WO2021119715A1 - Fuel cell system and method for operating a fuel cell system - Google Patents

Fuel cell system and method for operating a fuel cell system Download PDF

Info

Publication number
WO2021119715A1
WO2021119715A1 PCT/AT2020/060483 AT2020060483W WO2021119715A1 WO 2021119715 A1 WO2021119715 A1 WO 2021119715A1 AT 2020060483 W AT2020060483 W AT 2020060483W WO 2021119715 A1 WO2021119715 A1 WO 2021119715A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
heating device
cell system
cathode
heating
Prior art date
Application number
PCT/AT2020/060483
Other languages
German (de)
French (fr)
Inventor
Christopher SALLAI
Martin HAUTH
Martin PRILLINGER
Robert Luef
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to DE112020006172.8T priority Critical patent/DE112020006172A5/en
Priority to BR112022008162A priority patent/BR112022008162A2/en
Publication of WO2021119715A1 publication Critical patent/WO2021119715A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/022Air heaters with forced circulation using electric energy supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system comprising a fuel cell stack with an anode section and a cathode section, a cathode path for conducting cathode gas to the cathode section, and a heating device for preheating the fuel cell system during a starting process of the fuel cell system.
  • the invention also relates to a method for operating such a fuel cell system.
  • Generic fuel cell systems are usually first brought to a predetermined operating temperature as part of a starting process before the fuel cell system is operated as desired to generate electricity and voltage.
  • the warm-up process can be implemented in different ways. One possibility is to use a dedicated heating device.
  • the heating device and the surroundings of the heating device must be cooled and / or thermally insulated from one another as far as possible.
  • Static-passive, thermal insulation requires a relatively large amount of space and is therefore unsuitable for various applications.
  • Known active cooling devices also have a high installation space requirement and result in an energy requirement which must be kept as low as possible.
  • known active cooling devices increase the degree of complexity of the fuel cell system to an undesirably high degree.
  • the object of the present invention is to at least partially take into account the problems described above.
  • a fuel cell system comprising a fuel cell stack with an anode section and a cathode section, a cathode path for conducting cathode gas to the cathode section, and a heating device for preheating the fuel cell system during a starting process of the fuel cell system.
  • the fuel cell system furthermore has a cooling section for conducting at least part of the cathode gas along the heating device, the cooling section being in heat-transferring connection with the heating device for cooling the heating device.
  • cathode air is in heat-transferring connection with heating devices. In the previously known systems, however, this is intended to enable the cathode air to be heated by the heating device. In the present case, exactly the opposite approach is being taken, in that the cathode air is to be used specifically for cooling the heating device.
  • the proposed solution can be implemented in a space-saving manner.
  • the degree of complexity of the fuel cell system is hardly increased by the configuration according to the invention.
  • the solution is characterized by its relatively light construction. In principle, this solution can also be used for mobile applications.
  • cooling of the heating device according to the invention can be implemented in a relatively energy-saving manner. Because the cathode gas is guided along the heating device, the cooling process on the heating device by convection can be increased considerably become.
  • the fuel cell system is preferably designed in the form of an SOFC system, in which effective cooling systems are required. Such can be provided by the configuration according to the invention.
  • the fuel cell system has at least one fuel cell stack.
  • the at least a part of the cathode gas which is passed along the heating device is to be understood as meaning cathode gas which is branched off from the cathode path to the cooling section. Accordingly, this part of the cathode gas can be understood to mean cathode gas branched off from the cathode path.
  • the cooling section preferably extends over the entire length or essentially over the entire length of the heating device in order to be able to bring about the greatest possible cooling effect on the heating device.
  • cathode gas is to be understood in particular as air or another oxygen-containing fluid.
  • the cathode gas is preferably conveyed through the cathode path in the direction of the cooling section and / or the heating section by a fan which is arranged in the exhaust gas path.
  • the fan arranged in the exhaust gas path downstream of the afterburner generates a negative pressure in the entire fuel cell system, so that it is operated essentially in negative pressure.
  • the fan consequently also draws the cathode air through the entire fuel cell system.
  • the fan can also be arranged, for example, in the cathode path for generating a forced air flow.
  • the cooling section it is possible, in a fuel cell system, for the cooling section to be designed at least in sections in an annular manner around the heating device.
  • a particularly effective cooling effect can thus be achieved.
  • the heating device can be evenly cooled by the annular purging with cathode gas, whereby stresses and damage resulting therefrom in the heating devices can be prevented.
  • the cooling section can be understood as a cathode air path which is guided coaxially to the heating device.
  • the annular cooling section extends in Cathode gas flow direction preferably over the entire length of the heating device. For the most effective heat transfer possible, an outer wall of the heating device and an inner ring wall of the cooling section adjoin one another directly or essentially directly.
  • the heating device is preferably designed as an electrical heating device.
  • An electrical heating device can be adapted quickly and easily to given operating states, for example to a start or normal operation of the fuel cell system. Through the electrical heating device, cathode air, which is branched off to the heating device, can be electrically heated and then passed on at the appropriate temperature level.
  • An electrical heating device is usually installed in the immediate vicinity of other electrical functional components. In this environment, the development of heat in the fuel cell system must be viewed particularly critically. Consequently, it is advantageous if the cooling section or a cooling device is provided.
  • the cooling section according to the invention makes it possible to protect not only the electrical heating device itself, but also the electrical components in the immediate vicinity of the heating device from the waste heat from the electrical heating device.
  • the cooling device or the cooling section is designed in particular as air cooling. By rinsing the heating device through the cooling section with air, the maximum surface temperatures, which are specified in various standards (risk of burns), can be maintained without the need for additional insulation.
  • a flame burner for example, can also be used as the heating device, which has similar advantages and which is favorable in order to be able to keep the small installation space in the system and still obtain sufficient protection for surrounding components.
  • a fuel cell system according to the invention can furthermore have an afterburner for at least partial burning of cathode exhaust gas and / or anode exhaust gas from the fuel cell stack, the heating device being connected to the afterburner by an afterburner line in order to conduct heating gas from the heating device into the afterburner. That is, the heating device is present less for heating the fuel cell stack, but rather for heating the Afterburner designed. In particular, the heating device is indirectly connected to the afterburner via the fuel cell stack. Accordingly, the heating device is preferably connected to the afterburner by the afterburner line in such a way that heating gas can be passed from the heating device directly into the afterburner.
  • the heating device thus differs fundamentally from heating devices that are specially designed for heating up the fuel cell stack. In the context of the invention, it was recognized that cathode gas can also be used in a surprisingly simple manner for cooling heating devices which do not lead heating gas directly to the fuel cell stack.
  • a fork section is provided for branching the cathode gas from the cathode path in the direction of the cooling section and as heating gas in the direction of the heating device.
  • a fork section can be implemented in a simple and space-saving manner.
  • a heating gas valve for controlling the heating gas to the heating device and a cathode gas valve for controlling the cathode gas to the cooling section are provided.
  • a throttle valve can also be provided.
  • the heating gas valve can be used to control, that is to say controlled and / or regulated, which amount of cathode gas is passed as heating gas to the heating device.
  • the cathode gas valve or the throttle valve can be used to monitor, that is to say controlled and / or regulate, which amount of cathode gas is directed to the cathode section.
  • the cathode gas flow can be guided easily and reliably through the desired functional sections, i.e. the heating device and / or the cooling section, depending on the current operating state of the fuel cell system.
  • the fuel cell system is designed in particular in the form of a stationary SOFC system.
  • a cooling system according to the invention can be operated stably even at the high temperatures that prevail in an SOFC system.
  • a method for operating a fuel cell system as shown above is provided, cathode gas for cooling the heating device being passed through the cooling section during a heating process for heating up the fuel cell system.
  • a method according to the invention thus has the same advantages as have been described in detail with reference to the fuel cell system according to the invention.
  • cathode gas can at the same time, at least temporarily, be passed through the cooling section and as heating gas through the heating device.
  • the heating of the fuel cell system can be prioritized in a simple manner during the heating process, while overheating of the heating device is reliably prevented.
  • the ratio of cathode gas through the cooling section to cathode gas in the form of heating gas through the heating device can be 1: 2 or less. That is, 1/3 or less is passed through the cooling section and 2/3 or more is passed through the heater, cathode gas.
  • the fuel cell system can have at least one temperature sensor.
  • the fuel cell system can have a controller which is configured for the temperature-dependent control and / or regulation of the fluid flows according to the invention.
  • a method according to the invention it is possible for more cathode gas to be passed through the cooling section than through the heating device at a predefined target temperature in the fuel cell system or above. That is, as soon as it is recognized that a desired target temperature is or has been reached in a desired area in the fuel cell system, for example in and / or on an afterburner of the fuel cell system, the volume flow of the cathode gas through the heating device is reduced and the volume flow of the cathode gas through the cooling section , i.e. the cathode path, is increased.
  • the cathode gas which is in particular in the form of air, can be preheated in the cathode path via the residual heat of the switched-off heating device, as a result of which heating losses can be reduced.
  • the heating device can be cooled quickly by flushing the heating device with cathode gas.
  • That more cathode gas is passed through the heating device than through the cooling section at least until a predefined target temperature is reached in the fuel cell system can be understood to mean that more cathode gas is passed through the heating device than through the cooling section in the fuel cell system, as long as the temperature in the fuel cell system and in particular in the and / or is located on the afterburner in a first temperature range that is lower than a second temperature range. As soon as the temperature in the fuel cell system and in particular in and / or on the afterburner is in the second temperature range, on the other hand, more cathode gas is passed through the cooling section than through the heating device.
  • a storage means with a computer program product stored thereon is also provided, the computer program product comprising instructions which, when the computer program product is executed by a computer, cause the computer to carry out a method as described in detail above.
  • the computer program product can be implemented as computer-readable instruction code in any suitable programming language such as, for example, in LabView, JAVA, C ++, C # and / or Python.
  • the storage means can be a computer readable storage medium such as a data disc A removable drive, a volatile or, in particular, a non-volatile memory.
  • the storage means can also be understood to be a network from which the computer program product can be loaded by a user as required.
  • the computer program product can be or be implemented both by means of a computer program, ie software, and by means of one or more special electronic circuits, ie in hardware, or in any hybrid form, ie by means of software components and hardware components.
  • FIG. 1 shows a block diagram of a fuel cell system according to a preferred embodiment of the present invention
  • FIG. 2 shows a flow chart for explaining a method according to a preferred embodiment of the present invention.
  • FIG. 1 shows a block diagram for describing a fuel cell system 10 according to a preferred embodiment.
  • the fuel cell system 10 shown in FIG. 1 is designed in the form of an SOFC system.
  • the fuel cell system 10 has a fuel cell stack 11 with an anode section 12 and a cathode section 13.
  • the fuel cell system 10 further has an anode path 28 for conveying anode gas to the anode section 12 and a cathode path 14 for conveying cathode gas to the cathode section 13.
  • An evaporator designed as a heat exchanger 26 and a reformer 25 are arranged in the anode path 28.
  • the reformer 25 is located upstream of a cold side of the heat exchanger 26.
  • Exhaust gas from the fuel cell stack 11 flows through a hot side of the heat exchanger 26 and is arranged in the exhaust gas flow of the fuel cell system 10, via which anode exhaust gas is also recirculated.
  • the fuel cell system 10 shown also has a heating device 15 for preheating the fuel cell system 10 during a starting process of the fuel cell system 10. More precisely, the heating device 15 is arranged for preheating an afterburner 17 which is arranged downstream of the anode section 12 and the cathode section 13.
  • the afterburner 17 is provided for burning cathode off-gas and anode off-gas from the fuel cell stack 11.
  • the heating device 15 is connected to the afterburner 17 by an afterburner line 18.
  • the fuel cell system 10 shown in FIG. 1 has a cooling section 16 for conducting at least part of the cathode gas along the heating device 15, the cooling section 16 being in heat-transferring connection with the heating device 15 for cooling the heating device 15.
  • the cooling section 16 is designed to be annular around the heating device 15 for this purpose.
  • the heating device 15 is designed as an electrical heating device 15 for electrically heating cathode gas, which is passed into the heating device 15 as heating gas.
  • a fork section 19 is designed in the cathode path 14 upstream of the cooling section 16 for branching the cathode gas from the cathode path 14 in the direction of the cooling section 16 and as heating gas in the direction of the heating device 15.
  • the fork section 19 has a heating gas outlet 22 and a cathode gas outlet 23.
  • the heating gas outlet 22 is in fluid connection with the heating device 15 through a heating gas feed line 24.
  • the cathode gas outlet 23 is in fluid communication with the cooling section 16 through a cathode gas line 29.
  • a heating gas valve 20 for controlling the heating gas to the heating device 15 is configured in the heating gas supply line.
  • a cathode gas valve 21 or one or more throttle valves for controlling the cathode gas to the cooling section 16 is configured in the cathode gas line 29.
  • a fan 27 for generating a negative pressure in the fuel cell system 10 and subsequently for conveying cathode gas in the form of air through the cathode path 14 and the entire fuel cell system 10 is arranged in the exhaust gas discharge section.
  • the fuel cell system 10 shown in FIG. 1 also has a storage means 30 in the form of a control device, on which a computer program product 31 for executing a method for operating the fuel cell system 10 is stored.
  • a method for operating the fuel cell system in which cathode gas for cooling the meat appliance 15 is passed through the cooling section 16 during a heating process for heating the fuel cell system 10.
  • a first step S1 more cathode gas is first passed through the heating device 15 than through the cooling section 16 until a predefined target temperature is reached in and / or on the afterburner 17.
  • the Fleizgasventil 20 and the cathode gas valve 21 are opened accordingly.
  • the fuel gas valve 20 is closed and the cathode gas valve 21 is fully opened.
  • all or some of the valves can advantageously be designed as throttle valves, in particular controllable throttle valves.

Abstract

The present invention relates to a fuel cell system (10), having a fuel cell stack (11) with an anode portion (12) and a cathode portion (13), a cathode path (14) for conducting cathode gas to the cathode portion (13), a heating device (15) for heating the fuel cell system (10) during a starting process of the fuel cell system (10), and a cooling portion (16) for conducting at least some of the cathode gas along the heating device (15), the cooling portion (16) being connected to the heating device (15) for heat transfer in order to cool the heating device (15). The invention further relates to a method for operating a fuel cell system (10) according to the invention and to storage means (30) having a computer program product (31) stored thereon for performing the method.

Description

Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems Fuel cell system and method for operating a fuel cell system
Die vorliegende Erfindung betrifft ein Brennstoffzellensystem, aufweisend einen Brennstoffzellenstapel mit einem Anodenabschnitt und einem Kathodenabschnitt, einen Kathodenpfad zum Leiten von Kathodengas zum Kathodenabschnitt, und eine Heizvorrichtung zum Vorheizen des Brennstoffzellensystems während eines Startvorgangs des Brennstoffzellensystems. Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines solchen Brennstoffzellensystems. The present invention relates to a fuel cell system comprising a fuel cell stack with an anode section and a cathode section, a cathode path for conducting cathode gas to the cathode section, and a heating device for preheating the fuel cell system during a starting process of the fuel cell system. The invention also relates to a method for operating such a fuel cell system.
Gattungsgemäße Brennstoffzellensysteme werden im Rahmen eines Startprozesses in der Regel zunächst auf eine vorbestimmte Betriebstemperatur gebracht, bevor das Brennstoffzellensystem wie gewünscht zur Strom- und Spannungserzeugung betrieben wird. Der Aufwärm prozess kann auf unterschiedliche Weisen realisiert werden. Eine Möglichkeit besteht darin, eine dezidierte Heizvorrichtung zu nutzen.Generic fuel cell systems are usually first brought to a predetermined operating temperature as part of a starting process before the fuel cell system is operated as desired to generate electricity and voltage. The warm-up process can be implemented in different ways. One possibility is to use a dedicated heating device.
Um eine Überhitzung der Heizvorrichtung selbst sowie der umliegenden Funktionsbauteile zu verhindern, müssen die Heizvorrichtung und die Umgebung der Heizvorrichtung gekühlt und/oder möglichst thermisch voneinander isoliert werden. Statisch-passive, thermische Isolierungen benötigen relativ viel Bauraum und sind deshalb für verschiedene Anwendungsfälle ungeeignet. Bekannte aktive Kühlvorrichtungen haben ebenfalls einen hohen Bauraumbedarf und resultieren in einem Energiebedarf, welchen es gilt, möglichst gering zu halten. Darüber hinaus erhöhen bekannte aktive Kühlvorrichtungen den Komplexitätsgrad des Brennstoffzellensystems in unerwünscht hohem Maße. In order to prevent the heating device itself and the surrounding functional components from overheating, the heating device and the surroundings of the heating device must be cooled and / or thermally insulated from one another as far as possible. Static-passive, thermal insulation requires a relatively large amount of space and is therefore unsuitable for various applications. Known active cooling devices also have a high installation space requirement and result in an energy requirement which must be kept as low as possible. In addition, known active cooling devices increase the degree of complexity of the fuel cell system to an undesirably high degree.
Aufgabe der vorliegenden Erfindung ist es, der voranstehend beschriebenen Problematik zumindest teilweise Rechnung zu tragen. Insbesondere ist es Aufgabe der vorliegenden Erfindung, ein Brennstoffzellensystem sowie ein Verfahren zum verbesserten Kühlen einer Heizvorrichtung im Brennstoffzellensystem zu schaffen.The object of the present invention is to at least partially take into account the problems described above. In particular, it is the object of the present invention to create a fuel cell system and a method for improved cooling of a heating device in the fuel cell system.
Die voranstehende Aufgabe wird durch die Patentansprüche gelöst. Insbesondere wird die voranstehende Aufgabe durch das Brennstoffzellensystem gemäß Anspruch 1 , das Verfahren gemäß Anspruch 8 sowie das Speichermittel gemäß Anspruch 12 gelöst. Weitere Vorteile der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem Brennstoffzellensystem beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Verfahren, dem erfindungsgemäßen Speichermittel und jeweils umgekehrt, sodass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird oder werden kann. The above object is achieved by the claims. In particular, the above object is achieved by the fuel cell system according to claim 1, the method according to claim 8 and the storage means according to claim 12. Further advantages of the invention emerge from the subclaims, the description and the drawings. Features and details that are described in connection with the fuel cell system apply here, of course also in connection with the method according to the invention, the storage means according to the invention and in each case vice versa, so that, with regard to the disclosure, reference is or can always be made to the individual aspects of the invention.
Gemäß einem ersten Aspekt der vorliegenden Erfindung wird ein Brennstoffzellensystem zur Verfügung gestellt, aufweisend einen Brennstoffzellenstapel mit einem Anodenabschnitt und einem Kathodenabschnitt, einen Kathodenpfad zum Leiten von Kathodengas zum Kathodenabschnitt, und eine Heizvorrichtung zum Vorheizen des Brennstoffzellensystems während eines Startvorgangs des Brennstoffzellensystems. Das Brennstoffzellensystem weist ferner einen Kühlabschnitt zum Leiten von wenigstens einem Teil des Kathodengases entlang der Heizvorrichtung auf, wobei der Kühlabschnitt zum Kühlen der Heizvorrichtung in wärmeübertragender Verbindung mit der Heizvorrichtung steht.According to a first aspect of the present invention, a fuel cell system is provided, comprising a fuel cell stack with an anode section and a cathode section, a cathode path for conducting cathode gas to the cathode section, and a heating device for preheating the fuel cell system during a starting process of the fuel cell system. The fuel cell system furthermore has a cooling section for conducting at least part of the cathode gas along the heating device, the cooling section being in heat-transferring connection with the heating device for cooling the heating device.
Bei Versuchen im Rahmen der vorliegenden Erfindung wurde erkannt, dass abgezweigte Kathodenluft als effektives und platzsparendes Kühlmittel genutzt werden kann. Im Stand der Technik sind verschiedene Systeme bekannt, bei welchen Kathodenluft in wärmeübertragender Verbindung mit Heizvorrichtungen stehen. Bei den bisher bekannten Systemen soll dadurch allerdings ein Aufheizen der Kathodenluft durch die Heizvorrichtung ermöglicht werden. Vorliegend wird nun genau der gegenteilige Weg bestritten, indem die Kathodenluft gezielt zum Kühlen der Heizvorrichtung genutzt werden soll. In experiments within the scope of the present invention, it was found that branched off cathode air can be used as an effective and space-saving coolant. Various systems are known in the prior art in which cathode air is in heat-transferring connection with heating devices. In the previously known systems, however, this is intended to enable the cathode air to be heated by the heating device. In the present case, exactly the opposite approach is being taken, in that the cathode air is to be used specifically for cooling the heating device.
Da die Kathodenluft ohnehin im Brennstoffzellensystem geführt wird, lässt sich die vorgeschlagene Lösung platzsparend realisieren. Der Komplexitätsgrad des Brennstoffzellensystems wird durch die erfindungsgemäße Konfiguration kaum erhöht. Insbesondere für stationäre Brennstoffzellensysteme als beispielsweise Kraftwerke oder Generatoren zeichnet sich die Lösung durch ihre relativ leichte Bauweise aus. Grundsätzlich ist diese Lösung aber auch für mobile ANwendugne verwendbar. Dadurch, dass zur Realisierung des in Rede stehenden Kühlsystems kaum Zusatzkomponenten, insbesondere keine zusätzlichen aktiven Funktionsbauteile, im Brennstoffzellensystem benötigt werden, kann eine erfindungsgemäße Kühlung der Heizvorrichtung relativ energiesparend realisiert werden. Dadurch, dass das Kathodengas entlang der Heizvorrichtung geführt wird, kann der Kühlvorgang an der Heizvorrichtung durch Konvektion erheblich gesteigert werden. Das Brennstoffzellensystem ist vorliegend bevorzugt in Form eines SOFC- Systems ausgestaltet, in welchem effektive Kühlsysteme erforderlich sind. Ein Solches kann durch die erfindungsgemäße Ausgestaltung bereitgestellt werden.Since the cathode air is routed in the fuel cell system anyway, the proposed solution can be implemented in a space-saving manner. The degree of complexity of the fuel cell system is hardly increased by the configuration according to the invention. In particular for stationary fuel cell systems such as power plants or generators, the solution is characterized by its relatively light construction. In principle, this solution can also be used for mobile applications. Because hardly any additional components, in particular no additional active functional components, are required in the fuel cell system to implement the cooling system in question, cooling of the heating device according to the invention can be implemented in a relatively energy-saving manner. Because the cathode gas is guided along the heating device, the cooling process on the heating device by convection can be increased considerably become. In the present case, the fuel cell system is preferably designed in the form of an SOFC system, in which effective cooling systems are required. Such can be provided by the configuration according to the invention.
Das Brennstoffzellensystem weist wenigstens einen Brennstoffzellenstapel auf. Unter dem wenigstens einen Teil des Kathodengases, das entlang der Fleizvorrichtung geleitet wird, ist Kathodengas zu verstehen, das aus dem Kathodenpfad zum Kühlabschnitt abgezweigt wird. Demnach kann unter diesem Teil des Kathodengases aus dem Kathodenpfad abgezweigtes Kathodengas verstanden werden. Der Kühlabschnitt erstreckt sich vorzugsweise über die gesamte Länge oder im Wesentlichen über die gesamte Länge der Heizvorrichtung, um einen möglichst großen Kühleffekt an der Heizvorrichtung bewirken zu können. The fuel cell system has at least one fuel cell stack. The at least a part of the cathode gas which is passed along the heating device is to be understood as meaning cathode gas which is branched off from the cathode path to the cooling section. Accordingly, this part of the cathode gas can be understood to mean cathode gas branched off from the cathode path. The cooling section preferably extends over the entire length or essentially over the entire length of the heating device in order to be able to bring about the greatest possible cooling effect on the heating device.
Darunter, dass der Kühlabschnitt in einer wärmeübertragenden Verbindung mit der Heizvorrichtung steht, kann verstanden werden, dass ein Außenwandabschnitt des Kühlabschnitts an einen Außenwandabschnitt der Heizvorrichtung angrenzt oder zumindest in unmittelbarer Nähe zu diesem ausgestaltet ist. Unter Kathodengas ist vorliegend insbesondere Luft oder ein anderes, sauerstoffhaltiges Fluid zu verstehen. Das Kathodengas wird bevorzugt durch ein Gebläse, das im Abgaspfad angeordnet ist, durch den Kathodenpfad in Richtung des Kühlabschnitts und/oder des Heizabschnitts gefördert. Das im Abgaspfad stromabwärts des Nachbrenners angeordnete Gebläse erzeugt im gesamten Brennstoffzellensystem einen Unterdrück, sodass dieses im Wesentlichen im Unterdrück betrieben wird. Das Gebläse saugt folglich auch die Kathodenluft durch das gesamte Brennstoffzellensystem. Grundsätzlich kann das Gebläse allerdings beispielsweise auch im Kathodenpfad zur Erzeugung eines erzwungenen Luftstromes angeordnet sein. The fact that the cooling section is in a heat-transferring connection with the heating device can be understood to mean that an outer wall section of the cooling section adjoins an outer wall section of the heating device or is at least configured in the immediate vicinity of this. In the present case, cathode gas is to be understood in particular as air or another oxygen-containing fluid. The cathode gas is preferably conveyed through the cathode path in the direction of the cooling section and / or the heating section by a fan which is arranged in the exhaust gas path. The fan arranged in the exhaust gas path downstream of the afterburner generates a negative pressure in the entire fuel cell system, so that it is operated essentially in negative pressure. The fan consequently also draws the cathode air through the entire fuel cell system. In principle, however, the fan can also be arranged, for example, in the cathode path for generating a forced air flow.
Gemäß einerweiteren Ausführungsform der vorliegenden Erfindung ist es möglich, dass bei einem Brennstoffzellensystem der Kühlabschnitt zumindest abschnittsweise ringförmig um die Heizvorrichtung herum ausgestaltet ist. Damit lässt sich ein besonders wirksamer Kühleffekt erzielen. Die Heizvorrichtung kann durch die ringförmige Umspülung mit Kathodengas gleichmäßig gekühlt werden, wodurch Spannungen und daraus resultierende Schäden in der Heizvorrichtungen verhindert werden können. Der Kühlabschnitt kann als koaxial zur Heizvorrichtung geführter Kathodenluftpfad verstanden werden. Der ringförmige Kühlabschnitt erstreckt sich in Kathodengasströmungsrichtung vorzugsweise über die gesamte Länge der Heizvorrichtung. Für eine möglichst effektive Wärmeübertragung grenzen eine Außenwandung der Heizvorrichtung und eine innere Ringwandung des Kühlabschnitts direkt oder im Wesentlichen direkt aneinander. According to a further embodiment of the present invention, it is possible, in a fuel cell system, for the cooling section to be designed at least in sections in an annular manner around the heating device. A particularly effective cooling effect can thus be achieved. The heating device can be evenly cooled by the annular purging with cathode gas, whereby stresses and damage resulting therefrom in the heating devices can be prevented. The cooling section can be understood as a cathode air path which is guided coaxially to the heating device. The annular cooling section extends in Cathode gas flow direction preferably over the entire length of the heating device. For the most effective heat transfer possible, an outer wall of the heating device and an inner ring wall of the cooling section adjoin one another directly or essentially directly.
Die Heizvorrichtung ist gemäß einer Ausführungsform der Erfindung bevorzugt als eine elektrische Heizvorrichtung ausgestaltet. Eine elektrische Heizvorrichtung lässt sich schnell und einfach an gegebenen Betriebszustände, also beispielsweise an einen Start- oder Normalbetrieb des Brennstoffzellensystems, anpassen. Durch die elektrische Heizvorrichtung kann Kathodenluft, die zur Heizvorrichtung abgezweigt wird, elektrisch erhitzt und anschließend mit entsprechendem Temperaturniveau weitergeleitet werden. Eine elektrische Heizvorrichtung ist in der Regel in unmittelbarer Umgebung von anderen elektrischen Funktionsbauteilen montiert. In dieser Umgebung ist eine Wärmeentwicklung im Brennstoffzellensystem besonders kritisch zu betrachten. Folglich ist es günstig, wenn der Kühlabschnitt oder eine Kühlvorrichtung vorgesehen ist. Durch den erfindungsgemäße Kühlabschnitt ist es jedoch möglich, nicht nur die elektrische Heizvorrichtung selbst, sondern auch die elektrischen Komponenten in der unmittelbaren Umgebung der Heizvorrichtung vor der Abwärme der elektrischen Heizvorrichtung zu schützen. Die Kühlvorrichtung oder der Kühlabschnitt ist insbesondere als Luftkühlung ausgebildet. Durch das Umspülen der Heizvorrichtung durch den Kühlabschnitt mit Luft, können auch die maximalen Oberflächentemperaturen, welche in verschiedensten Normen angegeben sind (Verbrennungsgefahr) eingehalten werden, ohne zusätzliche Isolierung zu benötigen.According to one embodiment of the invention, the heating device is preferably designed as an electrical heating device. An electrical heating device can be adapted quickly and easily to given operating states, for example to a start or normal operation of the fuel cell system. Through the electrical heating device, cathode air, which is branched off to the heating device, can be electrically heated and then passed on at the appropriate temperature level. An electrical heating device is usually installed in the immediate vicinity of other electrical functional components. In this environment, the development of heat in the fuel cell system must be viewed particularly critically. Consequently, it is advantageous if the cooling section or a cooling device is provided. However, the cooling section according to the invention makes it possible to protect not only the electrical heating device itself, but also the electrical components in the immediate vicinity of the heating device from the waste heat from the electrical heating device. The cooling device or the cooling section is designed in particular as air cooling. By rinsing the heating device through the cooling section with air, the maximum surface temperatures, which are specified in various standards (risk of burns), can be maintained without the need for additional insulation.
Als Heizvorrichtung kann jedoch auch beispielsweise ein Flammenbrenner verwendet werden, welcher ähnliche Vorteile hat und welcher günstig ist, um den geringen Bauraum im System halten zu können und trotzdem genügend Schutz für umliegende Komponenten zu erhalten. However, a flame burner, for example, can also be used as the heating device, which has similar advantages and which is favorable in order to be able to keep the small installation space in the system and still obtain sufficient protection for surrounding components.
Ein erfindungsgemäßes Brennstoffzellensystem kann ferner einen Nachbrenner zum wenigstens teilweisen Verbrennen von Kathodenabgas und/oder Anodenabgas aus dem Brennstoffzellenstapel aufweisen, wobei die Heizvorrichtung durch eine Nachbrennerleitung mit dem Nachbrenner verbunden ist, um Heizgas aus der Heizvorrichtung in den Nachbrenner zu leiten. D.h., die Heizvorrichtung ist vorliegend weniger zum Heizen des Brennstoffzellenstapels, sondern vielmehr zum Heizen des Nachbrenners ausgestaltet. Insbesondere ist die Heizvorrichtung mittelbar über den Brennstoffzellenstapel mit dem Nachbrenner verbunden. Demnach ist die Heizvorrichtung durch die Nachbrennerleitung bevorzugt derart mit dem Nachbrenner verbunden, dass Heizgas aus der Heizvorrichtung direkt in den Nachbrenner geleitet werden kann. Damit unterscheidet sich die Heizvorrichtung grundlegend von Heizvorrichtungen, die speziell zum Aufheizen des Brennstoffzellenstapels ausgestaltet sind. Im Rahmen der Erfindung wurde erkannt, dass Kathodengas auf überraschend einfache Weise auch zum Kühlen von Heizvorrichtungen genutzt werden kann, welche Heizgas nicht direkt zum Brennstoffzellenstapel führen. A fuel cell system according to the invention can furthermore have an afterburner for at least partial burning of cathode exhaust gas and / or anode exhaust gas from the fuel cell stack, the heating device being connected to the afterburner by an afterburner line in order to conduct heating gas from the heating device into the afterburner. That is, the heating device is present less for heating the fuel cell stack, but rather for heating the Afterburner designed. In particular, the heating device is indirectly connected to the afterburner via the fuel cell stack. Accordingly, the heating device is preferably connected to the afterburner by the afterburner line in such a way that heating gas can be passed from the heating device directly into the afterburner. The heating device thus differs fundamentally from heating devices that are specially designed for heating up the fuel cell stack. In the context of the invention, it was recognized that cathode gas can also be used in a surprisingly simple manner for cooling heating devices which do not lead heating gas directly to the fuel cell stack.
Außerdem ist es möglich, dass bei einem Brennstoffzellensystem gemäß der vorliegenden Erfindung ein Gabelabschnitt zum Verzweigen des Kathodengases vom Kathodenpfad in Richtung des Kühlabschnitts und als Heizgas in Richtung der Heizvorrichtung bereitgestellt ist. Ein solcher Gabelabschnitt lässt sich einfach und platzsparend realisieren. Von Vorteil ist es in diesem Fall, wenn ergänzend ein Heizgasventil zum Kontrollieren des Heizgases zur Heizvorrichtung und ein Kathodengasventil zum Kontrollieren des Kathodengases zum Kühlabschnitt bereitgestellt werden. Als Alternative zum Kathodengasventil kann auch eine Drosselklappe vorgesehen sein. Durch das Heizgasventil kann kontrolliert, also gesteuert und/oder geregelt werden, welche Kathodengasmenge als Heizgas zur Heizvorrichtung geleitet wird. Durch das Kathodengasventil oder die Drosselklappe kann kontrolliert, also gesteuert und/oder geregelt werden, welche Kathodengasmenge zum Kathodenabschnitt geleitet wird. Mit Hilfe des Heizgasventils und des Kathodengasventils lässt sich der Kathodengasstrom abhängig vom aktuellen Betriebszustand des Brennstoffzellensystems einfach und zuverlässig durch die gewünschten Funktionsabschnitte, also die Heizvorrichtung und/oder den Kühlabschnitt, leiten. In addition, in a fuel cell system according to the present invention, it is possible that a fork section is provided for branching the cathode gas from the cathode path in the direction of the cooling section and as heating gas in the direction of the heating device. Such a fork section can be implemented in a simple and space-saving manner. In this case, it is advantageous if, in addition, a heating gas valve for controlling the heating gas to the heating device and a cathode gas valve for controlling the cathode gas to the cooling section are provided. As an alternative to the cathode gas valve, a throttle valve can also be provided. The heating gas valve can be used to control, that is to say controlled and / or regulated, which amount of cathode gas is passed as heating gas to the heating device. The cathode gas valve or the throttle valve can be used to monitor, that is to say controlled and / or regulate, which amount of cathode gas is directed to the cathode section. With the aid of the heating gas valve and the cathode gas valve, the cathode gas flow can be guided easily and reliably through the desired functional sections, i.e. the heating device and / or the cooling section, depending on the current operating state of the fuel cell system.
Das Brennstoffzellensystem ist insbesondere in Form eines stationären SOFC- Systems ausgestaltet. Bei Versuchen im Rahmen der vorliegenden Erfindung hat sich überraschend herausgestellt, dass ein erfindungsgemäßes Kühlsystem auch bei den hohen Temperaturen, die in einem SOFC-System herrschen, stabil betreibbar ist. Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Betreiben eines wie vorstehend dargestellten Brennstoffzellensystems zur Verfügung gestellt, wobei während eines Aufheizvorgangs zum Aufheizen des Brennstoffzellensystems Kathodengas zum Kühlen der Heizvorrichtung durch den Kühlabschnitt geleitet wird. Damit bringt ein erfindungsgemäßes Verfahren die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf das erfindungsgemäße Brennstoffzellensystem beschrieben worden sind. The fuel cell system is designed in particular in the form of a stationary SOFC system. In tests within the scope of the present invention, it has surprisingly been found that a cooling system according to the invention can be operated stably even at the high temperatures that prevail in an SOFC system. According to a further aspect of the present invention, a method for operating a fuel cell system as shown above is provided, cathode gas for cooling the heating device being passed through the cooling section during a heating process for heating up the fuel cell system. A method according to the invention thus has the same advantages as have been described in detail with reference to the fuel cell system according to the invention.
Bei einerweiteren Ausgestaltungsvariante der vorliegenden Erfindung kann während eines Aufheizvorgangs zumindest vorübergehend gleichzeitig Kathodengas durch den Kühlabschnitt sowie als Heizgas durch die Heizvorrichtung geleitet werden. Dadurch können sowohl der gewünschte Aufheizvorgang im Brennstoffzellensystem als auch die gleichzeitige Kühlung der Heizvorrichtung realisiert werden. D.h., es kann ein sicherer Heizvorgang gewährleistet werden, bei welchem Schäden an der Heizvorrichtung sowie den Bauteilen in unmittelbarer Nähe der Heizvorrichtung verhindert werden können. In a further embodiment variant of the present invention, during a heating process, cathode gas can at the same time, at least temporarily, be passed through the cooling section and as heating gas through the heating device. As a result, both the desired heating process in the fuel cell system and the simultaneous cooling of the heating device can be implemented. That is, a safe heating process can be ensured, in which damage to the heating device and the components in the immediate vicinity of the heating device can be prevented.
Weiterhin ist es bei einem Verfahren gemäß der vorliegenden Erfindung möglich, dass zumindest bis zum Erreichen einer vordefinierten Zieltemperatur im Brennstoffzellensystem mehr Kathodengas durch die Heizvorrichtung als durch den Kühlabschnitt geleitet wird. Dadurch kann während des Aufheizvorgangs das Aufheizen des Brennstoffzellensystems auf einfache Weise priorisiert werden, während zuverlässig ein Überhitzen der Heizvorrichtung verhindert wird. Während des Aufheizvorgangs und/oder bis zum Erreichen der vordefinierten Temperatur kann das Verhältnis von Kathodengas durch den Kühlabschnitt zu Kathodengas in Form von Heizgas durch die Heizvorrichtung 1:2 oder weniger betragen. D.h., durch den Kühlabschnitt werden 1/3 oder weniger und durch die Heizvorrichtung werden 2/3 oder mehr Kathodengas geführt. Zum Erkennen der Temperatur an wenigstens einer Stelle im Brennstoffzellensystem kann das Brennstoffzellensystem wenigstens einen Temperatursensor aufweisen. Außerdem kann das Brennstoffzellensystem einen Controller aufweisen, der für die erfindungsgemäße, temperaturabhängige Steuerung und/oder Regelung der Fluidströme konfiguriert ist. Furthermore, with a method according to the present invention it is possible for more cathode gas to be passed through the heating device than through the cooling section, at least until a predefined target temperature is reached in the fuel cell system. As a result, the heating of the fuel cell system can be prioritized in a simple manner during the heating process, while overheating of the heating device is reliably prevented. During the heating process and / or until the predefined temperature is reached, the ratio of cathode gas through the cooling section to cathode gas in the form of heating gas through the heating device can be 1: 2 or less. That is, 1/3 or less is passed through the cooling section and 2/3 or more is passed through the heater, cathode gas. To detect the temperature at at least one point in the fuel cell system, the fuel cell system can have at least one temperature sensor. In addition, the fuel cell system can have a controller which is configured for the temperature-dependent control and / or regulation of the fluid flows according to the invention.
Zudem ist es bei einem erfindungsgemäßen Verfahren möglich, dass bei einer vordefinierten Zieltemperatur im Brennstoffzellensystem oder darüber mehr Kathodengas durch den Kühlabschnitt als durch die Heizvorrichtung geleitet wird. D.h., sobald erkannt wird, dass eine gewünschte Zieltemperatur in einem gewünschten Bereich im Brennstoffzellensystem, beispielsweise in und/oder an einem Nachbrenner des Brennstoffzellensystems, erreicht wird oder wurde, wird der Volumenstrom des Kathodengases durch die Heizvorrichtung reduziert und der Volumenstrom des Kathodengases durch den Kühlabschnitt, also den Kathodenpfad, wird erhöht. Dies kann dahin führen, dass das Leiten von Kathodengas durch die Heizvorrichtung vollständig eingestellt wird und das Kathodengas nur noch durch den Kühlabschnitt, also durch den Kathodenpfad, zum Kathodenabschnitt geleitet wird. Das Kathodengas, das insbesondere in Form von Luft vorliegt, kann im Kathodenpfad über die Restwärme der abgeschalteten Heizvorrichtung vorgewärmt werden, wodurch Heizverluste verringert werden können. Insbesondere kann durch das Umspülen der Heizvorrichtung mit Kathodengas jedoch die Heizvorrichtung schnell gekühlt werden. Dass zumindest bis zum Erreichen einer vordefinierten Zieltemperatur im Brennstoffzellensystem mehr Kathodengas durch die Heizvorrichtung als durch den Kühlabschnitt geleitet wird kann dahingehend verstanden werden, dass im Brennstoffzellensystem mehr Kathodengas durch die Heizvorrichtung als durch den Kühlabschnitt geleitet wird, solange sich die Temperatur im Brennstoffzellensystem und insbesondere im und/oder am Nachbrenner in einem ersten Temperaturbereich befindet, der niedriger als ein zweiter Temperaturbereich ist. Sobald die Temperatur im Brennstoffzellensystem und insbesondere im und/oder am Nachbrenner im zweiten Temperaturbereich liegt, wird hingegen mehr Kathodengas durch den Kühlabschnitt als durch die Heizvorrichtung geleitet. In addition, with a method according to the invention it is possible for more cathode gas to be passed through the cooling section than through the heating device at a predefined target temperature in the fuel cell system or above. That is, as soon as it is recognized that a desired target temperature is or has been reached in a desired area in the fuel cell system, for example in and / or on an afterburner of the fuel cell system, the volume flow of the cathode gas through the heating device is reduced and the volume flow of the cathode gas through the cooling section , i.e. the cathode path, is increased. This can lead to the fact that the conducting of cathode gas through the heating device is completely stopped and the cathode gas is only conducted through the cooling section, that is to say through the cathode path, to the cathode section. The cathode gas, which is in particular in the form of air, can be preheated in the cathode path via the residual heat of the switched-off heating device, as a result of which heating losses can be reduced. In particular, however, the heating device can be cooled quickly by flushing the heating device with cathode gas. That more cathode gas is passed through the heating device than through the cooling section at least until a predefined target temperature is reached in the fuel cell system can be understood to mean that more cathode gas is passed through the heating device than through the cooling section in the fuel cell system, as long as the temperature in the fuel cell system and in particular in the and / or is located on the afterburner in a first temperature range that is lower than a second temperature range. As soon as the temperature in the fuel cell system and in particular in and / or on the afterburner is in the second temperature range, on the other hand, more cathode gas is passed through the cooling section than through the heating device.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird zudem ein Speichermittel mit einem darauf gespeicherten Computerprogrammprodukt zur Verfügung gestellt, wobei das Computerprogrammprodukt Befehle umfasst, die bei der Ausführung des Com puterprogramm produkts durch einen Computer diesen veranlassen, ein wie vorstehend im Detail beschriebenes Verfahren auszuführen.According to a further aspect of the present invention, a storage means with a computer program product stored thereon is also provided, the computer program product comprising instructions which, when the computer program product is executed by a computer, cause the computer to carry out a method as described in detail above.
Damit bringt ein erfindungsgemäßes Speichermittel die vorstehend beschriebenen Vorteile mit sich. Das Computerprogrammprodukt kann als computerlesbarer Anweisungscode in jeder geeigneten Programmiersprache wie beispielsweise in LabView, JAVA, C++, C# und/oder Python implementiert sein. Das Speichermittel kann ein computerlesbares Speichermedium wie eine Datendisk, ein Wechsellaufwerk, ein flüchtiger oder insbesondere ein nichtflüchtiger Speicher sein. Unter dem Speichermittel kann ferner ein Netzwerk verstanden werden, aus dem das Com puterprogramm produkt bei Bedarf von einem Nutzer geladen werden kann. Das Computerprogrammprodukt kann sowohl mittels eines Computerprogramms, d. h. einer Software, als auch mittels einer oder mehrerer spezieller elektronischer Schaltungen, d.h. in Hardware, oder in beliebig hybrider Form, d. h. mittels Software- Komponenten und Hardware-Komponenten, realisiert werden oder sein. A storage means according to the invention thus brings the advantages described above with it. The computer program product can be implemented as computer-readable instruction code in any suitable programming language such as, for example, in LabView, JAVA, C ++, C # and / or Python. The storage means can be a computer readable storage medium such as a data disc A removable drive, a volatile or, in particular, a non-volatile memory. The storage means can also be understood to be a network from which the computer program product can be loaded by a user as required. The computer program product can be or be implemented both by means of a computer program, ie software, and by means of one or more special electronic circuits, ie in hardware, or in any hybrid form, ie by means of software components and hardware components.
Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der nachfolgenden Beschreibung zu verschiedenen Ausführungsbeispielen der Erfindung, welche in den Figuren schematisch dargestellt sind. Further measures improving the invention emerge from the following description of various exemplary embodiments of the invention, which are shown schematically in the figures.
Es zeigen jeweils schematisch: They each show schematically:
Figur 1 ein Blockschaltbild eines Brennstoffzellensystems gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung, undFIG. 1 shows a block diagram of a fuel cell system according to a preferred embodiment of the present invention, and FIG
Figur 2 ein Flussdiagramm zum Erläutern eines Verfahrens gemäß einer bevor zugten Ausführungsform der vorliegenden Erfindung. FIG. 2 shows a flow chart for explaining a method according to a preferred embodiment of the present invention.
Fig. 1 zeigt ein Blockschaltbild zum Beschreiben eines Brennstoffzellensystems 10 gemäß einer bevorzugten Ausführungsform. Das in Fig. 1 dargestellte Brennstoffzellensystem 10 ist in Form eines SOFC-Systems ausgestaltet. Das Brennstoffzellensystem 10 weist einen Brennstoffzellenstapel 11 mit einem Anodenabschnitt 12 und einem Kathodenabschnitt 13 auf. Das Brennstoffzellensystem 10 weist ferner einen Anodenpfad 28 zum Leiten von Anodengas zum Anodenabschnitt 12 und einen Kathodenpfad 14 zum Leiten von Kathodengas zum Kathodenabschnitt 13 auf. 1 shows a block diagram for describing a fuel cell system 10 according to a preferred embodiment. The fuel cell system 10 shown in FIG. 1 is designed in the form of an SOFC system. The fuel cell system 10 has a fuel cell stack 11 with an anode section 12 and a cathode section 13. The fuel cell system 10 further has an anode path 28 for conveying anode gas to the anode section 12 and a cathode path 14 for conveying cathode gas to the cathode section 13.
Im Anodenpfad 28 sind ein als Wärmetauscher 26 ausgeführter Verdampfer und ein Reformer 25 angeordnet. Der Reformer 25 befindet sich stromaufwärts einer kalten Seite des Wärmetauschers 26 Eine heiße Seite des Wärmetauschers 26 wird mit Abgas aus dem Brennstoffzellenstapel 11 durchströmt und ist im Abgasstrom des Brennstoffzellensystems 10 angeordnet, über welchen auch Anodenabgas rezirkuliert wird. Das dargestellte Brennstoffzellensystem 10 weist ferner eine Heizvorrichtung 15 zum Vorheizen des Brennstoffzellensystems 10 während eines Startvorgangs des Brennstoffzellensystems 10 auf. Genauer gesagt ist die Heizvorrichtung 15 zum Vorheizen eines Nachbrenners 17, der stromabwärts des Anodenabschnitts 12 sowie des Kathodenabschnitts 13 angeordnet ist, angeordnet. D.h., der Nachbrenner 17 ist zum Verbrennen von Kathodenabgas und Anodenabgas aus dem Brennstoffzellenstapel 11 bereitgestellt. Um Heizgas aus der Heizvorrichtung 15 in den Nachbrenner 17 zu leiten, ist die Heizvorrichtung 15 durch eine Nachbrennerleitung 18 mit dem Nachbrenner 17 verbunden. An evaporator designed as a heat exchanger 26 and a reformer 25 are arranged in the anode path 28. The reformer 25 is located upstream of a cold side of the heat exchanger 26. Exhaust gas from the fuel cell stack 11 flows through a hot side of the heat exchanger 26 and is arranged in the exhaust gas flow of the fuel cell system 10, via which anode exhaust gas is also recirculated. The fuel cell system 10 shown also has a heating device 15 for preheating the fuel cell system 10 during a starting process of the fuel cell system 10. More precisely, the heating device 15 is arranged for preheating an afterburner 17 which is arranged downstream of the anode section 12 and the cathode section 13. That is, the afterburner 17 is provided for burning cathode off-gas and anode off-gas from the fuel cell stack 11. In order to conduct heating gas from the heating device 15 into the afterburner 17, the heating device 15 is connected to the afterburner 17 by an afterburner line 18.
Außerdem weist das in Fig. 1 dargestellte Brennstoffzellensystem 10 einen Kühlabschnitt 16 zum Leiten von wenigstens einem Teil des Kathodengases entlang der Heizvorrichtung 15 auf, wobei der Kühlabschnitt 16 zum Kühlen der Heizvorrichtung 15 in wärmeübertragender Verbindung mit der Heizvorrichtung 15 steht. Gemäß der dargestellten Ausführungsform ist der Kühlabschnitt 16 dazu ringförmig um die Heizvorrichtung 15 herum ausgestaltet. In addition, the fuel cell system 10 shown in FIG. 1 has a cooling section 16 for conducting at least part of the cathode gas along the heating device 15, the cooling section 16 being in heat-transferring connection with the heating device 15 for cooling the heating device 15. According to the embodiment shown, the cooling section 16 is designed to be annular around the heating device 15 for this purpose.
Die Heizvorrichtung 15 ist im gezeigten Beispiel als elektrische Heizvorrichtung 15 zum elektrischen Erhitzen von Kathodengas, das als Heizgas in die Heizvorrichtung 15 geleitet wird, ausgestaltet. Zum Leiten von Kathodengas in die Heizvorrichtung 15 ist im Kathodenpfad 14 stromaufwärts des Kühlabschnitts 16 ein Gabelabschnitt 19 zum Verzweigen des Kathodengases vom Kathodenpfad 14 in Richtung des Kühlabschnitts 16 und als Heizgas in Richtung der Heizvorrichtung 15 ausgestaltet.In the example shown, the heating device 15 is designed as an electrical heating device 15 for electrically heating cathode gas, which is passed into the heating device 15 as heating gas. In order to conduct cathode gas into the heating device 15, a fork section 19 is designed in the cathode path 14 upstream of the cooling section 16 for branching the cathode gas from the cathode path 14 in the direction of the cooling section 16 and as heating gas in the direction of the heating device 15.
Der Gabelabschnitt 19 weist einen Heizgasauslass 22 und einen Kathodengasauslass 23 auf. Der Heizgasauslass 22 steht mit der Heizvorrichtung 15 durch eine Heizgaszuleitung 24 in Fluidverbindung. Der Kathodengasauslass 23 steht mit dem Kühlabschnitt 16 durch eine Kathodengasleitung 29 in Fluidverbindung. In der Heizgaszuleitung ist ein Heizgasventil 20 zum Kontrollieren des Heizgases zur Heizvorrichtung 15 ausgestaltet. In der Kathodengasleitung 29 ist ein Kathodengasventil 21 oder eine oder mehrere Drosselklappen zum Kontrollieren des Kathodengases zum Kühlabschnitt 16 ausgestaltet. Im Abgasabfuhrabschnitt ist ein Gebläse 27 zur Erzeugung eines Unterdruckes im Brennstoffzellensystem 10 und in weiterer Folge zum Fördern von Kathodengas in Form von Luft durch den Kathodenpfad 14 und das gesamte Brennstoffzellensystem 10 angeordnet. Das in Fig. 1 dargestellte Brennstoffzellensystem 10 weist ferner ein Speichermittel 30 in Form eines Steuergeräts auf, auf welchem ein Computerprogrammprodukt 31 zum Ausführen eines Verfahrens zum Betreiben des Brennstoffzellensystems 10 gespeichert ist. The fork section 19 has a heating gas outlet 22 and a cathode gas outlet 23. The heating gas outlet 22 is in fluid connection with the heating device 15 through a heating gas feed line 24. The cathode gas outlet 23 is in fluid communication with the cooling section 16 through a cathode gas line 29. A heating gas valve 20 for controlling the heating gas to the heating device 15 is configured in the heating gas supply line. A cathode gas valve 21 or one or more throttle valves for controlling the cathode gas to the cooling section 16 is configured in the cathode gas line 29. A fan 27 for generating a negative pressure in the fuel cell system 10 and subsequently for conveying cathode gas in the form of air through the cathode path 14 and the entire fuel cell system 10 is arranged in the exhaust gas discharge section. The fuel cell system 10 shown in FIG. 1 also has a storage means 30 in the form of a control device, on which a computer program product 31 for executing a method for operating the fuel cell system 10 is stored.
Mit Bezug auf Fig. 2 wird anschließend ein solches Verfahren zum Betreiben des Brennstoffzellensystems beschrieben, bei welchem während eines Aufheizvorgangs zum Aufheizen des Brennstoffzellensystems 10 Kathodengas zum Kühlen der Fleizvorrichtung 15 durch den Kühlabschnitt 16 geleitet wird. In einem ersten Schritt S1 wird hierbei zunächst bis zum Erreichen einer vordefinierten Zieltemperatur im und/oder am Nachbrenner 17 mehr Kathodengas durch die Fleizvorrichtung 15 als durch den Kühlabschnitt 16 geleitet. Flierzu werden das Fleizgasventil 20 und das Kathodengasventil 21 entsprechend geöffnet. Sobald die vordefinierte Zieltemperatur erreicht ist, werden das Fleizgasventil 20 geschlossen und das Kathodengasventil 21 vollständig geöffnet. Folglich wird, sobald die vordefinierte Zieltemperatur erreicht wurde, mehr Kathodengas durch den Kühlabschnitt 16 als durch die Fleizvorrichtung 15 geleitet. Im Rahmen der Erfindung können vorteilhaft alle Ventile oder einzelne davon als Drosselklappen, insbesondere ansteuerbare Drosselklappen, ausgeführt sein. With reference to FIG. 2, such a method for operating the fuel cell system will then be described, in which cathode gas for cooling the meat appliance 15 is passed through the cooling section 16 during a heating process for heating the fuel cell system 10. In a first step S1, more cathode gas is first passed through the heating device 15 than through the cooling section 16 until a predefined target temperature is reached in and / or on the afterburner 17. In addition, the Fleizgasventil 20 and the cathode gas valve 21 are opened accordingly. As soon as the predefined target temperature is reached, the fuel gas valve 20 is closed and the cathode gas valve 21 is fully opened. As a result, once the predefined target temperature has been reached, more cathode gas is passed through the cooling section 16 than through the heating device 15. Within the scope of the invention, all or some of the valves can advantageously be designed as throttle valves, in particular controllable throttle valves.
Die Erfindung lässt neben den dargestellten Ausführungsformen weitere Gestaltungsgrundsätze zu. D. h. die Erfindung soll nicht auf die mit Bezug auf die Figuren erläuterten Ausführungsbeispiele beschränkt betrachtet werden. In addition to the illustrated embodiments, the invention allows further design principles. I. E. the invention should not be viewed as restricted to the exemplary embodiments explained with reference to the figures.
Bezugszeichenliste List of reference symbols
10 Brennstoffzellensystem 10 fuel cell system
11 Brennstoffzellenstapel 11 fuel cell stack
12 Anodenabschnitt 12 anode section
13 Kathodenabschnitt 13 cathode section
14 Kathodenpfad 14 cathode path
15 Heizvorrichtung 15 heater
16 Kühlabschnitt 16 cooling section
17 Nachbrenner 17 afterburner
18 Nachbrennerleitung 18 Afterburner pipe
19 Gabelabschnitt 19 fork section
20 Heizgasventil 20 heating gas valve
21 Kathodengasventil 21 Cathode gas valve
22 Heizgasauslass 22 Hot gas outlet
23 Kathodengasauslass 23 Cathode gas outlet
24 Heizgaszuleitung 24 Heating gas supply line
25 Reformer 25 reformers
26 Wärmetauscher 26 heat exchangers
27 Gebläse 27 blower
28 Anodenpfad 28 anode path
29 Kathodengasleitung 29 Cathode gas line
30 Speichermittel 30 storage means
31 Computerprogrammprodukt 31 computer program product

Claims

Patentansprüche Claims
1. Brennstoffzellensystem (10), aufweisend einen Brennstoffzellenstapel (11 ) mit einem Anodenabschnitt (12) und einem Kathodenabschnitt (13), einen Kathodenpfad (14) zum Leiten von Kathodengas zum Kathodenabschnitt (13), und eine Heizvorrichtung (15) zum Vorheizen des Brennstoffzellensystems (10) während eines Startvorgangs des Brennstoffzellensystems (10), gekennzeichnet durch einen Kühlabschnitt (16) zum Leiten von wenigstens einem Teil des Kathodengases entlang der Heizvorrichtung (15), wobei der Kühlabschnitt (16) zum Kühlen der Heizvorrichtung (15) in wärmeübertragender Verbindung mit der Heizvorrichtung (15) steht. 1. A fuel cell system (10) comprising a fuel cell stack (11) with an anode section (12) and a cathode section (13), a cathode path (14) for conducting cathode gas to the cathode section (13), and a heating device (15) for preheating the Fuel cell system (10) during a starting process of the fuel cell system (10), characterized by a cooling section (16) for conducting at least part of the cathode gas along the heating device (15), the cooling section (16) for cooling the heating device (15) in a heat-transferring manner Connection with the heating device (15) is.
2. Brennstoffzellensystem (10) nach Anspruch 1 , dadurch gekennzeichnet, dass der Kühlabschnitt (16) zumindest abschnittsweise ringförmig um die Heizvorrichtung (15) herum ausgestaltet ist. 2. Fuel cell system (10) according to claim 1, characterized in that the cooling section (16) is at least partially configured in a ring-shaped manner around the heating device (15).
3. Brennstoffzellensystem (10) nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Heizvorrichtung (15) eine elektrische Heizvorrichtung ist. 3. Fuel cell system (10) according to one of the preceding claims, characterized in that the heating device (15) is an electrical heating device.
4. Brennstoffzellensystem (10) nach einem der voranstehenden Ansprüche gekennzeichnet durch einen Nachbrenner (17) zum wenigstens teilweisen Verbrennen von Kathodenabgas und/oder Anodenabgas aus dem Brennstoffzellenstapel (11), wobei die Heizvorrichtung (15) durch eine Nachbrennerleitung (18) mit dem Nachbrenner (17) verbunden ist, um Heizgas aus der Heizvorrichtung (15) in den Nachbrenner (17) zu leiten. 4. Fuel cell system (10) according to one of the preceding claims, characterized by an afterburner (17) for at least partial burning of cathode exhaust gas and / or anode exhaust gas from the fuel cell stack (11), wherein the heating device (15) through an afterburner line (18) to the afterburner (17) is connected to conduct heating gas from the heating device (15) into the afterburner (17).
5. Brennstoffzellensystem (10) nach einem der voranstehenden Ansprüche, gekennzeichnet durch einen Gabelabschnitt (19) zum Verzweigen des Kathodengases vom Kathodenpfad (14) in Richtung des Kühlabschnitts (16) und als Heizgas in Richtung der Heizvorrichtung (15). 5. Fuel cell system (10) according to one of the preceding claims, characterized by a fork section (19) for branching the cathode gas from the cathode path (14) in the direction of the cooling section (16) and as heating gas in the direction of the heating device (15).
6. Brennstoffzellensystem (10) nach Anspruch 5, gekennzeichnet durch ein Heizgasventil (20) zum Kontrollieren des Heizgases zur Heizvorrichtung (15) und ein Kathodengasventil (21) zum Kontrollieren des Kathodengases zum Kühlabschnitt (16). 6. Fuel cell system (10) according to claim 5, characterized by a heating gas valve (20) for controlling the heating gas to the heating device (15) and a cathode gas valve (21) for controlling the cathode gas to the cooling section (16).
7. Brennstoffzellensystem (10) einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Brennstoffzellensystem (10) in Form eines stationären SOFC-Systems ausgestaltet ist. 7. Fuel cell system (10) one of the preceding claims, characterized in that the fuel cell system (10) is designed in the form of a stationary SOFC system.
8. Verfahren zum Betreiben eines Brennstoffzellensystems (10) nach einem der voranstehenden Ansprüche, wobei während eines Aufheizvorgangs zum Aufheizen des Brennstoffzellensystems (10) Kathodengas zum Kühlen der Heizvorrichtung (15) durch den Kühlabschnitt (16) geleitet wird. 8. The method for operating a fuel cell system (10) according to any one of the preceding claims, wherein cathode gas for cooling the heating device (15) is passed through the cooling section (16) during a heating process for heating the fuel cell system (10).
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass während eines Aufheizvorgangs zumindest vorübergehend gleichzeitig Kathodengas durch den Kühlabschnitt (16) sowie als Heizgas durch die Heizvorrichtung (15) geleitet wird. 9. The method according to claim 8, characterized in that during a heating process, at least temporarily, cathode gas is simultaneously passed through the cooling section (16) and as heating gas through the heating device (15).
10. Verfahren nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, dass zumindest bis zum Erreichen einer vordefinierten Zieltemperatur im Brennstoffzellensystem (10) mehr Kathodengas durch die Heizvorrichtung (15) als durch den Kühlabschnitt (16) geleitet wird. 10. The method according to any one of claims 8 to 9, characterized in that at least until a predefined target temperature is reached in the fuel cell system (10), more cathode gas is passed through the heating device (15) than through the cooling section (16).
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass bei einer vordefinierten Zieltemperatur im Brennstoffzellensystem (10) oder darüber mehr Kathodengas durch den Kühlabschnitt (16) als durch die Heizvorrichtung (15) geleitet wird. 11. The method according to any one of claims 8 to 10, characterized in that at a predefined target temperature in the fuel cell system (10) or above, more cathode gas is passed through the cooling section (16) than through the heating device (15).
12. Speichermittel (30) mit einem darauf gespeicherten Computerprogrammprodukt (31), das Befehle umfasst, die bei der Ausführung des Computerprogramm produkts (31) durch einen Computer diesen veranlassen, ein Verfahren nach einem der Ansprüche 8 bis 11 auszuführen. 12. Storage means (30) with a computer program product (31) stored thereon, which comprises instructions which are used during the execution of the Computer program product (31) causing a computer to carry out a method according to one of claims 8 to 11.
PCT/AT2020/060483 2019-12-18 2020-12-18 Fuel cell system and method for operating a fuel cell system WO2021119715A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020006172.8T DE112020006172A5 (en) 2019-12-18 2020-12-18 Fuel cell system and method for operating a fuel cell system
BR112022008162A BR112022008162A2 (en) 2019-12-18 2020-12-18 FUEL CELL SYSTEM, METHOD FOR OPERATING THIS AND STORAGE MEDIUM WITH A COMPUTER PROGRAM PRODUCT STORED IN IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA51112/2019A AT523316B1 (en) 2019-12-18 2019-12-18 Fuel cell system and method for operating a fuel cell system
ATA51112/2019 2019-12-18

Publications (1)

Publication Number Publication Date
WO2021119715A1 true WO2021119715A1 (en) 2021-06-24

Family

ID=74003993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2020/060483 WO2021119715A1 (en) 2019-12-18 2020-12-18 Fuel cell system and method for operating a fuel cell system

Country Status (4)

Country Link
AT (1) AT523316B1 (en)
BR (1) BR112022008162A2 (en)
DE (1) DE112020006172A5 (en)
WO (1) WO2021119715A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724869A1 (en) * 2005-05-20 2006-11-22 Delphi Technologies, Inc. Anode tail gas recycle cooler and re-heater for a solid oxide fuel cell stack assembly
WO2019075502A1 (en) * 2017-10-22 2019-04-25 Avl List Gmbh Burner for a fuel cell system with two reaction chambers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348885B (en) * 2009-03-13 2016-01-20 瑞典电池公司 For fuel injection system and the fuel injection method of fuel reformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724869A1 (en) * 2005-05-20 2006-11-22 Delphi Technologies, Inc. Anode tail gas recycle cooler and re-heater for a solid oxide fuel cell stack assembly
WO2019075502A1 (en) * 2017-10-22 2019-04-25 Avl List Gmbh Burner for a fuel cell system with two reaction chambers

Also Published As

Publication number Publication date
BR112022008162A2 (en) 2022-08-16
DE112020006172A5 (en) 2022-11-24
AT523316B1 (en) 2021-11-15
AT523316A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
DE102015118893B4 (en) Fuel cell system and control method for a fuel cell system
AT521065B1 (en) Fuel cell system and method for heating a fuel cell system
DE102015117333B4 (en) Fuel cell system
DE102017217685A1 (en) Arrangement for controlling the temperature of a battery and further electrical components of a vehicle, vehicle and method for controlling the arrangement
WO2020260035A1 (en) Fuel cell system with a ventilation line and/or a compressor ventilation line, method for ventilating a housing of a fuel cell system and vehicle
AT523488B1 (en) Protective reformer device for protecting an anode section of a fuel cell stack
EP2791606B1 (en) Closed transport fluid system for furnace-internal heat exchange between annealing gases
AT521948B1 (en) Fuel cell system and method for tempering a fuel cell system
AT523316B1 (en) Fuel cell system and method for operating a fuel cell system
DE102014012706B4 (en) Device for air conditioning a vehicle interior
DE112014005303B4 (en) Arrangement and method for controlling the temperature of a power storage system in a vehicle
WO2019178627A1 (en) Fuel cell system and method for heating up a fuel cell system
DE102015005978A1 (en) Method for operating a fuel cell system
DE102016001393B4 (en) Laser oscillator with fan
DE102018112108A1 (en) Method for tempering a current storage
DE102008052571A1 (en) Diffusion oven useful in semiconductor manufacture and for doping solar cells, comprises reactor enclosed by reaction pipe, outer casing, heating elements, means for locking the pipe, means for locking the casing and vacuum producing means
AT520482B1 (en) Method for quickly heating up a fuel cell system
EP2824743B1 (en) Method for controlling a fuel cell
AT520156B1 (en) Method for cooling a fuel cell stack with partially reformed fuel
DE102017221698B3 (en) Drive device with a coolant circuit and a heating element and method for operating a drive device
AT520417B1 (en) Stationary fuel cell system with heating device outside the hot box
DE102019206073A1 (en) Heater, internal combustion engine and motor vehicle
WO2013087646A1 (en) Bell-type furnace with a heat dispensing device positioned within a protective hood, in particular fed by an energy source external to the furnace chamber, for dispensing heat to annealing gas
AT524573B1 (en) Fuel cell component for a fuel cell system
AT526266B1 (en) Heating device for insertion into a well shaft for heating a soil layer contaminated with pollutants in order to clean this soil layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20829192

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008162

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022008162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220428

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020006172

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20829192

Country of ref document: EP

Kind code of ref document: A1