EP2771079B1 - Exercise device - Google Patents

Exercise device Download PDF

Info

Publication number
EP2771079B1
EP2771079B1 EP12794381.9A EP12794381A EP2771079B1 EP 2771079 B1 EP2771079 B1 EP 2771079B1 EP 12794381 A EP12794381 A EP 12794381A EP 2771079 B1 EP2771079 B1 EP 2771079B1
Authority
EP
European Patent Office
Prior art keywords
force
exerted
acceleration
electric actuator
moving part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12794381.9A
Other languages
German (de)
French (fr)
Other versions
EP2771079A1 (en
Inventor
Aurélien VAUQUELIN
Arnaud VANNICATTE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eracles - Technology
Original Assignee
Eracles - Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eracles - Technology filed Critical Eracles - Technology
Publication of EP2771079A1 publication Critical patent/EP2771079A1/en
Application granted granted Critical
Publication of EP2771079B1 publication Critical patent/EP2771079B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/06Training appliances or apparatus for special sports for rowing or sculling
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/16Training appliances or apparatus for special sports for cycling, i.e. arrangements on or for real bicycles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • A63B2023/0411Squatting exercises
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • A63B2024/0093Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load the load of the exercise apparatus being controlled by performance parameters, e.g. distance or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/06Training appliances or apparatus for special sports for rowing or sculling
    • A63B2069/062Training appliances or apparatus for special sports for rowing or sculling by pulling on a cable
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0028Training appliances or apparatus for special sports for running, jogging or speed-walking

Definitions

  • the invention relates to the field of exercise machines. More particularly, the invention relates to the field of electrically powered machines designed to develop or reconstruct the musculature of a user and in particular for sports training or rehabilitation of the muscles of a user.
  • Muscular exercise machines include weight machines and inertia machines.
  • the weight machines operate on the principle of cast iron masses or other material that a user moves by providing an effort to counter the weight of the cast iron masses. These machines include presses, free bars, guided load devices etc.
  • Inertia machines work differently. These consist, for example, in setting a cast iron disk in motion about an axis of rotation. The user must therefore provide an adequate effort to overcome the inertia of the machine. Some machines work with the principle of moving a fluid with a fin system. Although the fluid in motion has an inertia, in these machines the user must overcome mainly the viscous friction induced by the fluids. Other machines use the principle of the eddy current system to generate these viscous friction. These machines producing viscous friction include rowing machines or indoor cycling.
  • the invention provides an exercise device comprising a biasing element intended to be moved by the force of a user, an electric actuator comprising a movable part, the biasing element being connected to the movable part and the biasing element being able to move the movable part, a computer adapted to generate a control signal of the electric actuator and an acceleration sensor coupled to the moving part for measuring the acceleration of the moving part and for transmitting the measured acceleration to the computer, the electric actuator being adapted to exert a force on the biasing element via the moving part in response to the control signal, in which the computer is able to generate the control signal as a function of the acceleration measured so that the force exerted by the electric actuator comprises an artificial inertia contribution substantially proportional to the acceleration measured by the acceleration sensor.
  • the computer is able to generate the control signal as a function of the measured acceleration and a coefficient of proportionality and the computer is able to vary the coefficient of proportionality as a function of at least one parameter chosen from position, speed and acceleration of the moving part.
  • the computer is able to generate the control signal so that the force exerted by the electric actuator comprises an additional load contribution having a predetermined direction.
  • the computer is able to generate the control signal so that the artificial inertia contribution is oriented in the same direction as the predetermined direction contribution when the measured acceleration is in the opposite direction of the contribution. predetermined meaning.
  • the computer is able to generate the control signal so as to cancel the artificial inertia contribution when the measured acceleration is in the same direction as the predetermined direction contribution of the electric actuator.
  • connection between the biasing element and the mobile part comprises a speed reducer to increase the force of the motor.
  • a reducer generates additional real inertia for the user who actuates the biasing element.
  • the artificial inertia contribution exerted by the electric actuator can compensate all or part of the additional real inertia generated by the gearbox.
  • the device comprises a speed sensor capable of measuring the speed of the moving part and the computer is able to generate the control signal so that the force exerted by the electric actuator comprises a viscous friction contribution. substantially proportional to the speed measured by the speed sensor.
  • the electric actuator is a linear motor.
  • the electric actuator is a rotary motor in which the movable portion comprises a rotor of the rotary motor.
  • the exercise device is selected from the group consisting of rowing machines, indoor bicycles, lifting bars and guided load devices.
  • the movable part comprises a rotatably mounted motor shaft, the drive shaft is coupled to a gearbox, a pulley is coupled to the gearbox, a cable is fixed on the pulley at a first end of the cable, the cable is fixed on the handling element at a second end of the cable and the cable is able to wind on the pulley.
  • the exercise device comprises a human-machine interface allowing a user to adjust a coefficient of proportionality between the measured acceleration and the calculated artificial inertia contribution.
  • the computer is able to calculate the force to be exerted so that the force to be exerted by the electric actuator comprises an additional charge contribution having a predetermined direction, the human-machine interface allowing a user to adjust the additional charge contribution independently of the proportionality coefficient.
  • the man-machine interface allows a user to set the additional charge contribution to a zero value.
  • the biasing element is movable in a vertical direction and the computer is able to calculate the force to be exerted in the absence of force exerted by the user so that the force to be exerted by the electric actuator has a default load contribution compensating for a self-weight of the biasing element without causing spontaneous displacement of the biasing element in the absence of force exerted by the user.
  • An idea underlying the invention is to simulate on an exercise machine, when using the machine by a user, a different inertia from the real inertia of the exercise machine using an electric actuator.
  • An idea underlying the invention is to design a machine that allows to vary the weight and inertia independently of one another.
  • Some aspects of the invention start from the idea of simulating, on the exercise machine, additional weight using the electric actuator.
  • Some aspects of the invention start from the idea of simulating, on the exercise machine, additional friction using the electric actuator.
  • Some aspects of the invention are based on the observation that combining the "inertia” type exercises characteristic of inertia machines and the "weight” type exercises that are characteristic of weight machines in a single machine makes it possible to save a lot of space and to invest less. expensive.
  • Certain aspects of the invention start from the idea of generating additional inertial forces during certain phases of a muscle exercise performed by the user and canceling these forces of inertia in the other phases of the exercise. muscular.
  • Certain aspects of the invention start from the idea of generating inertial forces without fixed load to create specific muscle stresses to the inversion of the movement of a mass launched on a substantially horizontal trajectory, in particular the inversion of the movement. of a runner.
  • the exercise device comprises an electric motor 1 which can rotate a shaft 2 and exert a torque on the shaft 2.
  • a pulley 3 is tightly mounted on the shaft 2.
  • a cable 4 is fixed at its first end in the groove of the pulley 3. This cable 4 can wind in the groove around the pulley 3.
  • a handle 6 At the second end 5 of the cable is fixed a handle 6 through which a user can influence the device with its muscle strength when practicing muscle exercises.
  • the motor 1 comprises a position encoder 10 which measures the position of the motor shaft 2. The position is transmitted to an electronic card 7 in the form of a position signal 9. This electronic card 7 is adapted to receive this signal of position and uses the position signal 9 to generate a control signal. With this control signal, the electronic card 7 controls the torque generated by the motor 1 to control the force exerted by the motor 1, which is transmitted at the handle 6 via the pulley 3 and the cable 4 For this, the electronic card 7 transmits the signal of control to the motor 1 by the connection 8.
  • This control signal is received by a power supply unit integrated into the motor 1 which, from this control signal, supplies a certain current to the motor 1. The current supplied by the supply member thus induces a torque on the moving part 2 and thus via the pulley 3 and the cable 4 a force on the handle 6.
  • the force exerted by the motor 1 is substantially proportional to the current supplied by the power supply unit to the engine 1.
  • a first example is to simulate the presence of a predetermined mass suspended from a cable, namely that the motor torque exerts on the handle 6 a constant load as to the direction and intensity.
  • a user manipulates the handle 6 during an exercise it opposes the force of the engine 1 with the help of his muscular strength.
  • a user is positioned above the device and pulls the handle 6 from a low position to a high position with his hands. During this upward movement, the user must overcome the downward force exerted by the motor 1 on the handle 6.
  • the handle 6 arrives in the up position, the user performs the reverse movement and returns the handle 6 to the lower position while still being forced by the same force submitted in the same direction by the motor 1.
  • the user accompanies and brakes the movement of the handle down.
  • the exercise device thus simulates a mass to be alternately raised and rested by the user
  • the position signal is continuously transmitted to the electronic card 7 which calculates and transmits to the motor continuously the corresponding control signal.
  • the device controls the force generated by the motor 1 throughout the exercise.
  • the electronic card 7 here comprises a microprocessor 20.
  • a position encoder 10 measures the position of the motor shaft 2, this position is encoded into a position signal which is transmitted via the connection 38 to the microprocessor 20. Thus, in a This measurement can be emitted every 30 ms and preferably every 5 ms.
  • the position signal is transmitted to a branch member 13 via the connection 18.
  • the branch member derives the position signal thereby generating a speed signal which is transmitted to a second branch member 14 via the connection 15.
  • the second branch member derives the speed signal thereby generating an acceleration signal.
  • the acceleration signal is transmitted via the connection 17 to a calculation module 12.
  • the position signal and the speed signal are respectively transmitted to the calculation module 12 via the connections 11 and 16.
  • the calculation module 12 calculates the control signal to be supplied to the motor and transmits it to the motor via the connection 19.
  • control signal is calculated from the acceleration so that the force exerted by the motor 1 on the handle 6 includes the downward load and a predetermined artificial inertia.
  • the calculation module 12 takes into account the accumulation of the torque exerted by the motor 1 and the inertia of the rotating parts of the device connected to this motor which are the shaft 2, the pulley 3, the cable 4 and the handle 6 .
  • F s is the force exerted by the user on the handle 6
  • F m is the force exerted by the motor 1 on the handle 6 and controlled by the calculation module 12
  • m r is the inertia of the moving parts reduced to the handle 6 and the mass of the handle 6
  • is the acceleration of the handle 6.
  • Equation (1) corresponds to the fundamental principle of the dynamics applied to a system in translation. However, those skilled in the art will understand that torques exerted on a rotating system can be similarly modeled.
  • the coefficient k is a parameter which is programmed in the calculation module 12.
  • the device simulates an inertia less than the actual inertia of the device, that is to say the inertia of the rotating parts of the device. If the coefficient of proportionality k is positive, the device simulates greater inertia than the actual inertia of the device.
  • the user through a not shown user interface can change the values of the fixed component F ch and the proportionality factor k and thus determine the type of effort with which it wishes to practice. Thus, it is possible to independently vary the load of inertia. A wide range of types of muscle exercises can be offered to the user.
  • the user interface is connected to the calculation module 12 and is able to receive data on position, speed, acceleration or information calculated from these data, for example, the effort provided or the power expended. These data and information are calculated by the calculation module 12 from the acceleration, speed and position signals transmitted to the calculation module 12 respectively by the connections 17, 16 and 11. With these data and these information, the user interface may sensually solicit the user by displaying this information. The user can in this way follow the level of his effort during his physical exercises. However, these solicitations can be of different natures, solicitations are for example possible. Furthermore, the user interface comprises control members allowing the user to vary the values of the fixed component F ch and the proportionality factor k , preferably independently of one another.
  • control members are for example buttons on the user interface corresponding to fixed component pairs F ch and proportionality factor k predetermined.
  • a storage device for example a memory in the calculation module 12, stores this information and data. Thanks to this storage, the user can follow the evolution of his performances over time.
  • the figure 3 represents the position of the handle 6 along the z axis of the figure 1 and the acceleration of the handle 6 as a function of time during the tensile stresses of the handle presented with reference to the figure 1 .
  • the broken line curve 21 represents the position of the handle which is measured by the position encoder 10.
  • the continuous curve 22 represents the acceleration corresponding to the position curve 21.
  • the point 24 of the position curve 21 corresponds to the moment when the handle 6 is in the low position and the point 23 corresponds to the upper position of the handle.
  • the position curve 21 is substantially sinusoidal.
  • the acceleration also forms, along this period, a sinusoidal curve. Subsequently, the position curve is no longer sinusoidal and therefore the acceleration is no longer sinusoidal.
  • the figure 5 represents the force opposed by the motor 1 to the user as a function of time for the same time interval as the figure 3 .
  • Curve 28 is constant at a threshold 26.
  • the figure 5 is a first exercise where the calculation module provides a control signal to the motor so that the force opposite the user is constant over time. For this, the calculation module produces a control signal inducing a force having a load component equal to the threshold 26 and a zero inertia component. In this exercise, the user therefore only opposes a fixed load and the actual inertia of the system.
  • the figure 6 represents a second exercise which partially uses the principle of the first exercise presented with reference to figure 5 .
  • Curve 40 represents the force generated by the engine 1 during this exercise. It comprises two phases: a high phase 31 during which the curve is constant at the threshold 27 and a low phase during which the curve adopts the shape of the acceleration curve at the threshold 27. Indeed, the user is subjected to a load force corresponding to the threshold 27 when the measured acceleration is positive, that is to say here during high phases 31 of the handling of the handle where the handle is close to its high position 23.
  • the user is however subjected to an additional inertial force oriented in the same direction as the load force when the measured acceleration is negative, that is to say during a low phase 29 when the handle arrives in low position 24 and the user decelerates the descent and then accelerates to pull the handle to the high position 23.
  • This low phase corresponds to the phase 30 during which the acceleration is negative.
  • the user is subjected to additional artificial inertia when he arrives in the low position and wishes to raise the handle to the high position, that is to say at the moment when his muscle solicitation is the most intense.
  • the exercise device makes it possible to produce an additional stress that opposes the user during a reversal of the direction of movement of this user.
  • k 0 is a predetermined positive constant.
  • the calculation module can control the coefficient of proportionality k in multiple ways.
  • the calculation module can vary the coefficient of proportionality as a function of the position or the speed of the handle.
  • the exercise device produces an additional inertia component when the handle reaches a certain position.
  • this additional inertia component is added when the speed is in a particular direction. In this way a multitude of interesting exercises for muscle development can be produced. This allows in particular to solicit the muscles of the user more intensely when they are in a particular position.
  • the drive shaft 2 is connected to a speed reducer having a reduction ratio r.
  • the presence of such a gearbox makes it possible to generate relatively large forces while reducing the size of the motor, in order to miniaturize the device.
  • the pulley 3 is fixed on an output shaft of the gearbox.
  • the presence of a reducer greatly increases the real inertia of the moving parts of the motor 1 brought back to the handle 6.
  • the real inertia of the device is also increased by the reduced inertia of the rotating parts of the gearbox.
  • This compensation is all the more precise as the acceleration which is measured to generate the artificial inertia force is the acceleration of the motor shaft 2, so that this measurement takes into account the effect of the gearbox, which effect consists in increasing by the ratio r the acceleration at the level of the motor shaft 2 with respect to the acceleration exerted on the handle 6.
  • the invention is therefore not limited to this type of exercise device.
  • the invention can be adapted to any type of exercise machine that solicits any part of the body.
  • the invention may be adapted to constitute a rowing-type device, an indoor bicycle or a lifting bar.
  • an exercise device 50 for exerting the muscles of the arms in traction and thrust in which control methods according to the invention can be implemented.
  • the device 50 comprises two levers 53 which can be moved alternately forwards and backwards by a user.
  • the levers 53 are each coupled to an electric motor 54 which is controlled by the control device 55.
  • the motors 54 are controlled so as to generate a force represented by the curve 33 of the figure 4 .
  • the rotary motion of the levers is approximated in a linear motion along the x-axis.
  • the figure 4 represents the effort opposed to a user as part of the exercise device shown on the figure 7 .
  • the curve 33 represents the force generated by the motor and has a value proportional to the acceleration curve 30. It is assumed that a user solicits the lever 53 so that the measured position and the acceleration are the same as on the figure 3 , the x axis here replacing the z axis.
  • the control device 55 subjects a control signal to the motors 54 which does not induce a charge component. Only a component of artificial inertia is produced by the motors 54.
  • the effort experienced by the user is proportional to the acceleration and therefore corresponds to a simulated inertia without load that is greater than the actual inertia of the device.
  • the runner 34 is initially running at high speed in the x-axis direction, as shown schematically by the speed vector 35.
  • the runner 34 is running at high speed. speed in the opposite direction to the x-axis, as represented schematically by the speed vector 36.
  • the rider 34 therefore had to slow down his movement until it stopped, for example at point x0 , then re-accelerate in the other direction.
  • the muscles of the rider 34 were therefore solicited during this exercise essentially to overcome the inertia of the rider himself, oriented along the x axis.
  • the force of gravity being perpendicular to the movement, it does not create any particular muscular solicitation in this exercise, that is to say that the muscular solicitation specific to the exercise is a solicitation of pure inertia.
  • the exercise machine programmed to produce this type of solicitation is all the more advantageous as this race reversal situation is very common in ball sports, for example rugby or football.
  • a control program associating the artificial inertia force with a constant load makes it possible to produce a muscular solicitation similar to the accomplishment of the same exercise on a sloping ground.
  • the device is similar to the device described with the figure 7 and comprises a microprocessor having the same structure as the microprocessor 20 of the control system described in the figure 2 .
  • the speed v is determined by the calculation module 12 by means of a speed signal which is transmitted to the calculation module 12 via the connection 16.
  • the motor when the user moves the levers in one direction, the motor generates a torque on the lever comprising the viscous friction component proportional to the speed of movement of the lever in addition to a component of inertia.
  • This viscous friction component causes an additional stress which opposes the direction of movement of the user.
  • the device simulates a viscous friction that can be produced by a machine comprising a finned system.
  • the coefficient k 2 can be a constant stored in the memory of the microprocessor 20.
  • the calculation module 12 can control the coefficient of proportionality k 2 in multiple ways.
  • the calculation module can vary the coefficient of proportionality k 2 as a function of the position of the handle.
  • the machine 60 has a relatively similar shape to a weight machine known as a squat machine. But it can provide a much wider range of muscular solicitations.
  • the structure of the machine comprises a metal base 61 placed on the ground, shown in section on the figure 8 , and a guide column 62 vertically fixed to the base 61.
  • the upper surface of the base 61 is a platform 68 for receiving an athlete, for example in standing position as shown in ghost line.
  • a carriage 63 is slidably mounted on the column 62 by guide means not shown, so as to translate vertically along the column 62.
  • the carriage 63 is a four-sided structure which completely surrounds column 62, one and the other having a square section.
  • the carriage 63 carries gripping rods 69 which extend above the platform 68 and are intended to be engaged with the athlete, for example at the level of his shoulders or his arms or legs according to the invention. desired exercise.
  • a transmission belt 64 is mounted in the column 62 and extends between a idler pulley 65 pivotally mounted at the top of the column 65 and a driving pulley 66 pivotally mounted in the base directly above the column 62.
  • belt 64 is a toothed belt that makes a round-trip closed loop between the pulleys 65 and 66 so as to be coupled without slipping to the drive pulley 66.
  • the carriage 63 is secured to one of the two branches of the belt 64, by example by means of rivets 67 or other fastening means, so that it is also coupled without slipping to the drive pulley 66, any rotation of the pulley 66 resulting in a vertical translation of the carriage 63.
  • the belt 64 is formed of an AT10 toothed belt whose two ends are fixed to the carriage 63, so as to close the loop at the carriage 63.
  • a motor unit 70 is housed in the base 61 and coupled to the drive pulley 66 by means of a speed reducer 71.
  • the speed reducer 71 comprises an input shaft 72 coupled without sliding to the motor shaft of the motor group 70, which is shown in more detail on the figure 9 , and an output shaft 73 which carries the driving pulley 66.
  • the reduction ratio r is chosen between 3 and 100, and preferably between 5 and 30.
  • the machine 60 also comprises a control console 74 which can be integral with the base 61 or independent thereof.
  • the machine 60 does not require exceptional electrical power and can therefore be powered by a common home network.
  • the figure 9 represents more precisely the motor group 70 and its control unit 80, which is also housed in the base 61.
  • the motor unit 70 comprises an electric motor 76, for example an autopilot synchronous motor, and a current controller 77 which controls the current supply 78 of the engine 76.
  • the synchronous motor autopilot has a constant rotor flow.
  • This flux is created by permanent magnets or coils mounted in the rotor, while the variable stator flux is created by a three-phase winding to orient it in all directions.
  • the electronic control of this motor is to control the phase of the current waves so as to create a rotating field, always ahead of 90 ° on the field of the magnets, so that the torque is maximum. Under these conditions, the engine torque on the drive shaft 2 is proportional to the stator current. This current is precisely controlled in real time by the control unit 80 via the current controller 77.
  • control unit 80 comprises a low-level controller 81, for example of the FPGA type, which receives the position signal 83 from the position encoder 84 of the motor shaft 2 and performs real-time calculations. from the position signal 83 to determine the instantaneous values of the position, the speed and the acceleration of the motor shaft 2.
  • the position encoder 84 is for example an optical device which provides two squared signals in quadrature according to the technique known.
  • the high-level controller 82 includes a memory and a processor and executes complex control programs from the information provided in real time by the low-level controller 81. Possible control programs have been described above with reference to the Figures 3 to 6 .
  • the control console 74 is connected to the high-level controller 82 via a wired or wireless TCP / IP link 85, and has an interface allowing the athlete or his trainer to select pre-recorded exercise programs or to adjust them. precisely and in a personalized way the parameters of such a program.
  • the interface is a touch screen 86 which includes a slider 87 for adjusting the value of the load F ch along a predetermined scale, for example 0 to 3000 N, and a slider 88 to adjust the value of the coefficient k along a predetermined scale, that is to say the artificial inertia force F i .
  • the high-level controller 82 processes the information provided in real time by the low-level controller 81 and calculates the instantaneous torque to be exerted by the motor group 70.
  • the base controller Level 81 generates a control signal 90 corresponding to this instantaneous torque and transmits the signal 90 to the current controller 77, for example in the form of an analog control voltage varying between 0 and 10V.
  • a CAN digital interface may also be used.
  • control programs for simulating different exercises can be very numerous.
  • the machine 60 can react quickly to changes of direction imposed by the athlete, despite the friction that inevitably exist in such a mechanical system.
  • the high-level controller 82 implements a friction compensation algorithm that will now be explained.
  • Fch0 denotes the force imposed by default on the belt 64 by the motor 76, namely the value that is applied when the cursor 87 is placed on the graduation 0.
  • the electric motor will actually exert a force of about 3600 N in climb and 2400 N in descent.
  • a very strong reactivity could require a frequency filtering of the speed measurement, for example of the low-pass type of the first order.
  • the force to apply calculated can undergo a discontinuity at the time of reversal of the direction, which is necessarily detrimental to the comfort of use of the machine.
  • the high-level controller 82 implements an algorithm to avoid these discontinuities. To do this, the controller 82 detects a change of direction by the passage of the speed signal in a hysteresis comparator shown schematically on the figure 11 .
  • the controller 82 When starting the concentric phase, if the speed v> ⁇ , the controller 82 triggers the passage from F2 to F1. This variation is at a constant rate of change, for example of the order of 200 N / s.
  • the controller 82 triggers the transition from F1 to F2.
  • the threshold value ⁇ is chosen so as to ensure sufficient stability, namely that the engine does not go from F1 to F2 untimely when the athlete decides to stop during his movement.
  • force-versus-velocity curves between F1 and F2 values are not imposed by the system and depend in fact on the user's behavior, ie, how he varies the speed in a function of time, since the system imposes a rate of variation of force as a function of time.
  • control program can prevent the motor from making more than two consecutive changes if the difference in position of the moving part between the two changes does not exceed a certain limit, for example of 10 cm.
  • z is a height adjustable reference and the z position is determined by the low-level controller 81.
  • the human-machine interface allows the user to independently adjust the parameters of each of these contributions, in particular the coefficients k , k 2 and k 3 .
  • control methods described above may be employed with any other type of electric actuator.
  • a linear motor can be used to generate a force on the handling element.
  • control signal can be performed in different forms, unitarily or distributed, by means of hardware and / or software components.
  • Useful hardware components are ASIC specific integrated circuits, FPGA programmable logic networks or microprocessors.
  • Software components can be written in different programming languages, for example C, C ++, Java or VHDL. This list is not exhaustive.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Rehabilitation Tools (AREA)

Description

L'invention se rapporte au domaine des machines d'exercice. Plus particulièrement, l'invention se rapporte au domaine des machines à motorisation électrique conçues pour développer ou reconstituer la musculature d'un utilisateur et permettant notamment l'entrainement sportif ou la rééducation des muscles d'un utilisateur.The invention relates to the field of exercise machines. More particularly, the invention relates to the field of electrically powered machines designed to develop or reconstruct the musculature of a user and in particular for sports training or rehabilitation of the muscles of a user.

Parmi les machines d'exercice musculaire, il existe notamment les machines à poids et des machines à inertie.Muscular exercise machines include weight machines and inertia machines.

Les machines à poids fonctionnent sur le principe de masses en fonte ou autre matériau qu'un utilisateur déplace en fournissant un effort pour contrer le poids des masses en fonte. Ces machines sont notamment les presses, les barres libres, les appareils à charge guidée etc.The weight machines operate on the principle of cast iron masses or other material that a user moves by providing an effort to counter the weight of the cast iron masses. These machines include presses, free bars, guided load devices etc.

Les machines à inertie fonctionnent de manière différente. Celles-ci consistent par exemple à mettre en mouvement un disque en fonte autour d'un axe de rotation. L'utilisateur doit donc fournir un effort adéquat pour vaincre l'inertie de la machine. Certaines machines fonctionnent avec le principe de mettre en mouvement un fluide avec un système d'ailettes. Bien que le fluide mis en mouvement possède une inertie, dans ces machines l'utilisateur doit vaincre principalement le frottement visqueux induit par les fluides. D'autres machines utilisent le principe du système à courant de Foucault pour générer ces frottements visqueux. Ces machines produisant des frottements visqueux sont notamment les machines de type rameur ou le vélo d'intérieur.Inertia machines work differently. These consist, for example, in setting a cast iron disk in motion about an axis of rotation. The user must therefore provide an adequate effort to overcome the inertia of the machine. Some machines work with the principle of moving a fluid with a fin system. Although the fluid in motion has an inertia, in these machines the user must overcome mainly the viscous friction induced by the fluids. Other machines use the principle of the eddy current system to generate these viscous friction. These machines producing viscous friction include rowing machines or indoor cycling.

Le document WO2011/093434 décrit un dispositif d'exercice tel que décrit dans le préambule de la revendication 1.The document WO2011 / 093434 discloses an exercise device as described in the preamble of claim 1.

Selon un mode de réalisation, l'invention fournit un dispositif d'exercice comportant
un élément de sollicitation destiné à être déplacé par la force d'un utilisateur,
un actionneur électrique comportant une partie mobile, l'élément de sollicitation étant lié à la partie mobile et l'élément de sollicitation étant apte à déplacer la partie mobile,
un calculateur apte à générer un signal de commande de l'actionneur électrique et
un capteur d'accélération couplé à la partie mobile pour mesurer l'accélération de la partie mobile et pour transmettre l'accélération mesurée au calculateur,
l'actionneur électrique étant apte à exercer une force sur l'élément de sollicitation par l'intermédiaire de la partie mobile en réponse au signal de commande,
dans lequel le calculateur est apte à générer le signal de commande en fonction de l'accélération mesurée de manière que la force exercée par l'actionneur électrique comporte une contribution d'inertie artificielle sensiblement proportionnelle à l'accélération mesurée par le capteur d'accélération.
According to one embodiment, the invention provides an exercise device comprising
a biasing element intended to be moved by the force of a user,
an electric actuator comprising a movable part, the biasing element being connected to the movable part and the biasing element being able to move the movable part,
a computer adapted to generate a control signal of the electric actuator and
an acceleration sensor coupled to the moving part for measuring the acceleration of the moving part and for transmitting the measured acceleration to the computer,
the electric actuator being adapted to exert a force on the biasing element via the moving part in response to the control signal,
in which the computer is able to generate the control signal as a function of the acceleration measured so that the force exerted by the electric actuator comprises an artificial inertia contribution substantially proportional to the acceleration measured by the acceleration sensor.

Selon un mode de réalisation, le calculateur est apte à générer le signal de commande en fonction de l'accélération mesurée et un coefficient de proportionnalité et le calculateur est apte à faire varier le coefficient de proportionnalité en fonction d'au moins un paramètre choisi parmi la position, la vitesse et l'accélération de la partie mobile.According to one embodiment, the computer is able to generate the control signal as a function of the measured acceleration and a coefficient of proportionality and the computer is able to vary the coefficient of proportionality as a function of at least one parameter chosen from position, speed and acceleration of the moving part.

Selon un mode de réalisation, le calculateur est apte à générer le signal de commande de manière que la force exercée par l'actionneur électrique comporte une contribution de charge additionnelle présentant un sens prédéterminé.According to one embodiment, the computer is able to generate the control signal so that the force exerted by the electric actuator comprises an additional load contribution having a predetermined direction.

Selon un mode de réalisation, le calculateur est apte à générer le signal de commande de manière que la contribution d'inertie artificielle soit orientée dans le même sens que la contribution de sens prédéterminé lorsque l'accélération mesurée est dans le sens opposé de la contribution de sens prédéterminé.According to one embodiment, the computer is able to generate the control signal so that the artificial inertia contribution is oriented in the same direction as the predetermined direction contribution when the measured acceleration is in the opposite direction of the contribution. predetermined meaning.

Selon un mode de réalisation, le calculateur est apte à générer le signal de commande de manière à annuler la contribution d'inertie artificielle lorsque l'accélération mesurée est dans le même sens que la contribution de sens prédéterminée de l'actionneur électrique.According to one embodiment, the computer is able to generate the control signal so as to cancel the artificial inertia contribution when the measured acceleration is in the same direction as the predetermined direction contribution of the electric actuator.

Selon un mode de réalisation, la liaison entre l'élément de sollicitation et la partie mobile comporte un réducteur de vitesse pour démultiplier la force du moteur. Généralement, un tel réducteur génère une inertie réelle supplémentaire pour l'utilisateur qui actionne l'élément de sollicitation. Selon un mode de réalisation, la contribution d'inertie artificielle exercée par l'actionneur électrique peut compenser tout ou partie de l'inertie réelle supplémentaire générée par le réducteur.According to one embodiment, the connection between the biasing element and the mobile part comprises a speed reducer to increase the force of the motor. Generally, such a reducer generates additional real inertia for the user who actuates the biasing element. According to one embodiment, the artificial inertia contribution exerted by the electric actuator can compensate all or part of the additional real inertia generated by the gearbox.

Selon un mode de réalisation, le dispositif comporte un capteur de vitesse apte à mesurer la vitesse de la partie mobile et le calculateur est apte à générer le signal de commande de manière que la force exercée par l'actionneur électrique comporte une contribution de frottement visqueux sensiblement proportionnelle à la vitesse mesurée par le capteur de vitesse.According to one embodiment, the device comprises a speed sensor capable of measuring the speed of the moving part and the computer is able to generate the control signal so that the force exerted by the electric actuator comprises a viscous friction contribution. substantially proportional to the speed measured by the speed sensor.

Selon un mode de réalisation, l'actionneur électrique est un moteur linéaire.According to one embodiment, the electric actuator is a linear motor.

Selon un mode de réalisation, l'actionneur électrique est un moteur rotatif dans lequel la partie mobile comporte un rotor du moteur rotatif.According to one embodiment, the electric actuator is a rotary motor in which the movable portion comprises a rotor of the rotary motor.

Selon un mode de réalisation, le capteur d'accélération comporte :

  • un codeur de position couplé à la partie mobile pour mesurer la position de la partie mobile, le codeur de position générant un signal de position,
  • des éléments de dérivation aptes à dériver le signal de position pour déterminer l'accélération de la partie mobile.
According to one embodiment, the acceleration sensor comprises:
  • a position encoder coupled to the moving part for measuring the position of the moving part, the position encoder generating a position signal,
  • bypass elements adapted to derive the position signal to determine the acceleration of the moving part.

Selon un mode de réalisation, le dispositif d'exercice est sélectionné parmi le groupe comprenant les rameurs, les vélos d'intérieur, les barres de levage et les appareils de charge guidée.According to one embodiment, the exercise device is selected from the group consisting of rowing machines, indoor bicycles, lifting bars and guided load devices.

Selon un mode de réalisation, la partie mobile comporte un arbre moteur monté en rotation, l'arbre moteur est couplé à un réducteur, une poulie est couplée au réducteur, un câble est fixé sur la poulie en une première extrémité du câble, le câble est fixé sur l'élément de manipulation en une seconde extrémité du câble et le câble est apte à s'enrouler sur la poulie.According to one embodiment, the movable part comprises a rotatably mounted motor shaft, the drive shaft is coupled to a gearbox, a pulley is coupled to the gearbox, a cable is fixed on the pulley at a first end of the cable, the cable is fixed on the handling element at a second end of the cable and the cable is able to wind on the pulley.

Selon un mode de réalisation, le dispositif d'exercice comporte une interface homme-machine permettant à un utilisateur de régler un coefficient de proportionnalité entre l'accélération mesurée et la contribution d'inertie artificielle calculée.According to one embodiment, the exercise device comprises a human-machine interface allowing a user to adjust a coefficient of proportionality between the measured acceleration and the calculated artificial inertia contribution.

Selon un mode de réalisation, le calculateur est apte à calculer la force à exercer de manière que la force à exercer par l'actionneur électrique comporte une contribution de charge additionnelle présentant un sens prédéterminé, l'interface homme-machine permettant à un utilisateur de régler la contribution de charge additionnelle indépendamment du coefficient de proportionnalité.According to one embodiment, the computer is able to calculate the force to be exerted so that the force to be exerted by the electric actuator comprises an additional charge contribution having a predetermined direction, the human-machine interface allowing a user to adjust the additional charge contribution independently of the proportionality coefficient.

Selon un mode de réalisation, l'interface homme-machine permet à un utilisateur de régler la contribution de charge additionnelle à une valeur nulle.According to one embodiment, the man-machine interface allows a user to set the additional charge contribution to a zero value.

Selon un mode de réalisation, l'élément de sollicitation est déplaçable dans une direction verticale et que le calculateur est apte à calculer la force à exercer en l'absence de force exercée par l'utilisateur de manière que la force à exercer par l'actionneur électrique comporte une contribution de charge par défaut compensant un poids propre de l'élément de sollicitation sans causer de déplacement spontané de l'élément de sollicitation en l'absence de force exercée par l'utilisateur.According to one embodiment, the biasing element is movable in a vertical direction and the computer is able to calculate the force to be exerted in the absence of force exerted by the user so that the force to be exerted by the electric actuator has a default load contribution compensating for a self-weight of the biasing element without causing spontaneous displacement of the biasing element in the absence of force exerted by the user.

Selon un mode de réalisation, l'invention fournit également un procédé de commande d'un dispositif d'exercice comprenant :

  • mesurer l'accélération d'une partie mobile d'un moteur électrique en réponse à la force d'un utilisateur exercée sur un élément de sollicitation lié à la partie mobile,
  • générer un signal de commande en fonction de l'accélération mesurée et
  • commander l'actionneur électrique avec le signal de commande de manière que la force exercée par l'actionneur électrique sur l'élément de sollicitation par l'intermédiaire de la partie mobile comporte une contribution d'inertie artificielle sensiblement proportionnelle à l'accélération mesurée
According to one embodiment, the invention also provides a method of controlling an exercise device comprising:
  • measuring the acceleration of a moving part of an electric motor in response to the force of a user exerted on a biasing element connected to the moving part,
  • generate a control signal according to the measured acceleration and
  • controlling the electric actuator with the control signal so that the force exerted by the electric actuator on the biasing element through the moving part has an artificial inertia contribution substantially proportional to the measured acceleration

Une idée à la base de l'invention est de simuler sur une machine d'exercice, lors de l'utilisation de la machine par un utilisateur, une inertie différente de l'inertie réelle de la machine d'exercice à l'aide d'un actionneur électrique.An idea underlying the invention is to simulate on an exercise machine, when using the machine by a user, a different inertia from the real inertia of the exercise machine using an electric actuator.

Une idée à la base de l'invention est de concevoir une machine qui permette de faire varier le poids et l'inertie indépendamment l'un de l'autre.An idea underlying the invention is to design a machine that allows to vary the weight and inertia independently of one another.

Certains aspects de l'invention partent de l'idée de simuler, sur la machine d'exercice, un poids supplémentaire à l'aide de l'actionneur électrique.Some aspects of the invention start from the idea of simulating, on the exercise machine, additional weight using the electric actuator.

Certains aspects de l'invention partent de l'idée de simuler, sur la machine d'exercice, un frottement supplémentaire à l'aide de l'actionneur électrique.Some aspects of the invention start from the idea of simulating, on the exercise machine, additional friction using the electric actuator.

Certains aspects de l'invention partent du constat que combiner les exercices de type « inertie » caractéristiques des machines à inertie et les exercices de type « poids » caractéristiques des machines à poids dans une unique machine permet un gain de place important et un investissement moins onéreux.Some aspects of the invention are based on the observation that combining the "inertia" type exercises characteristic of inertia machines and the "weight" type exercises that are characteristic of weight machines in a single machine makes it possible to save a lot of space and to invest less. expensive.

Certains aspects de l'invention partent de l'idée de générer des forces d'inertie supplémentaires lors de certaines phases d'un exercice musculaire effectué par l'utilisateur et d'annuler ces forces d'inertie dans les autres phases de l'exercice musculaire.Certain aspects of the invention start from the idea of generating additional inertial forces during certain phases of a muscle exercise performed by the user and canceling these forces of inertia in the other phases of the exercise. muscular.

Certains aspects de l'invention partent de l'idée de générer des forces d'inertie sans charge fixe pour créer des sollicitations musculaires spécifiques à l'inversion du mouvement d'une masse lancée sur une trajectoire sensiblement horizontale, notamment l'inversion du mouvement d'un coureur.Certain aspects of the invention start from the idea of generating inertial forces without fixed load to create specific muscle stresses to the inversion of the movement of a mass launched on a substantially horizontal trajectory, in particular the inversion of the movement. of a runner.

L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.The invention will be better understood, and other objects, details, characteristics and advantages thereof will appear more clearly in the course of the following description of several particular embodiments of the invention, given solely for illustrative and non-limiting purposes. with reference to the accompanying drawings.

Sur ces dessins :

  • La figure 1 est une représentation schématique d'un dispositif d'exercice comportant un moteur.
  • La figure 2 est une représentation schématique du système de commande du moteur représenté dans la figure 1.
  • La figure 3 est un graphique de la position et de l'accélération en fonction du temps de la poignée décrite dans la figure 1 correspondant à une manipulation par l'utilisateur.
  • La figure 4 est un graphique de la force exercée par le moteur lors d'une manipulation du dispositif de la figure 7.
  • La figure 5 est un graphique de la force exercée par le moteur lors de la manipulation du dispositif conformément à la figure 3 correspondant à un premier type d'exercice.
  • La figure 6 est un graphique de la force exercée par le moteur lors de la manipulation du dispositif conformément à la figure 3 correspondant à un second type d'exercice.
  • La figure 7 est une représentation schématique d'une variante du dispositif d'exercice.
  • La figure 8 est une représentation schématique partiellement en coupe d'un dispositif d'exercice comportant un moteur selon un autre mode de réalisation.
  • La figure 9 est une représentation schématique fonctionnelle d'un système de commande du moteur représenté dans la figure 8.
  • La figure 10 est une représentation schématique d'un exercice d'inversion du mouvement d'un coureur.
  • La figure 11 est une représentation graphique du fonctionnement d'un comparateur à hystérésis pouvant être utilisé dans le système de commande de la figure 9.
On these drawings:
  • The figure 1 is a schematic representation of an exercise device comprising a motor.
  • The figure 2 is a schematic representation of the engine control system shown in the figure 1 .
  • The figure 3 is a graph of the position and acceleration over time of the handle described in the figure 1 corresponding to a manipulation by the user.
  • The figure 4 is a graph of the force exerted by the motor during a manipulation of the device of the figure 7 .
  • The figure 5 is a graph of the force exerted by the engine when handling the device in accordance with the figure 3 corresponding to a first type of exercise.
  • The figure 6 is a graph of the force exerted by the engine when handling the device in accordance with the figure 3 corresponding to a second type of exercise.
  • The figure 7 is a schematic representation of a variant of the exercise device.
  • The figure 8 is a schematic representation partially in section of an exercise device comprising a motor according to another embodiment.
  • The figure 9 is a schematic functional representation of a motor control system represented in the figure 8 .
  • The figure 10 is a schematic representation of an exercise of reversal of the movement of a runner.
  • The figure 11 is a graphical representation of the operation of a hysteresis comparator that can be used in the control system of the figure 9 .

Les figures 1 et 2 illustrent un dispositif d'exercice dans lequel peuvent être mis en oeuvre des procédés de commande conformes à l'invention. En référence à la figure 1, le dispositif d'exercice comprend un moteur électrique 1 qui peut entrainer en rotation un arbre 2 et exercer un couple sur l'arbre 2. Une poulie 3 est montée serrée sur l'arbre 2. Un câble 4 est fixé en sa première extrémité dans la gorge de la poulie 3. Ce câble 4 peut s'enrouler dans la gorge autour de la poulie 3. A la seconde extrémité 5 du câble est fixée une poignée 6 par l'intermédiaire de laquelle un utilisateur peut influencer le dispositif avec sa force musculaire lorsqu'il pratique des exercices musculaires.The Figures 1 and 2 illustrate an exercise device in which control methods according to the invention can be implemented. With reference to the figure 1 , the exercise device comprises an electric motor 1 which can rotate a shaft 2 and exert a torque on the shaft 2. A pulley 3 is tightly mounted on the shaft 2. A cable 4 is fixed at its first end in the groove of the pulley 3. This cable 4 can wind in the groove around the pulley 3. At the second end 5 of the cable is fixed a handle 6 through which a user can influence the device with its muscle strength when practicing muscle exercises.

Le moteur 1 comporte un codeur de position 10 qui mesure la position de l'arbre moteur 2. La position est transmise à une carte électronique 7 sous la forme d'un signal de position 9. Cette carte électronique 7 est adaptée à recevoir ce signal de position et utilise le signal de position 9 pour générer un signal de commande. Grâce à ce signal de commande, la carte électronique 7 commande le couple généré par le moteur 1 pour contrôler la force exercée par le moteur 1, laquelle est transmise au niveau de la poignée 6 par l'intermédiaire de la poulie 3 et du câble 4. Pour cela, la carte électronique 7 transmet le signal de commande au moteur 1 par la connexion 8. Ce signal de commande est reçu par un organe d'alimentation intégré dans le moteur 1 qui, à partir de ce signal de commande, fournit un certain courant au moteur 1. Le courant fourni par l'organe d'alimentation induit ainsi un couple sur la partie mobile 2 et donc par l'intermédiaire de la poulie 3 et du câble 4 une force sur la poignée 6. La force exercée par le moteur 1 est sensiblement proportionnelle au courant fourni par l'organe d'alimentation au moteur 1.The motor 1 comprises a position encoder 10 which measures the position of the motor shaft 2. The position is transmitted to an electronic card 7 in the form of a position signal 9. This electronic card 7 is adapted to receive this signal of position and uses the position signal 9 to generate a control signal. With this control signal, the electronic card 7 controls the torque generated by the motor 1 to control the force exerted by the motor 1, which is transmitted at the handle 6 via the pulley 3 and the cable 4 For this, the electronic card 7 transmits the signal of control to the motor 1 by the connection 8. This control signal is received by a power supply unit integrated into the motor 1 which, from this control signal, supplies a certain current to the motor 1. The current supplied by the supply member thus induces a torque on the moving part 2 and thus via the pulley 3 and the cable 4 a force on the handle 6. The force exerted by the motor 1 is substantially proportional to the current supplied by the power supply unit to the engine 1.

De nombreux procédés de commande peuvent être mis en oeuvre dans un tel dispositif afin de produire différentes sollicitations musculaires. Un premier exemple est de simuler la présence d'une masse prédéterminée suspendue à un câble, à savoir que le couple moteur exerce sur la poignée 6 une charge constante quant au sens et à l'intensité.Many control methods can be implemented in such a device to produce different muscular stresses. A first example is to simulate the presence of a predetermined mass suspended from a cable, namely that the motor torque exerts on the handle 6 a constant load as to the direction and intensity.

Lorsqu'un utilisateur manipule la poignée 6 au cours d'un exercice celui-ci s'oppose à la force du moteur 1 à l'aide de sa force musculaire. Par exemple, lors d'un exercice praticable avec ce dispositif, un utilisateur se positionne au-dessus du dispositif et effectue une traction de la poignée 6 depuis une position basse vers une position haute à l'aide de ses mains. Lors de ce déplacement vers le haut, l'utilisateur doit vaincre la force dirigée vers le bas exercée par le moteur 1 sur la poignée 6. Lorsque la poignée 6 arrive en position haute, l'utilisateur effectue le mouvement inverse et ramène la poignée 6 vers la position basse tout en étant toujours contraint par la même force soumise dans la même direction par le moteur 1. Lors de la descente, l'utilisateur accompagne et freine le déplacement de la poignée vers le bas. Le dispositif d'exercice simule ainsi une masse devant être alternativement soulevée et reposée par l'utilisateurWhen a user manipulates the handle 6 during an exercise it opposes the force of the engine 1 with the help of his muscular strength. For example, during a practicable exercise with this device, a user is positioned above the device and pulls the handle 6 from a low position to a high position with his hands. During this upward movement, the user must overcome the downward force exerted by the motor 1 on the handle 6. When the handle 6 arrives in the up position, the user performs the reverse movement and returns the handle 6 to the lower position while still being forced by the same force submitted in the same direction by the motor 1. During the descent, the user accompanies and brakes the movement of the handle down. The exercise device thus simulates a mass to be alternately raised and rested by the user

Durant cet exercice, le signal de position est transmis de manière continue à la carte électronique 7 qui calcule et transmet au moteur de manière continue le signal de commande correspondant. Ainsi, le dispositif commande l'effort généré par le moteur 1 tout au long de l'exercice.During this exercise, the position signal is continuously transmitted to the electronic card 7 which calculates and transmits to the motor continuously the corresponding control signal. Thus, the device controls the force generated by the motor 1 throughout the exercise.

Toutefois, un léger décalage peut être présent entre le moment où le codeur transmet la position et le couple exercé par le moteur 1 du fait du temps de réponse du moteur 1 au signal de commande et du temps de réponse de la carte électronique 7.However, a slight offset may be present between the moment when the encoder transmits the position and the torque exerted by the motor 1 because of the response time of the motor 1 to the control signal and the response time of the electronic card 7.

En référence à la figure 2, les moyens de commande du moteur vont maintenant être décrits plus précisément en référence à un deuxième exemple.With reference to the figure 2 , the engine control means will now be described more specifically with reference to a second example.

La carte électronique 7 comporte ici un microprocesseur 20. Un codeur de position 10 mesure la position de l'arbre du moteur 2, cette position est encodée en un signal de position qui est transmis via la connexion 38 au microprocesseur 20. Ainsi, dans un mode de réalisation cette mesure peut être émise toutes les 30ms et de préférence toutes les 5 ms. Dans ce microprocesseur 20, le signal de position est transmis à un organe de dérivation 13 via la connexion 18. L'organe de dérivation dérive le signal de position générant ainsi un signal de vitesse qui est transmis à un deuxième organe de dérivation 14 via la connexion 15. Le second organe de dérivation dérive le signal de vitesse générant ainsi un signal d'accélération. Le signal d'accélération est transmis via la connexion 17 à un module de calcul 12. Par ailleurs, le signal de position et le signal de vitesse sont respectivement transmis au module de calcul 12 via les connexions 11 et 16. Le module de calcul 12 calcule le signal de commande à fournir au moteur et le transmet au moteur via la connexion 19.The electronic card 7 here comprises a microprocessor 20. A position encoder 10 measures the position of the motor shaft 2, this position is encoded into a position signal which is transmitted via the connection 38 to the microprocessor 20. Thus, in a This measurement can be emitted every 30 ms and preferably every 5 ms. In this microprocessor 20, the position signal is transmitted to a branch member 13 via the connection 18. The branch member derives the position signal thereby generating a speed signal which is transmitted to a second branch member 14 via the connection 15. The second branch member derives the speed signal thereby generating an acceleration signal. The acceleration signal is transmitted via the connection 17 to a calculation module 12. Furthermore, the position signal and the speed signal are respectively transmitted to the calculation module 12 via the connections 11 and 16. The calculation module 12 calculates the control signal to be supplied to the motor and transmits it to the motor via the connection 19.

Plus précisément, le signal de commande est calculé à partir de l'accélération de sorte que la force exercée par le moteur 1 sur la poignée 6 comporte la charge dirigée vers le bas et une inertie artificielle prédéterminée.More specifically, the control signal is calculated from the acceleration so that the force exerted by the motor 1 on the handle 6 includes the downward load and a predetermined artificial inertia.

Pour cela le module de calcul 12 prend en compte le cumul du couple exercé par le moteur 1 et l'inertie des pièces rotatives du dispositif reliées à ce moteur que sont l'arbre 2, la poulie 3, le câble 4 et la poignée 6.For this, the calculation module 12 takes into account the accumulation of the torque exerted by the motor 1 and the inertia of the rotating parts of the device connected to this motor which are the shaft 2, the pulley 3, the cable 4 and the handle 6 .

En effet, lorsqu'un utilisateur manipule la poignée 6 : m r × γ = F m + F s

Figure imgb0001
Indeed, when a user manipulates the handle 6: m r × γ = F m + F s
Figure imgb0001

Fs est la force exercée par l'utilisateur sur la poignée 6, Fm est la force exercée par le moteur 1 sur la poignée 6 et commandée par le module de calcul 12, mr est l'inertie des pièces mobiles ramenée sur la poignée 6 et la masse de la poignée 6 et γ est l'accélération de la poignée 6.Where F s is the force exerted by the user on the handle 6, F m is the force exerted by the motor 1 on the handle 6 and controlled by the calculation module 12, m r is the inertia of the moving parts reduced to the handle 6 and the mass of the handle 6 and γ is the acceleration of the handle 6.

L'équation (1) correspond au principe fondamental de la dynamique appliqué à un système en translation. Toutefois, l'homme du métier comprendra que les couples exercés sur un système en rotation peuvent être modélisés de manière similaire.Equation (1) corresponds to the fundamental principle of the dynamics applied to a system in translation. However, those skilled in the art will understand that torques exerted on a rotating system can be similarly modeled.

La force exercée par le moteur Fm est composée de deux composantes induites par le signal de commande: une composante fixe Fch représentant la charge et une composante proportionnelle à l'accélération Fi qui représente l'inertie artificielle. Ainsi : F m = F ch + F i

Figure imgb0002
The force exerted by the motor F m is composed of two components induced by the control signal: a fixed component F ch representing the load and a component proportional to the acceleration F i which represents the artificial inertia. So : F m = F ch + F i
Figure imgb0002

Ou la force Fi est définie en fonction d'un coefficient de proportionnalité k : F i = - k × γ

Figure imgb0003
Or the force F i is defined according to a coefficient of proportionality k : F i = - k × γ
Figure imgb0003

Le coefficient k est un paramètre qui est programmé dans le module de calcul 12.The coefficient k is a parameter which is programmed in the calculation module 12.

L'équation (1) peut se réécrire : m r + k × γ = F ch + F s

Figure imgb0004
Equation (1) can be rewritten: m r + k × γ = F ch + F s
Figure imgb0004

De cette manière, si le coefficient de proportionnalité k utilisé pour produire le signal de commande est négatif, à savoir -mr < k < 0, le dispositif simule une inertie inférieure à l'inertie réelle du dispositif, c'est-à-dire l'inertie des pièces rotatives du dispositif. Si le coefficient de proportionnalité k est positif, le dispositif simule une inertie plus importante que l'inertie réelle du dispositif.In this way, if the coefficient of proportionality k used to produce the control signal is negative, namely -m r < k <0, the device simulates an inertia less than the actual inertia of the device, that is to say the inertia of the rotating parts of the device. If the coefficient of proportionality k is positive, the device simulates greater inertia than the actual inertia of the device.

L'utilisateur, par l'intermédiaire d'une interface utilisateur non représentée peut modifier les valeurs de la composante fixe Fch et du facteur de proportionnalité k et ainsi déterminer le type d'effort avec lequel il souhaite s'exercer. Ainsi, il est possible de faire varier indépendamment la charge de l'inertie. Une large gamme de type d'exercices musculaires peut donc être proposée à l'utilisateur.The user, through a not shown user interface can change the values of the fixed component F ch and the proportionality factor k and thus determine the type of effort with which it wishes to practice. Thus, it is possible to independently vary the load of inertia. A wide range of types of muscle exercises can be offered to the user.

L'interface utilisateur est connectée au module de calcul 12 et est apte à recevoir des données sur la position, la vitesse, l'accélération ou des informations calculées à partir de ces données, par exemple, l'effort fourni ou la puissance dépensée. Ces données et informations sont calculées par le module de calcul 12 à partir des signaux d'accélération, de vitesse et de position transmis au module de calcul 12 respectivement par les connexions 17, 16 et 11. Avec ces données et ces informations, l'interface utilisateur peut solliciter sensoriellement l'utilisateur en affichant ces informations. L'utilisateur peut de cette manière suivre le niveau de son effort lors de ses exercices physiques. Cependant, ces sollicitations peuvent être de natures différentes, des sollicitations sonores sont par exemple envisageables. Par ailleurs, l'interface utilisateur comporte des organes de commande permettant à l'utilisateur de faire varier les valeurs de la composante fixe Fch et du facteur de proportionnalité k, de préférence indépendamment l'une de l'autre. Ces organes de commande sont par exemple des boutons sur l'interface utilisateurs correspondant à des couples de composante fixe Fch et de facteur de proportionnalité k prédéterminés. Ces couples définissent ainsi plusieurs types d'exercices. Un organe de stockage, par exemple une mémoire dans le module de calcul 12, permet de stocker ces informations et données. Grace à ce stockage, l'utilisateur peut suivre l'évolution de ses performances au cours du temps.The user interface is connected to the calculation module 12 and is able to receive data on position, speed, acceleration or information calculated from these data, for example, the effort provided or the power expended. These data and information are calculated by the calculation module 12 from the acceleration, speed and position signals transmitted to the calculation module 12 respectively by the connections 17, 16 and 11. With these data and these information, the user interface may sensually solicit the user by displaying this information. The user can in this way follow the level of his effort during his physical exercises. However, these solicitations can be of different natures, solicitations are for example possible. Furthermore, the user interface comprises control members allowing the user to vary the values of the fixed component F ch and the proportionality factor k , preferably independently of one another. These control members are for example buttons on the user interface corresponding to fixed component pairs F ch and proportionality factor k predetermined. These couples define several types of exercises. A storage device, for example a memory in the calculation module 12, stores this information and data. Thanks to this storage, the user can follow the evolution of his performances over time.

En référence aux figures 3, 5 et 6 plusieurs exemples particuliers d'exercices qui peuvent être produits par le dispositif présenté ci-dessus vont être décrits.With reference to Figures 3, 5 and 6 several particular examples of exercises that can be produced by the device presented above will be described.

La figure 3 représente la position de la poignée 6 le long de l'axe z de la figure 1 et l'accélération de la poignée 6 en fonction du temps lors des sollicitations de traction de la poignée présentées en référence à la figure 1. La courbe en trait interrompu 21 représente la position de la poignée qui est mesurée par le codeur de position 10. La courbe continue 22 représente l'accélération correspondant à la courbe de position 21. Par convention, on a orienté l'axe z vers le bas sur la figure 1. Le point 24 de la courbe de position 21 correspond donc au moment où la poignée 6 est en position basse et le point 23 correspond à la position haute de la poignée.The figure 3 represents the position of the handle 6 along the z axis of the figure 1 and the acceleration of the handle 6 as a function of time during the tensile stresses of the handle presented with reference to the figure 1 . The broken line curve 21 represents the position of the handle which is measured by the position encoder 10. The continuous curve 22 represents the acceleration corresponding to the position curve 21. By convention, we have oriented the z axis down on the figure 1 . The point 24 of the position curve 21 corresponds to the moment when the handle 6 is in the low position and the point 23 corresponds to the upper position of the handle.

A des fins d'illustration entre le point 23 jusqu'au point 25, la courbe de position 21 est sensiblement sinusoïdale. Ainsi l'accélération forme également, le long de cette période, une courbe sinusoïdale. Par la suite la courbe de position n'est plus sinusoïdale et donc l'accélération n'est plus sinusoïdale.For purposes of illustration between point 23 and point 25, the position curve 21 is substantially sinusoidal. Thus the acceleration also forms, along this period, a sinusoidal curve. Subsequently, the position curve is no longer sinusoidal and therefore the acceleration is no longer sinusoidal.

La figure 5 représente la force opposée par le moteur 1 à l'utilisateur en fonction du temps pour le même intervalle de temps que la figure 3. La courbe 28 est constante au niveau d'un seuil 26. En effet, la figure 5 correspond à un premier exercice où le module de calcul fourni un signal de commande au moteur de sorte que la force opposée à l'utilisateur est constante dans le temps. Pour cela, le module de calcul produit un signal de commande induisant une force ayant une composante de charge égale au seuil 26 et une composante d'inertie nulle. Dans cet exercice, l'utilisateur s'oppose donc uniquement à une charge fixe et à l'inertie réelle du système.The figure 5 represents the force opposed by the motor 1 to the user as a function of time for the same time interval as the figure 3 . Curve 28 is constant at a threshold 26. Indeed, the figure 5 is a first exercise where the calculation module provides a control signal to the motor so that the force opposite the user is constant over time. For this, the calculation module produces a control signal inducing a force having a load component equal to the threshold 26 and a zero inertia component. In this exercise, the user therefore only opposes a fixed load and the actual inertia of the system.

La figure 6 représente un second exercice qui utilise partiellement le principe du premier exercice présenté en référence à la figure 5. La courbe 40 représente la force générée par le moteur 1 au cours de cet exercice. Elle comporte deux phases : une phase haute 31 durant laquelle la courbe est constante au niveau du seuil 27 et une phase basse durant laquelle la courbe adopte la forme de la courbe d'accélération au niveau du seuil 27. En effet, l'utilisateur est soumis à une force de charge correspondant au seuil 27 lorsque l'accélération mesurée est positive, c'est à dire ici pendant des phases hautes 31 de la manipulation de la poignée où la poignée est proche de sa position haute 23. L'utilisateur est cependant soumis à un effort inertiel supplémentaire orienté dans le même sens que la force de charge lorsque l'accélération mesurée est négative, c'est à dire durant une phase basse 29 lorsque la poignée arrive en position basse 24 et que l'utilisateur décélère la descente et accélère ensuite pour effectuer une traction de la poignée vers la position haute 23. Cette phase basse correspond à la phase 30 durant laquelle l'accélération est négative. De cette manière, l'utilisateur est soumis à une inertie artificielle supplémentaire lorsqu'il arrive en position basse et souhaite remonter la poignée vers la position haute, c'est-à-dire au moment où sa sollicitation musculaire est la plus intense. Ainsi, le dispositif d'exercice permet de produire une sollicitation additionnelle qui s'oppose à l'utilisateur lors d'une inversion du sens du mouvement de cet utilisateur.The figure 6 represents a second exercise which partially uses the principle of the first exercise presented with reference to figure 5 . Curve 40 represents the force generated by the engine 1 during this exercise. It comprises two phases: a high phase 31 during which the curve is constant at the threshold 27 and a low phase during which the curve adopts the shape of the acceleration curve at the threshold 27. Indeed, the user is subjected to a load force corresponding to the threshold 27 when the measured acceleration is positive, that is to say here during high phases 31 of the handling of the handle where the handle is close to its high position 23. The user is however subjected to an additional inertial force oriented in the same direction as the load force when the measured acceleration is negative, that is to say during a low phase 29 when the handle arrives in low position 24 and the user decelerates the descent and then accelerates to pull the handle to the high position 23. This low phase corresponds to the phase 30 during which the acceleration is negative. In this way, the user is subjected to additional artificial inertia when he arrives in the low position and wishes to raise the handle to the high position, that is to say at the moment when his muscle solicitation is the most intense. Thus, the exercise device makes it possible to produce an additional stress that opposes the user during a reversal of the direction of movement of this user.

Pour la mise en oeuvre du second exercice, le module de calcul 12 applique un coefficient de proportionnalité k déterminé de manière suivante : Si γ > 0 , k = 0

Figure imgb0005
Si γ < 0 , k = + k 0 , i . e . k > 0
Figure imgb0006
For the implementation of the second exercise, the calculation module 12 applies a coefficient of proportionality k determined as follows: Yes γ > 0 , k = 0
Figure imgb0005
Yes γ < 0 , k = + k 0 , i . e . k > 0
Figure imgb0006

k 0 est une constante positive prédéterminée.Where k 0 is a predetermined positive constant.

Les exercices décrits ci-dessus sont donnés à titre illustratif. En particulier, le module de calcul peut contrôler le coefficient de proportionnalité k de multiples façons. A titre d'exemple, le module de calcul peut faire varier le coefficient de proportionnalité en fonction de la position ou de la vitesse de la poignée. Ainsi, dans une variante, le dispositif d'exercice produit une composante d'inertie additionnelle lorsque la poignée atteint une certaine position. Dans une variante du dispositif d'exercice, cette composante d'inertie additionnelle est ajoutée lorsque la vitesse est dans un sens particulier. De cette manière une multitude d'exercices intéressants pour le développement musculaire peuvent être produits. Cela permet notamment de solliciter les muscles de l'utilisateur de manière plus intense lorsqu'ils sont dans une position particulière.The exercises described above are given for illustrative purposes. In particular, the calculation module can control the coefficient of proportionality k in multiple ways. By way of example, the calculation module can vary the coefficient of proportionality as a function of the position or the speed of the handle. Thus, in one variant, the exercise device produces an additional inertia component when the handle reaches a certain position. In a variant of the exercise device, this additional inertia component is added when the speed is in a particular direction. In this way a multitude of interesting exercises for muscle development can be produced. This allows in particular to solicit the muscles of the user more intensely when they are in a particular position.

Dans une variante du dispositif présenté à la figure 1, l'arbre moteur 2 est relié à un réducteur de vitesse ayant un rapport de réduction r. La présence d'un tel réducteur permet de générer des forces relativement importantes tout en réduisant la taille du moteur, à des fins de miniaturisation du dispositif. La poulie 3 est fixée sur un arbre de sortie du réducteur. Dans cette variante, la présence d'un réducteur augmente fortement l'inertie réelle des pièces mobiles du moteur 1 ramenée à la poignée 6. L'inertie réelle du dispositif est également augmentée par l'inertie ramenée des pièces rotatives du réducteur. L'inertie du moteur et du réducteur ramenée à la sortie du réducteur Jtot peut s'écrire : J tot = J red + r 2 J mot

Figure imgb0007

avec l'inertie du réducteur Jred et l'inertie réelle du moteur Jmot. Ainsi, si le rapport de réduction r est important, l'inertie réelle du système est fortement augmentée. Ainsi, l'utilisation d'un facteur proportionnel k négatif permet dans cette variante de compenser tout ou partie de l'inertie induite par ce réducteur. Cette compensation est d'autant plus précise que l'accélération qui est mesurée pour engendrer la force d'inertie artificielle est l'accélération de l'arbre moteur 2, de sorte que cette mesure prend en compte l'effet du réducteur, effet qui consiste à augmenter par le rapport r l'accélération au niveau de l'arbre moteur 2 par rapport à l'accélération exercée sur la poignée 6.In a variant of the device presented in figure 1 , the drive shaft 2 is connected to a speed reducer having a reduction ratio r. The presence of such a gearbox makes it possible to generate relatively large forces while reducing the size of the motor, in order to miniaturize the device. The pulley 3 is fixed on an output shaft of the gearbox. In this variant, the presence of a reducer greatly increases the real inertia of the moving parts of the motor 1 brought back to the handle 6. The real inertia of the device is also increased by the reduced inertia of the rotating parts of the gearbox. The inertia of the motor and the gearbox brought back to the output of the gearbox J tot can be written: J early = J red + r 2 J word
Figure imgb0007

with the inertia of reducer J red and the real inertia of motor J word . Thus, if the reduction ratio r is large, the real inertia of the system is greatly increased. Thus, the use of a proportional factor k negative in this variant to compensate all or part of the inertia induced by the reducer. This compensation is all the more precise as the acceleration which is measured to generate the artificial inertia force is the acceleration of the motor shaft 2, so that this measurement takes into account the effect of the gearbox, which effect consists in increasing by the ratio r the acceleration at the level of the motor shaft 2 with respect to the acceleration exerted on the handle 6.

Le dispositif d'exercice très simple décrit en référence aux figures 1 et 2 est donné à titre illustratif, l'invention n'est donc aucunement limitée à ce type de dispositif d'exercice. Notamment, l'invention peut être adaptée à tout type de machine d'exercice sollicitant n'importe quelle partie du corps. A titre d'exemple, l'invention peut être adaptée pour constituer un dispositif de type rameur, de vélo d'intérieur ou de barre de levage.The very simple exercise device described with reference to Figures 1 and 2 is given as an illustration, the invention is therefore not limited to this type of exercise device. In particular, the invention can be adapted to any type of exercise machine that solicits any part of the body. By way of example, the invention may be adapted to constitute a rowing-type device, an indoor bicycle or a lifting bar.

En référence à la figure 7 on a représenté un dispositif d'exercice 50 pour exercer les muscles des bras en traction et en poussée dans lequel des procédés de commande selon l'invention peuvent être mis en oeuvre.With reference to the figure 7 there is shown an exercise device 50 for exerting the muscles of the arms in traction and thrust in which control methods according to the invention can be implemented.

Le dispositif 50 comporte deux leviers 53 qui peuvent être déplacés alternativement vers l'avant et vers l'arrière par un utilisateur. Les leviers 53 sont couplés chacun à un moteur électrique 54 qui est commandé par le dispositif de commande 55. Selon un mode de réalisation, les moteurs 54 sont commandés de manière à générer une force représentée par la courbe 33 de la figure 4. A des fins de simplification, le mouvement rotatif des leviers est approximé en un mouvement linéaire le long de l'axe x.The device 50 comprises two levers 53 which can be moved alternately forwards and backwards by a user. The levers 53 are each coupled to an electric motor 54 which is controlled by the control device 55. According to one embodiment, the motors 54 are controlled so as to generate a force represented by the curve 33 of the figure 4 . For simplification purposes, the rotary motion of the levers is approximated in a linear motion along the x-axis.

Ainsi, la figure 4 représente l'effort opposé à un utilisateur dans le cadre du dispositif d'exercice représenté sur la figure 7. La courbe 33 représente la force générée par le moteur et présente une valeur proportionnelle à la courbe d'accélération 30. On suppose qu'un utilisateur effectue des sollicitations le levier 53 de sorte que la position mesurée et l'accélération sont les mêmes que sur la figure 3, l'axe x remplaçant ici l'axe z. Dans ce type d'exercice, le dispositif de commande 55 soumet un signal de commande aux moteurs 54 qui n'induit pas de composante de charge. Seule une composante d'inertie artificielle est produite par les moteurs 54. Ainsi, l'effort subi par l'utilisateur est proportionnel à l'accélération et correspond donc à une inertie simulée sans charge qui est supérieure à l'inertie réelle du dispositif.So, the figure 4 represents the effort opposed to a user as part of the exercise device shown on the figure 7 . The curve 33 represents the force generated by the motor and has a value proportional to the acceleration curve 30. It is assumed that a user solicits the lever 53 so that the measured position and the acceleration are the same as on the figure 3 , the x axis here replacing the z axis. In this type of exercise, the control device 55 subjects a control signal to the motors 54 which does not induce a charge component. Only a component of artificial inertia is produced by the motors 54. Thus, the effort experienced by the user is proportional to the acceleration and therefore corresponds to a simulated inertia without load that is greater than the actual inertia of the device.

Ce type de sollicitation avec une inertie artificielle sans charge supplémentaire est aussi intéressant dans une machine d'exercice sollicitant les muscles des jambes. En effet, la sollicitation musculaire produite par le moteur lorsqu'il est commandé de cette manière correspond sensiblement à la sollicitation musculaire nécessaire pour inverser le mouvement d'un coureur sur un terrain horizontal. Un tel exercice est illustré sur la figure 10.This type of stress with artificial inertia without additional load is also interesting in an exercise machine soliciting the leg muscles. Indeed, the muscular stress produced by the motor when it is controlled in this way corresponds substantially to the muscular stress required to reverse the movement of a runner on a horizontal ground. Such an exercise is illustrated on the figure 10 .

Sur la figure 10, le coureur 34 est initialement en train de courir à grande vitesse dans le sens de l'axe x, comme représenté schématiquement par le vecteur de vitesse 35. A la fin de l'exercice, le coureur 34 est en train de courir à grande vitesse dans le sens opposé à l'axe x, comme représenté schématiquement par le vecteur de vitesse 36. Au cours de l'exercice, le coureur 34 a donc dû freiner son mouvement jusqu'à l'arrêt, survenu par exemple au point x0, puis ré-accélérer dans l'autre sens. Les muscles du coureur 34 ont donc été sollicités au cours de cet exercice essentiellement pour vaincre l'inertie du coureur lui-même, orientée selon l'axe x. La force de gravité étant perpendiculaire au mouvement, elle ne crée pas de sollicitation musculaire particulière dans cet exercice, c'est-à-dire que la sollicitation musculaire spécifique à l'exercice est une sollicitation d'inertie pure. La machine d'exercice programmée pour produire ce type de sollicitation est d'autant plus avantageuse que cette situation d'inversion de course est très fréquente dans les sports de ballon, par exemple rugby ou football.On the figure 10 , the runner 34 is initially running at high speed in the x-axis direction, as shown schematically by the speed vector 35. At the end of the exercise, the runner 34 is running at high speed. speed in the opposite direction to the x-axis, as represented schematically by the speed vector 36. During the exercise, the rider 34 therefore had to slow down his movement until it stopped, for example at point x0 , then re-accelerate in the other direction. The muscles of the rider 34 were therefore solicited during this exercise essentially to overcome the inertia of the rider himself, oriented along the x axis. The force of gravity being perpendicular to the movement, it does not create any particular muscular solicitation in this exercise, that is to say that the muscular solicitation specific to the exercise is a solicitation of pure inertia. The exercise machine programmed to produce this type of solicitation is all the more advantageous as this race reversal situation is very common in ball sports, for example rugby or football.

Similairement, un programme de commande associant la force d'inertie artificielle avec une charge constante permet de produire une sollicitation musculaire analogue à l'accomplissement du même exercice sur un terrain en pente.Similarly, a control program associating the artificial inertia force with a constant load makes it possible to produce a muscular solicitation similar to the accomplishment of the same exercise on a sloping ground.

Un dispositif permettant de simuler une force de frottement visqueux supplémentaire va maintenant être présenté. Le dispositif est similaire au dispositif décrit avec la figure 7 et comporte un microprocesseur ayant la même structure que le microprocesseur 20 du système de commande décrit dans la figure 2. La force exercée par le moteur comporte ici trois composantes. Les deux premières composantes correspondent à la composante de charge et à la composante d'inertie décrites ci-dessus. La troisième composante est une composante de frottement visqueux. Ainsi : F m = F ch + F i + F fv

Figure imgb0008
A device for simulating an additional viscous friction force will now be presented. The device is similar to the device described with the figure 7 and comprises a microprocessor having the same structure as the microprocessor 20 of the control system described in the figure 2 . The force exerted by the engine here comprises three components. The first two components correspond to the load component and the inertia component described above. The third component is a viscous friction component. So : F m = F ch + F i + F fv
Figure imgb0008

Où la force Ffv, correspondant à la composante de frottement visqueux, est définie en fonction d'un coefficient de proportionnalité k 2 et en fonction de la vitesse v de la poignée: F fv = k 2 × v

Figure imgb0009
Where the force F fv , corresponding to the viscous friction component, is defined according to a coefficient of proportionality k 2 and according to the speed v of the handle: F fv = k 2 × v
Figure imgb0009

La vitesse v est déterminée par le module de calcul 12 grâce au un signal de vitesse qui est transmis au module de calcul 12 via la connexion 16.The speed v is determined by the calculation module 12 by means of a speed signal which is transmitted to the calculation module 12 via the connection 16.

Ainsi, lorsque l'utilisateur déplace les leviers dans un sens, le moteur génère un couple sur le levier comprenant la composante de frottement visqueux proportionnelle à la vitesse de déplacement du levier en plus d'une composante d'inertie. Cette composante de frottement visqueux provoque une sollicitation supplémentaire qui s'oppose au sens du mouvement de l'utilisateur. De cette manière, le dispositif simule un frottement visqueux pouvant être produit par une machine comprenant un système à ailettes.Thus, when the user moves the levers in one direction, the motor generates a torque on the lever comprising the viscous friction component proportional to the speed of movement of the lever in addition to a component of inertia. This viscous friction component causes an additional stress which opposes the direction of movement of the user. In this way, the device simulates a viscous friction that can be produced by a machine comprising a finned system.

Le coefficient k 2 peut être une constante stockée dans la mémoire du microprocesseur 20. De la même manière que la composante d'inertie, le module de calcul 12 peut contrôler le coefficient de proportionnalité k 2 de multiples façons. A titre d'exemple, le module de calcul peut faire varier le coefficient de proportionnalité k 2 en fonction de la position de la poignée.The coefficient k 2 can be a constant stored in the memory of the microprocessor 20. In the same way as the inertia component, the calculation module 12 can control the coefficient of proportionality k 2 in multiple ways. By way of example, the calculation module can vary the coefficient of proportionality k 2 as a function of the position of the handle.

En référence aux figures 8 et 9, on va maintenant décrire une autre machine d'exercice 60 utilisant un moteur électrique. La machine 60 présente une forme relativement analogue à une machine à poids connue sous le nom de machine de squat (de l'anglais pour accroupissement). Mais elle peut fournir une palette de sollicitations musculaires bien plus étendue.With reference to figures 8 and 9 another exercise machine 60 using an electric motor will now be described. The machine 60 has a relatively similar shape to a weight machine known as a squat machine. But it can provide a much wider range of muscular solicitations.

La structure de la machine comporte un socle métallique 61 posé au sol, montré en coupe sur la figure 8, et une colonne de guidage 62 fixée verticalement au socle 61. La surface supérieure du socle 61 constitue une plateforme 68 destinée à accueillir un athlète, par exemple en position debout comme illustré en ligne fantôme. Un chariot 63 est monté à coulissement sur la colonne 62 par des moyens de guidage non représenté, de manière à se translater verticalement le long de la colonne 62. Selon un mode de réalisation, le chariot 63 est une structure à quatre côtés qui entoure complètement la colonne 62, l'un et l'autre ayant une section carrée. Le chariot 63 porte des tiges de préhension 69 qui s'étendent au-dessus de la plateforme 68 et sont destinées à être en prise avec l'athlète, par exemple au niveau de ses épaules ou de ses bras ou de ses jambes selon l'exercice souhaité.The structure of the machine comprises a metal base 61 placed on the ground, shown in section on the figure 8 , and a guide column 62 vertically fixed to the base 61. The upper surface of the base 61 is a platform 68 for receiving an athlete, for example in standing position as shown in ghost line. A carriage 63 is slidably mounted on the column 62 by guide means not shown, so as to translate vertically along the column 62. According to one embodiment, the carriage 63 is a four-sided structure which completely surrounds column 62, one and the other having a square section. The carriage 63 carries gripping rods 69 which extend above the platform 68 and are intended to be engaged with the athlete, for example at the level of his shoulders or his arms or legs according to the invention. desired exercise.

Une courroie de transmission 64 est montée dans la colonne 62 et s'étend entre une poulie folle 65 montée à pivotement au sommet de la colonne 65 et une poulie motrice 66 montée à pivotement dans le socle à l'aplomb de la colonne 62. La courroie 64 est une courroie crantée qui effectue un aller-retour en boucle fermée entre les poulies 65 et 66 de manière à être accouplée sans glissement à la poulie motrice 66. Le chariot 63 est solidarisé à une des deux branches de la courroie 64, par exemple au moyen de rivets 67 ou autres moyens de fixation, de sorte qu'il se trouve également accouplé sans glissement à la poulie motrice 66, toute rotation de la poulie 66 se traduisant par une translation verticale du chariot 63. De préférence, la courroie 64 est formée d'une bande crantée de type AT10 dont les deux extrémités sont fixées au chariot 63, de manière à fermer la boucle au niveau du chariot 63.A transmission belt 64 is mounted in the column 62 and extends between a idler pulley 65 pivotally mounted at the top of the column 65 and a driving pulley 66 pivotally mounted in the base directly above the column 62. belt 64 is a toothed belt that makes a round-trip closed loop between the pulleys 65 and 66 so as to be coupled without slipping to the drive pulley 66. The carriage 63 is secured to one of the two branches of the belt 64, by example by means of rivets 67 or other fastening means, so that it is also coupled without slipping to the drive pulley 66, any rotation of the pulley 66 resulting in a vertical translation of the carriage 63. Preferably, the belt 64 is formed of an AT10 toothed belt whose two ends are fixed to the carriage 63, so as to close the loop at the carriage 63.

Un groupe moteur 70 est logé dans le socle 61 et couplé à la poulie motrice 66 par l'intermédiaire d'un réducteur de vitesse 71. Plus précisément, le réducteur de vitesse 71 comporte un arbre d'entrée 72 accouplé sans glissement à l'arbre moteur du groupe moteur 70, qui est représenté plus en détails sur la figure 9, et un arbre de sortie 73 qui porte la poulie motrice 66. Le réducteur de vitesse 71 impose un rapport de réduction r entre la vitesse de rotation w1 de l'arbre 72 et la vitesse de rotation w2 de l'arbre 73, à savoir wl/w2=r. Selon des modes de réalisation, le rapport de réduction r est choisi entre 3 et 100, et de préférence entre 5 et 30.A motor unit 70 is housed in the base 61 and coupled to the drive pulley 66 by means of a speed reducer 71. More specifically, the speed reducer 71 comprises an input shaft 72 coupled without sliding to the motor shaft of the motor group 70, which is shown in more detail on the figure 9 , and an output shaft 73 which carries the driving pulley 66. The speed reducer 71 imposes a reduction ratio r between the rotation speed w1 of the shaft 72 and the rotation speed w2 of the shaft 73, namely wl / w2 = r. According to embodiments, the reduction ratio r is chosen between 3 and 100, and preferably between 5 and 30.

La machine 60 comporte également un pupitre de commande 74 qui peut être solidaire du socle 61 ou indépendant de celui-ci. De plus, un câble d'alimentation électrique 75 sort du socle 61 pour être relié au réseau électrique. La machine 60 ne nécessite pas une puissance électrique exceptionnelle et peut donc être alimentée par un réseau domestique courant.The machine 60 also comprises a control console 74 which can be integral with the base 61 or independent thereof. In addition, a power cable 75 out of the base 61 to be connected to the power grid. The machine 60 does not require exceptional electrical power and can therefore be powered by a common home network.

La figure 9 représente plus précisément le groupe moteur 70 et son unité de commande 80, qui est également logée dans le socle 61. Le groupe moteur 70 comporte un moteur électrique 76, par exemple un moteur synchrone autopiloté, et un variateur de courant 77 qui pilote le courant d'alimentation 78 du moteur 76.The figure 9 represents more precisely the motor group 70 and its control unit 80, which is also housed in the base 61. The motor unit 70 comprises an electric motor 76, for example an autopilot synchronous motor, and a current controller 77 which controls the current supply 78 of the engine 76.

On rappelle que le moteur synchrone autopiloté présente un flux rotorique constant. Ce flux est créé par des aimants permanents ou des bobines montés dans le rotor, tandis que le flux statorique variable est créé par un enroulement triphasé permettant de l'orienter dans toutes les directions. La commande électronique de ce moteur consiste à contrôler la phase des ondes de courant de façon à créer un champ tournant, toujours en avance de 90° sur le champ des aimants, afin que le couple soit maximal. Dans ces conditions, le couple moteur sur l'arbre moteur 2 est proportionnel au courant statorique. Ce courant est précisément contrôlé en temps réel par l'unité de commande 80 par l'intermédiaire du variateur de courant 77.It is recalled that the synchronous motor autopilot has a constant rotor flow. This flux is created by permanent magnets or coils mounted in the rotor, while the variable stator flux is created by a three-phase winding to orient it in all directions. The electronic control of this motor is to control the phase of the current waves so as to create a rotating field, always ahead of 90 ° on the field of the magnets, so that the torque is maximum. Under these conditions, the engine torque on the drive shaft 2 is proportional to the stator current. This current is precisely controlled in real time by the control unit 80 via the current controller 77.

Pour cela, l'unité de commande 80 comporte un contrôleur de bas-niveau 81, par exemple de type FPGA, qui reçoit le signal de position 83 depuis le codeur de position 84 de l'arbre moteur 2 et effectue des calculs en temps réels à partir du signal de position 83 pour déterminer les valeurs instantanées de la position, la vitesse et l'accélération de l'arbre moteur 2. Le codeur de position 84 est par exemple un dispositif optique qui fournit deux signaux carrés en quadrature selon la technique connue.For this purpose, the control unit 80 comprises a low-level controller 81, for example of the FPGA type, which receives the position signal 83 from the position encoder 84 of the motor shaft 2 and performs real-time calculations. from the position signal 83 to determine the instantaneous values of the position, the speed and the acceleration of the motor shaft 2. The position encoder 84 is for example an optical device which provides two squared signals in quadrature according to the technique known.

Le contrôleur de haut-niveau 82 comporte une mémoire et un processeur et exécute des programmes de commande complexes à partir des informations fournies en temps réels par le contrôleur de bas-niveau 81. Des programmes de commande possibles ont été décrits plus haut en référence aux figures 3 à 6.The high-level controller 82 includes a memory and a processor and executes complex control programs from the information provided in real time by the low-level controller 81. Possible control programs have been described above with reference to the Figures 3 to 6 .

Le pupitre de commande 74 est relié au contrôleur de haut-niveau 82 par une liaison TCP/IP 85, filaire ou sans fil, et comporte une interface permettant à l'athlète ou son entraineur de sélectionner des programmes d'exercice préenregistrés ou de régler précisément et de manière personnalisée les paramètres d'un tel programme. Dans l'exemple représenté, l'interface est un écran tactile 86 qui comporte un curseur 87 pour régler la valeur de la charge Fch le long d'une échelle prédéterminée, par exemple 0 à 3000 N, et un curseur 88 pour régler la valeur du coefficient k le long d'une échelle prédéterminée, c'est-à-dire la force d'inertie artificielle Fi. The control console 74 is connected to the high-level controller 82 via a wired or wireless TCP / IP link 85, and has an interface allowing the athlete or his trainer to select pre-recorded exercise programs or to adjust them. precisely and in a personalized way the parameters of such a program. In the example shown, the interface is a touch screen 86 which includes a slider 87 for adjusting the value of the load F ch along a predetermined scale, for example 0 to 3000 N, and a slider 88 to adjust the value of the coefficient k along a predetermined scale, that is to say the artificial inertia force F i .

En fonction du programme d'exercice exécuté, le contrôleur de haut-niveau 82 traite les informations fournies en temps réels par le contrôleur de bas-niveau 81 et calcule le couple instantané devant être exercé par le groupe moteur 70. Le contrôleur de bas-niveau 81 génère un signal de commande 90 correspondant à ce couple instantané et transmet le signal 90 au variateur de courant 77, par exemple sous la forme d'une tension de commande analogique variant entre 0 et 10V. En variante, une interface numérique CAN peut aussi être utilisée.Depending on the exercise program executed, the high-level controller 82 processes the information provided in real time by the low-level controller 81 and calculates the instantaneous torque to be exerted by the motor group 70. The base controller Level 81 generates a control signal 90 corresponding to this instantaneous torque and transmits the signal 90 to the current controller 77, for example in the form of an analog control voltage varying between 0 and 10V. Alternatively, a CAN digital interface may also be used.

Les programmes de commande permettant de simuler différents exercices peuvent être très nombreux. De préférence, quel que soit le détail du programme, c'est toujours l'athlète qui pilote la machine 60 et la machine 60 qui réagit à la sollicitation exercée par l'athlète sur les barres de préhension 69. Pour cela, il est préférable que la machine 60 puisse réagir rapidement aux changements de direction imposés par l'athlète, malgré les frottements qui existent inévitablement dans un tel système mécanique.The control programs for simulating different exercises can be very numerous. Preferably, regardless of the detail of the program, it is always the athlete who controls the machine 60 and the machine 60 that reacts to the solicitation exerted by the athlete on the gripping bars 69. For this, it is preferable that the machine 60 can react quickly to changes of direction imposed by the athlete, despite the friction that inevitably exist in such a mechanical system.

Pour cela, selon un mode de réalisation, le contrôleur de haut-niveau 82 met en oeuvre un algorithme de compensation des frottements qui va maintenant être expliqué.For this, according to one embodiment, the high-level controller 82 implements a friction compensation algorithm that will now be explained.

On note mc la masse du chariot 63. On note Fc = mc.g, la force que doit imposer le moteur 76 à la courroie 64 pour compenser le poids du chariot 63 sans que l'utilisateur ne supporte aucune charge. L'algorithme utilise des paramètres a et b définis par le fait que si le moteur 76 applique Fc + a le chariot 63 est à la limite du mouvement dans la direction positive, vers le haut, et si le moteur 76 applique Fc -b le chariot 63 est à la limite de la mise en mouvement dans le sens négatif, vers le bas. Ces paramètres a et b peuvent être mesuré expérimentalement. L'algorithme régit le passage de la force Fc + a à la force Fc b en cas de changement du sens de la sollicitation exercée par l'utilisateur. L'algorithme applique des lois qui utilisent la vitesse linéaire v du chariot 63 et un coefficient kf, à savoir : Fch 0 = Fc + kf . v

Figure imgb0010
Fc - b < Fch 0 < Fc + a
Figure imgb0011
Note the mass of the truck 63. Note Fc = mc.g, the force that must impose the motor 76 on the belt 64 to compensate for the weight of the carriage 63 without the user does not support any load. The algorithm uses parameters a and b defined by the fact that if the motor 76 applies Fc + a the carriage 63 is at the limit of the movement in the positive direction, upwards, and if the motor 76 applies Fc -b the trolley 63 is at the limit of the setting in motion in the negative direction, downward. These parameters a and b can be measured experimentally. The algorithm governs the passage of the force Fc + a to the force Fc b in the event of a change in the direction of the stress exerted by the user. The algorithm applies laws that use the linear velocity v of the carriage 63 and a coefficient kf, namely: Fch 0 = Fc + kf . v
Figure imgb0010
Fc - b < Fch 0 < Fc + at
Figure imgb0011

Où Fch0 désigne la force imposée par défaut sur la courroie 64 par le moteur 76, à savoir la valeur qui est appliquée lorsque le curseur 87 est placé sur la graduation 0. En d'autres termes, si le curseur 37 est placé sur la graduation 3000N pour un programme d'exercice prévoyant d'exercer cette charge alternativement dans les deux directions, et que le chariot 63 pèse 60kg, le moteur électrique exercera en fait une force d'environ 3600 N en montée et 2400 N en descente.Where Fch0 denotes the force imposed by default on the belt 64 by the motor 76, namely the value that is applied when the cursor 87 is placed on the graduation 0. In other words, if the cursor 37 is placed on the graduation 3000N for an exercise program planning to exercise this load alternately in both directions, and that the carriage 63 weighs 60kg, the electric motor will actually exert a force of about 3600 N in climb and 2400 N in descent.

Ainsi, plus le coefficient kf est élevé, plus la machine réagit rapidement aux changements de direction imposés par l'utilisateur. Au-delà d'une certaine limite, une réactivité très forte pourrait nécessiter un filtrage fréquentiel de la mesure de vitesse, par exemple de type passe bas du premier ordre.Thus, the higher the coefficient kf, the faster the machine reacts to changes in direction imposed by the user. Beyond a certain limit, a very strong reactivity could require a frequency filtering of the speed measurement, for example of the low-pass type of the first order.

Selon le programme sélectionné, par exemple lorsqu'une force d'inertie artificielle proportionnelle à l'accélération et/ou une force visqueuse proportionnelle à la vitesse est appliquée par le moteur, ou lorsque le programme prévoit des réactions différentes dans le sens concentrique et dans le sens excentrique, la force à appliquer calculée peut subir une discontinuité au moment de l'inversion du sens, ce qui est nécessairement préjudiciable au confort d'utilisation de la machine.According to the selected program, for example when an artificial inertia force proportional to the acceleration and / or a viscous force proportional to the speed is applied by the engine, or when the program provides different reactions in the concentric direction and in the the eccentric direction, the force to apply calculated can undergo a discontinuity at the time of reversal of the direction, which is necessarily detrimental to the comfort of use of the machine.

Selon un mode de réalisation, le contrôleur de haut-niveau 82 met en oeuvre un algorithme permettant d'éviter ces discontinuités. Pour ce faire, le contrôleur 82 détecte un changement de direction par le passage du signal de vitesse dans un comparateur à hystérésis représenté schématiquement sur la figure 11.According to one embodiment, the high-level controller 82 implements an algorithm to avoid these discontinuities. To do this, the controller 82 detects a change of direction by the passage of the speed signal in a hysteresis comparator shown schematically on the figure 11 .

Lors du démarrage de la phase concentrique, si la vitesse v > ε, le contrôleur 82 déclenche le passage de F2 à F1. Cette variation se fait à taux de variation constant, par exemple de l'ordre de 200N/s.When starting the concentric phase, if the speed v> ε, the controller 82 triggers the passage from F2 to F1. This variation is at a constant rate of change, for example of the order of 200 N / s.

De même, lors du passage de la phase concentrique à la phase excentrique, lorsque la vitesse devient négative et passe sous un seuil v < -ε, le contrôleur 82 déclenche le passage de F1 à F2. La valeur de seuil ε est choisie de manière à assurer une stabilité suffisante, à savoir que le moteur ne passe pas de F1 à F2 intempestivement lorsque l'athlète décide de faire une phase d'arrêt dans son mouvement.Similarly, during the passage from the concentric phase to the eccentric phase, when the speed becomes negative and passes under a threshold v <-ε, the controller 82 triggers the transition from F1 to F2. The threshold value ε is chosen so as to ensure sufficient stability, namely that the engine does not go from F1 to F2 untimely when the athlete decides to stop during his movement.

Sur la figure 11, il faut relever que les courbes de variation de la force en fonction de la vitesse entre les valeurs F1 et F2 ne sont pas imposées par le système et dépendent en fait du comportement de l'utilisateur, à savoir comment il fait varier la vitesse en fonction du temps, puisque le système impose un taux variation de force en fonction du temps.On the figure 11 it should be noted that force-versus-velocity curves between F1 and F2 values are not imposed by the system and depend in fact on the user's behavior, ie, how he varies the speed in a function of time, since the system imposes a rate of variation of force as a function of time.

En complément, le programme de commande peut interdire au moteur de réaliser plus de deux changements consécutifs si la différence de position de la partie mobile entre les deux changements n'excède pas une certaine limite, par exemple de 10cm.In addition, the control program can prevent the motor from making more than two consecutive changes if the difference in position of the moving part between the two changes does not exceed a certain limit, for example of 10 cm.

Dans d'autres modes de réalisation, le programme d'exercice peut aussi comporter une contribution de force élastique Fe définie en fonction d'un coefficient de proportionnalité k 3 et en fonction de la position z du chariot 63 : F e = k 3 × z - z 0

Figure imgb0012
In other embodiments, the exercise program may also comprise an elastic force contribution F e defined as a function of a coefficient of proportionality k 3 and as a function of the position z of the carriage 63: F e = k 3 × z - z 0
Figure imgb0012

z0 est une hauteur de référence paramétrable et la position z est déterminée par le contrôleur de bas-niveau 81.0 where z is a height adjustable reference and the z position is determined by the low-level controller 81.

On comprend donc que de nombreux programmes d'exercices peuvent être conçus en combinant au choix des contributions additives choisies dans le groupe comportant une contribution d'inertie artificielle proportionnelle à l'accélération mesurée, une contribution de frottement visqueux proportionnelle à la vitesse mesurée, une contribution élastique proportionnelle à la position mesurée, et une contribution de charge prédéterminée. Selon un mode de réalisation, l'interface homme-machine permet à l'utilisateur de régler indépendamment les paramètres de chacune de ces contributions, notamment les coefficients k, k 2 et k 3.It is therefore understandable that many exercise programs can be designed by combining additive contributions selected from the group comprising an artificial inertia contribution proportional to the measured acceleration, a viscous friction contribution proportional to the measured speed, a elastic contribution proportional to the measured position, and a predetermined load contribution. According to one embodiment, the human-machine interface allows the user to independently adjust the parameters of each of these contributions, in particular the coefficients k , k 2 and k 3 .

Bien que les modes de réalisation décrits ci-dessus comportent des moteurs rotatifs, les procédés de commande décrits ci-dessus peuvent être employés avec tout autre type d'actionneur électrique. Notamment, un moteur linéaire peut être utilisé pour générer un effort sur l'élément de manipulation.Although the embodiments described above include rotary motors, the control methods described above may be employed with any other type of electric actuator. In particular, a linear motor can be used to generate a force on the handling element.

Par ailleurs, le calcul du signal de commande peut être réalisé sous différentes formes, de manière unitaire ou distribuée, au moyen de composants matériels et/ou logiciels. Des composants matériels utilisables sont les circuits intégrés spécifiques ASIC, les réseaux logiques programmables FPGA ou les microprocesseurs. Des composants logiciels peuvent être écrits dans différents langages de programmation, par exemple C, C++, Java ou VHDL. Cette liste n'est pas exhaustive.Moreover, the calculation of the control signal can be performed in different forms, unitarily or distributed, by means of hardware and / or software components. Useful hardware components are ASIC specific integrated circuits, FPGA programmable logic networks or microprocessors. Software components can be written in different programming languages, for example C, C ++, Java or VHDL. This list is not exhaustive.

Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is not limited thereto and that it comprises all the technical equivalents of the means described and their combinations if they are within the scope of the invention.

L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes. Plusieurs moyens ou modules peuvent être représentés par un même élément matériel.The use of the verb "to include", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or steps other than those set out in a claim. The use of the indefinite article "a" or "an" for an element or a step does not exclude, unless otherwise stated, the presence of a plurality of such elements or steps. Several means or modules can be represented by the same hardware element.

Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses can not be interpreted as a limitation of the claim.

Claims (14)

  1. An exercise device comprising
    a load element (6, 69) intended to be displaced by the force of a user,
    an electric actuator (1, 76) comprising a moving part (2), the load element (6, 69) being linked to the moving part and the load element being able to displace the moving part,
    a computer (12, 80) suitable for computing a force to be exerted by the electric actuator and for generating a control signal for the electric actuator as a function of the computed force to be exerted, in such a way that the force exerted by the electric actuator (1) in response to the control signal corresponds to the computed force to be exerted and
    an acceleration sensor coupled to the moving part (2) for measuring the acceleration of the moving part and for transmitting the measured acceleration to the computer (12, 80),
    the electric actuator being able to exert a force on the load element (6, 69) via the moving part in response to the control signal,
    in which the computer (12, 80) is able to compute the force to be exerted as a function of the acceleration measured by the acceleration sensor,
    characterized in that the device also comprises:
    - a memory of the computer in which is stored a coefficient of proportionality between the measured acceleration and an additive contribution of artificial inertia, and
    - a human-machine interface (86) enabling a user to set the coefficient of proportionality,
    the computer being able to compute the additive contribution of artificial inertia as a function of the measured acceleration and of the coefficient of proportionality, the force to be exerted computed by the computer as a function of the measured acceleration including the additive contribution of artificial inertia proportional to the measured acceleration obtained by the computer as the result of a multiplication of the measured acceleration by the coefficient of proportionality stored in the memory, in such a way that the force exerted by the electric actuator (1, 76) in response to the control signal includes the additive contribution of artificial inertia proportional to the acceleration measured by the acceleration sensor and to the coefficient of proportionality stored in the memory.
  2. The exercise device as claimed in claim 1, characterized in that the computer (12, 80) is able to vary the coefficient of proportionality as a function of at least one parameter chosen from the position, the speed and the acceleration of the moving part.
  3. The exercise device as claimed in claim 1 or 2, characterized in that the computer (12, 80) is able to compute the force to be exerted in such a way that the force to be exerted by the electric actuator (1, 76) includes an additive contribution of additional load exhibiting a predetermined direction.
  4. The exercise device as claimed in claim 3, characterized in that the computer (12, 80) is able to compute the force to be exerted in such a way that the additive contribution of artificial inertia is oriented in the same direction as the contribution of predetermined direction when the measured acceleration is in the direction opposite the contribution of predetermined direction.
  5. The exercise device as claimed in claim 4, characterized in that the computer (12, 80) is able to compute the force to be exerted in such a way as to cancel the additive contribution of artificial inertia when the measured acceleration is in the same direction as the contribution of predetermined direction of the electric actuator (1, 76).
  6. The exercise device as claimed in one of claims 1 to 5, characterized in that the link between the load element (6, 69) and the moving part includes a speed reducer for gearing down the force of the motor.
  7. The exercise device as claimed in one of claims 1 to 6, characterized in that it comprises a speed sensor suitable for measuring the speed of the moving part (2) and that the computer (12, 80) is able to generate the control signal in such a way that the force exerted by the electric actuator (1, 76) includes an additive contribution of viscous friction substantially proportional to the speed measured by the speed sensor.
  8. The exercise device as claimed in one of claims 1 to 7, characterized in that the electric actuator (1, 76) is a linear motor or a rotary motor.
  9. The exercise device as claimed in one of claims 1 to 8, characterized in that the acceleration sensor comprises:
    a position coder (10, 84) coupled to the moving part (2) for measuring the position of the moving part, the position coder (10, 84) generating a position signal,
    shunt elements (13, 14) suitable for shunting the position signal to determine the acceleration of the moving part (2).
  10. The exercise device as claimed in one of claims 1 to 9, characterized in that the exercise device is selected from the group comprising rowing machines, exercise bicycles, lifting bars and guided load appliances.
  11. The exercise device as claimed in one of claims 1 to 10, characterized in that the computer (12, 80) is able to compute the force to be exerted in such a way that the force to be exerted by the electric actuator (1, 76) includes an additive contribution of additional load exhibiting a predetermined direction, the human-machine interface (86) enabling a user to set the additive contribution of additional load independently of the coefficient of proportionality.
  12. The exercise device as claimed in claim 11, characterized in that the human-machine interface (86) enables a user to set the additive contribution of additional load to a zero value.
  13. The exercise device as claimed in one of claims 1 to 12, characterized in that the load element (69, 63) can be displaced in a vertical direction and that the computer (12, 80) is able to compute the force to be exerted in the absence of force exerted by the user, in such a way that the force to be exerted by the electric actuator (1, 76) includes a default additive contribution of load compensating a specific weight of the load element (69, 63) without causing any spontaneous displacement of the load element (69, 63) in the absence of a force exerted by the user.
  14. A method for controlling an exercise device comprising:
    measuring the acceleration of a moving part (2) of an electric actuator in response to the force of a user exerted on a load element (6, 69) linked to the moving part,
    computing a force to be exerted by the electric actuator as a function of the measured acceleration and
    generating a control signal for controlling the electric actuator (1, 76) with the control signal in such a way that the force exerted by the electric actuator (1, 76) in response to the control signal corresponds to the computed force to be exerted,
    characterized by the steps of:
    - providing a human-machine interface (86) enabling a user to set a coefficient of proportionality between the measured acceleration and an additive contribution of artificial inertia,
    - storing the coefficient of proportionality in a memory,
    - multiplying the measured acceleration by the coefficient of proportionality to obtain the additive contribution of artificial inertia, and
    - obtaining the force to be exerted computed as a function of the measured acceleration including the additive contribution of artificial inertia proportional to the measured acceleration, in such a way that the force exerted by the electric actuator (1, 76) on the load element (6, 69) via the moving part (2) in response to the control signal includes an additive contribution of artificial inertia proportional to the measured acceleration.
EP12794381.9A 2011-10-27 2012-10-26 Exercise device Not-in-force EP2771079B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159739A FR2981857B1 (en) 2011-10-27 2011-10-27 EXERCISE MACHINE
PCT/FR2012/052466 WO2013060999A1 (en) 2011-10-27 2012-10-26 Exercise machine

Publications (2)

Publication Number Publication Date
EP2771079A1 EP2771079A1 (en) 2014-09-03
EP2771079B1 true EP2771079B1 (en) 2016-02-03

Family

ID=45954779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12794381.9A Not-in-force EP2771079B1 (en) 2011-10-27 2012-10-26 Exercise device

Country Status (9)

Country Link
US (1) US20140315689A1 (en)
EP (1) EP2771079B1 (en)
CN (1) CN103945904B (en)
AU (1) AU2012328194B2 (en)
CA (1) CA2853540C (en)
DK (1) DK2771079T3 (en)
ES (1) ES2570329T3 (en)
FR (1) FR2981857B1 (en)
WO (1) WO2013060999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308177B6 (en) * 2018-12-12 2020-02-05 Fakultní nemocnice Hradec Králové Exercise equipment and bed with exercise equipment

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11857331B1 (en) * 2013-01-19 2024-01-02 Bertec Corporation Force measurement system
ITTV20130199A1 (en) 2013-12-03 2015-06-04 Domino S R L PHYSICAL EXERCISE MACHINE
ITTV20130200A1 (en) * 2013-12-03 2015-06-04 Domino S R L PHYSICAL EXERCISE MACHINE
CN104722020B (en) * 2013-12-20 2017-04-12 岱宇国际股份有限公司 Exercise device and automatic braking method
WO2017011821A1 (en) 2015-07-15 2017-01-19 Jones-Guinasso Deanna L Exercise apparatus and method for using same
US10094055B2 (en) 2016-03-14 2018-10-09 Abm International, Inc. Method, apparatus and computer-readable medium for moving
KR101881028B1 (en) * 2016-11-21 2018-08-17 홍대건 Apparatus and method for recognizing type of exercise
JP6458795B2 (en) * 2016-12-08 2019-01-30 トヨタ自動車株式会社 Walking training device
EP3793698A1 (en) * 2018-05-14 2021-03-24 Liftlab, Inc Strength training and exercise platform
CN109395312A (en) * 2018-11-05 2019-03-01 上海笑立方文化创意有限公司 Exercise device power source device and exercise device
US20200289889A1 (en) 2019-03-11 2020-09-17 Rom Technologies, Inc. Bendable sensor device for monitoring joint extension and flexion
US11071597B2 (en) 2019-10-03 2021-07-27 Rom Technologies, Inc. Telemedicine for orthopedic treatment
US20210134432A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Method and system for implementing dynamic treatment environments based on patient information
US11069436B2 (en) 2019-10-03 2021-07-20 Rom Technologies, Inc. System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks
US11282604B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease
US11325005B2 (en) 2019-10-03 2022-05-10 Rom Technologies, Inc. Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise
US11978559B2 (en) 2019-10-03 2024-05-07 Rom Technologies, Inc. Systems and methods for remotely-enabled identification of a user infection
US20210128080A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Augmented reality placement of goniometer or other sensors
US20210134458A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method to enable remote adjustment of a device during a telemedicine session
US11139060B2 (en) 2019-10-03 2021-10-05 Rom Technologies, Inc. Method and system for creating an immersive enhanced reality-driven exercise experience for a user
US11270795B2 (en) 2019-10-03 2022-03-08 Rom Technologies, Inc. Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context
US11282608B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session
US11075000B2 (en) 2019-10-03 2021-07-27 Rom Technologies, Inc. Method and system for using virtual avatars associated with medical professionals during exercise sessions
US20210134412A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method for processing medical claims using biometric signatures
US11515021B2 (en) 2019-10-03 2022-11-29 Rom Technologies, Inc. Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance
US11282599B2 (en) 2019-10-03 2022-03-22 Rom Technologies, Inc. System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions
US20210127974A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. Remote examination through augmented reality
US20210134425A1 (en) 2019-10-03 2021-05-06 Rom Technologies, Inc. System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance
US11515028B2 (en) 2019-10-03 2022-11-29 Rom Technologies, Inc. Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome
US11317975B2 (en) 2019-10-03 2022-05-03 Rom Technologies, Inc. Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment
US20210142893A1 (en) 2019-10-03 2021-05-13 Rom Technologies, Inc. System and method for processing medical claims
US11337648B2 (en) 2020-05-18 2022-05-24 Rom Technologies, Inc. Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session
US11826613B2 (en) 2019-10-21 2023-11-28 Rom Technologies, Inc. Persuasive motivation for orthopedic treatment
EP4048415A4 (en) * 2019-10-23 2023-11-29 Co-Jones Innovations LLC Electromechanical physical resistance device
CN113018799B (en) * 2021-04-26 2022-08-23 深圳速境生活科技有限公司 Method and terminal for realizing strength training
CN115531806A (en) * 2022-08-31 2022-12-30 卧龙电气驱动集团股份有限公司 Posture recognition method and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409435A (en) * 1993-11-03 1995-04-25 Daniels; John J. Variable resistance exercise device
JP3929230B2 (en) * 2000-04-26 2007-06-13 三菱電機エンジニアリング株式会社 Exercise therapy equipment
CN2531826Y (en) * 2002-03-22 2003-01-22 远隆工业股份有限公司 Improved speed regualtor for treadmill
US9387386B2 (en) * 2003-07-31 2016-07-12 First Principles, Inc. Method and apparatus for improving performance
US8360935B2 (en) * 2005-10-12 2013-01-29 Sensyact Ab Method, a computer program, and device for controlling a movable resistance element in a training device
US7833135B2 (en) * 2007-06-27 2010-11-16 Scott B. Radow Stationary exercise equipment
JP4492659B2 (en) * 2007-08-31 2010-06-30 パナソニック電工株式会社 Oscillating motion device
JP5565762B2 (en) * 2008-03-19 2014-08-06 株式会社日立製作所 Training apparatus and training apparatus control method
DE202008015674U1 (en) * 2008-11-26 2009-03-26 Schiessl, Hans Device for generating a training force for a user of a training device
US7918767B1 (en) * 2009-10-08 2011-04-05 Alan Clifford Wilson Exercise apparatus
WO2011070322A1 (en) * 2009-12-08 2011-06-16 The University Of Leeds An interactive rehabilitation computer peripheral system
IT1397157B1 (en) * 2010-01-07 2013-01-04 Camerota MACHINE FOR THE PHYSICAL EXERCISE OF A USER.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ308177B6 (en) * 2018-12-12 2020-02-05 Fakultní nemocnice Hradec Králové Exercise equipment and bed with exercise equipment

Also Published As

Publication number Publication date
FR2981857A1 (en) 2013-05-03
AU2012328194B2 (en) 2018-04-12
FR2981857B1 (en) 2014-11-21
CA2853540C (en) 2019-01-08
CN103945904B (en) 2016-06-29
WO2013060999A1 (en) 2013-05-02
EP2771079A1 (en) 2014-09-03
AU2012328194A1 (en) 2014-05-29
ES2570329T3 (en) 2016-05-17
CA2853540A1 (en) 2013-05-02
DK2771079T3 (en) 2016-05-02
US20140315689A1 (en) 2014-10-23
CN103945904A (en) 2014-07-23

Similar Documents

Publication Publication Date Title
EP2771079B1 (en) Exercise device
EP2991737B1 (en) Control of an exercise machine
US10843024B2 (en) Exercise equipment
EP3099384A1 (en) System for muscle development based on eccentric, concentric and isomeric contractions of agonistic and antagonistic muscles, reactive to the direction of the force
EP2691642B1 (en) Method for controlling a device for converting wave energy into electrical energy
WO1992020408A1 (en) Programmable inertial training machine
JP2019501002A (en) Stationary ergometric exercise device
US20180001142A1 (en) Control system of a cycling simulation device
FR2749766A1 (en) GYMNASTICS MACHINE WITH VARIABLE CONFIGURATION.
WO2016079389A1 (en) Exercise and/or rehabilitation apparatus
EP0329748B1 (en) Multifunctional physical exercising apparatus and process for controlling it
FR2674760A1 (en) Dumb-bell (bar-bell) training device
FR2881355A1 (en) Muscular training and/or rehabilitation apparatus, has bar connected to variable load having mass moved in direction of guiding unit whose axis is equidistant from ends, and load varying device to vary inclination of mass movement direction
EP3601981B1 (en) Device and method for setting an object in motion
EP4232168A1 (en) Device for physical rehabilitation, training or preparation
EP4249091A1 (en) Method of controlling a force and/or resistance generator of an exercise apparatus
FR3009968A1 (en) APPARATUS FOR MUSCULATION AND / OR REHABILITATION
BE1010161A6 (en) Measuring device for torque.
BE862440Q (en) BICYCLE AND MOTION TRANSMISSION DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150727

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VAUQUELIN, AURELIEN

Inventor name: VANNICATTE, ARNAUD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERACLES - TECHNOLOGY

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 773372

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012014507

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RAPISARDI INTELLECTUAL PROPERTY SA, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160425

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2570329

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160517

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160400817

Country of ref document: GR

Effective date: 20160601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160921

Year of fee payment: 5

Ref country code: NO

Payment date: 20160922

Year of fee payment: 5

Ref country code: NL

Payment date: 20160913

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012014507

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20160926

Year of fee payment: 5

Ref country code: RO

Payment date: 20160928

Year of fee payment: 5

Ref country code: CZ

Payment date: 20160919

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161014

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: VIA ARIOSTO 6, 6901 LUGANO (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160503

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20161027

Year of fee payment: 5

Ref country code: SE

Payment date: 20161012

Year of fee payment: 5

Ref country code: IT

Payment date: 20161013

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20161019

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 773372

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171121

Year of fee payment: 6

Ref country code: AT

Payment date: 20170925

Year of fee payment: 6

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20171031

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171101

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180504

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171027

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190322

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 773372

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181026

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171026

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220609 AND 20220615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012014507

Country of ref document: DE

Owner name: STRENGTH MASTER FITNESS TECH. CO., LTD., TW

Free format text: FORMER OWNER: ERACLES - TECHNOLOGY, COMPIEGNE, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602012014507

Country of ref document: DE

Representative=s name: LANGPATENT ANWALTSKANZLEI IP LAW FIRM, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221027

Year of fee payment: 11

Ref country code: DE

Payment date: 20221027

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012014507

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231026