EP2791606B1 - Closed transport fluid system for furnace-internal heat exchange between annealing gases - Google Patents
Closed transport fluid system for furnace-internal heat exchange between annealing gases Download PDFInfo
- Publication number
- EP2791606B1 EP2791606B1 EP12806412.8A EP12806412A EP2791606B1 EP 2791606 B1 EP2791606 B1 EP 2791606B1 EP 12806412 A EP12806412 A EP 12806412A EP 2791606 B1 EP2791606 B1 EP 2791606B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- furnace
- annealing
- annealing gas
- furnace chamber
- transport fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000137 annealing Methods 0.000 title claims description 276
- 239000012530 fluid Substances 0.000 title claims description 134
- 239000007789 gas Substances 0.000 title description 289
- 238000010438 heat treatment Methods 0.000 claims description 122
- 238000001816 cooling Methods 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 14
- 239000011810 insulating material Substances 0.000 claims description 5
- 239000008188 pellet Substances 0.000 claims description 2
- 230000009969 flowable effect Effects 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 230000032258 transport Effects 0.000 description 163
- 230000001681 protective effect Effects 0.000 description 73
- 239000000463 material Substances 0.000 description 32
- 230000003993 interaction Effects 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 5
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0006—Details, accessories not peculiar to any of the following furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/663—Bell-type furnaces
- C21D9/677—Arrangements of heating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B11/00—Bell-type furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0001—Heating elements or systems
- F27D2099/0061—Indirect heating
- F27D2099/0065—Gas
Definitions
- the invention relates to an oven for heat treating annealing material and a method for heat treating annealing material in an oven.
- AT 508776 discloses a method for preheating Glühgut in a Bebelglühstrom with the annealed under a protective hood in a transport fluid atmosphere receiving Glühsockeln.
- the annealing material to be subjected to a heat treatment in a protective cover is preheated with the aid of a gaseous heat carrier, which circulates the protective hoods from the outside in a cycle and absorbs heat from a heat-treated annealing material in a protective hood and delivers it to a pre-heated annealing material in another protective hood.
- a gaseous heat carrier which circulates the protective hoods from the outside in a cycle and absorbs heat from a heat-treated annealing material in a protective hood and delivers it to a pre-heated annealing material in another protective hood.
- at least one additional incandescent base is used with a protective hood which can be heated from outside via burners. The hot exhaust gases from the heater
- AT 507423 discloses a method for preheating Glühgut in a Bebelglühstrom with two the Glühgut under a protective cap receiving Glühsockeln.
- the annealing material to be subjected to a heat treatment in a protective cover is preheated with the aid of a gaseous heat carrier, which is circulated between the two protective hoods and absorbs heat from a heat-treated annealing stock in a protective hood and delivers it to the annealing stock to be preheated in the other protective hood.
- the recirculated heat transfer fluid flows around the two protective hoods from the outside, while a transport fluid is circulated inside the protective hoods.
- AT 411904 discloses a bell annealing furnace, in particular for steel band or wire coils, with a Glühsockel receiving the Glühgut and with a gas-tight patch guard. Further is a radial fan mounted in the glow base is provided, which comprises an impeller and a rotor surrounding the impeller for circulating a transport fluid in the protective hood. A heat exchanger for cooling the transport fluid is connected on the input side via a flow channel to the pressure side of the radial fan and opens on the output side into an annular gap between the distributor and the protective hood.
- An axially displaceable in the pressure-side flow path of the radial fan deflection serves to selectively connect the heat exchanger (water-cooled annular tube bundle) leading flow channel to the radial fan.
- the protective cover is gas-tightly mounted on an annular flange, namely pressed against the base flange.
- the heat exchanger (radiator) is located below the annular flange.
- the flow channel consists of an outgoing from the outer periphery of the nozzle, concentric with the annular gap annular channel.
- the deflection device is designed as a ring surrounding the outside, annular deflecting slide.
- SU 1740459 A1 discloses a hood furnace having two sealed furnace chambers. Outside the furnace chambers, a heat exchanger is arranged. The heat exchanger is coupled to the furnace chambers, so that by means of the heat exchanger thermal energy can be discharged from one furnace chamber to the other furnace chamber and vice versa.
- US 2,479,102 A discloses a bell annealing furnace, in the inner volume of which coils or sheet-like material are stacked and heated.
- a heat exchanger assembly is shown having tubes extending in concentric loops about the central axis of the bell annealing furnace.
- combustion gas is flowed through the heat exchanger tubes to heat the gas or inner atmosphere within the hood annealing furnace, and in a subsequent cooling mode, air is passed through the heat exchanger tubes.
- a furnace for heat treating annealing material has a closable first furnace space, which is designed for receiving and for heat treating annealing material by thermal interaction of the annealing with heatable first annealing gas in the first furnace chamber.
- a first heat exchanger arranged, which is designed for the thermal exchange between the first annealing gas and a transport fluid.
- the first heat exchanger is arranged within a housing section (for example within a protective hood, in particular within an innermost protective hood) of the first furnace chamber.
- This housing section encloses the first annealing gas in the interior of the first furnace chamber (in particular, this housing section, which receives annealing material, is in direct contact with the first annealing gas and seals it hermetically or gas-tight from the environment). Furthermore, a closable second furnace space is provided, which is designed for receiving and for heat treating Glühgut by means of thermal interaction of the Glühguts with heatable second annealing gas in the second furnace chamber. In the second furnace chamber, a second heat exchanger is arranged, which is designed for thermal exchange between the second annealing gas and the transport fluid.
- the second heat exchanger is arranged within a housing section (for example within a protective hood, in particular within an innermost protective hood) of the second furnace chamber.
- This housing section encloses the second annealing gas in the interior of the second furnace chamber (together with annealing stock) (in particular, it receives the annealed material in direct contact with the second annealing gas and seals it hermetically against the environment).
- a closed transport fluid path is operatively connected to the first heat exchanger and to the second heat exchanger such that thermal energy can be transferred between the first annealing gas and the second annealing gas by means of the transport fluid.
- a method for heat treating annealing material in a furnace, wherein in the method annealing material is received in a closable first furnace chamber and by means of thermal Interaction of the annealing with heatable first annealing gas in the first furnace chamber is heat treated. Furthermore, a thermal exchange between the first annealing gas and a transport fluid is effected by means of a first heat exchanger arranged in the first furnace chamber. The first heat exchanger is arranged within a housing section of the first furnace chamber. This housing section encloses the first annealing gas inside the first furnace chamber.
- Annealed material is received in a closable second furnace space and heat-treated by means of thermal interaction of the annealing with heatable second annealing gas in the second furnace chamber.
- a thermal exchange between the second annealing gas and the transport fluid is effected by means disposed in the second furnace chamber second heat exchanger, wherein the second heat exchanger is disposed within a housing portion of the second furnace chamber.
- This housing section includes the second annealing gas inside the second furnace space.
- a closed transport fluid path which is operatively connected to the first heat exchanger and to the second heat exchanger, is controlled such that thermal energy is transferred between the first annealing gas and the second annealing gas by means of the transport fluid.
- a fluidic path provided separately from the annealing gas in various sockets or furnace spaces of a furnace also referred to as a closed transport fluid path
- a closed transport fluid path can be provided which are provided with respective heat exchangers (which are separate from protective covers, in particular in their interior).
- respective heat exchangers which are separate from protective covers, in particular in their interior.
- thermal energy of a furnace chamber currently in a cooling phase can be used to preheat another furnace chamber currently in a heating phase.
- a separate and closed transport fluid path is provided, which is brought into fluid communication with the heat exchangers arranged inside the furnace chambers (which are therefore in each case completely enveloped, ie in full flow, by the respective annealing gas).
- the annealing gas of a base for example, 100% hydrogen
- the annealing gas of the heat exchanging partner socket for example, also 100% hydrogen
- the transport fluid path is fluidically, but not thermally, decoupled from the annealing gas in the two furnace chambers
- the transport fluid used specifically for the needs of efficient heat transfer out in particular to use a transport fluid of high thermal conductivity.
- a transport fluid of high thermal conductivity For example, 100% H2, 100% He or other good heat-conducting gases can be used.
- it is in such a fluidic Decoupling of annealing gas and transport fluid possible to design the transport fluid path as a high pressure path, so that in the pressurized transport fluid transport significantly increased heat transfer and at the same time a particularly high amount of heat can be transported without the relatively low pressure gas ratios in the individual furnace chambers would be undesirable ,
- the transport path can also be used for providing heating or cooling energy for selectively heating or cooling a respective one of the furnace spaces.
- Crucial for the transport fluid path is that it acts directly in full flow.
- the transport fluid path according to the embodiment of the invention can be used both for heat exchange between different furnace chambers, as well as for heating or cooling.
- the arrangement can be made very compact. This advantage is made possible by positioning the heat exchangers as the only heat supply units for the respective annealing gas inside the annealing space (ie under the protective hood). Furthermore, the expense associated with the necessary Kranpier for handling the individual hoods is significantly reduced in the absence of heating or cooling hoods. Essentially, a crane is only needed to transport glowglove racks as well as the protective hoods to the furnace rooms, no longer to maneuver cooling or heating hoods.
- the oven may be configured as a batch-operable oven, in particular as a hood oven or chamber oven.
- a batch oven is understood to mean a stove into which a set of annealed material, for example heat-treated tapes, is introduced. Then the corresponding furnace chamber is closed and subjected to the batch introduced Glühgut the heat treatment.
- a batch oven is a batch oven.
- the first furnace space may be closable with a detachable first guard (as the above-mentioned housing portion of the first furnace space) and the second furnace space with a removable second guard (as the above-mentioned housing portion of the second furnace space) can be closed.
- the respective thermally insulated protective cover for the furnace chamber can be designed so that it hermetically seals the interior of the furnace chamber or gas-tight, so that an annealing gas which can be introduced into the respective furnace chamber is reliably protected from flowing out of the respective furnace chamber.
- the first protective hood may be the outermost, in particular the only, hood of the first furnace chamber.
- the second protective hood may be the outermost, in particular the only, hood of the second furnace chamber.
- the oven can be equipped with a single hood per oven space. Compared to conventional hood ovens, in which a protective hood and in addition an external heating or cooling hood is placed, the inventive construction of the furnace with a single protective cover per socket is much easier.
- the first protective hood and the second protective hood can each have a heat-resistant inner housing, in particular made of a metal, and an insulating sheath of a heat-insulating material. Since the energy supply according to this embodiment no longer takes place via the protective hood (for example burner of the heating hood from the outside), the wall temperature of the protective hoods is lower, the heat-resistant material is less stressed and the wall heat losses decrease. According to this embodiment, the hood for hood furnaces can be designed significantly different than conventional protective hoods.
- the conventional protective hoods are to be formed consistently from a thermally highly conductive material in order to achieve a thermal balance between the annealing gas under the respective protective hood and another gas between the two hoods, is taken into account in the described embodiment of the fact that a thermal Interaction through the protective cover is no longer necessary and no longer desired.
- the guard may be at least partially formed of a thermally insulating material to suppress heat loss to the outside.
- the protective hood and / or the further protective hood can in an embodiment of the furnace as a chamber furnace each have a not necessarily heat-resistant outer housing, in particular of a metal, and an inner insulating jacket of a heat-insulating material.
- the transport fluid path may include a heating unit for generating heating heat.
- the heating unit may be configured to directly heat the transport fluid or the first heat exchanger or the second heat exchanger. By means of thermal transfer of the generated heating heat to the first annealing gas, the first furnace space can be heated. Alternatively or additionally, by means of thermal transfer of the generated heating heat to the second annealing gas, the second furnace space can be heated.
- the heating unit may be outside the oven rooms, i. outside the heated area. If the transport fluid path is coupled to a separate heating unit, the transport fluid itself can not only serve for the heat exchange between the annealing gas in the different furnace chambers, but can also transport thermal energy from the heating unit into the interior of the respective furnace space.
- an electrical supply unit for example comprising a transformer
- the tube bundle itself can be used or used as transmission medium for electric current which (preferably at low voltage and high current) by ohmic losses (according to the principle of electrical resistance heating ) can be converted into heat energy in the respective heat exchanger.
- a corresponding coupling element for example, a low-resistance pipe wall of the transport fluid path can be used, to which the respective heat exchanger (in particular a tube bundle) is connected. Passing the coupling element through a floor or a furnace base of the furnace chamber makes it possible to form the protective cover easily and without interruption, since it is unnecessary to pass a supply line to the heat exchanger through the protective hood.
- This annealing chamber external heating unit may be, for example, a gas heating unit, an oil heating unit, a pelletizing unit or an electric heating unit.
- the heating e.g. with gas can take place via a glühschwaitexternen heat exchanger, the tube bundle heat, for example using natural gas burners, the hot gas pressure, which can be transported with a pressure fan to the respective annealing gas chamber heat exchanger.
- the heating with electrical energy can also be done via a transformer directly through the tube bundle of the combustion chamber external heat exchanger to transfer electrical energy to the hot gas pressure and to convey the thermal energy contained therein to the respective Glühgasbibayneer.
- the oven is environmentally friendly operable, for example, because in an electric heating unit (internal or external) no carbon dioxide and no nitrogen oxides are generated. With the described very effective heat exchange in a gas heating, the methane consumption is low, so that only small amounts of CO 2 and NO x arise.
- An oil heating unit may burn oil to generate thermal energy.
- a pelletizing unit can fire wood pellets to generate thermal energy.
- thermal energy generating units according to the invention can be used.
- the first furnace chamber may be closable with a removable first heating hood, which encloses the first protective hood.
- the second furnace chamber can be closed with a removable second heating hood, which encloses the second protective hood.
- the first furnace chamber may have a first heating unit for heating a gap between the first heating hood and the first protective hood.
- the second furnace chamber may have a second heating unit for heating a gap between the second heating hood and the second protective hood.
- a further heating hood per base or oven space is provided in addition to the protective hood.
- the transport fluid path can be provided exclusively for exchanging thermal energy between the annealing gases. It is also possible to place a cooling hood on the respective furnace chamber, thereby initiating a cooling of the annealing gas.
- the first heating unit and the second heating unit may each be a gas heating unit.
- a gas heating unit may be a gas burner, which heats between the heating and protective hood.
- the first heat exchanger and / or the second heat exchanger may be configured as a tube bundle heat exchanger made of tubes bent into a bundle.
- a shell-and-tube heat exchanger can be understood to mean a heat exchanger that passes through a bundle of tubes is formed, which are wound, for example, circular.
- the tube interior can be part of the transport fluid path and can be flowed through by the transport fluid.
- the tube outer can be brought directly into contact with the respective annealing gas.
- a shell-and-tube heat exchanger can be formed from tubes arranged parallel to each other.
- the pipe wall can be gas-tight and heat-resistant.
- the arrangement may be configured such that the transport fluid is forced or conveyed through the interior of the tubes and separated from the respective annealing gas through the tube wall.
- a large effective thermal exchange surface can be provided so that the transport gas and the respective annealing gas can exchange a large amount of thermal energy.
- embodiments of the invention can be used in a fully automatic mode.
- a tube bundle can be used as a heat exchanger in the individual furnace chambers, which can be set in the full flow. This then serves to heat exchange between a cooling charge of Glühgut and an annealing batch of Glühgut. Furthermore, with the tube bundle heat exchangers can be heated to annealing temperature. Cooling to a final temperature (for example, a discharge temperature of the Glühguts) can be carried out by means of the same shell and tube heat exchanger.
- the first furnace chamber may have a first annealing gas fan and the second furnace chamber may have a second annealing gas fan, wherein the respective annealing gas fan is set up to direct the respective annealing gas to the respective heat exchanger and to the respective annealing stock.
- a respective Glühgasventilator can be arranged in a lower region of the respective base or furnace chamber and can circulate the annealing gas to it in good bring thermal interaction with annealing in the respective furnace chamber. The respective Glühgasventilator can steer for this purpose, the annealing gas by means of a nozzle in a particular direction.
- the transport fluid may be a good heat-conductive transport gas, in particular hydrogen or helium.
- the transport fluid may be a liquid or a gas.
- hydrogen or helium use can be made of their good thermal conductivity.
- these gases are well used even under high pressure.
- the transport fluid in the transport fluid path may be under a pressure of about 2 bar to about 20 bar or higher, in particular under a pressure of about 5 bar to about 10 bar.
- a significant overpressure of the transport fluid to atmospheric pressure can be generated, which can go beyond the only slight overpressure may be exposed to the annealing gas in the furnace.
- the heat exchange can be made particularly efficient, without a high-pressure capability in the first and second furnace chamber would be required.
- the transport fluid in the transport fluid path may be brought to a temperature in a range between about 400 ° C and about 1100 ° C, more preferably in a range between about 600 ° C and about 900 ° C.
- the transport fluid in the transport fluid path may be brought to a temperature in a range between 700 ° C and 800 ° C.
- Glühgut such as tapes or wires or profiles of steel, aluminum or copper and / or their alloys.
- the furnace may further comprise at least one sealable third furnace space adapted to receive and heat anneal by thermally interacting the anneal with heatable third annealing gas in the third furnace space and a third heat exchanger disposed in the third furnace space thermal exchange between the third annealing gas and the transport fluid is formed.
- the third heat exchanger can also be arranged within a housing section of the third furnace chamber, which housing section encloses the third annealing gas in the interior of the third furnace chamber.
- the closed transport fluid path can also be operatively connected to the third heat exchanger such that thermal energy can be transferred between the first annealing gas and the second annealing gas and the third annealing gas by means of the transport fluid.
- At least three furnace rooms can be coupled together. Then, an energy-exchanging heating, a heating and a cooling cycle can be distinguished for each one of the furnace rooms.
- two of the three furnace chambers may be thermally coupled by the transport fluid, for example to pre-cool one furnace and preheat the other.
- the third oven may then be subjected to a heating or cooling procedure.
- the heat exchange between the furnace chambers can be provided in several stages with the use of two furnace chambers in one stage, with the use of three furnace chambers in two stages or with the use of more than three furnace chambers.
- the furnace may include a control unit configured to control the transport fluid path such that by thermal exchange between the transport fluid and the first annealing gas and the second annealing gas selectively one of the first furnace space and the second furnace space in a preheat mode, a heating mode , a pre-cooling mode or a Final cooling mode is operable.
- a control unit may for example be a microprocessor which coordinates the operation of the different furnace spaces.
- the control unit may, for example, control the heating unit, the cooling unit or valves of the fluidic system in order to carry out an automated operation.
- a preheating mode can be understood as an operating mode of a furnace chamber in which a hot gas is brought to an elevated intermediate temperature by supplying thermal energy of another hot gas to the hot gas.
- An annealing gas may be subjected to one or more consecutive preheating phases.
- an oven-external heating unit gas, electric, etc.
- gas, electric, etc. which has already been preheated in the above-mentioned single or multi-stage annealing gas, can be switched on in order to bring the annealing gas to a high final temperature.
- an annealing gas may be subjected to precooling (quasi the inverse process to above preheating) in which the annealing gas is brought to a lowered intermediate temperature by passing the annealing gas thermal energy to another annealing gas via the transport fluid gas indirectly feeds.
- precooling quadsi the inverse process to above preheating
- an off-gas cooling unit for example water cooling
- the transport fluid path may include a transport fluid fan for conveying the transport fluid through the transport fluid path.
- the transport fluid fan can thus promote the transport fluid along predetermined paths, which can be predetermined by corresponding valve positions.
- the transport fluid path may include a switchable radiator for cooling the transport fluid in the transport fluid path.
- a switchable cooler for Example based on the principle of water cooling a tube bundle
- the heat exchanger may be designed to be flameproof in the furnace or have a pressure vessel which encloses at least a portion of the transport fluid path pressure-tight.
- the entire transport fluid path which may be operated under high pressure of, for example, 10 bar, may be constructed with pressure resistant tubes, valves, and transport fluid fans or housed in a pressure vessel or other pressure protection device.
- pressure resistant tubes, valves, and transport fluid fans or housed in a pressure vessel or other pressure protection device may be constructed with pressure resistant tubes, valves, and transport fluid fans or housed in a pressure vessel or other pressure protection device.
- pressurized components in particular the transport fluid fan to coat with a pressure vessel.
- the first heat exchanger may be arranged relative to a first Glühgasventilator for driving the first Glühgases and / or the second heat exchanger relative to a second Glühgasventilator for driving the second Glühgases such that in each operating state of the furnace driven by the first Glühgasventilator first Milled gas flows through the first heat exchanger and / or that in each operating state of the furnace or of a respective furnace chamber, the second annealing gas driven by the second annealing gas fan flows through the second heat exchanger.
- a significant advantage of such an embodiment is that in any operating condition (in particular for heating by means of a heater, for cooling by means of a cooling device and for heat exchange between annealing gas and heat exchange device) directed by the fan mulled gas is directed directly to the respective heat exchanger.
- a direct or direct flow with a fan gas-driven annealing gas can in particular be carried out in full flow, ie, completely along a circumference (for example of an imaginary circle) around the fan.
- a very efficient heat coupling between annealing gas and the respective heat exchanger can be achieved.
- the respective heat exchanger can in particular be fixedly mounted or immovably provided on the furnace, in order to ensure that the annealing gas conveyed by the fan is directed via baffles or the like to an approximately circularly arranged tube bundle heat exchanger or another heat exchanger.
- the respective heat exchanger is to be arranged fixedly and immovably at a corresponding point of the furnace or permanently fixed there.
- a heating operating state for heating by means of a heating unit As the possible operating conditions of the furnace or a respective furnace space, a heating operating state for heating by means of a heating unit, a cooling operating state for cooling by means of a cooling unit, and a heat exchange operating state for exchanging heat between different furnace spaces using the transport fluid path (for preheating or Precooling).
- the first annealing gas and the second annealing gas may remain contactless with respect to the transport fluid.
- it can be ensured constructively that the annealing gas does not come into contact with the transport fluid gas, so that no sooting occurs.
- Fig. 1 a hood furnace 100 according to an exemplary embodiment of the invention described.
- the hood furnace 100 is designed for heat treatment of annealing material 102.
- This material to be annealed is arranged partly on a first base So1 of the hood furnace 100 and on another part on a second base So2 of the hood furnace 100.
- the in Fig. 1 is shown only schematically, it may be, for example, steel band or wire coils or the like (eg bulk material on floors) to be subjected to a heat treatment.
- the hood furnace 100 has a first closable oven space 104 associated with the first pedestal So1.
- the first furnace chamber 104 is used for receiving and heat treating the Glühguts 102, which is fed to the first base So1 set.
- the first furnace chamber 104 is sealed gas-tight with a first protective hood 120.
- the first protective hood 120 is bell-shaped and can be maneuvered by means of a crane (not shown).
- the first annealing gas 112 for example hydrogen, can then be introduced as a protective gas into the first furnace chamber 104 hermetically sealed by the first protective hood 120 and heated, as will be described in more detail below.
- a first Glühgasventilator 130 (or base fan) in the first furnace chamber 104 can be driven in rotation to circulate the annealing gas 112 in the first furnace chamber 104.
- the heated first annealing gas 112 can be brought into thermal active contact with the heat-treated material 102 to be heat-treated.
- a first shell-and-tube heat exchanger 108 is arranged in the first furnace chamber 104. This one is from several Windings formed by tubes, wherein transport gas 116 described in detail below is fed to a pipe inlet, flows through the pipe interior and is discharged through a pipe outlet. An outer surface of the tube bundle is in direct contact with the first annealing gas 112.
- the first tube bundle heat exchanger 108 serves the thermal interaction between the first annealing gas 112 and the transport gas 116, which according to one embodiment, a highly thermally conductive gas such as hydrogen or helium under high pressure of for example 10 bar.
- the first shell-and-tube heat exchanger 108 may be illustratively considered to be a plurality of coiled tubes wherein the transport gas may be passed through the interior of the tubes and through the wall of the tubes being thermally well-conducted, for example, metallic, in thermal interaction with that around the exterior wall of the tubes circulating first annealing gas 112 is brought.
- the first annealing gas 112 and the transport gas 116 are indeed fluidically decoupled or immiscible from each other, but a thermal interaction can take place by means of the first shell-and-tube heat exchanger 108 in full flow.
- the first shell and tube heat exchanger 108 is disposed relative to the first annealing gas fan 130 for driving the annealing gas such that in each operating state of the furnace 100, the annealing gas driven by the first annealing gas fan 130 flows the first shell and tube heat exchanger 108.
- the underlying mechanism is in Fig. 16 described in more detail.
- the tubes of the transport gas path 118 can be provided in a small dimension, resulting in a compact construction.
- the pressure of the transport gas 116 may be substantially higher than the pressure of the annealing gas 112 and the Annealing gas 114 in the respective furnace chamber 104, 106 are selected (for example, a slight overpressure of between 20 mbar to 50 mbar above atmospheric pressure).
- the second socket So2 has the same structure as the first socket So1.
- This contains a second annealing gas fan 132 for circulating second annealing gas 114, for example likewise hydrogen, in a second furnace space 106.
- the second furnace space 106 is hermetically sealable to the environment by means of a second protective hood 122.
- a second shell-and-tube heat exchanger 110 permits a thermal, but not a contacting, interaction between the second annealing gas 114 and the transport gas 116.
- two sockets So1, So2 are shown, however, in other embodiments, two or more sockets may be operatively coupled together.
- the first furnace space 104 is bounded at the bottom by a first furnace base 170 (ie, a heat-insulated pedestal base), whereas the second furnace space 106 is bounded at the bottom by a second furnace base 172.
- a first furnace base 170 ie, a heat-insulated pedestal base
- a second furnace base 172 a supply of the transport gas 116 through the first furnace base 170 to the tube interior of the first shell-and-tube heat exchanger 108 is made possible.
- supply of the transport gas 116 through the second furnace base 172 to the tube interior of the second shell and tube heat exchanger 110 is enabled.
- the transport gas 116 is introduced through the respective furnace base 170, 172 and into the respective furnace chamber 104, 106, the energy supply into the respective base So1 or So2 and the removal of energy from the respective base So1 or So2 through the furnace bases 170, 172 therethrough.
- the transport gas 116 is circulated through a closed transport gas path 118, which may also be referred to as a closed transport cycle. Closed means that the transport gas 116 is enclosed in a gastight manner in the heat-resistant and pressure-resistant transport gas path 118 and is protected from leakage from the system or from mixing with other gases and from pressure equalization with the environment. Therefore, the transport gas 116 circulates through the transport gas path 118 for many cycles before the transport gas 116 can be exchanged by, for example, pumping or the like. A contact-type interaction or a mixing of the transport fluid gas 116 with the annealing gas 112 or 114 is prevented by virtue of the purely thermal coupling by means of the tube bundle heat exchangers 108, 110.
- the first shell-and-tube heat exchanger 108 functions functionally as a heat-dissipating device or heat-receiving device which, apart from inlet and outlet lines, is located completely inside the first furnace chamber 104 closed by the first protective hood 120.
- the second shell-and-tube heat exchanger 110 likewise serves functionally as a heat-dissipating device or heat-receiving device, which-apart from inlets and outlets-is located completely inside the second furnace chamber 106 closed by the second protective hood 122.
- the heat output to the respective annealing gas 112, 114 by means disposed in the interior of the respective furnace chamber 104, 106 shell and tube heat exchangers 108, 110 (which are provided separately or independently of the protective hoods 120, 122 and covered by these) as a heat dissipation device or heat receiving device realized. Because of this heat supply to the annealing gas 112, 114 exclusively within the protective hoods 120, 122, the provision of further hoods outside the protective hoods 120, 122 is dispensable according to the invention. In other words, according to the invention, the entire thermal interaction between the annealing gas 112, 114 and heat source within the respective single protective hood 120, 122 of the respective base So1, So2 realized. This allows a compact design of the hood furnace 100 and reduces the effort with Kran durable.
- the closed transport gas path 118 is operatively connected to the first shell-and-tube heat exchanger 108 and to the second shell-and-tube heat exchanger 110 so that thermal energy can be transferred between the first annealing gas 112 and the second annealing gas 114 by means of the transport gas 116.
- thermal energy of the still-hot first annealing gas 112 may be transferred to the transport gas 116 by means of a heat exchange in the first shell-and-tube heat exchanger 108.
- the transport gas 116 heated thereby can be brought into thermal operative connection with the second annealing gas 114 via the second shell-and-tube heat exchanger 110 and thus serve for heating or preheating the second base So2.
- thermal energy may alternatively be transferred from the second annealing gas 114 to the first annealing gas 112.
- the transport gas path 118 and the transport gas 116 flowing therein being strictly mechanically decoupled from the annealing gas 112 and the annealing gas 114, it is possible to keep the transport gas 116 in the transport gas path 118 under high pressure, for example 10 bar. Due to this high pressure, a high heat energy between the first annealing gas 112 and the second annealing gas 114 can be exchanged very efficiently. Furthermore, it is possible, due to this decoupling of Glühgaspfad and Transportgaspfad the transport gas 116 to choose different from the annealing gas 112, 114, so that both types of gas independently of each other on the respective function can be optimized. Also, sooting or otherwise contaminating inside the first furnace space 104 and the second furnace space 106 is inhibited, since there is no exchange of annealing gas 112, 114 therein with transport gas 116.
- an electrical supply unit 124 is further provided.
- the electrical supply unit 124 includes a two-socket transformer 174 that is operatively coupled to an electrical supply unit 176 for providing a high voltage.
- an electric current is transmitted via terminals 180 or 182 and via connection tubes 126 of the transport gas path 118 directly to the tube bundles 108 or 110. But it can also be provided per socket, a transformer to switch on the primary side at only about 1/10 of the current.
- the electrical supply unit 124 can also be completely deactivated.
- the electric current is conducted to the substantially higher-resistance shell-and-tube heat exchanger 108, where the electric current is converted into heat generated by ohmic losses.
- the pipe wall 126 serves as a current guide, while the actual heating takes place further up the tube bundle.
- heating energy is transferred to the first shell and tube heat exchanger 108 and from there to the first annealing gas 112 and from the second shell and tube heat exchanger 110 to the second annealing gas 114.
- the electrical supply unit 124 causes the tube bundle heat exchangers 108, 110 can be heated.
- a first electrical insulation device 184 in the region of the first base So1 and a second electrical insulation device 186 in the region of the second base So2 ensure electrical decoupling of the pipe wall above or below these insulation elements 184, 186.
- a transport gas fan 140 is provided, which is designed to convey the transport gas 116 through the transport gas path 118.
- transport gas fan 140 a hot-pressure blower can be used.
- the transport gas path 118 further includes a switchable cooler 142 for cooling the transport gas 116 in the transport gas path 118 using a gas-water heat exchanger (alternatively, an electric cooling unit may be used at this point).
- one-way valves 144 are arranged, which, for example, can be switched electrically or pneumatically in order to open or close a specific gas line path.
- multi-way valves 146 are mounted at other locations of the transport gas path 118, which are electrically or pneumatically switchable between a plurality of positions corresponding to a plurality of possible gas line paths.
- the switching of the valves 144, 146 and the connection or disconnection of transport gas fan 140, heating unit 124 or cooler unit 142 can also be effected by means of electrical signals.
- the system can either be done manually by an operator or by a control unit such as a microprocessor located in Fig. 1 is not shown and may cause an automated cycle of the operation of the hood furnace 100.
- a pressure vessel 148 may also selectively enclose the transport gas fan 140.
- the pressure vessel 148 advantageously serves as pressure protection if the transport gas path 118 can be operated at a pressure of, for example, 10 bar.
- Other components of the transport gas path 118 may be pressure-resistant or may also be arranged inside a pressure vessel.
- Fig. 1 further shows a control unit 166 configured to control and switch the individual components of the furnace 100, as shown in FIG Fig. 1 is indicated schematically by arrows.
- Fig. 2 to Fig. 5 Reference is made, in which different operating states of the hood furnace 100 are shown, which are adjustable by appropriate control (with the control unit 166) of the position of the fluidic valves 144, 146 and the electric switch 178.
- the transport gas fan 140 is thermally coupled to the second annealing gas 114, so that the transport gas 116 takes the second annealing gas 114 heat and the first annealing gas 112 feeds.
- the first furnace chamber 104 is thus preheated and the second furnace chamber 106 is precooled by the transport gas 116 transferring thermal energy from the first annealing gas 112 to the second annealing gas 114.
- the charge (the material to be annealed) of the base So1 is heated and the charge (the annealing material) of the second base So2 is cooled.
- Fig. 3 shows a second operating state II of the hood furnace 100, which follows the first operating state I.
- the tube bundle 108 with the electrical supply unit 124 electrically heats the first oven space 104 by closing a corresponding electrical path.
- the transport gas fan 140 supplies the transport gas 116 to the now connected cooler 142 for cooling the second annealing gas 114.
- the now cooled transport gas 116 is thermally coupled to the second annealing gas 114 to cool the second furnace space 106.
- the charge (the Glühgut) of the first base So1 is further heated, whereas the charge (the annealing material) of the second base So2 is further cooled.
- the now heat-treated and meanwhile cooled charge of annealed stock 102 is removed from the second base So2.
- a third operating state III which in Fig. 4 is shown.
- the transport fluid fan 140 thermally couples the transport fluid 116 with the first annealing gas 112, so that the transport gas 116 removes heat from the first annealing gas 112 and supplies it to the second annealing gas 114.
- the second furnace chamber 104 is preheated and the first furnace chamber 106 is pre-cooled.
- a subsequent fourth operating state IV is activated, which in Fig. 5 is shown.
- the tube bundle 110 with the electrical supply unit 124 electrically heats only the second oven chamber 106.
- the transport fluid fan 140 supplies the transport gas 116 to the now switched on cooler 142 for cooling.
- the cooled transport gas 116 is thermally coupled to the first annealing gas 112 to further cool the first furnace space 104.
- the charge (the material to be annealed) of the first base So1 is now cooled further and the charge (the annealing material) of the second base So2 is further electrically heated.
- the now heat-treated and now cooled charge of Glühgut 102 is removed from the first base So1.
- a crane can remove the first protective hood 120, then remove the annealing stock 102 arranged in the first base So1 and introduce a new batch of annealed stock 102 into the first base So1.
- Fig. 6 shows an enlarged view of a portion of the first base So1 of the hood furnace, showing the arrangement of the tube bundle heat exchanger 108 in full flow with inlet and outlet in detail.
- the thermal insulation of the protective hood 120 is identified by the reference numeral 600.
- the first annealing gas fan 130 is a radial fan whose impeller 602 is driven by a motor 604. Impeller 602 is enclosed by vanes 608 having vanes.
- the annealing material 102 resting on the glow base which is indicated only schematically, is covered by the protective hood 120, which is supported via an annular flange 612, which ensures a gas-tight closure of the protective hood 120 via a circumferential seal 614.
- Fig. 7 shows a bell annealing furnace 100 according to another exemplary embodiment of the invention.
- an oven-external gas heating unit 700 is provided in the hood furnace 100 according to Fig. 7 instead of the electrically heated furnace-internal heat exchange bundles 108/110 with electrical supply unit 124.
- an oven-external heating unit alternatively also an electrical heating unit can be used.
- the gas heating unit 700 is associated with a separate heating fan 704 which transports transport gas 116 heated by the gas heating unit 700 through a piping system. According to Fig. 7 For example, transport gas 116 heated by the gas heating unit 700 is conveyed through the tube bundle heat exchangers 108, 110.
- a control unit 702 is provided, which is formed via various control lines 720 for switching the various valves 144, 146 and for switching on or off the radiator 142, the gas heating unit 700 or the fans 140, 704.
- the fan 140 may be formed as a cold-pressure fan, whereas the fan 704 is a hot-pressure fan.
- the gas heating unit 700 functions as a heater and is formed as a gas-heated heat exchanger for transferring thermal energy to the transport gas 116.
- the area below the furnace bases 170, 172 in Fig. 7 may be wholly or partially mounted inside a high-pressure vessel to provide protection against the high pressure in the transport gas system 118.
- Fig. 8 to Fig. 11 show four operating states of the hood furnace 100 according to Fig. 7 which are functionally the operating states I to IV according to Fig. 2 to Fig. 5 correspond.
- the radiator 142 is disconnected from the rest of the system.
- the gas heating unit 700 is turned off. Heat is transferred from the second annealing gas 114 of the second header So2 to the first annealing gas 112 in the first header So1.
- the first base So1 is further heated by the gas heating unit 700 which is now switched on, while the cooler 142 is now activated in a separate other gas path and the second annealing gas 114 is actively further cooled in the second base So2.
- the annealing material 102 can be removed from the second base So2 and replaced by a new, heat-treatable batch of annealed material 102.
- Fig. 10 shows the third operating state III, in which thermal energy is now transferred from the first annealing gas 112 in the first base So1 to the second annealing gas 114 in the second base So2.
- the radiator 142 and the gas heating unit 700 are turned off in this state.
- Operating state III is then replaced by operating state IV, which in Fig. 11 is shown.
- the cooler 142 is activated and actively cools the first base So1 further.
- the second base So2 is actively heated further by means of the gas heating unit 700.
- the annealing stock 102 can be removed from the first base So1 and replaced by a new batch of annealed stock 102.
- the first graph 1200 has an abscissa 1202 along which the time is plotted while performing the operating conditions I to IV. Along an ordinate 1204, the temperature of the respective annealing gas or the Glühguts is plotted while performing the operating states I to IV.
- the abscissa 1202 and the ordinate 1204 are also selected accordingly in the second diagram 1250.
- the first graph 1200 relates to a temperature profile of the first annealing gas 112 and the Glühguts the first base So1 during the passage through the individual operating states I to IV, whereas the second graph 1250 on a temperature profile of the second annealing gas 114 and the Glühguts the second Base So2 during operating states I to IV according to Fig. 1 or Fig. 7 refers.
- first operating state I thermal energy is transferred from the second annealing gas 114 in base So2 to the first annealing gas 112 in base So1 (first heat exchange WT1 with energy transfer E).
- the first base So1 is actively heated further with annealing material (H), whereas the second base So2 is actively cooled further actively with annealing material (K).
- thermal energy is now transferred from the first annealing gas 112 or the annealed material in the first base So1 to the second annealing gas 114 or the annealed material in the second base So2 (second heat exchange WT2 with energy transfer E).
- fourth operating state IV the first base So1 is further actively cooled with Glühgut, whereas the second base So2 is actively heated with annealing material.
- Fig. 12 the temperature profile in a two-socket operation according to Fig. 1 or according to Fig. 7 .
- a single-stage heat exchange ie, a one-stage preheating a base with Glühgut by supplying Glühgasrise the other socket before active reheating by means of a heating unit
- the energy consumption can be reduced to about 60%.
- Such an embodiment is simple and reduces the energy by 40% due to the reuse of waste heat to be cooled each base with Glühgut the energy.
- FIG. 12 shows a first diagram 1300, a second diagram 1320, a third diagram 1340 and a fourth diagram 1360 of a two-stage heat exchange system in which, unlike in FIG Fig. 1 and Fig. 7 two pedestals, but three pedestals are provided in a hood furnace.
- a two-stage preheating of a base with Glühgut by supplying Glühgasrise the other two sockets with Glühgut (successively, ie two stages) before the active reheating by means of a heating unit.
- the base So3 is actively cooled by means of a cooler, while the base now to be pre-cooled transfers thermal energy from its second annealing gas to the first annealing gas of the first base So1. As a result, the first base So1 is further preheated.
- the third base So3 is reheated by transferring thermal energy from the second base So2 to the third base So3 by means of the transport gas. This preheats the third base So3. Since the second base So2 transfers thermal energy of its second annealing gas to the third annealing gas of the third base So3, its energy decreases in the third operating state III.
- the first base So1 is now isolated from the other bases So2 and So3 and is heated by means of a heater to a final temperature.
- the first base So1 is pre-cooled by transferring thermal energy from the first annealing gas to the third annealing gas of the base So3.
- the third base So3 is further preheated.
- the second base So2 is separated in a fourth operating state from the other two sockets So1, So3 and is actively cooled further with a cooler, in order then to reach its lower end temperature at the end of the fourth operating mode IV.
- the third pedestal So3 is activated and connected to the heating unit separately from the other pedestals So1, So2 to be brought to the final temperature.
- the further base So1 to be cooled transfers thermal energy from its annealing gas to the second annealing gas of the second base So2. The latter is thus subjected to a first preheating phase.
- a subsequent sixth operating mode VI thermal energy from the third base So3, which is now pre-cooled to be transferred to the second socket So2.
- the second base So2 is subjected to a second preheating and the third base So3 is pre-cooled.
- the first base So1 is in this operating condition in isolation from sockets So2, So3 and is cooled by a cooler to a final temperature.
- the cycle begins again with the first operating state I.
- Fig. 13 thus refers to a two-stage heat exchange in a three-socket operation. Energy consumption can be reduced to 40%.
- the construction of a corresponding furnace according to the invention is still simple, and it can still be achieved a high level of energy gain of about 60%.
- FIG. 11 shows a schematic view of a furnace 1600 having generally n sockets according to another exemplary embodiment.
- a first socket So1 1602, a second socket So2 1604 and an n-th socket SoN 1606 are shown schematically.
- the architecture according to Fig. 16 can be applied to any number of sockets.
- a plurality of one-way valves 144 are also in Fig. 14 shown.
- a cooling unit 142 and an external heating unit 700 in this case, a gas heating unit, which is alternatively possible as an electric resistance heater
- the shell-and-tube heat exchanger is used directly, ie internally as electrical resistance heating, one electrical supply unit per socket is provided (1241, 1242, ..., 124n).
- one fan unit each is provided for WT1 or WT2.
- Fig. 15 shows a bell-shaped protective hood 1700, as shown for example in Fig. 1 with reference numerals 120, 122.
- the protective hood 1700 has a continuous inner housing made of a heat-resistant material 1702 and a heat insulation 1704 outside to preserve the respective base from heat loss through the protective hood 1700 therethrough.
- the configuration shown is advantageously used for a hood furnace.
- Fig. 16 shows a plan view of a hood furnace of the in Fig. 6 of the type shown, in which a shell-and-tube heat exchanger 108 is directed (and preferably substantially completely) by means of a hot gas fan 130 and is supplied with heated annealing gas.
- a good thermal coupling between the Glühgasventilator 130 and the tube bundle heat exchanger 108 can be ensured for all operating conditions of the hood furnace, ie for heating a base, for cooling a base or heat exchange between sockets.
- an impeller 602 of the Glühgasventilators 130 is driven in rotation, see reference numeral 1642.
- the annealing gas is circulated by the Glühgasventilator 130.
- the annealing gas therefore moves outward under the influence of the stationary vanes 1640 of a nozzle.
- the annealing gas reaches specifically in thermal interaction with the tube bundle heat exchanger 108 and on to the charge (Glühgut).
- the tube bundle heat exchanger 108 is therefore in full flow.
- FIG. 17 For example, an oven 1800 according to yet another exemplary embodiment of the invention is shown.
- the 1800 oven is similar to Fig. 1 formed, but has at its first base in addition to the first guard 120 a this enclosing removable first heating hood 1802. Accordingly, the second guard 122 of the second base of a second heating hood 1804 is covered.
- the first heating burners 1806 are in a gap 1810 between the first heating hood 120 and the first Protective cover 1802 provided for heating the protective gas within the protective hood. Accordingly, in the second furnace room 106, the second heating burners 1808 for heating a gap 1812 between the second heating hood 122 and the second protective hood 1804 are provided. It is possible to provide electrical resistance heating elements 1806, 1808 instead of the heating burners 1808.
- the electrical supply unit 124 according to Fig. 1 is in Fig. 17 omitted.
- the switchable gas-water heat exchanger 142 is maintained.
- the main heating of the first annealing gas 112 and the second annealing gas 114 by the thermal interaction between the heated gas in the gap 1810 and the first annealing gas 112 and the heated gas in the space 1812 and the second annealing gas 114 (or an electrical resistance heater) accomplished.
- the transport fluid path 118 is used in this embodiment for the thermal compensation between the first annealing gas 112 and the second annealing gas 114 in order to pre-cool or preheat and thus save energy.
- final cooling may be accomplished by a cooling unit 142 associated with the transport gas path 118.
- a cooling hood can be placed.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Furnace Details (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Tunnel Furnaces (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Articles (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
Description
Die Erfindung betrifft einen Ofen zum Wärmebehandeln von Glühgut und ein Verfahren zum Wärmebehandeln von Glühgut in einem Ofen.The invention relates to an oven for heat treating annealing material and a method for heat treating annealing material in an oven.
Herkömmliche satzweise arbeitende Öfen haben einen relativ hohen Energieverbrauch.Conventional batch furnaces have a relatively high energy consumption.
Es ist eine Aufgabe der vorliegenden Erfindung, einen satzweise arbeitenden Ofen energieeffizient zu betreiben.It is an object of the present invention to operate a batch furnace in an energy efficient manner.
Diese Aufgabe wird durch die Gegenstände mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst. Weitere Ausführungsbeispiele sind in den abhängigen Ansprüchen gezeigt.
Gemäß einem Ausführungsbeispiel der vorliegenden Erfindung ist ein Ofen zum Wärmebehandeln von Glühgut geschaffen. Der Ofen weist einen verschließbaren ersten Ofenraum auf, der zum Aufnehmen und zum Wärmebehandeln von Glühgut mittels thermischen Wechselwirkens des Glühguts mit heizbarem erstem Glühgas in dem ersten Ofenraum ausgebildet ist. In dem ersten Ofenraum ist ein erster Wärmetauscher angeordnet, der zum thermischen Austausch zwischen dem ersten Glühgas und einem Transportfluid ausgebildet ist. Der erste Wärmetauscher ist innerhalb eines Gehäuseabschnitts (zum Beispiel innerhalb einer Schutzhaube, insbesondere innerhalb einer innersten Schutzhaube) des ersten Ofenraums angeordnet. Dieser Gehäuseabschnitt schließt das erste Glühgas im Inneren des ersten Ofenraums ein (insbesondere steht dieser Gehäuseabschnitt, der Glühgut aufnimmt, in direktem Kontakt mit dem ersten Glühgas und dichtet dieses gegenüber der Umgebung hermetisch oder gasdicht ab). Ferner ist ein verschließbarer zweiter Ofenraum vorgesehen, der zum Aufnehmen und zum Wärmebehandeln von Glühgut mittels thermischen Wechselwirkens des Glühguts mit heizbarem zweitem Glühgas in dem zweiten Ofenraum ausgebildet ist. In dem zweiten Ofenraum ist ein zweiter Wärmetauscher angeordnet, der zum thermischen Austausch zwischen dem zweiten Glühgas und dem Transportfluid ausgebildet ist. Der zweite Wärmetauscher ist innerhalb eines Gehäuseabschnitts (zum Beispiel innerhalb einer Schutzhaube, insbesondere innerhalb einer innersten Schutzhaube) des zweiten Ofenraums angeordnet. Dieser Gehäuseabschnitt schließt das zweite Glühgas im Inneren des zweiten Ofenraums (gemeinsam mit Glühgut) ein (insbesondere steht er, der Glühgut aufnimmt, in direktem Kontakt mit dem zweiten Glühgas und dichtet dieses gegenüber der Umgebung hermetisch ab). Ein geschlossener Transportfluidpfad ist mit dem ersten Wärmetauscher und mit dem zweiten Wärmetauscher derart wirkverbunden, dass mittels des Transportfluids thermische Energie zwischen dem ersten Glühgas und dem zweiten Glühgas übertragbar ist.This object is solved by the objects with the features according to the independent claims. Further embodiments are shown in the dependent claims.
According to an embodiment of the present invention, a furnace for heat treating annealing material is provided. The furnace has a closable first furnace space, which is designed for receiving and for heat treating annealing material by thermal interaction of the annealing with heatable first annealing gas in the first furnace chamber. In the first furnace chamber is a first heat exchanger arranged, which is designed for the thermal exchange between the first annealing gas and a transport fluid. The first heat exchanger is arranged within a housing section (for example within a protective hood, in particular within an innermost protective hood) of the first furnace chamber. This housing section encloses the first annealing gas in the interior of the first furnace chamber (in particular, this housing section, which receives annealing material, is in direct contact with the first annealing gas and seals it hermetically or gas-tight from the environment). Furthermore, a closable second furnace space is provided, which is designed for receiving and for heat treating Glühgut by means of thermal interaction of the Glühguts with heatable second annealing gas in the second furnace chamber. In the second furnace chamber, a second heat exchanger is arranged, which is designed for thermal exchange between the second annealing gas and the transport fluid. The second heat exchanger is arranged within a housing section (for example within a protective hood, in particular within an innermost protective hood) of the second furnace chamber. This housing section encloses the second annealing gas in the interior of the second furnace chamber (together with annealing stock) (in particular, it receives the annealed material in direct contact with the second annealing gas and seals it hermetically against the environment). A closed transport fluid path is operatively connected to the first heat exchanger and to the second heat exchanger such that thermal energy can be transferred between the first annealing gas and the second annealing gas by means of the transport fluid.
Gemäß noch einem anderen exemplarischen Ausführungsbeispiel der Erfindung ist ein Verfahren zum Wärmebehandeln von Glühgut in einem Ofen bereitgestellt, wobei bei dem Verfahren Glühgut in einem verschließbaren ersten Ofenraum aufgenommen und mittels thermischen Wechselwirkens des Glühguts mit heizbarem ersten Glühgas in dem ersten Ofenraum wärmebehandelt wird. Ferner wird ein thermischer Austausch zwischen dem ersten Glühgas und einem Transportfluid mittels eines in dem ersten Ofenraum angeordneten ersten Wärmetauscher bewirkt. Der erste Wärmetauscher ist innerhalb eines Gehäuseabschnitts des ersten Ofenraums angeordnet. Dieser Gehäuseabschnitt schließt das erste Glühgas im Inneren des ersten Ofenraums ein. Glühgut wird in einem verschließbaren zweiten Ofenraum aufgenommen und mittels thermischen Wechselwirkens des Glühguts mit heizbarem zweitem Glühgas in dem zweiten Ofenraum wärmebehandelt. Darüber hinaus wird ein thermischer Austausch zwischen dem zweiten Glühgas und dem Transportfluid mittels eines in dem zweiten Ofenraum angeordneten zweiten Wärmetauscher bewirkt, wobei der zweite Wärmetauscher innerhalb eines Gehäuseabschnitts des zweiten Ofenraums angeordnet ist. Dieser Gehäuseabschnitt schließt das zweite Glühgas im Inneren des zweiten Ofenraums ein. Ein geschlossener Transportfluidpfad, der mit dem ersten Wärmetauscher und mit dem zweiten Wärmetauscher wirkverbunden ist, wird derart gesteuert, dass mittels des Transportfluids thermische Energie zwischen dem ersten Glühgas und dem zweiten Glühgas übertragen wird.According to yet another exemplary embodiment of the invention, a method is provided for heat treating annealing material in a furnace, wherein in the method annealing material is received in a closable first furnace chamber and by means of thermal Interaction of the annealing with heatable first annealing gas in the first furnace chamber is heat treated. Furthermore, a thermal exchange between the first annealing gas and a transport fluid is effected by means of a first heat exchanger arranged in the first furnace chamber. The first heat exchanger is arranged within a housing section of the first furnace chamber. This housing section encloses the first annealing gas inside the first furnace chamber. Annealed material is received in a closable second furnace space and heat-treated by means of thermal interaction of the annealing with heatable second annealing gas in the second furnace chamber. In addition, a thermal exchange between the second annealing gas and the transport fluid is effected by means disposed in the second furnace chamber second heat exchanger, wherein the second heat exchanger is disposed within a housing portion of the second furnace chamber. This housing section includes the second annealing gas inside the second furnace space. A closed transport fluid path, which is operatively connected to the first heat exchanger and to the second heat exchanger, is controlled such that thermal energy is transferred between the first annealing gas and the second annealing gas by means of the transport fluid.
Gemäß einem exemplarischen Ausführungsbeispiel der Erfindung kann ein separat von dem Glühgas in verschiedenen Sockeln oder Ofenräumen eines Ofens vorgesehener fluidischer Pfad, auch als geschlossener Transportfluidpfad bezeichnet, vorgesehen werden, der mit jeweiligen Wärmetauschern (die getrennt von Schutzhauben, insbesondere in deren Inneren, vorgesehen werden) in den Ofenräumen miteinander wirkverbunden, um thermische Energie zwischen zwei getrennten Glühgasen in den beiden Ofenräumen auszutauschen. Dabei ist wichtig, dass ein direkter mechanischer Kontakt zwischen dem Transportfluid und dem Glühgas in den Ofenräumen vermieden ist. Lediglich ein thermischer Austausch zwischen diesen Gasen bzw. Fluiden ist mittels der jeweiligen Wärmetauscher ermöglicht. Auf diese Weise kann bei einem Ofen mit mehreren Ofenräumen bzw. Sockeln zum Beispiel thermische Energie eines gerade in einer Abkühlphase befindlichen Ofenraums dazu verwendet werden, einen gerade in einer Aufheizphase befindlichen anderen Ofenraum vorzuheizen. Hierfür wird erfindungsgemäß ein separater und abgeschlossener Transportfluidpfad bereitgestellt, der mit den innerhalb der Ofenräume angeordneten Wärmetauschern (die somit insbesondere jeweils vollumfänglich, d.h. im Vollstrom, von dem jeweiligen Glühgas umspült werden) in Fluidverbindung gebracht wird. Dies führt zu einer effizienten Nutzung der aufgewendeten Energie. Dabei kommt das Glühgas eines Sockels (zum Beispiel 100 % Wasserstoff) mit dem Glühgas des wärmetauschenden Partnersockels (zum Beispiel ebenfalls 100 % Wasserstoff) nicht in Kontakt. Somit ist auch eine unerwünschte Qualitätseinbuße wegen Verrußung (durch abdampfende Walzöle oder Ziehmittel) oder der unerwünschten Zufuhr von Spuren von Sauerstoff (O2) und Wasser (H2O) beim Anwärmen des Wärmetauschers zuverlässig vermieden. Ferner ist die Sicherheit des erfindungsgemäßen Ofens sehr hoch, da das Wechselwirken zwischen Glühgas unterschiedlicher Ofenräume bzw. zwischen Glühgas einerseits und Transportfluid (zum Beispiel 100% Wasserstoff oder 100% Helium) andererseits trotz des Vorsehens der Wärmetauscher unterbunden ist.According to an exemplary embodiment of the invention, a fluidic path provided separately from the annealing gas in various sockets or furnace spaces of a furnace, also referred to as a closed transport fluid path, can be provided which are provided with respective heat exchangers (which are separate from protective covers, in particular in their interior). in the furnace chambers operatively connected to exchange thermal energy between two separate annealing gases in the two furnace chambers. It is important that a direct mechanical contact between the transport fluid and the annealing gas is avoided in the furnace chambers. Only a thermal exchange between these gases or fluids is made possible by means of the respective heat exchanger. In this way, in an oven having a plurality of oven compartments or sockets, for example, thermal energy of a furnace chamber currently in a cooling phase can be used to preheat another furnace chamber currently in a heating phase. For this purpose, according to the invention, a separate and closed transport fluid path is provided, which is brought into fluid communication with the heat exchangers arranged inside the furnace chambers (which are therefore in each case completely enveloped, ie in full flow, by the respective annealing gas). This leads to an efficient use of the energy used. In this case, the annealing gas of a base (for example, 100% hydrogen) with the annealing gas of the heat exchanging partner socket (for example, also 100% hydrogen) does not come into contact. Thus, an undesirable loss of quality due to carbon fouling (by evaporating rolling oils or drawing agents) or the unwanted supply of traces of oxygen (O 2 ) and water (H 2 O) during heating of the heat exchanger is reliably avoided. Furthermore, the safety of the furnace according to the invention is very high, since the interaction between annealing gas different furnace spaces or between annealing gas on the one hand and transport fluid (for example, 100% hydrogen or 100% helium) on the other hand, despite the provision of the heat exchanger is prevented.
Indem der Transportfluidpfad zwar fluidisch, nicht aber thermisch, von dem Glühgas in den beiden Ofenräumen entkoppelt ist, ist es auch möglich, das verwendete Transportfluid speziell auf die Bedürfnisse einer effizienten Wärmeübertragung hin auszulegen, insbesondere ein Transportfluid einer hohen Wärmeleitfähigkeit zu verwenden. Z.B. können 100 % H2, 100 % He oder andere gut wärmeleitende Gase eingesetzt werden. Darüber hinaus ist es bei einer derartigen fluidischen Entkopplung von Glühgas und Transportfluid möglich, den Transportfluidpfad als einen Hochdruckpfad auszugestalten, so dass in dem unter Hockdruck stehenden Transportfluid die Wärmeübertragung erheblich gesteigert und gleichzeitig eine besonders hohe Wärmemenge transportiert werden kann, ohne dass die relativ niedrigen Druckgasverhältnisse in den einzelnen Ofenräumen dadurch unerwünscht beeinträchtigt würden.Although the transport fluid path is fluidically, but not thermally, decoupled from the annealing gas in the two furnace chambers, it is also possible to design the transport fluid used specifically for the needs of efficient heat transfer out, in particular to use a transport fluid of high thermal conductivity. For example, 100% H2, 100% He or other good heat-conducting gases can be used. Moreover, it is in such a fluidic Decoupling of annealing gas and transport fluid possible to design the transport fluid path as a high pressure path, so that in the pressurized transport fluid transport significantly increased heat transfer and at the same time a particularly high amount of heat can be transported without the relatively low pressure gas ratios in the individual furnace chambers would be undesirable ,
Über den Wärmeaustausch von thermischer Energie hinaus, die in dem Glühgas der einzelnen Ofenräume gespeichert ist, kann der Transportpfad auch zum Bereitstellen von Heiz- oder Kühlenergie zum selektiven Heizen oder Kühlen eines jeweiligen der Ofenräume verwendet werden. Entscheidend für den Transportfluidpfad ist, dass dieser direkt im Vollstrom wirkt. Somit kann der Transportfluidpfad gemäß der erfindungsgemäßen Ausgestaltung sowohl zum Wärmeaustausch zwischen verschiedenen Ofenräumen, als auch zum Heizen oder zum Kühlen verwendet werden.In addition to the heat exchange of thermal energy stored in the annealing gas of the individual furnace chambers, the transport path can also be used for providing heating or cooling energy for selectively heating or cooling a respective one of the furnace spaces. Crucial for the transport fluid path is that it acts directly in full flow. Thus, the transport fluid path according to the embodiment of the invention can be used both for heat exchange between different furnace chambers, as well as for heating or cooling.
Wenn gemäß einem Ausführungsbeispiel genau jeweils nur eine wärmeisolierte Schutzhaube (ohne das zwingende Erfordernis des Vorsehens weiterer Heiz- oder Kühlhauben) auf den jeweiligen Sockel aufgesetzt wird, kann die Anordnung sehr kompakt ausgebildet werden. Dieser Vorteil wird durch das Positionieren der Wärmetauscher als einzige Wärmezuführeinheiten für das jeweilige Glühgas im Inneren des Glühraums (d.h. unter der Schutzhaube) ermöglicht. Ferner ist bei Wegfall von Heiz- oder Kühlhauben der Aufwand im Zusammenhang mit den benötigten Kranspielen zum Handhaben der einzelnen Hauben signifikant reduziert. Ein Kran wird im Wesentlichen nur noch zum Befördern von Glühgutchargen sowie der Schutzhauben zu den Ofenräumen benötigt, nicht mehr zum Manövrieren von Kühl- oder Heizhauben.If according to one embodiment exactly only one heat-insulated protective cover (without the compulsory requirement of providing further heating or cooling hoods) is placed on the respective base, the arrangement can be made very compact. This advantage is made possible by positioning the heat exchangers as the only heat supply units for the respective annealing gas inside the annealing space (ie under the protective hood). Furthermore, the expense associated with the necessary Kranspielen for handling the individual hoods is significantly reduced in the absence of heating or cooling hoods. Essentially, a crane is only needed to transport glowglove racks as well as the protective hoods to the furnace rooms, no longer to maneuver cooling or heating hoods.
Im Weiteren werden zusätzliche exemplarische Ausführungsbeispiele des Ofens beschrieben. Diese gelten auch für das Verfahren.In the following, additional exemplary embodiments of the furnace will be described. These also apply to the procedure.
Gemäß einem Ausführungsbeispiel kann der Ofen als satzweise betreibbarer Ofen, insbesondere als Haubenofen oder Kammerofen, ausgestaltet sein. Unter einem satzweise betreibbaren Ofen wird ein Ofen verstanden, in den ein Satz Glühgut, zum Beispiel wärmezubehandelnde Bänder, eingeführt wird. Dann wird der entsprechende Ofenraum geschlossen und das satzweise eingebrachte Glühgut der Wärmebehandlung unterzogen. Anders ausgedrückt ist ein satzweise betreibbarer Ofen ein diskontinuierlich betreibbarer Ofen.According to one embodiment, the oven may be configured as a batch-operable oven, in particular as a hood oven or chamber oven. A batch oven is understood to mean a stove into which a set of annealed material, for example heat-treated tapes, is introduced. Then the corresponding furnace chamber is closed and subjected to the batch introduced Glühgut the heat treatment. In other words, a batch oven is a batch oven.
Gemäß einem Ausführungsbeispiel kann der erste Ofenraum mit einer abnehmbaren ersten Schutzhaube (als dem oben genannten Gehäuseabschnitt des ersten Ofenraums) verschließbar sein und der zweite Ofenraum mit einer abnehmbaren zweiten Schutzhaube (als dem oben genannten Gehäuseabschnitt des zweiten Ofenraums) verschließbar sein. Die jeweilige wärmeisolierte Schutzhaube für den Ofenraum kann so ausgebildet sein, dass diese das Innere des Ofenraums hermetisch oder gasdicht abschließt, so dass ein in den jeweiligen Ofenraum einlassbares Glühgas vor einem Ausströmen aus dem jeweiligen Ofenraum sicher geschützt ist.According to an embodiment, the first furnace space may be closable with a detachable first guard (as the above-mentioned housing portion of the first furnace space) and the second furnace space with a removable second guard (as the above-mentioned housing portion of the second furnace space) can be closed. The respective thermally insulated protective cover for the furnace chamber can be designed so that it hermetically seals the interior of the furnace chamber or gas-tight, so that an annealing gas which can be introduced into the respective furnace chamber is reliably protected from flowing out of the respective furnace chamber.
Gemäß einem Ausführungsbeispiel kann die erste Schutzhaube die äußerste, insbesondere die einzige, Haube des ersten Ofenraums sein. Die zweite Schutzhaube kann die äußerste, insbesondere die einzige, Haube des zweiten Ofenraums sein. Gemäß dieser bevorzugten Ausgestaltung kann der Ofen mit einer einzigen Haube pro Ofenraum ausgestattet werden. Gegenüber herkömmlichen Haubenöfen, in denen eine Schutzhaube und zusätzlich eine äußere Heiz- oder Kühlhaube aufgesetzt wird, ist die erfindungsgemäße Konstruktion des Ofens mit einer einzigen Schutzhaube pro Sockel wesentlich einfacher. Diese Vereinfachung der Konstruktion resultiert aus dem Positionieren des jeweiligen Wärmetauschers in dem Ofenraum und in Fluidverbindung mit dem Transportfluidpfad, da dieser Wärmetauscher die gesamte thermische Kopplung zwischen dem Glühgas und dem Transportfluid und somit alle Heiz- und Kühlaufgaben übernehmen kann. Ausführungsbeispiele der Erfindung sind somit mit kleinstem Platzbedarf realisierbar, da keine Heizhaube, keine Kühlhaube, keine Tauschhaube erforderlich ist, und je Sockel eine einzige wärmeisolierte Schutzhaube ausreichend sein kann.According to one embodiment, the first protective hood may be the outermost, in particular the only, hood of the first furnace chamber. The second protective hood may be the outermost, in particular the only, hood of the second furnace chamber. According to this preferred embodiment, the oven can be equipped with a single hood per oven space. Compared to conventional hood ovens, in which a protective hood and in addition an external heating or cooling hood is placed, the inventive construction of the furnace with a single protective cover per socket is much easier. These Simplification of the design results from the positioning of the respective heat exchanger in the furnace chamber and in fluid communication with the transport fluid path, since this heat exchanger can take over the entire thermal coupling between the annealing gas and the transport fluid and thus all heating and cooling tasks. Embodiments of the invention are thus feasible with minimal space requirements, since no heating hood, no cooling hood, no exchange hood is required, and each socket a single thermally insulated guard may be sufficient.
Gemäß einem Ausführungsbeispiel können die erste Schutzhaube und die zweite Schutzhaube jeweils ein hitzebeständiges Innengehäuse, insbesondere aus einem Metall, und eine Isolationshülle aus einem wärmeisolierenden Material aufweisen. Da die Energiezufuhr gemäß diesem Ausführungsbeispiel nicht mehr über die Schutzhaube erfolgt (zum Beispiel Brenner der Heizhaube von außen), ist die Wandtemperatur der Schutzhauben niedriger, das hitzebeständige Material wird weniger beansprucht und die Wandwärmeverluste sinken. Gemäß dieser Ausgestaltung kann die Schutzhaube für Haubenöfen signifikant anders ausgebildet werden als herkömmliche Schutzhauben. Während die herkömmlichen Schutzhauben durchweg aus einem thermisch gut leitfähigen Material ausgebildet sein sollen, um einen thermischen Ausgleich zwischen dem Glühgas unter der jeweiligen Schutzhaube und einem anderen Gas zwischen den beiden Hauben zu bewerkstelligen, ist bei dem beschriebenen Ausführungsbeispiel der Tatsache Rechnung getragen, dass eine thermische Wechselwirkung durch die Schutzhaube hindurch nicht mehr erforderlich und auch nicht mehr gewünscht ist. Aus diesem Grund kann die Schutzhaube zumindest teilweise aus einem thermisch isolierenden Material gebildet sein, um Wärmeverluste nach außen hin zu unterdrücken.According to one exemplary embodiment, the first protective hood and the second protective hood can each have a heat-resistant inner housing, in particular made of a metal, and an insulating sheath of a heat-insulating material. Since the energy supply according to this embodiment no longer takes place via the protective hood (for example burner of the heating hood from the outside), the wall temperature of the protective hoods is lower, the heat-resistant material is less stressed and the wall heat losses decrease. According to this embodiment, the hood for hood furnaces can be designed significantly different than conventional protective hoods. While the conventional protective hoods are to be formed consistently from a thermally highly conductive material in order to achieve a thermal balance between the annealing gas under the respective protective hood and another gas between the two hoods, is taken into account in the described embodiment of the fact that a thermal Interaction through the protective cover is no longer necessary and no longer desired. For this reason, the guard may be at least partially formed of a thermally insulating material to suppress heat loss to the outside.
Dagegen kann/können die Schutzhaube und/oder die weitere Schutzhaube bei einer Ausgestaltung des Ofens als Kammerofen jeweils ein nicht notwendigerweise hitzebeständiges Außengehäuse, insbesondere aus einem Metall, und eine innere Isolationshülle aus einem wärmeisolierenden Material aufweisen.On the other hand, the protective hood and / or the further protective hood can in an embodiment of the furnace as a chamber furnace each have a not necessarily heat-resistant outer housing, in particular of a metal, and an inner insulating jacket of a heat-insulating material.
Gemäß einem Ausführungsbeispiel kann der Transportfluidpfad eine Heizeinheit zum Generieren von Heizwärme aufweisen. Die Heizeinheit kann zum direkten Heizen des Transportfluids oder des ersten Wärmetauschers oder des zweiten Wärmetauschers eingerichtet sein. Mittels thermischer Übertragung der generierten Heizwärme auf das erste Glühgas kann der erste Ofenraum heizbar sein. Alternativ oder ergänzend kann mittels thermischer Übertragung der generierten Heizwärme auf das zweite Glühgas der zweite Ofenraum heizbar sein. Die Heizeinheit kann außerhalb der Ofenräume, d.h. außerhalb des geheizten Bereichs, angeordnet sein. Wenn der Transportfluidpfad mit einer separaten Heizeinheit gekoppelt ist, so kann das Transportfluid selbst nicht nur für den Wärmeaustausch zwischen dem Glühgas in den unterschiedlichen Ofenräumen dienen, sondern kann auch von der Heizeinheit thermische Energie ins Innere des jeweiligen Ofenraums transportieren.According to an embodiment, the transport fluid path may include a heating unit for generating heating heat. The heating unit may be configured to directly heat the transport fluid or the first heat exchanger or the second heat exchanger. By means of thermal transfer of the generated heating heat to the first annealing gas, the first furnace space can be heated. Alternatively or additionally, by means of thermal transfer of the generated heating heat to the second annealing gas, the second furnace space can be heated. The heating unit may be outside the oven rooms, i. outside the heated area. If the transport fluid path is coupled to a separate heating unit, the transport fluid itself can not only serve for the heat exchange between the annealing gas in the different furnace chambers, but can also transport thermal energy from the heating unit into the interior of the respective furnace space.
In einer anderen Ausgestaltung kann mit einer elektrischen Versorgungseinheit (zum Beispiel aufweisend einen Transformator) auch das Rohrbündel selbst als Übertragungsmedium für elektrischen Strom verwendet oder mitverwendet werden, welches (vorzugsweise bei niedriger Spannung und hoher Stromstärke) durch ohmsche Verluste (gemäß dem Prinzip einer elektrischen Widerstandsheizung) in dem jeweiligen Wärmetauscher in Wärmeenergie umgewandelt werden kann. Als ein entsprechendes Kopplungselement kann zum Beispiel eine niederohmige Rohrwandung des Transportfluidpfads eingesetzt werden, an die sich der jeweilige Wärmetauscher (insbesondere ein Rohrbündel) anschließt. Ein Durchführen des Kopplungselements durch einen Boden oder eine Ofenbasis des Ofenraums erlaubt es, die Schutzhaube einfach und unterbrechungsfrei auszubilden, da ein Hindurchführen einer Zuleitung zu dem Wärmetauscher durch die Schutzhaube hindurch entbehrlich wird.In another embodiment, with an electrical supply unit (for example comprising a transformer) and the tube bundle itself can be used or used as transmission medium for electric current which (preferably at low voltage and high current) by ohmic losses (according to the principle of electrical resistance heating ) can be converted into heat energy in the respective heat exchanger. As a corresponding coupling element, for example, a low-resistance pipe wall of the transport fluid path can be used, to which the respective heat exchanger (in particular a tube bundle) is connected. Passing the coupling element through a floor or a furnace base of the furnace chamber makes it possible to form the protective cover easily and without interruption, since it is unnecessary to pass a supply line to the heat exchanger through the protective hood.
Bei Einsatz einer Gasheizeinheit kann es dagegen bevorzugt sein, das Transportfluid selbst zu heizen und durch Ventilatoren entlang des Transportfluidpfads zur thermischen Wechselwirkung über den jeweiligen Wärmetauscher mit dem Glühgas im Inneren des jeweiligen Ofenraums zu bringen.By contrast, when using a gas heating unit, it may be preferable to heat the transport fluid itself and to bring it by fans along the transport fluid path for thermal interaction via the respective heat exchanger with the annealing gas inside the respective furnace space.
Diese Glühkammer-externe Heizeinheit kann zum Beispiel eine Gasheizeinheit, eine Ölheizeinheit, eine Pelletheizeinheit oder auch eine elektrische Heizeinheit sein. Die Beheizung z.B. mit Gas kann über einen glühkammerexternen Wärmetauscher erfolgen, dessen Rohrbündel zum Beispiel unter Einsatz von Erdgasbrennern das Heißdruckgas erhitzen, welches mit einem Druckventilator zum jeweiligen Glühgaskammerwärmetauscher transportiert werden kann. Das Heizen mit elektrischer Energie kann über einen Transformator auch direkt durch das Rohrbündel des glühkammerexternen Wärmetauschers erfolgen, um elektrische Energie auf das Heißdruckgas zu übertragen und die darin enthaltene thermische Energie zum jeweiligen Glühgaskammerwärmetauscher zu befördern.This annealing chamber external heating unit may be, for example, a gas heating unit, an oil heating unit, a pelletizing unit or an electric heating unit. The heating e.g. with gas can take place via a glühkammerexternen heat exchanger, the tube bundle heat, for example using natural gas burners, the hot gas pressure, which can be transported with a pressure fan to the respective annealing gas chamber heat exchanger. The heating with electrical energy can also be done via a transformer directly through the tube bundle of the combustion chamber external heat exchanger to transfer electrical energy to the hot gas pressure and to convey the thermal energy contained therein to the respective Glühgaskammerwärmetauscher.
Ferner ist der Ofen umweltfreundlich betreibbar, zum Beispiel weil bei einer elektrischen Heizeinheit (intern oder extern) kein Kohlendioxid und keine Stickoxide erzeugt werden. Mit dem beschriebenen sehr effektiven Wärmeaustausch ist bei einer Gasheizung der Methanverbrauch gering, sodass nur geringe Mengen CO2 und NOx entstehen. Eine Ölheizeinheit kann Öl verbrennen, um thermische Energie zu erzeugen. Eine Pelletheizeinheit kann Holzpellets verfeuern, um thermische Energie zu erzeugen. Natürlich sind noch andere Arten von thermischen Energieerzeugungseinheiten erfindungsgemäß einsetzbar.Furthermore, the oven is environmentally friendly operable, for example, because in an electric heating unit (internal or external) no carbon dioxide and no nitrogen oxides are generated. With the described very effective heat exchange in a gas heating, the methane consumption is low, so that only small amounts of CO 2 and NO x arise. An oil heating unit may burn oil to generate thermal energy. A pelletizing unit can fire wood pellets to generate thermal energy. Of course there are other species of thermal energy generating units according to the invention can be used.
Gemäß einem Ausführungsbeispiel kann der erste Ofenraum mit einer abnehmbaren ersten Heizhaube verschließbar sein, welche die erste Schutzhaube umschließt. Der zweite Ofenraum kann mit einer abnehmbaren zweiten Heizhaube verschließbar sein, der die zweite Schutzhaube umschließt. Gemäß einem Ausführungsbeispiel kann der erste Ofenraum eine erste Heizeinheit zum Heizen eines Zwischenraums zwischen der ersten Heizhaube und der ersten Schutzhaube aufweisen. Entsprechend kann der zweite Ofenraum eine zweite Heizeinheit zum Heizen eines Zwischenraums zwischen der zweiten Heizhaube und der zweiten Schutzhaube aufweisen. Gemäß dieser Ausgestaltung ist zusätzlich zu der Schutzhaube eine weitere Heizhaube pro Sockel oder Ofenraum vorgesehen. Diese dient zum Heizen eines Zwischenraums zwischen der Heizhaube und der Schutzhaube, wobei dann ein thermischer Ausgleich durch die Schutzhaube hindurch zu einem Heizen des Glühgases führt. Bei dieser Ausgestaltung kann der Transportfluidpfad ausschließlich zum Austausch von thermischer Energie zwischen den Glühgasen vorgesehen sein. Es ist auch möglich, eine Kühlhaube auf den jeweiligen Ofenraum aufzusetzen, um dadurch eine Kühlung des Glühgases zu initiieren.According to one embodiment, the first furnace chamber may be closable with a removable first heating hood, which encloses the first protective hood. The second furnace chamber can be closed with a removable second heating hood, which encloses the second protective hood. According to an exemplary embodiment, the first furnace chamber may have a first heating unit for heating a gap between the first heating hood and the first protective hood. Correspondingly, the second furnace chamber may have a second heating unit for heating a gap between the second heating hood and the second protective hood. According to this embodiment, a further heating hood per base or oven space is provided in addition to the protective hood. This serves to heat a gap between the heating hood and the protective hood, in which case a thermal compensation through the protective hood leads to a heating of the annealing gas. In this embodiment, the transport fluid path can be provided exclusively for exchanging thermal energy between the annealing gases. It is also possible to place a cooling hood on the respective furnace chamber, thereby initiating a cooling of the annealing gas.
Gemäß diesem Ausführungsbeispiel können die erste Heizeinheit und die zweite Heizeinheit jeweils eine Gasheizeinheit sein. Eine solche Gasheizeinheit kann ein Gasbrenner sein, der zwischen Heiz- und Schutzhaube heizt.According to this embodiment, the first heating unit and the second heating unit may each be a gas heating unit. Such a gas heating unit may be a gas burner, which heats between the heating and protective hood.
Gemäß einem Ausführungsbeispiel kann oder können der erste Wärmetauscher und/oder der zweite Wärmetauscher als Rohrbündelwärmetauscher aus zu einem Bündel gebogenen Rohren ausgebildet sein. Unter einem Rohrbündelwärmetauscher kann dabei ein Wärmetauscher verstanden werden, der durch ein Bündel von Rohren gebildet ist, die zum Beispiel kreisförmig gewickelt sind. Das Rohrinnere kann Teil des Transportfluidpfads und von dem Transportfluid durchströmbar sein. Das Rohräußere kann mit dem jeweiligen Glühgas direkt in Verbindung gebracht sein. Insbesondere kann ein Rohrbündelwärmetauscher aus zueinander parallel verlaufend angeordneten Rohren ausgebildet sein. Die Rohrwandung kann gasdicht und hitzebeständig ausgebildet sein. Die Anordnung kann derart konfiguriert sein, dass das Transportfluid durch das Innere der Rohre gedrückt oder gefördert wird und durch die Rohrwandung von dem jeweiligen Glühgas getrennt ist. Durch das Bündel von Rohren kann eine große effektive thermische Austauschfläche bereitgestellt sein, so dass das Transportgas und das jeweilige Glühgas eine hohe Menge an thermischer Energie austauschen können. Ferner sind Ausführungsbeispiele der Erfindung in einem Vollautomatikbetrieb einsetzbar.According to one embodiment, the first heat exchanger and / or the second heat exchanger may be configured as a tube bundle heat exchanger made of tubes bent into a bundle. A shell-and-tube heat exchanger can be understood to mean a heat exchanger that passes through a bundle of tubes is formed, which are wound, for example, circular. The tube interior can be part of the transport fluid path and can be flowed through by the transport fluid. The tube outer can be brought directly into contact with the respective annealing gas. In particular, a shell-and-tube heat exchanger can be formed from tubes arranged parallel to each other. The pipe wall can be gas-tight and heat-resistant. The arrangement may be configured such that the transport fluid is forced or conveyed through the interior of the tubes and separated from the respective annealing gas through the tube wall. Through the bundle of tubes, a large effective thermal exchange surface can be provided so that the transport gas and the respective annealing gas can exchange a large amount of thermal energy. Furthermore, embodiments of the invention can be used in a fully automatic mode.
Erfindungsgemäß kann ein Rohrbündel als Wärmetauscher in den einzelnen Ofenräumen eingesetzt werden, der in den Vollstrom gesetzt werden kann. Dies dient dann zum Wärmeaustausch zwischen einer abkühlenden Charge von Glühgut und einer anheizenden Charge von Glühgut. Ferner kann mit den Rohrbündelwärmetauschern auf Glühtemperatur geheizt werden. Auch ein Kühlen auf eine Endtemperatur (zum Beispiel eine Entnahmetemperatur des Glühguts) kann mittels desselben Rohrbündelwärmetauschers durchgeführt werden.According to the invention, a tube bundle can be used as a heat exchanger in the individual furnace chambers, which can be set in the full flow. This then serves to heat exchange between a cooling charge of Glühgut and an annealing batch of Glühgut. Furthermore, with the tube bundle heat exchangers can be heated to annealing temperature. Cooling to a final temperature (for example, a discharge temperature of the Glühguts) can be carried out by means of the same shell and tube heat exchanger.
Gemäß einem Ausführungsbeispiel kann der erste Ofenraum einen ersten Glühgasventilator und der zweite Ofenraum einen zweiten Glühgasventilator aufweisen, wobei der jeweilige Glühgasventilator eingerichtet ist, das jeweilige Glühgas auf den jeweiligen Wärmetauscher und auf das jeweilige Glühgut zu richten. Ein jeweiliger Glühgasventilator kann in einem unteren Bereich des jeweiligen Sockels oder Ofenraums angeordnet sein und kann das Glühgas umwälzen, um es in gute thermische Wechselwirkung mit Glühgut in dem jeweiligen Ofenraum zu bringen. Der jeweilige Glühgasventilator kann zu diesem Zweck das Glühgas mittels eines Leitapparats in eine bestimmte Richtung lenken.According to one exemplary embodiment, the first furnace chamber may have a first annealing gas fan and the second furnace chamber may have a second annealing gas fan, wherein the respective annealing gas fan is set up to direct the respective annealing gas to the respective heat exchanger and to the respective annealing stock. A respective Glühgasventilator can be arranged in a lower region of the respective base or furnace chamber and can circulate the annealing gas to it in good bring thermal interaction with annealing in the respective furnace chamber. The respective Glühgasventilator can steer for this purpose, the annealing gas by means of a nozzle in a particular direction.
Gemäß einem Ausführungsbeispiel kann das Transportfluid ein gut wärmeleitfähiges Transportgas sein, insbesondere Wasserstoff oder Helium. Generell kann das Transportfluid eine Flüssigkeit oder ein Gas sein. Bei Verwendung von Wasserstoff oder Helium kann von deren guter Wärmeleitfähigkeit Gebrauch gemacht werden. Außerdem sind diese Gase auch unter Hochdruck gut einsetzbar.According to one embodiment, the transport fluid may be a good heat-conductive transport gas, in particular hydrogen or helium. In general, the transport fluid may be a liquid or a gas. When using hydrogen or helium, use can be made of their good thermal conductivity. In addition, these gases are well used even under high pressure.
Gemäß einem Ausführungsbeispiel kann das Transportfluid in dem Transportfluidpfad unter einem Druck von ungefähr 2 bar bis ungefähr 20 bar oder höher stehen, insbesondere unter einem Druck von ungefähr 5 bar bis ungefähr 10 bar. Somit kann ein erheblicher Überdruck des Transportfluids gegenüber Atmosphärendruck erzeugt werden, der über den nur leichten Überdruck hinausgehen kann, dem Glühgas in dem Ofen ausgesetzt sein kann. Durch den Einsatz hohen Drucks im Wärmetauscher kann der Wärmeaustausch besonders effizient gestaltet werden, ohne dass eine Hochdruckfähigkeit im ersten und zweiten Ofenraum erforderlich wäre.According to one embodiment, the transport fluid in the transport fluid path may be under a pressure of about 2 bar to about 20 bar or higher, in particular under a pressure of about 5 bar to about 10 bar. Thus, a significant overpressure of the transport fluid to atmospheric pressure can be generated, which can go beyond the only slight overpressure may be exposed to the annealing gas in the furnace. By using high pressure in the heat exchanger, the heat exchange can be made particularly efficient, without a high-pressure capability in the first and second furnace chamber would be required.
Gemäß einem Ausführungsbeispiel kann das Transportfluid in dem Transportfluidpfad auf eine Temperatur in einem Bereich zwischen ungefähr 400°C und ungefähr 1100°C gebracht werden, insbesondere in einem Bereich zwischen ungefähr 600°C und ungefähr 900°C. Zum Beispiel kann das Transportfluid in dem Transportfluidpfad auf eine Temperatur in einem Bereich zwischen 700°C und 800°C gebracht werden. Somit können mittels des Transportfluids Temperaturen in den Ofenräumen erzeugt werden, die für die Behandlung von Glühgut, wie zum Beispiel Bänder oder Drähte oder Profile aus Stahl, Aluminium oder Kupfer und/oder deren Legierungen, erforderlich sind.In one embodiment, the transport fluid in the transport fluid path may be brought to a temperature in a range between about 400 ° C and about 1100 ° C, more preferably in a range between about 600 ° C and about 900 ° C. For example, the transport fluid in the transport fluid path may be brought to a temperature in a range between 700 ° C and 800 ° C. Thus, by means of the transport fluid temperatures can be generated in the furnace chambers, which are required for the treatment of Glühgut, such as tapes or wires or profiles of steel, aluminum or copper and / or their alloys.
Gemäß einem Ausführungsbeispiel kann der Ofen ferner mindestens einen verschließbaren dritten Ofenraum, der zum Aufnehmen und zum Wärmebehandeln von Glühgut mittels thermischen Wechselwirkens des Glühguts mit heizbarem drittem Glühgas in dem dritten Ofenraum ausgebildet ist, und einen in dem dritten Ofenraum angeordneten dritten Wärmetauscher aufweisen, der zum thermischen Austausch zwischen dem dritten Glühgas und dem Transportfluid ausgebildet ist. Auch der dritte Wärmetauscher kann innerhalb eines Gehäuseabschnitts des dritten Ofenraums angeordnet sein, welcher Gehäuseabschnitt das dritte Glühgas im Inneren des dritten Ofenraums einschließt. Der geschlossene Transportfluidpfad kann auch mit dem dritten Wärmetauscher derart wirkverbunden sein, dass mittels des Transportfluids thermische Energie zwischen dem ersten Glühgas und dem zweiten Glühgas und dem dritten Glühgas übertragbar ist. Gemäß dieser Ausgestaltung können mindestens drei Ofenräume miteinander gekoppelt werden. Dann kann ein energietauschender Erwärmungs-, ein Erhitzungs- und ein Kühlzyklus für jeden einzelnen der Ofenräume unterschieden werden. Zyklisch können zwei der drei Ofenräume mittels des Transportfluids thermisch gekoppelt werden, zum Beispiel um einen Ofen vorzukühlen und den anderen vorzuwärmen. Der jeweils dritte Ofen kann dann einer Heiz- oder einer Kühlprozedur unterworfen werden. Der Wärmetausch zwischen den Ofenräumen kann bei Einsatz von zwei Ofenräumen einstufig, bei Einsatz von drei Ofenräumen zweistufig oder bei Einsatz von mehr als drei Ofenräumen mehrstufig vorgesehen sein.According to one embodiment, the furnace may further comprise at least one sealable third furnace space adapted to receive and heat anneal by thermally interacting the anneal with heatable third annealing gas in the third furnace space and a third heat exchanger disposed in the third furnace space thermal exchange between the third annealing gas and the transport fluid is formed. The third heat exchanger can also be arranged within a housing section of the third furnace chamber, which housing section encloses the third annealing gas in the interior of the third furnace chamber. The closed transport fluid path can also be operatively connected to the third heat exchanger such that thermal energy can be transferred between the first annealing gas and the second annealing gas and the third annealing gas by means of the transport fluid. According to this embodiment, at least three furnace rooms can be coupled together. Then, an energy-exchanging heating, a heating and a cooling cycle can be distinguished for each one of the furnace rooms. Cyclically, two of the three furnace chambers may be thermally coupled by the transport fluid, for example to pre-cool one furnace and preheat the other. The third oven may then be subjected to a heating or cooling procedure. The heat exchange between the furnace chambers can be provided in several stages with the use of two furnace chambers in one stage, with the use of three furnace chambers in two stages or with the use of more than three furnace chambers.
Gemäß einem Ausführungsbeispiel kann der Ofen eine Steuereinheit aufweisen, die eingerichtet ist, den Transportfluidpfad derart zu steuern, dass mittels thermischen Austauschs zwischen dem Transportfluid und dem ersten Glühgas und dem zweiten Glühgas selektiv einer des ersten Ofenraums und des zweiten Ofenraums in einem Vorwärmmodus, einem Heizmodus, einem Vorkühlmodus oder einem Finalkühlmodus betreibbar ist. Eine solche Steuereinheit kann zum Beispiel ein Mikroprozessor sein, der die Betriebsweise der unterschiedlichen Ofenräume koordiniert. Dabei kann die Steuereinheit zum Beispiel die Heizeinheit, die Kühleinheit bzw. Ventile des fluidischen Systems steuern, um einen Betriebsablauf automatisiert durchzuführen. Unter einem Vorwärmmodus kann ein Betriebsmodus eines Ofenraums verstanden werden, bei dem ein Glühgas auf eine erhöhte Zwischentemperatur gebracht, indem dem Glühgas thermische Energie eines anderen Glühgases zugeführt wird. Ein Glühgas kann einer oder mehreren aufeinanderfolgenden Vorwärmphasen unterzogen werden. In einem Heizmodus kann einem bereits in obiger Weise ein- oder mehrstufig vorgewärmten Glühgas eine ofenraumexterne Heizeinheit (Gas, Elektro, etc.) zugeschaltet werden, um das Glühgas auf eine hohe Endtemperatur zu bringen. Nach Beendigung des Heizmodus und vor Beginn eines Kühlmodus kann ein Glühgas einer Vorkühlung (quasi der inverse Prozess zu obiger Vorheizung) unterzogen werden, bei dem das Glühgas auf eine abgesenkte Zwischentemperatur gebracht wird, indem das Glühgas thermische Energie einem anderen Glühgas am Umweg über das Transportfluidgas indirekt zuführt. In einem Finalkühlmodus kann dem Fluidgas und damit dem Glühgas eine ofenraumexterne Kühleinheit (zum Beispiel Wasserkühlung) zugeschaltet werden, um das Glühgas auf eine niedrigere Temperatur abzukühlen.According to one embodiment, the furnace may include a control unit configured to control the transport fluid path such that by thermal exchange between the transport fluid and the first annealing gas and the second annealing gas selectively one of the first furnace space and the second furnace space in a preheat mode, a heating mode , a pre-cooling mode or a Final cooling mode is operable. Such a control unit may for example be a microprocessor which coordinates the operation of the different furnace spaces. In this case, the control unit may, for example, control the heating unit, the cooling unit or valves of the fluidic system in order to carry out an automated operation. A preheating mode can be understood as an operating mode of a furnace chamber in which a hot gas is brought to an elevated intermediate temperature by supplying thermal energy of another hot gas to the hot gas. An annealing gas may be subjected to one or more consecutive preheating phases. In a heating mode, an oven-external heating unit (gas, electric, etc.), which has already been preheated in the above-mentioned single or multi-stage annealing gas, can be switched on in order to bring the annealing gas to a high final temperature. After completion of the heating mode and before the start of a cooling mode, an annealing gas may be subjected to precooling (quasi the inverse process to above preheating) in which the annealing gas is brought to a lowered intermediate temperature by passing the annealing gas thermal energy to another annealing gas via the transport fluid gas indirectly feeds. In a final cooling mode, an off-gas cooling unit (for example water cooling) can be connected to the fluid gas and thus to the annealing gas in order to cool the annealing gas to a lower temperature.
Gemäß einem Ausführungsbeispiel kann der Transportfluidpfad einen Transportfluidventilator zum Fördern des Transportfluids durch den Transportfluidpfad aufweisen. Der Transportfluidventilator kann somit das Transportfluid entlang vorgegebener Pfade fördern, die durch entsprechende Ventilstellungen vorgebbar sind.In one embodiment, the transport fluid path may include a transport fluid fan for conveying the transport fluid through the transport fluid path. The transport fluid fan can thus promote the transport fluid along predetermined paths, which can be predetermined by corresponding valve positions.
Gemäß einem Ausführungsbeispiel kann der Transportfluidpfad einen zuschaltbaren Kühler zum Kühlen des Transportfluids in dem Transportfluidpfad aufweisen. Ein solcher zuschaltbarer Kühler (zum Beispiel basierend auf dem Prinzip der Wasserkühlung eines Rohrbündels) erlaubt es, das Transportfluid mit Kühlenergie zu beaufschlagen, die über die jeweiligen Wärmetauscher in die einzelnen Ofenräume eingekoppelt werden können.In one embodiment, the transport fluid path may include a switchable radiator for cooling the transport fluid in the transport fluid path. Such a switchable cooler (for Example based on the principle of water cooling a tube bundle) allows to apply to the transport fluid with cooling energy, which can be coupled via the respective heat exchanger in the individual furnace chambers.
Gemäß einem Ausführungsbeispiel kann der Transportfluidpfad eine Mehrzahl von Ventilen aufweisen. Die Ventile können zum Beispiel pneumatische Ventile oder Magnetventile sein, die mittels elektrischer Signale geschaltet werden können. Wenn die Ventile auf geeignete Weise in dem fluidischen Pfad angeordnet werden, können unterschiedliche Betriebsmodi eingestellt werden. Die Ventile können (zum Beispiel unter Kontrolle einer Steuereinheit) derart schaltbar sein, dass der Ofen selektiv in einem der folgenden Betriebsmodi betreibbar ist:
- a) einem ersten Betriebsmodus, bei dem der Transportfluidventilator das Transportfluid mit dem zweiten Glühgas thermisch koppelt, so dass das Transportfluid dem zweiten Glühgas Wärme entnimmt und dem ersten Glühgas zuführt, um den ersten Ofenraum vorzuheizen und den zweiten Ofenraum vorzukühlen;
- b) einem nachfolgenden zweiten Betriebsmodus, bei dem eine Heizeinheit den ersten Ofenraum weiterheizt, und bei dem in einem davon getrennten Pfad der Transportfluidventilator das Transportfluid dem zugeschalteten Kühler zum Kühlen zuführt und das gekühlte Transportfluid mit dem zweiten Glühgas thermisch koppelt, um den zweiten Ofenraum weiterzukühlen;
- c) einem nachfolgenden dritten Betriebsmodus, bei dem der Transportfluidventilator das Transportfluid mit dem ersten Glühgas thermisch koppelt, so dass das Transportfluid dem ersten Glühgas Wärme entnimmt und dem zweiten Glühgas zuführt, um den zweiten Ofenraum vorzuheizen und den ersten Ofenraum vorzukühlen;
- d) einem nachfolgenden vierten Betriebsmodus, bei dem die Heizeinheit den zweiten Ofenraum weiterheizt, und bei dem in einem davon getrennten Pfad der Transportfluidventilator das Transportfluid dem zugeschalteten Kühler zum Kühlen zuführt und das gekühlte Transportfluid mit dem ersten Glühgas thermisch koppelt, um den ersten Ofenraum weiterzukühlen.
- a) a first mode of operation in which the transport fluid fan thermally couples the transport fluid to the second annealing gas so that the transport fluid removes heat from the second anneal gas and supplies it to the first annealing gas to preheat the first furnace space and pre-cool the second furnace space;
- b) a subsequent second mode of operation in which a heating unit continues to heat the first furnace space, and wherein in a separate path the transport fluid fan supplies the transport fluid to the switched-on cooler for cooling and thermally couples the cooled transport fluid with the second annealing gas to further cool the second furnace space ;
- c) a subsequent third mode of operation in which the transport fluid fan thermally couples the transport fluid to the first annealing gas so that the transport fluid removes heat from the first annealing gas and supplies it to the second annealing gas to preheat the second furnace space and to pre-cool the first furnace space;
- d) a subsequent fourth mode of operation, in which the heating unit continues to heat the second furnace space, and in a said separate path of the transport fluid fan feeds the transport fluid to the connected cooler for cooling and thermally couples the cooled transport fluid with the first annealing gas to further cool the first furnace space.
Diese vier Betriebsmodi können sukzessive wiederholt werden, so dass ein zyklischer Prozess durchgefahren werden kann.These four modes of operation can be successively repeated so that a cyclic process can be run through.
Gemäß einem Ausführungsbeispiel kann der Wärmetauscher im Ofen druckfest ausgeführt sein oder einen Druckbehälter aufweisen, der zumindest einen Teil des Transportfluidpfads druckdicht umschließt. Zum Beispiel kann der gesamte Transportfluidpfad, der unter hohem Druck von zum Beispiel 10 bar betrieben werden kann, mit druckfesten Rohren, Ventilen und Transportfluidventilatoren ausgeführt sein oder in einem Druckbehälter oder einer anderen Druckschutzeinrichtung untergebracht werden. Es ist aber auch möglich, besonders druckbelastete Komponenten, insbesondere den Transportfluidventilator, mit einem Druckbehälter zu ummanteln.According to one embodiment, the heat exchanger may be designed to be flameproof in the furnace or have a pressure vessel which encloses at least a portion of the transport fluid path pressure-tight. For example, the entire transport fluid path, which may be operated under high pressure of, for example, 10 bar, may be constructed with pressure resistant tubes, valves, and transport fluid fans or housed in a pressure vessel or other pressure protection device. But it is also possible, particularly pressurized components, in particular the transport fluid fan to coat with a pressure vessel.
Gemäß einem Ausführungsbeispiel kann der erste Wärmetauscher relativ zu einem ersten Glühgasventilator zum Antreiben des ersten Glühgases und/oder der zweite Wärmetauscher relativ zu einem zweiten Glühgasventilator zum Antreiben des zweiten Glühgases derart angeordnet sein, dass in jedem Betriebszustand des Ofens das von dem ersten Glühgasventilator angetriebene erste Glühgas den ersten Wärmetauscher beströmt und/oder dass in jedem Betriebszustand des Ofens bzw. eines jeweiligen Ofenraums das von dem zweiten Glühgasventilator angetriebene zweite Glühgas den zweiten Wärmetauscher beströmt.According to an embodiment, the first heat exchanger may be arranged relative to a first Glühgasventilator for driving the first Glühgases and / or the second heat exchanger relative to a second Glühgasventilator for driving the second Glühgases such that in each operating state of the furnace driven by the first Glühgasventilator first Milled gas flows through the first heat exchanger and / or that in each operating state of the furnace or of a respective furnace chamber, the second annealing gas driven by the second annealing gas fan flows through the second heat exchanger.
Ein signifikanter Vorteil eines solchen Ausführungsbeispiels besteht darin, dass in jedem Betriebszustand (insbesondere zum Heizen mittels einer Heizeinrichtung, zum Kühlen mittels einer Kühleinrichtung und zum Wärmeaustauschen zwischen Glühgas und Wärmeaustauschgerät) das von dem Ventilator beförderte Glühgas direkt auf den jeweiligen Wärmetauscher gerichtet wird. Eine solche direkte oder unmittelbare Beströmung mit von einem Ventilator angetriebenem Glühgas kann insbesondere im Vollstrom erfolgen, d.h. vollumfänglich entlang eines Umfangs (zum Beispiel eines gedachten Kreises) um den Ventilator herum. Dadurch kann eine sehr effiziente Wärmekopplung zwischen Glühgas und dem jeweiligen Wärmetauscher erreicht werden. Der jeweilige Wärmetauscher kann insbesondere ortsfest montiert bzw. unbeweglich an dem Ofen vorgesehen sein, damit sichergestellt ist, dass von dem Ventilator gefördertes Glühgas über Leitbleche oder dergleichen auf einen etwa kreisförmig angeordneten Rohrbündelwärmetauscher oder einen anderes Wärmetauscher gerichtet wird. Um sicherzustellen, dass in jedem Betriebszustand des Ofens bzw. eines jeweiligen Ofenraums das von dem jeweiligen Glühgasventilator angetriebene jeweilige Glühgas den jeweiligen Wärmetauscher beströmt, soll der jeweilige Wärmetauscher ortsfest und unverschiebbar an einer entsprechenden Stelle des Ofens angeordnet bzw. dort dauerhaft fixiert sein. Als die möglichen Betriebszustände des Ofens bzw. eines jeweiligen Ofenraums können ein Heiz-Betriebszustand zum Heizen mittels einer Heizeinheit, ein Kühl-Betriebszustand zum Kühlen mittels einer Kühleinheit, sowie ein Wärmetausch-Betriebszustand zum Wärmetauschen zwischen unterschiedlichen Ofenräumen unter Einsatz des Transportfluidpfads (zum Vorheizen oder Vorkühlen) angesehen werden.A significant advantage of such an embodiment is that in any operating condition (in particular for heating by means of a heater, for cooling by means of a cooling device and for heat exchange between annealing gas and heat exchange device) directed by the fan mulled gas is directed directly to the respective heat exchanger. Such a direct or direct flow with a fan gas-driven annealing gas can in particular be carried out in full flow, ie, completely along a circumference (for example of an imaginary circle) around the fan. As a result, a very efficient heat coupling between annealing gas and the respective heat exchanger can be achieved. The respective heat exchanger can in particular be fixedly mounted or immovably provided on the furnace, in order to ensure that the annealing gas conveyed by the fan is directed via baffles or the like to an approximately circularly arranged tube bundle heat exchanger or another heat exchanger. In order to ensure that in each operating state of the furnace or of a respective furnace chamber the respective annealing gas driven by the respective annealing gas fan flows through the respective heat exchanger, the respective heat exchanger is to be arranged fixedly and immovably at a corresponding point of the furnace or permanently fixed there. As the possible operating conditions of the furnace or a respective furnace space, a heating operating state for heating by means of a heating unit, a cooling operating state for cooling by means of a cooling unit, and a heat exchange operating state for exchanging heat between different furnace spaces using the transport fluid path (for preheating or Precooling).
Gemäß einem Ausführungsbeispiel können bei dem Ofen das erste Glühgas und das zweite Glühgas gegenüber dem Transportfluid kontaktfrei verbleiben. Somit kann konstruktiv sichergestellt werden, dass das Glühgas nicht mit dem Transportfluidgas in Kontakt kommt, sodass kein Verrußen entsteht.According to one embodiment, in the furnace, the first annealing gas and the second annealing gas may remain contactless with respect to the transport fluid. Thus, it can be ensured constructively that the annealing gas does not come into contact with the transport fluid gas, so that no sooting occurs.
Im Folgenden werden exemplarische Ausführungsbeispiele der vorliegenden Erfindung mit Verweis auf die folgenden Figuren detailliert beschrieben.
-
Fig. 1 zeigt einen Haubenofen zum Wärmebehandeln von Glühgut mit einer Mehrzahl von Sockeln gemäß einem exemplarischen Ausführungsbeispiel der Erfindung, bei dem ein Glühgas mittels eines Wärmetauschers erwärmt oder gekühlt werden kann. Die Beheizung des Wärmetauschers erfolgt anfangs durch Transportgas von einem anderen Wärmetauscher (eines abkühlenden Sockels) und anschließend mit einer elektrischen Versorgungseinheit. Die Kühlung des Wärmetauschers erfolgt anfangs durch Transportgas eines anderen Wärmetauschers (eines anheizenden Sockels) und anschließend durch eine zuschaltbare Kühleinrichtung. -
Fig. 2 bis Fig. 5 sind schematische Darstellungen von unterschiedlichen Betriebszuständen während eines Kreisprozesses zum Betreiben des Haubenofens gemäßFig. 1 . -
Fig. 6 ist eine Detailansicht eines erfindungsgemäßen Glühsockels des Haubenofens gemäßFig. 1 . -
Fig. 7 zeigt einen Haubenofen zum Wärmebehandeln von Glühgut mit einer Mehrzahl von Sockeln gemäß einem anderen exemplarischen Ausführungsbeispiel der Erfindung, bei dem ein Glühgas mittels eines Wärmetauschers erwärmt oder gekühlt werden kann. Die Beheizung des Wärmetauschers erfolgt anfangs durch Transportgas von einem anderen Wärmetauscher (eines abkühlenden Sockels) und anschließend mit einer externen Gasheizeinheit. Die Kühlung des Wärmetauschers erfolgt anfangs durch Transportgas eines anderen Wärmetauschers (eines anheizenden Sockels) und anschließend durch eine zuschaltbare Kühleinrichtung. -
Fig. 8 bis Fig. 11 sind schematische Darstellungen von unterschiedlichen Betriebszuständen während eines Kreisprozesses zum Betreiben des Haubenofens gemäßFig. 7 . -
Fig. 12 zeigt Temperatur-Zeit-Verläufe des inFig. 1 bzw.Fig. 7 gezeigten Haubenofens, der für die verschiedenen Betriebszustände die jeweiligen Temperaturverläufe der einzelnen Sockel zeigt. -
Fig. 13 zeigt Temperatur-Zeit-Verläufe bei einem zweistufigen Betrieb eines erfindungsgemäßen Haubenofens mit zweistufiger Vorwärmphase, Heizphase, zweistufiger Vorkühlphase und Finalkühlphase, wobei drei Sockel mittels eines Transportgaspfads thermisch koppelbar sind. -
Fig. 14 zeigt eine schematische Ansicht eines Multisockelofens mit zweistufigem Wärmetausch gemäß einem exemplarischen Ausführungsbeispiel der Erfindung. -
Fig. 15 zeigt eine thermisch isolierte Schutzhaube, die mit einem Ofen gemäß einem exemplarischen Ausführungsbeispiel der Erfindung eingesetzt werden kann. -
Fig. 16 zeigt eine Draufsicht eines Haubenofens des inFig. 6 gezeigten Typs, bei dem ein Rohrbündelwärmetauscher betriebszustandsunabhängig von einem Umwälzaggregat mit einer Ofenatmosphäre im Wesentlichen im Vollstrom beströmt wird, um zum Heizen, zum Kühlen bzw. zum Wärmetauschen jeweils eine gute Wärmekopplung zwischen Umwälzaggregat und Rohrbündelwärmetauscher zu gewährleisten. -
Fig. 17 zeigt einen Ofen gemäß einem anderen exemplarischen Ausführungsbeispiel der Erfindung, bei dem nur der Wärmetausch von abkühlendem zu aufheizendem Glühgut genützt wird und daher zusätzlich zu Schutzhauben pro Sockel jeweils eine Heizhaube vorgesehen ist. Die Finalkühlung erfolgt über den Gas-/Wasser-Kühler, wie inFig. 1 Gleiche oder ähnliche Komponenten in unterschiedlichen Figuren sind mit gleichen Bezugsziffern versehen.
-
Fig. 1 shows a hood furnace for heat treating annealing stock having a plurality of sockets according to an exemplary embodiment of the invention, in which a hot gas can be heated or cooled by means of a heat exchanger. The heating of the heat exchanger is initially by transport gas from another heat exchanger (a cooling base) and then with an electrical supply unit. The cooling of the heat exchanger is initially carried by transport gas of another heat exchanger (a heat-up base) and then by a switchable cooling device. -
Fig. 2 to Fig. 5 are schematic representations of different operating conditions during a cycle process for operating the hood furnace according toFig. 1 , -
Fig. 6 is a detailed view of a Glühsockels invention of the hood furnace according toFig. 1 , -
Fig. 7 shows a bell-type furnace for heat-treating annealing stock having a plurality of sockets according to another exemplary embodiment of the invention, in which a hot-gas can be heated or cooled by means of a heat exchanger. The heating of the heat exchanger is initially carried by transport gas from another heat exchanger (a cooling base) and then with an external gas heating unit. The cooling of the heat exchanger is initially carried by transport gas of another heat exchanger (a heat-up base) and then by a switchable cooling device. -
Fig. 8 to Fig. 11 are schematic representations of different operating conditions during a cycle process for operating the hood furnace according toFig. 7 , -
Fig. 12 shows temperature-time curves of inFig. 1 respectively.Fig. 7 shown hood furnace, which shows the respective temperature characteristics of the individual base for the different operating conditions. -
Fig. 13 shows temperature-time courses in a two-stage operation of a hood furnace according to the invention with two-stage preheat phase, heating phase, two-stage Vorkühlphase and final cooling phase, wherein three bases are thermally coupled by means of a Transportgaspfads. -
Fig. 14 shows a schematic view of a multi-socket furnace with two-stage heat exchange according to an exemplary embodiment of the invention. -
Fig. 15 shows a thermally insulated protective hood, which can be used with a furnace according to an exemplary embodiment of the invention. -
Fig. 16 shows a plan view of a hood furnace of the inFig. 6 shown type, in which a tube bundle heat exchanger operating state is independent of a Umwälzaggregat with a furnace atmosphere is flowed substantially in full flow to ensure for heating, for cooling or heat exchange in each case a good thermal coupling between circulating and shell and tube heat exchanger. -
Fig. 17 shows a furnace according to another exemplary embodiment of the invention, in which only the heat exchange is used by cooling to be heated Glühgut and therefore in addition to protective hoods per base each have a heating hood is provided. Final cooling is via the gas / water cooler, as inFig. 1 The same or similar components in different figures are provided with the same reference numerals.
Im Weiteren wird Bezug nehmend auf
Der Haubenofen 100 ist zum Wärmebehandeln von Glühgut 102 ausgebildet. Dieses Glühgut ist zum Teil an einem ersten Sockel So1 des Haubenofens 100 und zu einem anderen Teil an einem zweiten Sockel So2 des Haubenofens 100 angeordnet. Bei dem Glühgut 102, das in
Der Haubenofen 100 hat einen ersten verschließbaren Ofenraum 104, der dem ersten Sockel So1 zugeordnet ist. Der erste Ofenraum 104 dient dem Aufnehmen und Wärmebehandeln des Glühguts 102, das dem ersten Sockel So1 satzweise zugeführt ist. Zum Wärmebehandeln wird der erste Ofenraum 104 mit einer ersten Schutzhaube 120 gasdicht verschlossen. Die erste Schutzhaube 120 ist glockenartig ausgebildet und kann mittels eines Krans manövriert werden (nicht gezeigt). Erstes Glühgas 112, zum Beispiel Wasserstoff, kann dann als Schutzgas in den mittels der ersten Schutzhaube 120 hermetisch abgedichteten ersten Ofenraum 104 eingelassen und erhitzt werden, wie dies unten näher beschrieben wird. Ein erster Glühgasventilator 130 (oder Sockelventilator) in dem ersten Ofenraum 104 kann rotierend angetrieben werden, um das Glühgas 112 in dem ersten Ofenraum 104 umzuwälzen. Dadurch kann das erhitzte erste Glühgas 112 in thermischen Wirkkontakt mit dem wärmezubehandelnden Glühgut 102 gebracht werden.The
In dem ersten Ofenraum 104 ist ein erster Rohrbündelwärmetauscher 108 angeordnet. Dieser ist aus mehreren Windungen von Rohren gebildet, wobei unten näher beschriebenes Transportgas 116 einem Rohreingang zugeführt wird, durch das Rohrinnere strömt und durch einen Rohrausgang abgeführt wird. Eine Außenfläche des Rohrbündels steht in direktem Kontakt mit dem ersten Glühgas 112. Der erste Rohrbündelwärmetauscher 108 dient der thermischen Wechselwirkung zwischen dem ersten Glühgas 112 und dem Transportgas 116, das gemäß einem Ausführungsbeispiel ein gut wärmeleitfähiges Gas wie zum Beispiel Wasserstoff oder Helium unter hohem Druck von zum Beispiel 10 bar ist. Der erste Rohrbündelwärmetauscher 108 kann anschaulich als Mehrzahl von aufgewickelten Rohren angesehen werden, wobei das Transportgas durch das Innere der Rohre geleitet werden kann und über die thermisch gut zu leitende, zum Beispiel metallische, Wand der Rohre in thermische Wechselwirkung mit dem um die Außenwand der Rohre zirkulierenden ersten Glühgas 112 gebracht wird. Anders ausgedrückt sind das erste Glühgas 112 und das Transportgas 116 zwar fluidisch entkoppelt bzw. unvermischbar voneinander getrennt, aber es kann mittels des ersten Rohrbündelwärmetauschers 108 im Vollstrom eine thermische Wechselwirkung erfolgen.In the
Der erste Rohrbündelwärmetauscher 108 ist relativ zu dem ersten Glühgasventilator 130 zum Antreiben des Glühgases derart angeordnet, dass in jedem Betriebszustand des Ofens 100 das von dem ersten Glühgasventilator 130 angetriebene Glühgas den ersten Rohrbündelwärmetauscher 108 beströmt. Der zugrundeliegende Mechanismus wird in
Wenn ein hoher Druck zum Transportieren des Transportgases 116, zum Beispiel 10 bar, verwendet wird, können die Rohre des Transportgaspfads 118 in kleiner Dimension vorgesehen werden, was zu einer kompakten Bauweise führt. Der Druck des Transportgases 116 kann wesentlich höher als der Druck des Glühgases 112 und des Glühgases 114 in dem jeweiligen Ofenraum 104, 106 gewählt werden (zum Beispiel ein leichter Überdruck von zwischen 20 mbar bis 50 mbar über Atmosphärendruck).When a high pressure is used to transport the
Der zweite Sockel So2 ist identisch aufgebaut wie der erste Sockel So1. Dieser enthält einen zweiten Glühgasventilator 132 zum Umwalzen von zweitem Glühgas 114, zum Beispiel ebenfalls Wasserstoff, in einem zweiten Ofenraum 106. Der zweite Ofenraum 106 ist mittels einer zweiten Schutzhaube 122 hermetisch gegenüber der Umgebung abdichtbar. Ein zweiter Rohrbündelwärmetauscher 110 ermöglicht eine thermische, nicht aber kontaktnehmende Wechselwirkung zwischen dem zweiten Glühgas 114 und dem Transportgas 116.The second socket So2 has the same structure as the first socket So1. This contains a second
Bei dem Ausführungsbeispiel gemäß
Der erste Ofenraum 104 ist nach unten hin durch eine erste Ofenbasis 170 (d.h. ein wärmeisolierter Sockelunterteil) begrenzt, wohingegen der zweite Ofenraum 106 nach unten hin durch eine zweite Ofenbasis 172 begrenzt ist. Um eine fluidische Wechselwirkung zwischen dem in einem Transportgasrohrsystem zirkulierenden Transportgas 116 und dem ersten Glühgas 112 zu ermöglichen, ist eine Zufuhr des Transportgases 116 durch die erste Ofenbasis 170 hindurch zum Rohrinneren des ersten Rohrbündelwärmetauschers 108 ermöglicht. In ähnlicher Weise ist eine Zufuhr des Transportgases 116 durch die zweite Ofenbasis 172 hindurch zum Rohrinneren des zweiten Rohrbündelwärmetauschers 110 ermöglicht. Dadurch, dass das Transportgas 116 durch die jeweilige Ofenbasis 170, 172 hindurch bodenseitig in den jeweiligen Ofenraum 104, 106 eingeführt bzw. daraus abgeführt wird, erfolgt auch die Energiezufuhr in den jeweiligen Sockel So1 bzw. So2 und die Energieabfuhr aus dem jeweiligen Sockel So1 bzw. So2 durch die Ofenbasen 170, 172 hindurch.The
Das Transportgas 116 wird durch einen geschlossenen Transportgaspfad 118, der auch als geschlossener Transportkreislauf bezeichnet werden kann, zirkuliert. Geschlossen bedeutet dabei, dass das Transportgas 116 gasdicht in dem hitzebeständigen und druckfesten Transportgaspfad 118 eingeschlossen ist und vor einer Leckage aus dem System heraus bzw. vor einer Vermischung mit anderen Gasen und vor einem Druckausgleich mit der Umgebung geschützt ist. Daher zirkuliert das Transportgas 116 viele Zyklen lang durch den Transportgaspfad 118, bevor das Transportgas 116 zum Beispiel durch Abpumpen oder dergleichen ausgetauscht werden kann. Eine kontaktbehaftete Wechselwirkung oder eine Vermischung des Transportfluidgases 116 mit dem Glühgas 112 oder 114 ist aufgrund der rein thermischen Kopplung mittels der Rohrbündelwärmetauscher 108, 110 unterbunden.The
Der erste Rohrbündelwärmetauscher 108 dient funktionell als Wärmeabgabegerät bzw. Wärmeannahmegerät, das sich - von Zu- und Ableitungen abgesehen - vollständig im Inneren des durch die erste Schutzhaube 120 verschlossenen ersten Ofenraums 104 befindet. Der zweite Rohrbündelwärmetauscher 110 dient ebenfalls funktionell als Wärmeabgabegerät bzw. Wärmeannahmegerät, das sich - von Zu- und Ableitungen abgesehen - vollständig im Inneren des durch die zweite Schutzhaube 122 verschlossenen zweiten Ofenraums 106 befindet. Somit ist bei dem Haubenofen 100 die Wärmeabgabe an das jeweilige Glühgas 112, 114 mittels im Inneren des jeweiligen Ofenraums 104, 106 angeordneten Rohrbündelwärmetauschern 108, 110 (die getrennt bzw. unabhängig von den Schutzhauben 120, 122 und von diesen bedeckt vorgesehen sind) als Wärmeabgabegerät bzw. Wärmeannahmegerät realisiert. Aufgrund dieser Wärmezufuhr an das Glühgas 112, 114 ausschließlich innerhalb der Schutzhauben 120, 122 ist das Vorsehen von weiteren Hauben außerhalb der Schutzhauben 120, 122 erfindungsgemäß entbehrlich. Anders ausgedrückt ist erfindungsgemäß die gesamte thermische Wechselwirkung zwischen Glühgas 112, 114 und Wärmequelle innerhalb der jeweils einzigen Schutzhaube 120, 122 des jeweiligen Sockels So1, So2 realisiert. Dies erlaubt eine kompakte Ausgestaltung des Haubenofens 100 und reduziert den Aufwand mit Kranspielen.The first shell-and-
Wie im Weiteren näher beschrieben wird, ist der geschlossene Transportgaspfad 118 mit dem ersten Rohrbündelwärmetauscher 108 und mit dem zweiten Rohrbündelwärmetauscher 110 derart wirkverbunden, dass mittels des Transportgases 116 thermische Energie zwischen dem ersten Glühgas 112 und dem zweiten Glühgas 114 übertragbar ist. Wenn zum Beispiel der erste Sockel So1 in einer Abkühlphase befindlich ist, kann thermische Energie des noch heißen ersten Glühgases 112 mittels eines Wärmetauschs in dem ersten Rohrbündelwärmetauscher 108 auf das Transportgas 116 übertragen werden. Das dadurch erhitzte Transportgas 116 kann über den zweiten Rohrbündelwärmetauscher 110 in thermische Wirkverbindung mit dem zweiten Glühgas 114 gebracht werden und somit zum Heizen oder Vorwärmen des zweiten Sockels So2 dienen. In ähnlicher Weise kann alternativ thermische Energie von dem zweiten Glühgas 114 auf das erste Glühgas 112 übertragen werden.As will be described in more detail below, the closed
Indem der Transportgaspfad 118 und das darin strömende Transportgas 116 von den Glühgas 112 und dem Glühgas 114 strikt mechanisch entkoppelt ist, ist es möglich, das Transportgas 116 in dem Transportgaspfad 118 unter hohem Druck zu halten, zum Beispiel von 10 bar. Durch diesen hohen Druck kann eine hohe Wärmeenergie zwischen dem ersten Glühgas 112 und dem zweiten Glühgas 114 sehr effizient ausgetauscht werden. Ferner ist es möglich, aufgrund dieser Entkopplung von Glühgaspfad und Transportgaspfad das Transportgas 116 unterschiedlich von dem Glühgas 112, 114 zu wählen, so dass beide Gasarten unabhängig voneinander auf die jeweilige Funktion hin optimiert werden können. Auch ist ein Verrußen oder sonstiges Verunreinigen im Inneren des ersten Ofenraums 104 und des zweiten Ofenraums 106 unterbunden, da kein Austausch von darin befindlichem Glühgas 112, 114 mit Transportgas 116 erfolgt.By the
Als Teil des Transportgaspfads 118 ist ferner eine elektrische Versorgungseinheit 124 vorgesehen. Die elektrische Versorgungseinheit 124 weist einen Transformator 174 für zwei Sockel auf, der mit einer elektrischen Versorgungseinheit 176 zum Bereitstellen einer hohen Spannung wirkgekoppelt ist. Je nach Schaltzustand eines Schalters 178 (sekundärseitig) wird ein elektrischer Strom über Klemmen 180 bzw. 182 und über Anschlussrohre 126 des Transportgaspfads 118 direkt auf die Rohrbündel 108 oder 110 übertragen. Es kann aber auch je Sockel ein Transformator vorgesehen sein, um primärseitig bei nur ca. 1/10 der Stromstärke umzuschalten. Die elektrische Versorgungseinheit 124 kann auch vollständig deaktiviert werden. Von der niederohmigen Rohrwandung 126 aus wird der elektrische Strom bis zu dem wesentlich hochohmigeren Rohrbündelwärmetauscher 108 geleitet, wo der elektrische Strom in Wärme umgewandelt wird, die durch ohmsche Verluste erzeugt wird. Somit dient die Rohrwandung 126 als Stromführer, während die eigentliche Heizung weiter oben am Rohrbündel erfolgt. Somit wird Heizenergie auf den ersten Rohrbündelwärmetauscher 108 und von dort auf das erste Glühgas 112 bzw. vom zweiten Rohrbündelwärmetauscher 110 auf das zweite Glühgas 114 übertragen. Die elektrische Versorgungseinheit 124 bewirkt, dass die Rohrbündelwärmetauscher 108, 110 beheizt werden können. Eine erste elektrische Isolationseinrichtung 184 im Bereich des ersten Sockels So1 und eine zweite elektrische Isolationseinrichtung 186 im Bereich des zweiten Sockels So2 sorgen für eine elektrische Entkopplung der Rohrwandung oberhalb bzw. unterhalb dieser Isolationselemente 184, 186.As part of the
Darüber hinaus ist ein Transportgasventilator 140 vorgesehen, der zum Fördern des Transportgases 116 durch den Transportgaspfad 118 ausgebildet ist. Als Transportgasventilator 140 kann ein Heißdruckgebläse eingesetzt werden. Der Transportgaspfad 118 enthält darüber hinaus einen zuschaltbaren Kühler 142 zum Kühlen des Transportgases 116 in dem Transportgaspfad 118 unter Einsatz eines Gas-Wasser-Wärmetauschers (alternativ kann an dieser Stelle auch eine elektrische Kühleinheit eingesetzt werden). An verschiedenen Stellen des Transportgaspfads 118 sind Einwegventile 144 angeordnet, die zum Beispiel elektrisch oder pneumatisch schaltbar sind, um einen bestimmten Gasleitungsweg zu öffnen oder zu schließen. Ferner sind Mehrwegventile 146 an anderen Stellen des Transportgaspfads 118 angebracht, die zwischen mehreren Stellungen entsprechend mehreren möglichen Gasleitungswegen elektrisch oder pneumatisch schaltbar sind. Das Schalten der Ventile 144, 146 sowie das Zu- oder Abschalten von Transportgasventilator 140, Heizeinheit 124 bzw. Kühlereinheit 142 kann ebenfalls mittels elektrischer Signale erfolgen. Das System kann entweder händisch durch einen Betreiber oder durch eine Steuereinheit wie zum Beispiel einen Mikroprozessor erfolgen, der in
Wie in
Im Weiteren wird auf
In einem in
Nach dem zweiten Betriebszustand II wird die nun hitzebehandelte und mittlerweile abgekühlte Charge von Glühgut 102 aus dem zweiten Sockel So2 entnommen. Hierfür kann ein Kran die zweite Schutzhaube 122 abnehmen, dann das in dem zweiten Sockel So2 angeordnete Glühgut 102 entnehmen und eine neue Charge von Glühgut 102 in den zweiten Sockel So2 einführen.After the second operating state II, the now heat-treated and meanwhile cooled charge of annealed
Danach folgt ein dritter Betriebszustand III, der in
Nach diesem dritten Betriebszustand III wird ein nachfolgender vierter Betriebszustand IV aktiviert, der in
Nach dem vierten Betriebszustand IV wird die nun wärmebehandelte und mittlerweile abgekühlte Charge von Glühgut 102 aus dem ersten Sockel So1 entnommen. Hierfür kann ein Kran die erste Schutzhaube 120 abnehmen, dann das in dem ersten Sockel So1 angeordnete Glühgut 102 entnehmen und eine neue Charge von Glühgut 102 in den ersten Sockel So1 einführen.After the fourth operating state IV, the now heat-treated and now cooled charge of
Nun kann der Zyklus von Betriebszuständen I bis IV von neuem beginnen, d.h. der Haubenofen 100 wird als nächstes wieder gemäß
Der erste Glühgasventilator 130 ist ein Radialgebläse, dessen Laufrad 602 von einem Motor 604 angetrieben wird. Das Laufrad 602 ist von einem Leitapparat 608 mit Leitschaufeln umschlossen. Das auf dem Glühsockel ruhende Glühgut 102, das lediglich schematisch angedeutet ist, wird von der Schutzhaube 120 abgedeckt, die über einen Ringflansch 612 abgestützt ist, der über eine umlaufende Dichtung 614 für einen gasdichten Abschluss der Schutzhaube 120 sorgt.The first
Bei dem Haubenofen 100 gemäß
Ferner ist eine Steuereinheit 702 vorgesehen, die über diverse Steuerleitungen 720 zum Schalten der diversen Ventile 144, 146 sowie zum Ein- oder Ausschalten des Kühlers 142, der Gasheizeinheit 700 bzw. der Ventilatoren 140, 704 ausgebildet ist. Der Ventilator 140 kann als Kaltdruckventilator ausgebildet werden, wohingegen der Ventilator 704 ein Heißdruckventilator ist.Furthermore, a
Die Gasheizeinheit 700 fungiert als Erhitzer und ist als gasgeheizter Wärmetauscher zum Übertragen thermischer Energie an das Transportgas 116 ausgebildet.The
Der Bereich unterhalb der Ofenbasen 170, 172 in
Gemäß dem Betriebszustand I in
Gemäß Betriebszustand II in
Nach Ablauf von Betriebszustand II kann das Glühgut 102 aus dem zweiten Sockel So2 entnommen und durch eine neue, wärmezubehandelnde Charge Glühgut 102 ersetzt werden.After expiration of the operating state II, the
Betriebszustand III wird dann durch Betriebszustand IV abgelöst, der in
Nach Durchführung der Prozedur gemäß dem vierten Betriebszustand IV kann das Glühgut 102 aus dem ersten Sockel So1 entnommen werden und durch eine neue Charge Glühgut 102 ersetzt werden.After carrying out the procedure in accordance with the fourth operating state IV, the
Im Weiteren werden Bezug nehmend auf
Das erste Diagramm 1200 bezieht sich auf einen Temperaturverlauf des ersten Glühgases 112 bzw. des Glühguts des ersten Sockels So1 während des Durchfahrens der einzelnen Betriebszustände I bis IV, wohingegen das zweite Diagramm 1250 sich auf einen Temperaturverlauf des zweiten Glühgases 114 bzw. des Glühguts des zweiten Sockels So2 während der Betriebszustände I bis IV gemäß
Somit zeigt
In diesem Wärmetauschsystems sind sechs unterschiedliche Betriebszustände unterscheidbar:
- In einem ersten Betriebszustand I wird ein dritter Sockel So3 vorgekühlt und überträgt mittels des Transportgases thermische Energie von dem dritten Glühgas auf das erste Glühgas, um einen Sockel So1 vorzuwärmen. Gleichzeitig wird ein von dem ersten und dem dritten Sockel in diesem Betriebszustand getrennter zweiter Sockel So2 mittels einer Heizeinrichtung auf eine Endtemperatur geheizt.
- In a first operating state I, a third base So3 is pre-cooled and transmits by means of the transport gas thermal energy from the third annealing gas to the first annealing gas to preheat a base So1. At the same time, a second pedestal So2 separated from the first and third pedestals in this operating state is heated to a final temperature by means of a heater.
In einem nachfolgenden zweiten Betriebszustand II wird der Sockel So3 aktiv mittels eines Kühlers gekühlt, während der nun vorzukühlende Sockel So2 thermische Energie von seinem zweiten Glühgas auf das erste Glühgas des ersten Sockels So1 überträgt. Dadurch wird der erste Sockel So1 weiter vorgewärmt.In a subsequent second operating state II, the base So3 is actively cooled by means of a cooler, while the base now to be pre-cooled transfers thermal energy from its second annealing gas to the first annealing gas of the first base So1. As a result, the first base So1 is further preheated.
In einem dritten Betriebszustand III wird der dritte Sockel So3 wieder geheizt, indem thermische Energie von dem zweiten Sockel So2 an den dritten Sockel So3 mittels des Transportgases transferiert wird. Dadurch wird der dritte Sockel So3 vorgewärmt. Da der zweite Sockel So2 thermische Energie seines zweiten Glühgases auf das dritte Glühgas des dritten Sockels So3 überträgt, sinkt dessen Energie in dem dritten Betriebszustand III. Der erste Sockel So1 ist nun isoliert von den anderen Sockeln So2 und So3 und wird mittels einer Heizeinrichtung auf eine Endtemperatur geheizt.In a third operating state III, the third base So3 is reheated by transferring thermal energy from the second base So2 to the third base So3 by means of the transport gas. This preheats the third base So3. Since the second base So2 transfers thermal energy of its second annealing gas to the third annealing gas of the third base So3, its energy decreases in the third operating state III. The first base So1 is now isolated from the other bases So2 and So3 and is heated by means of a heater to a final temperature.
In einem nachfolgenden vierten Betriebszustand IV wird der erste Sockel So1 vorgekühlt, indem thermische Energie von dem ersten Glühgas auf das dritte Glühgas des Sockels So3 transferiert wird. Dadurch wird der dritte Sockel So3 weiter vorgewärmt. Der zweite Sockel So2 ist in einem vierten Betriebszustand von den anderen beiden Sockeln So1, So3 getrennt und wird mit einem Kühler aktiv weiter gekühlt, um dann am Ende des vierten Betriebsmodus IV dessen untere Endtemperatur zu erreichen.In a subsequent fourth operating state IV, the first base So1 is pre-cooled by transferring thermal energy from the first annealing gas to the third annealing gas of the base So3. As a result, the third base So3 is further preheated. The second base So2 is separated in a fourth operating state from the other two sockets So1, So3 and is actively cooled further with a cooler, in order then to reach its lower end temperature at the end of the fourth operating mode IV.
In einem nachfolgenden fünften Betriebszustand V wird der dritte Sockel So3 aktiv und von den anderen Sockeln So1, So2 getrennt mit der Heizeinheit verbunden, um auf die Endtemperatur gebracht zu werden. Der weiter zu kühlende Sockel So1 überträgt thermische Energie von seinem Glühgas auf das zweite Glühgas des zweiten Sockels So2. Letzterer wird damit einer ersten Vorwärmphase unterzogen.In a subsequent fifth operating state V, the third pedestal So3 is activated and connected to the heating unit separately from the other pedestals So1, So2 to be brought to the final temperature. The further base So1 to be cooled transfers thermal energy from its annealing gas to the second annealing gas of the second base So2. The latter is thus subjected to a first preheating phase.
In einem nachfolgenden sechsten Betriebsmodus VI wird thermische Energie von dem dritten Sockel So3, der nun vorgekühlt werden soll, auf den zweiten Sockel So2 übertragen. Dadurch wird der zweite Sockel So2 einer zweiten Vorwärmung unterzogen und der dritte Sockel So3 vorgekühlt. Der erste Sockel So1 befindet sich in diesem Betriebszustand in Isolation von Sockeln So2, So3 und wird durch einen Kühler auf eine Endtemperatur herunter gekühlt. Nach Beendigung von Betriebszustand VI beginnt der Zyklus wieder mit dem ersten Betriebszustand I.In a subsequent sixth operating mode VI, thermal energy from the third base So3, which is now pre-cooled to be transferred to the second socket So2. As a result, the second base So2 is subjected to a second preheating and the third base So3 is pre-cooled. The first base So1 is in this operating condition in isolation from sockets So2, So3 and is cooled by a cooler to a final temperature. After completion of operating state VI, the cycle begins again with the first operating state I.
Genauer gesagt wird ein Laufrad 602 des Glühgasventilators 130 rotierend angetrieben, siehe Bezugszeichen 1642. Dadurch wird das Glühgas vom Glühgasventilator 130 umgewälzt. Das Glühgas bewegt sich daher nach außen, und zwar gerichtet unter dem Einfluss der ruhenden Schaufelbleche 1640 eines Leitapparats. Dadurch gelangt das Glühgas gezielt in thermische Wechselwirkung mit dem Rohrbündelwärmetauscher 108 und weiter zur Charge (Glühgut). Der Rohrbündelwärmetauscher 108 befindet sich daher im Vollstrom.More specifically, an
In
Gemäß dem Ausführungsbeispiel von
Es ist ferner anzumerken, dass bei dem Ausführungsbeispiel gemäß
Ergänzend ist darauf hinzuweisen, dass "aufweisend" keine anderen Elemente oder Schritte ausschließt und "eine" oder "ein" keine Vielzahl ausschließt. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.In addition, it should be noted that "having" does not exclude other elements or steps, and "a" or "an" does not exclude a multitude. It should also be appreciated that features or steps described with reference to any of the above embodiments may also be used in combination with other features or steps of other embodiments described above. Reference signs in the claims are not to be considered as limiting.
Claims (15)
- Furnace (100) for heat treating of annealing good (102), wherein the furnace (100) comprises:a closable first furnace chamber (104) which is formed for receiving and for heat treating of annealing good (102) by thermal interacting of the annealing good (102) with heatable or coolable first annealing gas (112) in the first furnace chamber (104);a first heat exchanger (108) arranged in the first furnace chamber (104), which is formed for thermal exchange between the first annealing gas (112) and a transport fluid (116), wherein the first heat exchanger (108) is arranged inside a housing section (120) of the first furnace chamber (104), which housing section (120) encloses the first annealing gas (112) in the interior of the first furnace chamber (104) and which housing section (120) is in direct contact with the first annealing gas (112);a closable second furnace chamber (106) which is formed for receiving and for heat treating of annealing good (102) by thermal interacting of the annealing good (102) with heatable or coolable second annealing gas in the second furnace chamber (106);a second heat exchanger (110) arranged in the second furnace chamber (106), which is formed for thermal exchange between the second annealing gas (114) and the transport fluid (116), wherein the second heat exchanger (110) is arranged inside a housing section (122) of the second furnace chamber (106),which housing section (122) encloses the second annealing gas (114) in the interior of the second furnace chamber (106);a closed transport fluid path (118) which is effectively connected with the first heat exchanger (108) and with the second heat exchanger (110) in such a way that thermal energy is contactless transferable by the transport fluid (116) between the first annealing gas (112) and the second annealing gas (114).
- Furnace (100) according to claim 1, wherein the furnace (100) is formed as a furnace being operatable in batches.
- Furnace (100) according to claim 1 or 2, wherein the first furnace chamber (104) is closable by a removable first protecting cover (120) as the housing section (120) of the first furnace chamber (104) and the second furnace chamber (106) is closable by a removable second protecting cover (122) as the housing section (122) of the second furnace chamber (106), and wherein the first protecting cover (120) is the outermost cover of the first furnace chamber (104) and the second protecting cover (122) is the outermost cover of the second furnace chamber (106), and/or
wherein the housing section (122) of the second furnace chamber (106) is in direct contact with the second annealing gas (114). - Furnace (100) according to claim 3, wherein the first protecting cover (120, 1700) and the second protecting cover (122, 1700) each comprises a heat resistant internal housing (1702) and an insulating casing (1704) from a heat insulating material.
- Furnace (100) according to one of the claims 1 to 4, wherein an external heating unit (700) for direct heating of the transport fluid (116) to the first heat exchanger (108) or to the second heat exchanger (110) is arranged in such a way that the first furnace chamber (104) is heatable by thermal transfer of heating energy to the first annealing gas (112) and/or the second furnace chamber (106) is heatable by thermal transfer of heating energy to the second annealing gas (114), wherein the external heating unit (700) may be operated by gas, oil or pellets or comprises an electric resistance heater.
- Furnace (100) according to claim 5, wherein the electric supply unit (124) of the heating unit supplies the first heat exchanger (108) or the second heat exchanger (110) as an electric resistance heater and thereby internally and directly with electric energy.
- Furnace (1800) according to claim 3, wherein the first furnace chamber (104) is closable with a removable and heatable first heating cover (1802), which encloses the first protecting cover (120), and wherein the second furnace chamber (106) is closable with a removable and heatable second heating cover (1804), which encloses the second protecting cover (122).
- Furnace (100) according to one of the claims 1 to 7, wherein the first heat exchanger (108) and/or the second heat exchanger (110) is formed as a tube bundle heat exchanger made of tubes bended to a bundle, wherein the interior of the tube is part of a transport fluid path (118) and is through flowable by a transport fluid (116) and the exterior of the tube is brought in direct contact with the respective annealing gas (112, 114), and/or
wherein the first furnace chamber (104) comprises a first annealing gas drive (130) and the second furnace chamber (106) comprises a second annealing gas drive (132), wherein the respective annealing gas drive (130, 132) is arranged to point the respective annealing gas (112, 114) at the respective heat exchanger (108, 110) and at the respective annealing good (102). - Furnace (100) according to one of the claims 1 to 8, further comprising:a closable third furnace chamber which is formed for receiving and for heat treating of annealing good (102) by thermal interacting of the annealing good (102) with heatable third annealing gas in the third furnace chamber;a third heat exchanger arranged in the third furnace chamber, which is formed for thermal exchange between the third annealing gas and the transport fluid (116), wherein the third heat exchanger is arranged inside a housing section of the third furnace chamber, which housing section encloses the third annealing gas in the interior of the third furnace chamber;wherein the closed transport fluid path (118) is also effectively connected with the third heat exchanger in such a way that thermal energy is transferable by the transport fluid between on the one hand the third annealing gas and one the other hand the first annealing gas (112) and/or the second annealing gas (114).
- Furnace (700) according to one of the claims 1 to 9, comprising a control unit (702) which is arranged to control the transport fluid path (118) in such a way that by thermal exchange between the transport fluid (116) and the first annealing gas (112) and the second annealing gas (114) selectively a respective one of the first furnace chamber (104) and the second furnace chamber (106) is operatable in a pre heating mode, a heating mode or a cooling mode, and/or wherein the transport fluid path (118) comprises a transport fluid drive (140) for driving the transport fluid (116) through the transport fluid path (118), and/or wherein the transport fluid path (118) comprises a connectable cooler (142) for cooling the transport fluid (116) in the transport fluid path (118).
- Furnace (100) according to claim 10, wherein the transport fluid path (118) comprises a plurality of valves (144, 146) which are switchable in such a way that the furnace (100) is selectively operated in one of the following operating modes:a first operating mode in which the transport fluid drive thermally couples the transport fluid (116) with the second annealing gas (114) such that the transport fluid (116) removes heat from the second annealing gas (114), and supplies it to the first annealing gas (112) for heating the first furnace chamber (104) and for cooling the second furnace chamber (106);a subsequent second operating mode in which a heating unit (124, 700) further heats the first furnace chamber (104) and in which in a therefrom separated path the transport fluid drive (140) supplies the transport fluid (116) to the connected cooler (142) for cooling, and thermally couples the cooled transport fluid (116) with the second annealing gas (114) for further cooling of the second furnace chamber (106);a subsequent third operating mode in which the transport fluid drive (140) thermally couples the transport fluid (116) with the first annealing gas (112) such that the transport fluid (116) removes heat from the first annealing gas (112), and supplies it to the second annealing gas (114) for heating the second furnace chamber (106) and for cooling the first furnace chamber (104);a subsequent fourth operating mode in which the heating unit (124, 700) heats the second furnace chamber (106) and in which in a therefrom separated path the transport fluid drive (140) supplies the transport fluid (116) to the connected cooler (142) for cooling, and thermally couples the cooled transport fluid (116) with the first annealing gas (114) for cooling the first furnace chamber (104).
- Furnace (100) according to one of the claims 1 to 11, comprising a means for pressure stabilizing of the transport fluid path (118), which encloses in a pressure sealed way at least a part of the transport fluid path (118).
- Furnace (100) according to one of the claims 1 to 12, wherein the first heat exchanger (108) is arranged relatively to a first annealing gas ventilator (130) for driving the first annealing gas and/or the second heat exchanger (110) is arranged relatively to a second annealing gas ventilator (132) for driving the second annealing gas in such a way that in every operating mode of the furnace (100) the first annealing gas driven by the first annealing gas ventilator (130), blows to the first heat exchanger (108) and/or that in every operating mode of the furnace (100) the second annealing gas driven by the second annealing gas ventilator (132), blows to the second heat exchanger (110).
- Furnace (100) according to one of the claims 1 to 13, which is configured in such a way that the first annealing gas (112) and the second annealing gas (114), remains contactless towards the transport fluid (116).
- Method for heat treating of annealing good in a furnace (100), wherein the method comprises:receiving and heat treating of annealing good (102) in a closable first furnace chamber (104) by thermal interacting of the annealing good (102) with heatable and coolable, respectively, first annealing gas (112) in the first furnace chamber (104);causing a thermal exchange between the first annealing gas (112) and a transport fluid (116) by a first heat exchanger (108) arranged in the first furnace chamber (104), wherein the first heat exchanger (108) is arranged inside a housing section (120) of the first furnace chamber (104), which housing section (120) encloses the first annealing gas (112) in the interior of the first furnace chamber (104) and which housing section (120) is in direct contact with the first annealing gas (112);receiving and heat treating of annealing good (102) in a closable second furnace chamber (106) by thermal interacting of the annealing good (102) with heatable and coolable, respectively, second annealing gas (114) in the second furnace chamber (106);causing a thermal exchange between the second annealing gas (114) and the transport fluid (116) by a second heat exchanger (110) arranged in the second furnace chamber (106), wherein the second heat exchanger (110) is arranged inside a housing section (122) of the second furnace chamber (106), which housing section (122) encloses the second annealing gas (114) in the interior of the second furnace chamber (106);controlling a closed transport fluid path which is effectively connected with the first heat exchanger (108) and with the second heat exchanger (110) in such a way that by the transport fluid (116) thermal energy is transferable between the first annealing gas (112) and the second annealing gas (114).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011088634.6A DE102011088634B4 (en) | 2011-12-14 | 2011-12-14 | Closed transport fluid system for internal furnace heat exchange between mulled gases |
PCT/EP2012/075128 WO2013087648A1 (en) | 2011-12-14 | 2012-12-11 | Closed transport fluid system for furnace-internal heat exchange between annealing gases |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2791606A1 EP2791606A1 (en) | 2014-10-22 |
EP2791606B1 true EP2791606B1 (en) | 2015-10-28 |
EP2791606B2 EP2791606B2 (en) | 2022-12-28 |
Family
ID=47435925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12806412.8A Active EP2791606B2 (en) | 2011-12-14 | 2012-12-11 | Closed transport fluid system for furnace-internal heat exchange between annealing gases |
Country Status (9)
Country | Link |
---|---|
US (1) | US9528166B2 (en) |
EP (1) | EP2791606B2 (en) |
JP (1) | JP2015507084A (en) |
KR (1) | KR20140103162A (en) |
CN (1) | CN104114968B (en) |
BR (1) | BR112014014216A2 (en) |
CA (1) | CA2859244A1 (en) |
DE (1) | DE102011088634B4 (en) |
WO (1) | WO2013087648A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011088633A1 (en) * | 2011-12-14 | 2013-06-20 | Ebner Industrieofenbau Gmbh | Hood furnace with positioned within a protective hood heat dissipation device, in particular fed by an oven-external energy source, for discharging heat to annealing gas |
DE102011088634B4 (en) * | 2011-12-14 | 2014-07-31 | Ebner Industrieofenbau Gmbh | Closed transport fluid system for internal furnace heat exchange between mulled gases |
CN105953584B (en) * | 2016-05-19 | 2017-12-15 | 海宁华悦电子有限公司 | A kind of improved magnetic core sintering furnace |
US10403124B1 (en) | 2018-03-26 | 2019-09-03 | Motorola Solutions, Inc. | Stun gun detect |
CN115446311B (en) * | 2022-09-19 | 2023-07-25 | 株洲坤锐硬质合金有限公司 | Vacuum degreasing sintering furnace for hard alloy production |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB497480A (en) | 1937-04-15 | 1938-12-15 | James Macdonald | Improvements in or relating to furnaces for the heat treatment of materials or of articles |
US2479102A (en) | 1946-02-23 | 1949-08-16 | Carnegie Illinois Steel Corp | Coil annealing furnace |
US4247284A (en) | 1978-12-13 | 1981-01-27 | Midland-Ross Corporation | Internal cooling of heat exchanger tubes |
US4480822A (en) | 1981-02-13 | 1984-11-06 | Luigi Mauratelli | Annealing furnace system |
DE102008005259A1 (en) | 2008-01-18 | 2009-07-30 | Kramer, Carl, Prof. Dr.- Ing. | Operating heat treatment system, comprises utilizing a part of the heat flow guided into a cooling part of the system by forced convection of a heat treatment product for preheating the treatment product by high convective heat transfer |
AT507423B1 (en) | 2009-03-25 | 2010-05-15 | Ebner Ind Ofenbau | PROCESS FOR PREHEATING GLOWING IN A BROWN GLOW SYSTEM |
AT508776B1 (en) | 2010-04-14 | 2011-04-15 | Ebner Ind Ofenbau | PROCESS FOR PREHEATING GLOWING IN A BROWN GLOW SYSTEM |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1518100A (en) * | 1975-10-31 | 1978-07-19 | British Steel Corp | Annealing process |
SU1740459A1 (en) * | 1989-04-18 | 1992-06-15 | Харьковский Филиал Всесоюзного Научно-Исследовательского, Проектно-Конструкторского И Технологического Института Электротермического Оборудования | Cover furnace compartment and method of heating and cooling charge therein |
AT411904B (en) * | 2003-03-24 | 2004-07-26 | Ebner Ind Ofenbau | Batch-type annealing furnace for annealing steel strip or wire bundles has a protective hood positioned over an annular flange in a gas-tight manner with a heat exchanger lying above the flange |
DE112010000762A5 (en) * | 2009-02-04 | 2012-07-26 | Loi Thermprocess Gmbh | METHOD AND APPARATUS FOR HEAT-TREATING PANELS |
CN101956061B (en) * | 2010-07-27 | 2012-07-25 | 苏州品源气体设备有限公司 | Process and device for recovering and recycling protective gas of bell-type bright annealing furnace |
DE102011088633A1 (en) * | 2011-12-14 | 2013-06-20 | Ebner Industrieofenbau Gmbh | Hood furnace with positioned within a protective hood heat dissipation device, in particular fed by an oven-external energy source, for discharging heat to annealing gas |
DE102011088634B4 (en) * | 2011-12-14 | 2014-07-31 | Ebner Industrieofenbau Gmbh | Closed transport fluid system for internal furnace heat exchange between mulled gases |
-
2011
- 2011-12-14 DE DE102011088634.6A patent/DE102011088634B4/en not_active Withdrawn - After Issue
-
2012
- 2012-12-11 WO PCT/EP2012/075128 patent/WO2013087648A1/en active Application Filing
- 2012-12-11 CN CN201280069541.9A patent/CN104114968B/en active Active
- 2012-12-11 EP EP12806412.8A patent/EP2791606B2/en active Active
- 2012-12-11 US US14/365,516 patent/US9528166B2/en active Active
- 2012-12-11 KR KR1020147019579A patent/KR20140103162A/en not_active Application Discontinuation
- 2012-12-11 JP JP2014546467A patent/JP2015507084A/en active Pending
- 2012-12-11 BR BR112014014216A patent/BR112014014216A2/en not_active Application Discontinuation
- 2012-12-11 CA CA2859244A patent/CA2859244A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB497480A (en) | 1937-04-15 | 1938-12-15 | James Macdonald | Improvements in or relating to furnaces for the heat treatment of materials or of articles |
US2479102A (en) | 1946-02-23 | 1949-08-16 | Carnegie Illinois Steel Corp | Coil annealing furnace |
US4247284A (en) | 1978-12-13 | 1981-01-27 | Midland-Ross Corporation | Internal cooling of heat exchanger tubes |
US4480822A (en) | 1981-02-13 | 1984-11-06 | Luigi Mauratelli | Annealing furnace system |
DE102008005259A1 (en) | 2008-01-18 | 2009-07-30 | Kramer, Carl, Prof. Dr.- Ing. | Operating heat treatment system, comprises utilizing a part of the heat flow guided into a cooling part of the system by forced convection of a heat treatment product for preheating the treatment product by high convective heat transfer |
AT507423B1 (en) | 2009-03-25 | 2010-05-15 | Ebner Ind Ofenbau | PROCESS FOR PREHEATING GLOWING IN A BROWN GLOW SYSTEM |
AT508776B1 (en) | 2010-04-14 | 2011-04-15 | Ebner Ind Ofenbau | PROCESS FOR PREHEATING GLOWING IN A BROWN GLOW SYSTEM |
Non-Patent Citations (2)
Title |
---|
"Industrielle Thermoprozessanlagen - Teil 3: Sicherheitsanforderungen für die Erzeugung und Anwendung von Schutz- und Reaktionsgasen", NORM DIN EN 746-3: 1997 D, March 1997 (1997-03-01), pages 1 und 12, XP055297446 |
"Sicherheitstechnische Empfehlungen für den Betrieb von Industrieöfen mit Schutzgasatmosphäre", ATW, April 1999 (1999-04-01), pages 1 und 2, XP055297442 |
Also Published As
Publication number | Publication date |
---|---|
CA2859244A1 (en) | 2013-06-20 |
BR112014014216A2 (en) | 2017-06-13 |
US9528166B2 (en) | 2016-12-27 |
WO2013087648A1 (en) | 2013-06-20 |
EP2791606B2 (en) | 2022-12-28 |
US20140374969A1 (en) | 2014-12-25 |
DE102011088634A1 (en) | 2013-06-20 |
EP2791606A1 (en) | 2014-10-22 |
JP2015507084A (en) | 2015-03-05 |
CN104114968B (en) | 2016-11-16 |
KR20140103162A (en) | 2014-08-25 |
CN104114968A (en) | 2014-10-22 |
DE102011088634B4 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2791606B1 (en) | Closed transport fluid system for furnace-internal heat exchange between annealing gases | |
EP2411752B1 (en) | Method for preheating annealing products in a hood-type annealing system, and hood-type annealing system | |
AT508776B1 (en) | PROCESS FOR PREHEATING GLOWING IN A BROWN GLOW SYSTEM | |
DE102011079771B4 (en) | Roller changing device and method for changing a roller for ovens | |
EP3282024B1 (en) | Batch furnace for annealing product and method for heat treatment | |
EP2257752A2 (en) | Industrial furnace and method for operating an industrial furnace | |
DE2722065A1 (en) | OVEN FOR ISOSTATIC HOT PRESSING | |
WO2013087646A1 (en) | Bell-type furnace with a heat dispensing device positioned within a protective hood, in particular fed by an energy source external to the furnace chamber, for dispensing heat to annealing gas | |
DE102009009407A1 (en) | Method for operating a heat treatment plant for a heat treatment material introduced in the plant, comprises heating the heat treatment material in the plant and cooling by treatment temperature in upper temperature range in the plant | |
EP3489602B1 (en) | Batch furnaces for annealing material and method for heat treatment of a furnace product | |
EP2330372B1 (en) | Electrically heated retort furnace for thermal treatment of metallic workpieces | |
WO2010089056A2 (en) | Method and system for heat treating sheet metal | |
DE102008052571A1 (en) | Diffusion oven useful in semiconductor manufacture and for doping solar cells, comprises reactor enclosed by reaction pipe, outer casing, heating elements, means for locking the pipe, means for locking the casing and vacuum producing means | |
DE60112657T9 (en) | Gas-fired unit for carburizing or case-hardening | |
AT527037B1 (en) | hood furnace | |
WO2021119715A1 (en) | Fuel cell system and method for operating a fuel cell system | |
TW201422819A (en) | The furnace annealing gas for the heat from each other and to achieve a closed fluid transportation system | |
DE1258436B (en) | Process and system for decarburizing and denitrifying steel sheets in a moist hydrogen atmosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150519 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 758177 Country of ref document: AT Kind code of ref document: T Effective date: 20151115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012005130 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160228 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160128 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160129 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160229 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502012005130 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151211 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: LOI THERMPROCESS GMBH Effective date: 20160725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121211 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161211 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: LOI THERMPROCESS GMBH Effective date: 20160725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151028 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20181205 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191211 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502012005130 Country of ref document: DE Representative=s name: ABP BURGER RECHTSANWALTSGESELLSCHAFT MBH, DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: LOI THERMPROCESS GMBH Effective date: 20160725 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20221228 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502012005130 Country of ref document: DE |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231107 Year of fee payment: 12 Ref country code: AT Payment date: 20231114 Year of fee payment: 12 |