGREDIENTS The bleaching, pre-soak, pre-treatment, laundry or automatic diswashing, or hard surface cleaning compositions of the present invention, whether granular, solid (bar), gel, or liquid may further comprise one or more carriers and adjunct ingredients.
Compositions according to the present invention may comprise: a) a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; and b) optionally from about 0.001% to about 90% by weight, of one or more dye fixing agents; c) optionally from about 0.01% to about 50% by weight, of one or more cellulose reactive dye fixing agents; d) optionally from about 0.01% to about 15% by weight, of a chlorine scavenger; e) optionally about 0.005% to about 1% by weight, of one or more crystal growth inhibitors; f) optionally from about 0.01% to about 20% by weight, of a fabric abrasion reducing polymer; g) optionally from about 1% to about 12% by weight, of one or more liquid carriers; h) optionally from about 0.001% to about 1% by weight, of an enzyme; i) optionally from about 0.01% to about 8% by weight, ofa polyolefin emulsion or suspension; j) optionally from about 0.01% to about 0.2% by weight, of a stabilizer; k) optionally from about 1% to about 80% by weight, of a fabric softening active; 1) optionally less than about 15% by weight, of a principal solvent; and m) optionally from about 0.01%, preferably from about to about preferably to about 30% by weight, one or more surfactants, said surfactants selected from the group consisting of anionic, cationic, nonionic, ampholytic, zwitterionic surfactants, and mixtures thereof.
Surfactants The bleaching, pre-soak, pre-treatment, and laundry detergent compositions of the present invention may comprise at least about 0.01% by weight, preferably from about 0.1% to about 60%, preferably to about 30% by weight, of a detersive surfactant system, said system is comprised of one or more category of surfactants depending upon the embodiment, said categories of surfactants are selected from the group consisting of anionic, cationic, nonionic, WO 00/52124 PCT/USOO/05291 zwitterionic, ampholytic surfactants, and mixtures thereof. Within each category of surfactant, more than one type of surfactant of surfactant can be selected. For example, preferably the solid granular) and viscous semi-solid gelatinous, pastes, etc.) systems of the present invention, surfactant is preferably present to the extent of from about 0.1% to 60 preferably to about 30% by weight of the composition.
Nonlimiting examples of surfactants useful herein include: a) CI 1
-C
18 alkyl benzene sulfonates (LAS); b) C 1 o-C 2 0 primary, branched-chain and random alkyl sulfates (AS); c) Clo-C 1 8 secondary alkyl sulfates having the formula: OS0 3 M OSO3- M I I
CH
3
(CH
2 )x(CH)CH 3 or CH 3 (CH2)y(CH)CH 2
CH
3 wherein x and (y 1) are integers of at least about 7, preferably at least about 9; said surfactants disclosed in U.S. 3,234,258 Morris, issued February 8, 1966; U.S. 5,075,041 Lutz, issued December 24, 1991; U.S. 5,349,101 Lutz et al., issued September 20, 1994; and U.S. 5,389,277 Prieto, issued February 14, 1995 each incorporated herein by reference; d) Clo-C 18 alkyl alkoxy sulfates (AExS) wherein preferably x is from 1-7; e) C 0 o-C 1 8 alkyl alkoxy carboxylates preferably comprising 1-5 ethoxy units; f) C 1 2 -Cig alkyl ethoxylates, C6-C 2 alkyl phenol alkoxylates wherein the alkoxylate units are a mixture of ethyleneoxy and propyleneoxy units, C 1 2
-C
1 8 alcohol and C 6
-CI
2 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers inter alia Pluronic® ex BASF which are disclosed in U.S. 3,929,678 Laughlin et al., issued December 30, 1975, incorporated herein by reference; g) Alkylpolysaccharides as disclosed in U.S. 4.565.647 Llenado, issued January 26, 1986, incorporated herein by reference; h) Polyhydroxy fatty acid amides having the formula: O R 8 II I
R
7 N -Q wherein R 7 is C 5
-C
3 1 alkyl; R 8 is selected from the group consisting of hydrogen, C 1
-C
4 alkyl, Ci-C 4 hydroxyalkyl, Q is a polyhydroxyalkyl moiety having a linear alkyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof; preferred alkoxy WO 00/52124 PCT/US00/05291 16 is ethoxy or propoxy, and mixtures thereof; preferred Q is derived from a reducing sugar in a reductive amination reaction, more preferably Q is a glycityl moiety; Q is more preferably selected from the group consisting of -CH 2 (CHOH)nCH20H, -CH(CH 2 0H)(CHOH)n_ 1
CH
2 OH, -CH 2
(CHOH)
2
-(CHOR')(CHOH)CH
2 0H, and alkoxylated derivatives thereof, wherein n is an integer from 3 to 5, inclusive, and R' is hydrogen or a cyclic or aliphatic monosaccharide, which are described in U.S. 5,489,393 Connor et al., issued February 6, 1996; and U.S. 5,45,982 Murch et al., issued October 3, 1995, both incorporated herein by reference.
The bleaching, pre-soak, pre-treatment, and laundry detergent compositions of the present invention can also comprise from about 0.001% to about 100% of one or more (preferably a mixture of two or more) mid-chain branched surfactants, preferably mid-chain branched alkyl alkoxy alcohols having the formula: R R' R 2
CH
3
CH
2
(CH
2 )wCH(CH 2 )xCH(CH 2 )yCH(CH 2 )z(EO/PO)mOH mid-chain branched alkyl sulfates having the formula: R R' R 2
CH
3
CH
2
(CH
2 )wC(C(CH 2
)CH(CH
2 )yCH(CH 2 )zOSO3M and mid-chain branched alkyl alkoxy sulfates having the formula: R R' R 2
CH
3
CH
2
(CH
2 )wCH(CH 2
)CH(CH
2 )yCH(CH 2 )z(EO/PO)mOSO3M wherein the total number of carbon atoms in the branched primary alkyl moiety of these formulae (including the R, R 1 and R 2 branching, but not including the carbon atoms which comprise any EO/PO alkoxy moiety) is from 14 to 20, and wherein further for this surfactant mixture the average total number of carbon atoms in the branched primary alkyl moieties having the above formula is within the range of greater than 14.5 to about 17.5 (preferably from about 15 to about 17); R, R 1 and R 2 are each independently selected from hydrogen, C 1
-C
3 alkyl, and mixtures thereof, preferably methyl; provided R, R 1 and R 2 are not all hydrogen and, when z is 1, at least R or R 1 is not hydrogen. M is a water soluble cation and may comprises more than one type of cation, for example, a mixture of sodium and potassium. The index w is an integer from 0 to 13: x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer of at least 1; provided w WO 00/52124 PCT/US00/05291 17 x y z is from 8 to 14. EO and PO represent ethyleneoxy units and propyleneoxy units having the formula:
CH
3
CH
3
-CHCH
2 0- or -CH 2
CHO-
respectively, however, other alkoxy units inter alia 1,3-propyleneoxy, butoxy, and mixtures thereof are suitable as alkoxy units appended to the mid-chain branched alkyl moieties.
The mid-chain branched surfactants are preferably mixtures which comprise a surfactant system. Therefore, when the surfactant system comprises an alkoxylated surfactant, the index m indicates the average degree of alkoxylation within the mixture of surfactants. As such, the index m is at least about 0.01, preferably within the range of from about 0.1, more preferably from about 0.5, most preferably from about 1 to about 30, preferably to about 10, more preferably to about 5. When considering a mid-chain branched surfactant system which comprises only alkoxylated surfactants, the value of the index m represents a distribution of the average degree of alkoxylation corresponding to m, or it may be a single specific chain with alkoxylation ethoxylation and/or propoxylation) of exactly the number of units corresponding to m.
The preferred mid-chain branched surfactants of the present invention which are suitable for use in the surfactant systems of the present invention have the formula:
CH
3
I
CH3C H 2 )aCH(CH 2 )bCH 2 (EO/PO)mOSO 3
M
or the formula:
CH
3
CH
3 I I
CH
3
(CH
2 )dCH(CH 2 )eCHCH 2 (EO/PO)mOSO3M wherein a, b, d, and e are integers such that a b is from 10 to 16 and d e is from 8 to 14; M is selected from sodium, potassium, magnesium, ammonium and substituted ammonium, and mixtures thereof.
The surfactant systems of the present invention which comprise mid-chain branched surfactants are preferably formulated in two embodiments. A first preferred embodiment comprises mid-chain branched surfactants which are formed from a feedstock which comprises 25% or less of mid-chain branched alkyl units. Therefore, prior to admixture with any other WO 00/52124 PCT/USOO/05291 18 conventional surfactants, the mid-chain branched surfactant component will comprise 25% or less of surfactant molecules which are non-linear surfactants.
A second preferred embodiment comprises mid-chain branched surfactants which are formed from a feedstock which comprises from about 25% to about 70% of mid-chain branched alkyl units: Therefore, prior to admixture with any other conventional surfactants, the mid-chain branched surfactant component will comprise from about 25% to about 70% surfactant molecules which are non-linear surfactants.
The surfactant systems of the laundry detergent compositions of the present invention can also comprise from about 0.001%, preferably from about more preferably from about most preferably from about 10% to about 100%, preferably to about 60%, more preferably to about 30% by weight, of the surfactant system, of one or more (preferably a mixture of two or more) mid-chain branched alkyl arylsulfonate surfactants, preferably surfactants wherein the aryl unit is a benzene ring having the formula: RL
R
3 [M qI S0 3 a wherein L is an acyclic hydrocarbyl moiety comprising from 6 to 18 carbon atoms; R 2 and R 3 are each independently hydrogen or CI-C 3 alkyl, provided R' and R 2 are not attached at the terminus of the L unit; M is a water soluble cation having charge q wherein a and b are taken together to satisfy charge neutrality.
Builders The compositions of the present invention, especially when comprising surfactants, preferably comprise one or more detergent builders or builder systems. When present, the compositions will typically comprise at least about 1% builder, preferably from about more preferably from about 10% to about 80%, preferably to about 50%, more preferably to about 30% by weight, of detergent builder.
The level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least about 1% builder. Formulations typically comprise from about 5% to about 50%, more typically about to about 30%, by weight, of detergent builder. Granular formulations typically comprise WO 00/52124 PCT/US00/05291 19 from about 10% to about 80%, more typically from about 15% to about 50% by weight, of the detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts ofpolyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates. However, non-phosphate builders are required in some locales. Importantly, the compositions herein function surprisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.
Examples of silicate builders are the alkali metal silicates described in U.S. 4,664,839 Rieck, issued May 12, 1987. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6").
Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Aluminosilicate builders are useful in the present invention. Examples of suitable aluminosilicate builders are described in U.S. 4,274,975 Corkhill et al. included herein by reference. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula: [Mz(zAO02)y]xH20 wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P Zeolite MAP and Zeolite X.
Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety ofpolycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
Suitable are disclosed in U.S. 3,128,287 Berg, issued April 7, 1964, U.S. 3,635,830 Lamberti et al., issued January 18, 1972, U.S. 4,663,071 Bush et al., issued May 5, 1987, U.S.
3,923,679 Rapko, issued December 2, 1975; U.S. 4,158,635 Crutchfield et al., issued June 19, WO 00/52124 PCT/US00/05291 1979; U.S. 4,120,874 Crutchfield et al., issued October 17, 1978; U.S. 4,566,984, Bush, issued January 28, 1986, U.S. 4,144,226, Crutchfield et al., issued March 13, 1979 and in U.S.
3,308,067, Diehl, issued March 7, 1967, Diehl U.S. Patent 3,723,322, and U.S. 4,102,903 Crutchfield et al., issued July 25, 1978 and further U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137.
Citrate builders, citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.
Dispersants A description of other suitable polyalkyleneimine dispersants which may be optionally combined with the bleach stable dispersants of the present invention can be found in U.S.
4,597,898 Vander Meer, issued July 1, 1986; European Patent Application 111,965 Oh and Gosselink, published June 27, 1984; European Patent Application 111,984 Gosselink, published June 27, 1984; European Patent Application 112,592 Gosselink, published July 4, 1984; U.S.
4,548,744 Connor, issued October 22, 1985; and U.S. 5,565,145 Watson et al., issued October 1996; all of which are included herein by reference. However, any suitable clay/soil dispersant or anti-redepostion agent can be used in the laundry compositions of the present invention.
In addition, polymeric dispersing agents which include polymeric polycarboxylates and polyethylene glycols, are suitable for use in the present invention. Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing no caiboxylate radicals such as vinylmethyl ether, stvrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40%o by weight.
Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are WO 00/52124 PCTIUSOO/05291 21 known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967.
Acrylic/maleic-based.copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000, preferably from about 5,000, more preferably from about 7,000 to 100,000, more preferably to 75,000, most preferably to 65,000. The ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol terpolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 terpolymer of acrylic/maleic/vinyl alcohol.
Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
Polyaspartate and polyglutamate dispersing agents may also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.
Soil Release Agents The compositions according to the present invention may optionally comprise one or more soil release agents. If utilized, soil release agents will generally comprise from about 0.01%, preferably from about more preferably from about 0.2% to about 10%, preferably to about more preferably to about 3% by weight, of the composition. Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of the laundry cycle and, thus.
serve as an anchor for the hydrophilic segments. This can enable stains occuring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
WO 00/52124 PCT/US00/05291 22 The following, all included herein by reference, describe soil release polymers suitable for use in the present invention. U.S. 5,728,671 Rohrbaugh et al., issued March 17, 1998; U.S.
5,691,298 Gosselink et al., issued November 25, 1997; U.S. 5,599,782 Pan et al., issued February 4, 1997; U.S. 5,415,807 Gosselink et al., issued May 16, 1995; U.S. 5,182,043 Morrall et al., issued January 26, 1993; U.S. 4,956,447 Gosselink et al., issued September 11, 1990; U.S.
4,976,879 Maldonado et al. issued December 11, 1990; U.S. 4,968,451 Scheibel et al., issued November 6, 1990; U.S. 4,925,577 Borcher, Sr. et al., issued May 15, 1990; U.S. 4,861,512 Gosselink, issued August 29, 1989; U.S. 4,877,896 Maldonado et al., issued October 31, 1989; U.S. 4,771,730 Gosselink et al., issued October 27, 1987; U.S. 711,730 Gosselink et al., issued December 8, 1987; U.S. 4,721,580 Gosselink issued January 26, 1988; U.S. 4,000,093 Nicol et al., issued December 28, 1976; U.S. 3,959,230 Hayes, issued May 25, 1976; U.S. 3,893,929 Basadur, issued July 8, 1975; and European Patent Application 0 219 048, published April 22, 1987 by Kud et al.
Further suitable soil release agents are described in U.S. 4,201,824 Voilland et al.; U.S.
4,240,918 Lagasse et al.; U.S. 4,525,524 Tung et al.; U.S. 4,579,681 Ruppert et al.; U.S.
4,220,918; U.S. 4,787,989; EP 279,134 A, 1988 to Rhone-Poulenc Chemie; EP 457,205 A to BASF (1991); and DE 2,335,044 to Unilever 1974; all incorporated herein by reference.
Enzymes The detergent and cleaning compositions herein may also optionally contain one or more types of detergent enzymes. Such enzymes can include other proteases, amylases, cellulases and lipases. Such materials are known in the art and are commercially available under such trademarks as They may be incorporated into the non-aqueous liquid detergent compositions herein in the form of suspensions, "marumes" or "prills". Another suitable type of enzyme comprises those in the form of slurries of enzymes in nonionic surfactants, the enzymes marketed by Novo Nordisk under the tradename "SL" or the microencapsulated enzymes marketed by Novo Nordisk under the tradename "LDP." Suitable enzymes and levels of use are described in U.S. Pat. No. 5,576,282, 5,705,464 and 5,710,115.
Enzymes added to the compositions herein in the form of conventional enzyme prills are especially preferred for use herein. Such prills will generally range in size from about 100 to 1,000 microns, more preferably from about 200 to 800 microns and will be suspended throughout the non-aqueous liquid phase of the composition. Prills in the compositions of the present invention have been found, in comparison with other enzyme forms, to exhibit especially desirable enzyme stability in terms of retention of enzymatic activity over time. Thus, WO 00/52124 PCT/USOO/05291 23 compositions which utilize enzyme prills need not contain conventional enzyme stabilizing such as must frequently be used when enzymes are incorporated into aqueous liquid detergents.
However, enzymes added to the compositions herein may be in the form of granulates, preferably T-granulates.
"Detersive enzyme", as used herein, means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition. Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases.
Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases and peroxidases. Highly preferred for automatic dishwashing are amylases and/or proteases, including both current commercially available types and improved types which, though more and more bleach compatible though successive improvements, have a remaining degree of bleach deactivation susceptibility.
Examples of suitable enzymes include, but are not limited to, hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, B-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, and known amylases, or mixtures thereof.
Examples of such suitable enzymes are disclosed in U.S. Patent Nos. 5,705,464, 5,710,115, 5,576,282, 5,728,671 and 5,707,950 The cellulases useful in the present invention include both bacterial or fungal cellulases.
Preferably, they will have a pH optimum of between 5 and 12 and a specific activity above CEVU/mg (Cellulose Viscosity Unit). Suitable cellulases are disclosed in U.S. Patent 4,435,307, J61078384 and WO96/02653 which discloses fungal cellulase produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum. EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and W095/26398.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800.
Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, an isoelectric point of 5.5 and containing 415 amino acids; and a ~43kD endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in WO 91/17243.
Also suitable cellulases are the EGHI cellulases from Trichoderma longibrachiatum described in WO94/21801 to Genencor. Especially suitable cellulases are the cellulases having color care WO 00/52124 PCT/US00/05291 24 benefits. Examples of such cellulases are cellulases described in European patent application No.
91202879.2, filed November 6, 1991 (Novo). Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and W091/21801. Other suitable cellulases for fabric care and/or cleaning properties are described in WO96/34092, WO96/17994 and WO95/24471.
Cellulases, when present, are normally incorporated in the cleaning composition at levels from 0.0001% to 2% of pure enzyme by weight of the cleaning composition.
Other preferred enzymes that can be included in the cleaning compositions of the present invention include lipases. Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive immunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonasfluorescent IAM 1057. This lipase is available from Amano Pharmaceutical Co.
Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano- Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. Especially suitable lipases are lipases such as Ml LipaseR and LipomaxR (Gist-Brocades) and LipolaseR and Lipolase UltraR(Novo) which have found to be very effective when used in combination with the compositions of the present invention. Also suitable are the lipolytic enzymes described in EP 258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO 96/00292 by Unilever.
Also suitable are cutinases [EC 3.1.1.50] which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to cleaning compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever).
Lipases and/or cutinases, when present, are normally incorporated in the cleaning composition at levels from 0.0001% to 2% of pure enzyme by weight of the cleaning composition.
In addition to the above referenced lipases, phospholipases may be incorporated into the cleaning compositions of the present invention. Nonlimiting examples of suitable phospholipases included: EC 3.1.1.32 Phospholipase Al; EC 3.1.1.4 Phospholipase A2; EC 3.1.1.5 Lysopholipase; EC 3.1.4.3 Phospholipase C; EC 3.1.4.4. Phospolipase D. Commercially available phospholipases include LECITASE® from Novo Nordisk A/S of Denmark and WO 00/52124 PCTIUSOO/05291 Phospholipase A2 from Sigma. When phospolipases are included in the compositions of the present invention, it is preferred that amylases are also included. Without desiring to be bound by theory, it is believed that the combined action of the phospholipase and amylase provide substantive stain removal, especially on greasy/oily, starchy and highly colored stains and soils.
Preferably, the phospholipase and amylase, when present, are incorporated into the compositions of the present invention at a pure enzyme weight ratio between 4500:1 and 1:5, more preferably between 50:1 and 1:1.
Suitable proteases are the subtilisins which are obtained from particular strains of B.
subtilis and B. licheniformis (subtilisin BPN and BPN'). One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo. Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is called herein "Protease and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A" herein. Suitable is the protease called herein "Protease C", which is a variant of an alkaline serine protease from Bacillus in which Lysine replaced arginine at position 27, tyrosine replaced valine at position 104. serine replaced asparagine at position 123, and alanine replaced threonine at position 274. Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16. 1991. Genetically modified variants, particularly of Protease C, are also included herein.
A preferred protease referred to as "Protease D" is a carbonyl hydrolase as described in U.S. Patent No. 5,677,272, and WO95/10591. Also suitable is a carbonyl hydrolase variant of the protease described in WO95/10591, having an amino acid sequence derived by replacement of a plurality of amino acid residues replaced in the precursor enzyme corresponding to position +210 in combination with one or more of the following residues +33, +62, +67, +76, +100, +101, +103, +104, +107, +128, +129, +130, +132. -135. +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturallyoccurring subtilisin from Bacillus amyloliquefaciens or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as Bacillus lenius subtilisin (co-pending patent application US Serial No. 60/048,550, filed June 04. 1997 and PCT International Application Serial No. PCT/IB98/00853).
WO 00/52124 PCT/US00/05291 26 Also suitable for the present invention are proteases described in patent applications EP 251 446 and WO 91/06637, protease BLAP® described in W091/02792 and their variants described in WO 95/23221.
See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95/07791 to Procter Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.
Particularly useful proteases are described in PCT publications: WO 95/30010; WO 95/30011; and WO 95/29979. Suitable proteases are commercially available as ESPERASE®, ALCALASE®, DURAZYM®, SAVINASE®, EVERLASE® and KANNASE® all from Novo Nordisk A/S of Denmark, and as MAXATASE®, MAXACAL®, PROPERASE® and MAXAPEM® all from Genencor International (formerly Gist-Brocades of The Netherlands).
Such proteolytic enzymes, when present, are incorporated in the cleaning compositions of the present invention a level of from 0.0001% to preferably from 0.001% to more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
Amylases (a and/or B) can be included for removal of carbohydrate-based stains.
WO94/02597 describes cleaning compositions which incorporate mutant amylases. See also W095/10603. Other amylases known for use in cleaning compositions include both a- and 3amylases. a-Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257: EP 252,666; WO/91/00353; FR 2,676,456; EP 285,123; EP 525,610; EP 368,341; and British Patent specification no. 1,296,839 (Novo). Other suitable amylases are stability-enhanced amylases described in W094/18314 and WO96/05295, Genencor, and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603. Also suitable are amylases described in EP 277 216.
Examples of commercial a-amylases products are Purafect Ox Am® from Genencor and Termamyl®, Ban® ,Fungamyl® and Duramyl®, all available from Novo Nordisk A/S Denmark.
W095/26397 describes other suitable amylases: a-amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl® at a temperature range of 250 C to 55 0 C and at a pH value in the range of 8 to 10, measured by the Phadebas® a-amylase activity assay. Suitable are variants of the above enzymes, described in WO96/23873 (Novo WO 00/52124 PCT/US00/05291 27 Nordisk). Other amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in W095/35382.
Such amylolytic enzymes, when present, are incorporated in the cleaning compositions of the present invention a level of from 0.0001% to preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition.
The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used. Nowadays, it is common practice to modify wild-type enzymes via protein genetic engineering techniques in order to optimize their performance efficiency in the laundry detergent and/or fabric care compositions of the invention. For example, the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased. Alternatively, the variant may be designed such that the optimal pH, bleach or chelant stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular cleaning application.
In particular, attention should be focused on amino acids sensitive to oxidation in the case of bleach stability and on surface charges for the surfactant compatibility. The isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g. an increase in isoelectric point may help to improve compatibility with anionic surfactants. The stability of the enzymes may be further enhanced by the creation of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability.
These optional detersive enzymes, when present, are normally incorporated in the cleaning composition at levels from 0.0001% to 2% of pure enzyme by weight of the cleaning composition. The enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc... containing one enzyme or as mixtures of two or more enzymes e.g.
cogranulates Other suitable detergent ingredients that can be added are enzyme oxidation scavengers.
Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 and WO 9307260 to Genencor International, WO 8908694, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymes are further disclosed in U.S. 4,101,457, and in U.S. 4,507,219. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4,261,868.
WO 00/52124 PCT/US00/05291 28 Amylase enzymes are suitable for use in the compositions of the present invention.
Amylase enzymes and variants used in the present invention include, but are not limited to, the amylase enzymes described in WO 95/26397 and in WO 96/23873 (Novo). These enzymes are incorporated into cleaning compositions at a level of from about 0.0001%, preferably from about 0.00018%, more preferably from about 0.00024%, most preferably from about 0.05% to about preferably to about 0.060%, more preferably to about 0.048% by weight of the cleaning compositions of pure enzyme.
The amylase variants are preferably selected from the group consisting of a-amylase variants.
Suitable a-amylase variants for use in the present invention include, but are not limited to the following a-amylases: a-amylase characterized by having a specific activity at least higher than the specific activity of Termamyl® at a temperature range of 25 0 C to 55°C and at a pH value in the range of 8 to 10, measured by Phadebas® a-amylase activity assay and/or; (ii) ca-amylase according to comprising the amino acid sequence shown in SEQ ID No. 1 or an a-amylase being at least 80% homologous with the amino acid sequence shown in SEQ ID No. 1 and/or; (iii) a-amylase according to comprising the amino acid sequence shown in SEQ ID No. 2 or an a-amylase being at least 80% homologous with the amino acid sequence shown in SEQ ID No. 2 and/or; (iv) a-amylase according to comprising the following amino acid sequence Nterminal: His-His-Asn-Gly-Thr-Asn-Gly-Thr-Met-Met-Gln-Tyr-Phe-Glu-Trp-Tyr-Leu-Pro-Asn- Asp (SEQ ID No. 3) or an a-amylase being at least 80% homologous with the amino acid sequence shown (SEQ ID No. 3) in the N-terminal and/or; a-amylase according to (i-iv) wherein the a-amylase is obtainable from an alkalophilic Bacillus species and/or; (vi) a-amylase according to wherein the amylase is obtainable from any of the strains NCIB 12289, NCIB 12512, NCIB 12513 and DSM 935 and/or; (vii) c-amylase showing positive immunological cross-reactivity with antibodies raised against an a-amylase having an amino acid sequence corresponding respectively to SEQ ID No. 1, ID No. 2, or ID No. 3 and/or; (viii) variant of a parent a-amylase, wherein the parent a-amylase has one of the amino acid sequences shown in SEQ ID No. 1, ID No. 2, or ID No. 4, respectively, or (2) WO 00/52124 PCT/US00/05291 29 displays at least 80% homology with one or more of said amino acid sequences, and/or displays immunological cross-reactivity with an antibody raised against an a-amylase having one of said amino acid sequences, and/or is encoded by a DNA sequence which hybridizes with the same probe as a DNA sequence encoding an a-amylase having one of said amino acid sequences, in which variants: at least one amino acid residue of said parent a-amylase has been deleted; and/or at least one amino acid residue of said parent a-amylase has been replaced by a different amino acid residue; and/or at least one amino acid residue has been inserted relative to said parent a-amylase; said variant having an a-amylase activity and exhibiting at least one of the following properties relative to said parent a-amylase: increased thermostability; increased stability towards oxidation; reduced Ca ion dependency; increased stability and/or a-amylolytic activity at neutral to relatively high pH values; increased a-amylolytic activity at relatively high temperature; and increase or decrease of the isoelectric point (pI) so as to better match the pi value for a-amylase variant to the pH of the medium.
A polypeptide is considered to be X% homologous to the parent amylase if a comparison of the respective amino acid sequences, performed via algorithms, such as the one described by Lipman and Pearson in Science 227, 1985, p. 1435, reveals an identity of X%.
In the context of the present invention, the term "obtainable from" is intended not only to indicate an amylase produced by a Bacillus strain but also an amylase encoded by a DNA sequence isolated from such a Bacillus strain and produced in a host organism transformed with the DNA sequence.
Enzyme Stabilizers Enzymes for use in detergents can be stabilized by various techniques. Enzyme stabilization techniques are disclosed and exemplified in U.S. 3,600,319, EP 199,405 and EP 200,586. Enzyme stabilization systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532. The enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes. Suitable enzyme stabilizers and levels of use are described in U.S. Pat. Nos.
5,705,464, 5,710,115 and 5,576,282.
The following is a non-limiting example of the preparation of a bleach catalyst which effectively bleaches stains in the absence of a source of peroxygen.
EXAMPLE 1 WO 00/52124 PCT/USOO/05291 Synthesis of 5.12-dimethyl-1,5,8.12-tetraaza-bicyclor6.6.2]hexadecane manganese (II) chloride, having the formula: CI INI r
NN
To a 250 mL, 3 necked round bottom flask, equipped with a thermometer, nitrogen inlet, and magnetic stirrer is added N,N'-bis(2-aminoethyl)-1,3-propanediamine (5.00g, 31.3 mmol) and absolute ethanol (100 mL). The solution is stirred under argon and cooled to 15 0 C using an ice bath. Aqueous glyoxal (4.78 33 mmol, 40% in water) is added dropwise with stirring.
Upon completion of the addition, the solution is concentrated under reduced pressure to yield a clear, colorless oil. The isolated oil has the formula 1: N N cIH I H I H H 1 and is obtained in 100% yield (6.0 g).
Cyclic amine 1 (6.0 g) is suspended in acetonitrile (100 mL). Potassium carbonate (25 g) and 1,3-propanediol ditosylate (12.61 g, 32.8 mmol) is added. The solution is stirred vigorously at RT overnight. The reaction is then warmed to 70 0 C and filtered hot with glass fiber filter paper and vacuum filtration. The resulting solid.is washed with acetonitrile (100 mL). The acetonitrile filtrate is concentrated under reduced pressure to yield a light green oil having the formula 2: WO 00/52124 PCT/US00/05291 31 2 and is obtained in 100% yield (7.0 g).
The tetraamine 2, (7.0 g) is dissolved in acetonitrile (150 mL). Methyl sulfate equiv.) is added, the reaction warmed to 65 0 C and stirred for 9 days. The solvent is removed under reduced pressure to yield a brown oil having the formula 3: N N CH30SO3"
CH
3 0SO 3 "N N 3 and is obtained in approximately 85% yield.
Distilled water (25 mL) and potassium carbonate (13.8 g) are added to a 250 mL round bottomed flask. Absolute ethanol (75 mL) is added and the resulting biphasic solution is stirred and heated to 60 0 C with an oil bath. Sodium borohydride (1.60 42.3 mmol) and 3 (10.0 g., 21.1 mmol) was added to the solution. The reaction is stirred at 600C for 75 minutes. The reaction mixture is placed in a separatory funnel and the ethanol layer collected. The solvent is then removed under reduced pressure, the resulting tan solid/oil is dissolved in 5N KOH (5 mL) and extracted with toluene (2 x 50 mL). The toluene is removed under reduced pressure to yield 5,12-dimethyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane having the formula: WO 00/52124 PCT/USO/05291 32 N N N N 4 as an oil, in 95% yield (5.2 g) after distillation.
To a flame dried 12 liter, 3 neck round bottom flask equipped with a heating mantle, stir bar, and oven dried condenser is added anhydrous acetonitrile (5 liters) and yield 5,12-dimethyl- 1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane (484 gm., 1.9 moles). The milky white suspension is placed under a 10 mm vacuum until the suspension boiled and then the reaction vessel flushed with argon. This degassing is performed 7 times. After degassing is complete manganese (II) chloride (228 gm, 1.81 moles) is added. After refluxing for 4 hours with vigorous stirring, the suspension is immediately filtered through glass filter paper. The solvent is removed from the filtrate under reduced pressure at 450 C to yield a solid. The solid is then suspended in 500 ml.
toluene, and the supernatant decanted off. This washing is repeated until the supernatant is free of color (typically 7 times with about 7X500 ml of toluene). The solid which remains I dried in vacuo to yield 575 g of 5,12-dimethyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane magnanese (II) chloride. A second crop of product is obtained by further washing of the solid material and subsequent treatment of the resulting solid in a like manner. Total yield is 636 g The following are non-limiting examples of Heavy Duty Liquid (HDL) laundry detergent compositions according to the present invention.
TABLE I weight Ingredients 2 3 4
C
4
-C
1 5 alkyl El.0 sulfate 22.5 22.5 22.5 22.5 Linear alkyl benzene sulfonate 3.0 3.0 3.0 Clo amidopropyl DMA 1.5 1.5 1.5
C
1 2
-C
1 4 alkyl E7.0 3.0 3.0 3.0 Citric Acid 2.5 2.5 2.5 WO 00/52124 WO 0052124PCT/USOO/05291
C
12
-C
18 alkyl fatty acid 3.5 3.5 3.5 Rapeseed fatty acid 5.0 5.0 5.0 protease 0.8 1.57 1.57 1.57 amylase 0.055 0.088 0.088 0.088 cellulase 0.188 0.055 0.055 0.055 lipolase 0.06 mannanase 0.007 0.0033 0.0033 0.0033 Sodium metaborate 2.0 2.5 2.5 Ca formate/CaCI 2 0.02 0.10 0.10 0.10 Bleach catalyst' 0.03 5 0.034 0.034 0.034 Anti-oxidant 2 0.23 0.25 0.25 0.25 Reducing agent' 0.02 Reducing agent 4 0.0042 0.0083 Hydrophobic dispersant 5 0.65 0.76 0.76 0.76 Soil release agent 6 0.147 Soil release agent 7 0.10 0.10 0.10 Suds suppresser 0.60 0.60 0.60 0.60 Water and minors balance balance balance balance 1.
2.
3.
4.
5.
6.
7.
I -uimetnyi- I L-tetraaza-Dicycioto.o.zjnexaaecane manganese t~U) cniorioe.
Butylated hydroxy toluene.
Potassium metabisulfite.
Potassium sulfite.
PEI 189 E 15 -18 according to U.S. Patent 4,597,898 Vander Meer, issued July 1, 1986.
Soil release agent according to U.S. Patent 4,702,857 Gosselink, issued October 27, 1987.
Soil release agent according to U.S. Patent 4,968,45 1, Scheibel et al., issued November 6, 1990.
TABLE 19 weight Ingredients 6 7 8 9 C1 4
-C
1 5 alkyl El.0 sulfate 22.5 22.5 C1 2 -Cjs alkyl El .8 sulfate 23.5 23.5 Linear alkyl benzene sulfonate T 3.0 3.0 3.0
C
0 u amidopropyl DMA CvC,, alkvl E7.0 Citric Acid Sodium sulfate Ci-CB alkyl fatty acid Rapeseed fat acid protease amylase cellulase mannanase 2.0 2.5 1.75 1.75 5.0 6.5 F 1.57 T 1.57 0.088 0.088 .055 0.055 0 .003 3 0033 Sodium metaborare 2.5 2.5 2.5 1 Ca forrnate/CaC 2 0.10 0.10 0.1 0. Bleach catalyst 0.034 1 0.004 0.04 0.04 Anti-oxidant 0.25 0.025 0.25 0.25 Reducing agent 0.01 Reducing agent4 Hydrophobic dispersant Soil release aaent Soil release agent7 Suds suppresser Water and minors 0.0083 0.001 0.76 1.20 1.20 0.10 0.10 0.10 0.60 0.60 0.60 )alance balance balance S S. *S
S
1.
2.
5 6.
5,1 2-dimethyl- 1,5,8,1 2-tetraaza-bicyclo(6.6.2Thexadecane manganese (11) chloride.
Burylated hydroxy toluene.
Potassium metabisulfite.
Potassium sulfite.
PEI 189 E 15-18 according to U.S. Patent 4.597,898 Vander Meer, issued July 1, 1986.
Soil release agent according to U.S. Patent 4,702,857 Gosselink, issued October 27, 1987.
Soil release agent according to U.S. Patent 4,968.45 1, Scheibel et al., issued November 6, 1990.
S
*5 S
*SSS
Throtughout this specification and the claims which follow, unless the context requires otherwise.
the word "comprise', and variations such as "comprises" and "comprising", will be understood to imiply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of an,% other integler or step or group of integers or steps.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form or suggestion that the prior art forms part of the common general knowledge in Australia I_

Claims (14)

1. Use of cross-bndged rnacropolycyclic igand to prepare a bleaching composition for achieving a bleaching function without the addition of any organic or* inorganic peroxygen compounds comprising- A) a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; B) an effective amount of a stabilizing agent, said agent selected from i) one or more anti-oxidants; i) one or more reducing agents; ii) and mixtures therof; and C) the balance carriers and other adjunct ingredients; provided said composition is substantially free of any organic or inorganic peroxygen compounds.
2. A composition according to Claim 1 wherein said transition-meta bleach catalyst comprises: i) a transition mctal selected from the group consisting of Mn(UI), Mn(fl V(IV), Mo(TV), MOMV, MOMV), W(IY), W(VI), MIDU, Ru(ED), Ru(IUI), and Ru(IV).- and ii) a cross-bridged macropolycyclic tigand being coordinated by four or five donor atoms to the same transition metal, said ligand comprising:- 6, 0: a) an organic macrocycle ring containintg four or more donor atoms 00.00:separated from each othcr by covalent linkages of 2 or 3 non-donor atoms, two to five of these donor atoms being coordinated to the U same transition metal amor in the complex; b) ~cmvss-bridgvd chaint which coyaiently connect at least 2 non- adjacent donor atoms of the organic inacrocycle ring, said covalently connected non-adjacent donor atoms being bridgehead &eatdonor atomns which are coordinated to the same transition metal in *too*:the complex. and wherein said cross-bridged -chain comprises from 2 to about 10 ato=s optionally, one or nmore non-ni.cropolycyclic ligands, preferably selected f ran the group consisting of H 2 0, ROH, NR3, RCN, OWF, OcXJ, RS WO 00/52124 PCT/US00/05291 36 RO', RCOO-, OCN', SCN', N3-, CN', Cl', Br', 02', N03", N02", 2- 2- 3- S04 S032, P04 organic phosphates, organic phosphonates, organic sulfates, organic sulfonates, and aromatic N donors such as pyridines, pyrazines, pyrazoles, imidazoles, benzimidazoles, pyrimidines, triazoles and thiazoles with R being H, optionally substituted alkyl, optionally substituted aryl.
3. A composition according to either Claims I or 2 wherein said organic macrocycle ring comprises at least four donor atoms which are N, said donor atoms separated from each other by covalent linkages of from 2 to 4 non-donor atoms, said donor atoms coordinated to the same transition metal atom.
4. A composition according to Claim 1 which comprises at least about 1 ppb of a transition- metal bleach catalyst.
A composition according to Claim 1 wherein said transition-metal bleach catalyst is 5,12- dimethyl-1,5,8,12-tetraaza-bicyclo[6.6.2]hexadecane manganese(II) chloride.
6. A composition according to Claim 1 wherein said stabilizing agent is an anti-oxidant selected from the group consisting of 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4- methylphenol. mixtures of 2 and 3-tert-butyl-4-methoxyphenol, 5-hydroxy-2,2.4,6,7- pentamethyl-2,3-dihydro-1 -benzofuran-3-one, 5-hydroxy-3-methylene-2,2,4,6,7- pentamethyl-2,3-dihydro-benzofuran, 5-benzyloxy-3-hydroxymethyl-2,2,4,6,7- pentamethyl-2,3-dihydro-l-benzofuran. 3-hydroxymethyl-5-methoxy-2,2,4,6.7- pentamethyl-2,3-dihydro-l-benzofuran. and mixtures thereof.
7. A composition according to Claim 1 wherein said stabilizing agent is an reducing agent selected from the group consisting of sodium sulfite, potassium sulfite, and mixtures thereof.
8. A liquid laundry, laundry pre-soak, or pre-treatment composition comprising: a) a catalytically effective amount of a transition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; WO 00/52124 PCT/US00/05291 37 b) an effective amount of a stabilizing agent, said agent selected from i) one or more anti-oxidants; ii) one or more reducing agents; iii) and mixtures thereof; and c) the balance carriers and other adjunct ingredients; provided said composition is substantially free of any organic or inorganic peroxygen compounds.
9. A composition according to Claim 8 wherein said catalyst comprises: i) a transition metal is selected from the group consisting of Mn(II), Mn(I), Mn(IV), Mn(V), Fe(II), Fe(m), Fe(IV), Co(I), Co(H), Co(mI), Ni(I), Ni(II), Ni(I), Cu(I), Cu(II), Cu(m), Cr(II), Cr(III), Cr(IV), Cr(V), Cr(VI), V(II), V(IV), Mo(IV), Mo(V), Mo(VI), W(IV), W(VI), Pd(I), Ru(I), Ru(Im), and Ru(IV), and; ii) a cross-bridged macropolycyclic ligand, said ligand is selected from the group consisting of: a) a cross-bridged macropolycyclic ligand of formula having denticity of 4 or Rn'E Rn' Rn" E B E Rn E Rn' b) a cross-bridged macropolycyclic ligand of formula (II) having denticity of 5 or 6: WO 00/52124 PCT/US00/05291 c) the cross-bridged macropolycyclic ligand of formula (III) having denticity of 6 or 7: I Rn' Rn' wherein each E unit represents the moiety having the formula: Rn E(Rn)a (CR n)a wherein X is selected from the group consisting of oxygen, sulfur, -NR-, phosphorous, or X represents a covalent bond wherein E has the formula: G' G Rn' wherein each E unit represents the moiety having the formula: (CRn)a-X-(CRn)a' wherein X is selected from the group consisting of oxygen, sulfur, -NR-, phosphorous, or X represents a covalent bond wherein E has the formula: (CRn)a-(CRn)a' for each E units the sum ofa a' is independently selected from 1 to each G unit is a moiety (CRn)b; each R unit is independently selected 'from H, alkyl, alkenyl, alkynyl, aryl, alkylaryl, and heteroaryl, or two or WO 00/52124 PCT/US00/05291 39 more R units are covalently bonded to form an aromatic, heteroaromatic, cycloalkyl, or heterocycloalkyl ring; each D unit is a donor atom independently selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorous, and at least two atoms which comprise D units are bridgehead donor atoms coordinated to the transition metal; B units are a carbon atom, a D unit, or a cycloalkyl or heterocyclic ring; each n is an integer independently selected from 1 and 2, completing the valence of the carbon atoms to which the R units are covalently bonded; each n' is an integer independently selected from 0 and 1, completing the valence of the D donor atoms to which the R moieties are covalently bonded; each n" is an integer independently selected from 0, 1, and 2 completing the valence of the B atoms to which the R moieties are covalently bonded; each a and a' is an integer independently selected from 0 to wherein the sum of all a a' values in the ligand of formula is within the range of from about 8 to about 12; the sum of all a a' values in the ligand of formula (II) is within the range of from about 10 to about and the sum of all a a' values in the ligand of formula (III) is within the range of from about 12 to about 18; each b is an integer independently selected from 0 to 9, or in any of the above formulas, one or more of the (CRn)b moieties covalently bonded from any D to the B atom is absent as long as at least two (CRn)b covalently bond two of the D donor atoms to the B atom in the formula, and the sum of all b indices is within the range of from about 2 to about 5; and d) optionally, one or more non-macropolycyclic ligands.
A composition according to Claim 9 wherein said catalyst comprises a non- macropolycyclic ligand selected from the group consisting of H20, ROH, NR3, RCN, OH OOH', RS', RO', RCOO', OCN-, SCN', N3", CN', Cl-, Br', 02", NO3-, 2 2- 3- NO2", S042 S032-, P043-, organic phosphates, organic phosphonates, organic sulfates, organic sulfonates, and aromatic N donors such as pyridines, pyrazines, pyrazoles, imidazoles, benzimidazoles, pyrimidines, triazoles and thiazoles; wherein R is H, alkyl which is optionally substituted, and aryl which is optionally substituted. 40
11. A method for bleaching soils and stains on fabrics, said method comprising the step of contacting fabric in need of cleaning with an aqueous or non-aqueous solution~ containing a composition comprising: a) a catalytically effective amount of a trainsition-metal bleach catalyst which is a complex of a transition-metal and a cross-bridged macropolycyclic ligand; b) an effective amount of a stabilizing agent, said agent selected from i) one or more anti-oxidants; ii) one or mome reducing agents;, iii) and miXtum thereof; and c) the balance canriers and other adjunct ingredients; provided the concentration of said transition metal bleach catalyst in the solution is least about 0.01 ppb and said composition is comprises less than 0/1%, preferably less than 0.01%, of any organic or inorganic peroxygen compounds.
12. Use of cross-bridged macropolycyclic ligand to prepare a bleaching comnposition substantially as herein described.
13. A liquid laundry, laundry pre-soak, or pre-treatment compositionl substantially as herein described.
14. A method of bleaching soils and stains on fabrics substantially as herein described. AMENDED IPEA/EP TTLP0
AU36127/00A 1999-03-02 2000-02-29 Stabilized bleach compositions Ceased AU772358B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12249299P 1999-03-02 1999-03-02
US60/122492 1999-03-02
PCT/US2000/005291 WO2000052124A1 (en) 1999-03-02 2000-02-29 Stabilized bleach compositions

Publications (2)

Publication Number Publication Date
AU3612700A AU3612700A (en) 2000-09-21
AU772358B2 true AU772358B2 (en) 2004-04-22

Family

ID=22403015

Family Applications (1)

Application Number Title Priority Date Filing Date
AU36127/00A Ceased AU772358B2 (en) 1999-03-02 2000-02-29 Stabilized bleach compositions

Country Status (14)

Country Link
EP (1) EP1157088B1 (en)
JP (1) JP2002538268A (en)
KR (1) KR100453614B1 (en)
CN (1) CN1342194A (en)
AR (1) AR022803A1 (en)
AT (1) ATE315626T1 (en)
AU (1) AU772358B2 (en)
BR (1) BR0008715A (en)
CA (1) CA2364538A1 (en)
CZ (1) CZ20013157A3 (en)
DE (1) DE60025472T2 (en)
ES (1) ES2255992T3 (en)
MX (1) MXPA01008890A (en)
WO (1) WO2000052124A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9930695D0 (en) * 1999-12-24 2000-02-16 Unilever Plc Composition and method for bleaching a substrate
GB9930697D0 (en) * 1999-12-24 2000-02-16 Unilever Plc Method of treating a textile
GB0005087D0 (en) * 2000-03-01 2000-04-26 Unilever Plc Method for reducing dye fading of fabrics in laundry bleaching compositions
EP1322340A2 (en) * 2000-09-25 2003-07-02 The Procter & Gamble Company Manganese complexes for magnetic resonance imaging
GB0030877D0 (en) 2000-12-18 2001-01-31 Unilever Plc Enhancement of air bleaching catalysts
GB0103871D0 (en) 2001-02-16 2001-04-04 Unilever Plc Bleaching composition of enhanced stability and a process for making such a composition
GB0104980D0 (en) * 2001-02-28 2001-04-18 Unilever Plc Liquid cleaning compositions and their use
GB0106285D0 (en) * 2001-03-14 2001-05-02 Unilever Plc Air bleaching catalysts with moderating agent
AU2002237306B2 (en) 2001-03-14 2005-03-24 Unilever Plc Bleaching catalysts with unsaturated surfactant and antioxidants
GB0212984D0 (en) * 2002-06-06 2002-07-17 Unilever Plc Preserved enhancement of bleaching catalysts together
GB0212989D0 (en) * 2002-06-06 2002-07-17 Unilever Plc Enhancement of bleaching catalysts
EP1700907A1 (en) 2005-03-11 2006-09-13 Unilever N.V. Liquid bleaching composition
EP1700904A1 (en) 2005-03-11 2006-09-13 Unilever N.V. Liquid detergent composition
US7572761B2 (en) 2005-11-14 2009-08-11 Evonik Degussa Gmbh Process for cleaning and softening fabrics
PL1882732T3 (en) 2006-07-27 2010-10-29 Evonik Treibacher Gmbh Coated particles of sodium percarbonate
ES2317433T3 (en) 2006-07-27 2009-04-16 Evonik Degussa Gmbh PARTICLES WRAPPED BY SODIUM PERCARBONATE.
EP1889901B1 (en) 2006-07-27 2008-09-24 Evonik Degussa GmbH Coated sodium percarbonate particle
SI2080544T1 (en) 2007-12-19 2011-04-29 Evonik Degussa Gmbh Method for manufacturing coated sodium percarbonate particles
GB0810881D0 (en) 2008-06-16 2008-07-23 Unilever Plc Improvements relating to fabric cleaning
WO2012104159A1 (en) 2011-01-31 2012-08-09 Unilever Plc Alkaline liquid detergent compositions
EP2476743B1 (en) 2011-04-04 2013-04-24 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Method of laundering fabric
EP2522714A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
BR112013028716A2 (en) 2011-05-13 2017-01-24 Unilever Nv aqueous concentrated liquid laundry detergent, composition, method of washing polyester fabrics and their use
EP2522715A1 (en) 2011-05-13 2012-11-14 Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House Aqueous concentrated laundry detergent compositions
CN103174008A (en) * 2011-11-24 2013-06-26 东华大学 Application of bipyridyl tetranitrogen metal complex to low-temperature scouring and bleaching auxiliary for textiles
CN104011192B (en) 2011-12-20 2017-08-25 荷兰联合利华有限公司 Isotropic liquid detergent comprising soil release polymer
EP2850166B1 (en) 2012-05-16 2015-10-21 Unilever PLC Laundry detergent compositions comprising polyalkoxylated polyethyleneimine
ES2665443T3 (en) 2013-01-23 2018-04-25 Unilever Plc Colorless laundry additive material for the promotion of antiredeposition of particulate dirt
EP2770044A1 (en) 2013-02-20 2014-08-27 Unilever PLC Lamellar gel with amine oxide
WO2016155993A1 (en) 2015-04-02 2016-10-06 Unilever Plc Composition
BR112018073598B1 (en) 2016-05-17 2022-09-27 Unilever Ip Holdings B.V LIQUID COMPOSITION FOR WASHING CLOTHES AND USE OF A LIQUID COMPOSITION DETERGENT FOR WASHING CLOTHES
US10947480B2 (en) 2016-05-17 2021-03-16 Conopeo, Inc. Liquid laundry detergent compositions
WO2017202923A1 (en) 2016-05-27 2017-11-30 Unilever Plc Laundry composition
WO2018127390A1 (en) 2017-01-06 2018-07-12 Unilever N.V. Stain removing composition
WO2019038187A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
WO2019038186A1 (en) 2017-08-24 2019-02-28 Unilever Plc Improvements relating to fabric cleaning
TWI819375B (en) 2021-09-13 2023-10-21 南亞塑膠工業股份有限公司 Method of decolorizing polyester fabric

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039098A1 (en) * 1997-03-07 1998-09-11 The University Of Kansas Catalysts and methods for catalytic oxidation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366510A (en) * 1992-06-09 1994-11-22 Eric Wasinger Process for desizing and color fading garments
US5888752A (en) * 1995-05-16 1999-03-30 Bayer Corporation Universal rinse reagent and method for use in hematological analyses of whole blood samples
JP4489190B2 (en) * 1997-03-07 2010-06-23 ザ、プロクター、エンド、ギャンブル、カンパニー Bleach composition containing metal bleach catalyst and bleach activator and / or organic percarboxylic acid
CN100343378C (en) * 1997-06-27 2007-10-17 普罗格特-甘布尔公司 Non-aqueous detergent compositions contg. bleach

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039098A1 (en) * 1997-03-07 1998-09-11 The University Of Kansas Catalysts and methods for catalytic oxidation

Also Published As

Publication number Publication date
CN1342194A (en) 2002-03-27
MXPA01008890A (en) 2002-04-24
AR022803A1 (en) 2002-09-04
EP1157088A1 (en) 2001-11-28
KR100453614B1 (en) 2004-10-20
DE60025472T2 (en) 2006-09-28
BR0008715A (en) 2002-01-02
WO2000052124A1 (en) 2000-09-08
ES2255992T3 (en) 2006-07-16
CZ20013157A3 (en) 2002-07-17
AU3612700A (en) 2000-09-21
JP2002538268A (en) 2002-11-12
ATE315626T1 (en) 2006-02-15
EP1157088B1 (en) 2006-01-11
CA2364538A1 (en) 2000-09-08
KR20010103787A (en) 2001-11-23
DE60025472D1 (en) 2006-04-06

Similar Documents

Publication Publication Date Title
AU772358B2 (en) Stabilized bleach compositions
EP1129164B1 (en) Bleach compositions
CN101490231B (en) Detergent compositions
US5629278A (en) Detergent compositions
JP6483237B2 (en) How to wash fabric
CN1337993A (en) Detergent compositions comprising a cellulose polymer
US6653270B2 (en) Stabilized bleach compositions
JPH11509270A (en) Detergent composition containing cellulase enzyme and laccase enzyme
CA2183747C (en) Detergent compositions
US6667288B2 (en) Bleach compositions
EP4179053A1 (en) Compositions and their applications
ES2287072T3 (en) ENZYMATIC DETERGENT COMPOSITIONS.
CN1131887C (en) Method for enhancing activity of enzyme
JPH11511780A (en) Detergent composition comprising specific lipolytic enzyme and coal soap dispersant
CN101374934A (en) Enzyme and fabric hueing agent containing compositions
CA2183745C (en) Detergent compositions
JPH11511778A (en) Detergent composition comprising lipolytic enzyme
WO2021254824A1 (en) Compositions and their use
MXPA97009888A (en) Cleaning compositions comprising condroitin

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)