EP2770286A1 - Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff - Google Patents

Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff Download PDF

Info

Publication number
EP2770286A1
EP2770286A1 EP14000438.3A EP14000438A EP2770286A1 EP 2770286 A1 EP2770286 A1 EP 2770286A1 EP 14000438 A EP14000438 A EP 14000438A EP 2770286 A1 EP2770286 A1 EP 2770286A1
Authority
EP
European Patent Office
Prior art keywords
pressure
stream
heat exchanger
feed air
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14000438.3A
Other languages
English (en)
French (fr)
Other versions
EP2770286B1 (de
Inventor
Tobias Lautenschlager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP14000438.3A priority Critical patent/EP2770286B1/de
Priority to PL14000438T priority patent/PL2770286T3/pl
Publication of EP2770286A1 publication Critical patent/EP2770286A1/de
Application granted granted Critical
Publication of EP2770286B1 publication Critical patent/EP2770286B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the basics of cryogenic separation of air in general and the construction of two-column systems in particular are described in the monograph " Cryogenics "by Hausen / Linde (2nd edition, 1985 ) and in one Review by Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, page 35 ).
  • the heat exchange relationship between the high-pressure column and the low-pressure column of a double column is generally realized by a main condenser, in which head gas of the high-pressure column is liquefied against vaporizing bottom liquid of the medium-pressure column.
  • the distillation column system of the invention may be designed as a classical double column system, but also as a three or more column system. It may have, in addition to the columns for nitrogen-oxygen separation, other devices for obtaining other air components, in particular noble gases, for example an argon recovery.
  • the main condenser is referred to as a "condenser-evaporator” is a heat exchanger in which a first, condensing fluid stream undergoes indirect heat exchange with a second, evaporating fluid stream.
  • Each condenser-evaporator has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages.
  • the condensation (liquefaction) of a first fluid flow is performed, in the evaporation space the evaporation of a second fluid flow.
  • Evaporation and liquefaction space are formed by groups of passages that are in heat exchange relationship with each other.
  • the “main heat exchanger” is used to cool feed air under a first, subcritical pressure less than 1 bar above the operating pressure of the high pressure column, in indirect heat exchange with recycle streams from the distillation column system. It can be a single or multiple parallel and / or serial connected to heat exchanger sections, for example, from one or more plate heat exchanger blocks. When the heat exchanger sections are connected in parallel, an air feed stream flows below each of them below the first, subcritical pressure.
  • wound heat exchanger In a "wound heat exchanger" several layers of tubes are wound onto a core tube. Through the individual tubes a medium is passed, which occurs in heat exchange with a flowing in the space between the tubes and a surrounding jacket medium. The tubes are brought together at the upper heat exchanger end in several groups and led out in the form of bundles from the outside.
  • wound heat exchangers their preparation and their application are, for example, in Hausen / Linde, Tiefftemperaturtechnik, 2nd ed. 1985, p. 471-475 described.
  • the invention has for its object to provide such a method and a corresponding device, which have a high efficiency at the same time relatively low expenditure on equipment and are particularly suitable for the supply of a coal gasification power plant (IGCC - Integrated Combined Cycle).
  • IGCC coal gasification power plant
  • the further increase in the energy efficiency of the process is the joint work-relaxing of the two parts of the second feed air flow in a liquid turbine (DLE - dense liquid expander).
  • the mechanical energy generated at the liquid turbine can either be delivered directly to a compressor or converted into electrical energy via a generator.
  • an equalizing flow (“third partial flow” of the second feed air stream) is taken from the high pressure heat exchanger system at an intermediate temperature and introduced into the main heat exchanger.
  • the high-pressure heat exchanger system has at least two serially connected wound heat exchangers, between which the third partial flow is led out.
  • These two serially connected coiled heat exchangers can be realized by two heat exchanger bundles in separate containers or by two serially connected heat exchanger bundles, which are arranged one above the other in the same container.
  • the intermediate temperature at which the third partial flow is withdrawn from the high-pressure heat exchanger system and introduced into the main heat exchanger. is between 220 and 120 K, preferably between 190 and 150 K.
  • the third partial flow can be conducted separately from the second partial flow through the high-pressure heat exchanger system; Preferably, however, it is guided together with the second partial flow through the warmer of the two wound heat exchanger.
  • the high pressure heat exchanger system may also have three or more heat exchanger bundles.
  • the first, subcritical pressure of the first feed air stream is preferably equal to the operating pressure of the high pressure column plus line losses and is for example between 5.0 and 6.0 bar, preferably between 5.3 and 5.7 bar.
  • a third feed air stream may - optionally after recompression to a third pressure, which is between the first and the second pressure, be expanded in a gaseous state in an air turbine to perform cold work for the process; the inlet temperature of the air turbine is then at an intermediate level between the hot and cold end of the main heat exchanger.
  • part of the air compressed to the second, supercritical pressure is released from an intermediate temperature to perform work.
  • the total air is compressed to the first, subcritical pressure, pre-cooled and cleaned under this pressure and then divided into the first and second feed air stream. In principle, however, a completely separate compression of the first and the second feed air stream is possible.
  • the total air is compressed in a main air compressor to a "first, subcritical pressure" of 6 bar and then pre-cooled and cleaned (not shown).
  • the purified feed air 1 is divided into a first feed air stream 100, a second feed air stream 200 and a third feed air stream 300.
  • the first feed air stream 100 is introduced under the first pressure in a main heat exchanger 2, flows through this completely from the warm to the cold end.
  • the cooled to about dew point temperature first feed air stream 101 is introduced via line 3 in the high pressure column 4 of a distillation column system, which also has a low pressure column 5 and a main capacitor 6.
  • the two columns as shown as a classic double column to be arranged one above the other; alternatively they stand side by side.
  • the second feed air stream 200 is further compressed in a first after-compressor 7 with aftercooler 8 and further in a second after-compressor 9 with aftercooler 10 to a second, supercritical pressure of 85 bar and then branched again at 201.
  • a first partial flow 210/211 of the second feed air stream 200 also flows through the main heat exchanger 2 completely from the hot to the cold end. Not at all through the main heat exchanger 2 flows a second feed air stream 220/221. This is completely cooled in a high-pressure heat exchanger system, which is formed in the embodiment of two coiled heat exchangers 11, 12, which are arranged in separate containers.
  • the three sub-streams are reunited and then in a liquid turbine 13 to the operating pressure of the high-pressure column (about 6 bar) doing work relaxed.
  • the liquid turbine is braked by a generator 14.
  • the working expanded second feed air stream 205 is introduced into the high-pressure column 4 in a predominantly liquid state.
  • a third partial stream 230 of the second feed air stream 200 is cooled together with the second partial stream 220 in the warm wound heat exchanger 11 to an intermediate temperature of 165 K and led out via line 203.
  • they are further branched and the third substream 230 is fed to the main heat exchanger 2 at an intermediate location corresponding to its temperature and finally cooled there to the cold end.
  • the fully cooled third substream 231 is combined at 204 with the remainder of the second feed air stream.
  • a third feed air stream 300 is recompressed together with the second feed air stream 200 to a third pressure of 55 bar in the secondary compressor 7 and enters under this pressure in the warm end of the main heat exchanger. At a temperature which is slightly higher than the intermediate temperature of the second partial flow 230, it is removed again and expanded in an air turbine 15 to approximately the operating pressure of the high-pressure column 4 to perform work.
  • the air turbine 15 drives the after-compressor 9.
  • the expanded turbine air 303 is introduced in gaseous form into the high-pressure column 4 via line 3.
  • a liquid oxygen stream 16 from the low-pressure column 5 is brought to a first product pressure in an oxygen pump 17 in the liquid state, which in the example is 115 bar, under this first product pressure in the high-pressure heat exchanger system 12/11 warmed to about ambient temperature and finally recovered as a high pressure oxygen product stream 18.
  • the oxygen flows through the interior of the wound tubes of the heat exchangers 11 and 12, the feed air 202 or 206 through their outer space.
  • a liquid nitrogen flow 19 from the high-pressure column 4 (it could also be taken from the main condenser 6) is brought in a nitrogen pump 20 in the liquid state to a second product pressure, which is in the embodiment at 80 bar, below this second product pressure to about ambient temperature warmed and finally recovered as a high pressure nitrogen product stream 21.
  • a portion of the low-pressure nitrogen 23, 25 can be used for regeneration of the cleaning unit for the feed air (not shown).
  • the warm pressure nitrogen can be used as a sealing gas 28 and / or medium-pressure product 29.

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das ein Hochdrucksäule (4), eine Niederdrucksäule (5) und einen Hauptkondensator (6) aufweist. Ein erster Einsatzluftstrom (100, 101) wird unter einem ersten, unterkritischen Druck in einem Hauptwärmetauscher (2) auf etwa Taupunkt abgekühlt und mindestens teilweise in die Hochdrucksäule (4) eingeleitet (3). Ein zweiter Einsatzluftstroms (200) wird auf einen zweiten, überkritischen Druck gebracht, abgekühlt, anschließend entspannt und mindestens teilweise in das Destillationssäulen-System eingeleitet. Ein flüssiger Sauerstoffstrom (16) aus der Niederdrucksäule (5) wird in flüssigem Zustand auf einen ersten Produktdruck gebracht (17), der höher als der Betriebsdruck der Niederdrucksäule ist, unter diesem ersten Produktdruck in einem Hochdruck-Wärmetauscher-System (11, 12), das mindestens einen gewickelten Wärmetauscher aufweist, auf etwa Umgebungstemperatur angewärmt und schließlich als Hochdruck-Sauerstoff-Produktstrom (18) gewonnen. Ein flüssiger Stickstoffstrom (26) aus der Hochdrucksäule (4) oder aus dem Hauptkondensator (6) wird in flüssigem Zustand auf einen zweiten Produktdruck gebracht (20), der höher als der Betriebsdruck der Hochdrucksäule (4) ist, unter diesem zweiten Produktdruck in dem Hauptwärmetauscher (2) auf etwa Umgebungstemperatur angewärmt und schließlich als Hochdruck-Stickstoff-Produktstrom (21) gewonnen. Die Anwärmung des flüssig auf Druck gebrachten Stickstoffstroms wird in dem Hauptwärmetauscher (2) durchgeführt wird. Ein erster Teilstrom (201) des zweiten Einsatzluftstroms (200) wird in dem Hauptwärmetauscher (2) abgekühlt wird, ein zweiter Teilstrom (202, 221) in dem Hochdruck-Wärmetauscher-System (11, 12). Anschließende werden der erste und der zweite Teilstrom (211, 221) zusammengeführt und in einer Flüssigturbine (13) arbeitsleistend entspannt.

Description

  • Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.
  • Die Grundlagen der Tieftemperaturzerlegung von Luft im Allgemeinen sowie der Aufbau von Zwei-Säule-Anlagen im Speziellen sind in der Monografie "Tieftemperaturtechnik" von Hausen/Linde (2. Auflage, 1985) und in einem Aufsatz von Latimer in Chemical Engineering Progress (Vol. 63, No.2, 1967, Seite 35) beschrieben. Die Wärmeaustauschbeziehung zwischen Hochdrucksäule und Niederdrucksäule einer Doppelsäule wird im Regelfall durch einen Hauptkondensator realisiert, in dem Kopfgas der Hochdrucksäule gegen verdampfende Sumpfflüssigkeit der Mitteldrucksäule verflüssigt wird. Das Destillationssäulen-System der Erfindung kann als klassisches Doppelsäulensystem ausgebildet sein, aber auch als Drei- oder Mehrsäulensystem. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung.
  • Der Hauptkondensator ist als "Kondensator-Verdampfer " wird ein Wärmetauscher bezeichnet, in dem ein erster, kondensierender Fluidstrom in indirekten Wärmeaustausch mit einem zweiten, verdampfenden Fluidstrom tritt. Jeder Kondensator-Verdampfer weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation (Verflüssigung) eines ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung eines zweiten Fluidstroms. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen.
  • Der "Hauptwärmetauscher" dient zur Abkühlung von Einsatzluft unter einem ersten, unterkritischen Druck, weniger als 1 bar über dem Betriebsdruck der Hochdrucksäule liegt, in indirektem Wärmeaustausch mit Rückströmen aus dem Destillationssäulen-System. Es kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken. Sind die Wärmeaustauscherabschnitte parallel verbunden, strömt durch jeden von ihnen ein Einsatzluftstrom unter dem ersten, unterkritischen Druck.
  • Bei einem "gewickelten Wärmetauscher" sind mehrere Lagen von Rohren auf ein Kernrohr aufgewickelt. Durch die einzelnen Rohre wird ein Medium geleitet, welches in Wärmeaustausch mit einem in dem Raum zwischen den Rohren und einem umgebenden Mantel strömenden Medium tritt. Die Rohre werden am oberen Wärmetauscherende in mehreren Gruppen zusammengeführt und in Form von Bündeln aus dem Außenraum herausgeleitet. Derartige gewickelte Wärmetauscher, ihre Herstellung und ihre Anwendung sind beispielsweise in Hausen/Linde, Tieftemperaturtechnik, 2. Aufl. 1985, S. 471-475 beschrieben.
  • Bei dem Prozess werden zwei flüssig auf Druck gebrachte Produktströme gegen einen Wärmeträger, insbesondere Einsatzluft unter besonders hohem Druck, verdampft und schließlich als gasförmiges Druckprodukt gewonnen. Diese Methode wird auch als "Innenverdichtung" bezeichnet. Sie dient zur Gewinnung von Drucksauerstoff und Druckstickstoff. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann lediglich angewärmt; dies wird manchmal auch als "Pseudo-Verdampfung" bezeichnet.
  • Ein Verfahren der eingangs genannten Art ist aus US 5355682 bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein derartiges Verfahren und eine entsprechende Vorrichtung anzugeben, die eine hohe Effizienz bei gleichzeitig relativ geringem apparativem Aufwand aufweisen und sich insbesondere für die Versorgung eines Kohlevergasungskraftwerks (IGCC - Integrated Combined Cycle) eignen.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.
  • Zunächst erscheint es vernünftiger, durch den Hauptwärmetauscher nur die Niederdruckströme zu fahren, weil dieser dann besonders kostengünstig hergestellt werden kann. Im Rahmen der Erfindung hat sich jedoch überraschenderweise herausgestellt, dass es in vielen Fällen günstiger ist, den Hochdruckstickstoff in dem Hauptwärmetauscher zu verdampfen beziehungsweise zu pseudo-verdampfen. Vorzugsweise wird der gesamte flüssig auf Druck gebrachte Stickstoffstrom, der als Hochdruck-Stickstoff-Produktstrom gewonnen wird, in dem Hauptwärmetauscher in den Hauptwärmetauscher eingeleitet. Zwar wird dadurch tatsächlich der Aufwand am Hauptwärmetauscher größer, allerdings wird der Herstellungsaufwand für das entsprechend einfachere Hochdruck-Wärmetauscher-System überproportional geringer. Dies gilt sogar dann, wenn man den erhöhten Aufwand durch die Aufteilung des zweiten Einsatzluftstroms berücksichtigt.
  • Der weiteren Erhöhung der energetischen Effizienz des Verfahrens dient die gemeinsame arbeitsleistende Entspannung der beiden Teile des zweiten Einsatzluftstroms in einer Flüssigturbine (DLE - dense liquid expander). Die an der Flüssigturbine erzeugte mechanische Energie kann entweder direkt an einen Verdichter abgegeben oder über einen Generator in elektrische Energie umgewandelt werden.
  • Abweichend hiervon kann auch auf das Zusammenführen der beiden Teile des zweiten Einsatzluftstroms und/oder auf die Flüssigturbine verzichtet werden. Die beiden Teile werden dann beispielsweise getrennt oder gemeinsam in einem oder mehreren Drosselventilen auf den Druck des Destillationssäulen-Systems entspannt.
  • Bei der Erfindung wird ein Ausgleichsstrom ("dritter Teilstrom" des zweiten Einsatzluftstroms) bei einer Zwischentemperatur aus dem Hochdruck-Wärmetauscher-System entnommen und in den Hauptwärmetauscher eingeleitet. Durch diese Maßnahme können beide Wärmeaustauschprozesse stärker optimiert werden und arbeiten dadurch spürbar effizienter.
  • Dazu weist das Hochdruck-Wärmetauscher-System mindestens zwei seriell verbundene gewickelte Wärmetauscher auf, zwischen denen der dritte Teilstrom herausgeführt wird. Diese zwei seriell verbundenen gewickelten Wärmetauscher können durch zwei Wärmetauscherbündel in separaten Behältern realisiert werden oder durch zwei seriell verbundene Wärmetauscherbündel, die übereinander im gleichen Behälter angeordnet sind.
  • Die Zwischentemperatur, bei welcher der dritte Teilstrom aus dem Hochdruck-Wärmetauscher-System abgezogen und in den Hauptwärmetauscher eingeleitet wird. liegt zwischen 220 und 120 K, vorzugsweise zwischen 190 und 150 K.
  • Der dritte Teilstrom kann separat vom zweiten Teilstrom durch das Hochdruck-Wärmetauscher-System geführt werden; vorzugsweise wird er jedoch gemeinsam mit dem zweiten Teilstrom durch den wärmeren der beiden gewickelten Wärmetauscher geführt. Selbstverständlich kann das Hochdruck-Wärmetauscher-System auch drei oder mehr Wärmetauscherbündel aufweisen.
  • Vorzugsweise werden alle drei Teilströme des zweiten Einsatzluftstroms in der Flüssigturbine arbeitsleistend entspannt.
    • Erster Produktdruck (Sauerstoff) höher als 100 bar, insbesondere höher als 110 bar, beispielsweise zwischen 105 und 135 bar.
    • Zweiter Produktdruck niedriger als 100 bar, insbesondere niedriger als 90 bar, beispielsweise zwischen 30 und 80 bar.
    • Zweiter, überkritischer Druck (oberes Luftdruckniveau) niedriger als der erste Produktdruck und insbesondere geringer als 100 bar, insbesondere geringer als 90 bar, beispielsweise zwischen 60 und 90 bar.
  • Der erste, unterkritische Druck des ersten Einsatzluftstroms (Direktluft) ist vorzugsweise gleich dem Betriebsdruck der Hochdrucksäule plus Leitungsverlusten und liegt beispielsweise zwischen 5,0 und 6,0 bar, vorzugsweise zwischen 5,3 und 5,7 bar.
  • Ein dritter Einsatzluftstrom kann - gegebenenfalls nach Nachverdichtung auf einen dritten Druck, der zwischen dem ersten und dem zweiten Druck liegt, in gasförmigem Zustand in einer Luftturbine arbeitsleistend entspannt werden, um Kälte für das Verfahren zu erzeugen; die Eintrittstemperatur der Luftturbine liegt dann auf einem Zwischenniveau zwischen warmem und kaltem Ende des Hauptwärmetauschers. Alternativ oder zusätzlich wird ein Teil der auf den zweiten, überkritischen Druck verdichteten Luft von einer Zwischentemperatur aus arbeitsleistend entspannt. Vorzugsweise wird bei dem Verfahren die Gesamtluft auf den ersten, unterkritischen Druck verdichtet, unter diesem Druck vorgekühlt und gereinigt und anschließend in den ersten und zweiten Einsatzluftstrom aufgeteilt. Grundsätzlich ist aber auch eine vollständig separate Verdichtung des ersten und des zweiten Einsatzluftstroms möglich.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.
  • Die Gesamtluft wird in einem Hauptluftverdichter auf einen "ersten, unterkritischen Druck" von 6 bar verdichtet und anschließend vorgekühlt und gereinigt (nicht dargestellt). Die gereinigte Einsatzluft 1 wird auf einen ersten Einsatzluftstrom 100, einen zweiten Einsatzluftstrom 200 und einen dritten Einsatzluftstrom 300 aufgeteilt.
  • Der erste Einsatzluftstrom 100 wird unter dem ersten Druck in einen Hauptwärmetauscher 2 eingeleitet, durchströmt diesen komplett vom warmen bis zum kalten Ende. Der auf etwa Taupunktstemperatur abgekühlte erste Einsatzluftstrom 101 wird über Leitung 3 in die Hochdrucksäule 4 eines Destillationssäulen-Systems eingeleitet, das außerdem eine Niederdrucksäule 5 und einen Hauptkondensator 6 aufweist. Die beiden Säulen wie dargestellt als klassische Doppelsäule übereinander angeordnet sein; alternativ stehen sie nebeneinander.
  • Der zweite Einsatzluftstrom 200 wird in einem ersten Nachverdichter 7 mit Nachkühler 8 und weiter in einem zweiten Nachverdichter 9 mit Nachkühler 10 weiter auf einen zweiten, überkritischen Druck von 85 bar verdichtet und anschließend bei 201 erneut verzweigt. Ein erster Teilstrom 210/211 des zweiten Einsatzluftstroms 200 durchströmt ebenfalls den Hauptwärmetauscher 2 komplett vom warmen bis zum kalten Ende. Überhaupt nicht durch den Hauptwärmetauscher 2 strömt ein zweiter Einsatzluftstrom 220/221. Dieser wird komplett in einem Hochdruck-Wärmetauscher-System abgekühlt, das in dem Ausführungsbeispiel aus zwei gewickelten Wärmetauschern 11, 12 gebildet wird, die in separaten Behältern angeordnet sind.
  • Bei 204 werden die drei Teilströme wieder vereinigt und anschließend in einer Flüssigturbine 13 auf den Betriebsdruck der Hochdrucksäule (etwa 6 bar) arbeitsleistend entspannt. Die Flüssigturbine wird von einem Generator 14 gebremst. Der arbeitsleistend entspannte zweite Einsatzluftstrom 205 wird in überwiegend flüssigem Zustand in die Hochdrucksäule 4 eingeleitet.
  • Ein dritter Teilstrom 230 des zweiten Einsatzluftstroms 200 wird gemeinsam mit dem zweiten Teilstrom 220 in dem warmen gewickelten Wärmetauscher 11 auf eine Zwischentemperatur von 165 K abgekühlt und über Leitung 203 herausgeführt. Bei 206 werden sie weiter verzweigt und der dritte Teilstrom 230 wird dem Hauptwärmtauscher 2 an einer Zwischenstelle zugeführt, die seiner Temperatur entspricht und schließlich dort bis zum kalten Ende abgekühlt. Der vollständig abgekühlte dritte Teilstrom 231 wird bei 204 mit dem Rest des zweiten Einsatzluftstroms vereinigt.
  • Ein dritter Einsatzluftstrom 300 wird gemeinsam mit dem zweiten Einsatzluftstrom 200 auf einen dritten Druck von 55 bar im Nachverdichter 7 nachverdichtet und tritt unter diesem Druck in das warme Ende des Hauptwärmtauschers ein. Bei einer Temperatur, die etwas höher als die Zwischentemperatur des zweiten Teilstroms 230 ist, wird er wieder entnommen und in einer Luftturbine 15 auf etwa den Betriebsdruck der Hochdrucksäule 4 arbeitsleistend entspannt. Die Luftturbine 15 treibt den Nachverdichter 9 an. Die entspannte Turbinenluft 303 wird über Leitung 3 gasförmig in die Hochdrucksäule 4 eingeleitet.
  • Ein flüssiger Sauerstoffstrom 16 aus der Niederdrucksäule 5 wird in einer Sauerstoffpumpe 17 in flüssigem Zustand auf einen ersten Produktdruck gebracht, der in dem Beispiel bei 115 bar liegt, unter diesem ersten Produktdruck in dem Hochdruck-Wärmetauscher-System 12/11 auf etwa Umgebungstemperatur angewärmt und schließlich als Hochdruck-Sauerstoff-Produktstrom 18 gewonnen. Der Sauerstoff strömt durch das Innere der gewickelten Rohre der Wärmetauscher 11 und 12, die Einsatzluft 202 beziehungsweise 206 durch deren Außenraum.
  • Ein flüssiger Stickstoffstrom 19 aus der Hochdrucksäule 4 (er könnte auch aus dem Hauptkondensator 6 entnommen werden) wird in einer Stickstoffpumpe 20 in flüssigem Zustand auf einen zweiten Produktdruck gebracht wird, der in dem Ausführungsbeispiel bei 80 bar liegt, unter diesem zweiten Produktdruck auf etwa Umgebungstemperatur angewärmt und schließlich als Hochdruck-Stickstoff-Produktstrom 21 gewonnen.
  • Außerdem werden die folgenden Gasströme im Hauptwärmetauscher 2 angewärmt:
    • praktisch druckloser gasförmiger Reinstickstoff 22/23 vom Kopf der Niederdrucksäule 5,
    • praktisch druckloser gasförmiger Unreinstickstoff 24/25 von einer Zwischenstelle der der Niederdrucksäule 5 und
    • gasförmiger Druckstickstoff 26/27 vom Kopf der Hochdrucksäule 4.
  • Ein Teil des Niederdruckstickstoff 23, 25 kann zur Regenerierung der Reinigungseinheit für die Einsatzluft (nicht dargestellt) eingesetzt werden. Der warme Druckstickstoff kann als Dichtgas 28 und/oder als Mitteldruckprodukt 29 genutzt werden.

Claims (7)

  1. Verfahren zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff durch Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das ein Hochdrucksäule (4) und eine Niederdrucksäule (5) aufweist, die über einen Hauptkondensator (6), der als Kondensator-Verdampfer ausgebildet ist, in wärmetauschender Verbindung stehen, wobei
    - ein erster Einsatzluftstrom (100, 101) unter einem ersten, unterkritischen Druck, weniger als 1 bar über dem Betriebsdruck der Hochdrucksäule (4) liegt, in einem Hauptwärmetauscher (2) auf etwa Taupunkt abgekühlt und mindestens teilweise in die Hochdrucksäule (4) eingeleitet (3) wird,
    - ein zweiter Einsatzluftstrom (200) unter einem zweiten, überkritischen Druck abgekühlt, anschließend entspannt und mindestens teilweise in das Destillationssäulen-System eingeleitet wird,
    - ein flüssiger Sauerstoffstrom (16) aus der Niederdrucksäule (5) in flüssigem Zustand auf einen ersten Produktdruck gebracht (17) wird, der höher als der Betriebsdruck der Niederdrucksäule ist, unter diesem ersten Produktdruck in einem Hochdruck-Wärmetauscher-System (11, 12), das mindestens einen gewickelten Wärmetauscher aufweist, auf etwa Umgebungstemperatur angewärmt wird und schließlich als Hochdruck-Sauerstoff-Produktstrom (18) gewonnen wird,
    - ein flüssiger Stickstoffstrom (26) aus der Hochdrucksäule (4) oder aus dem Hauptkondensator (6) in flüssigem Zustand auf einen zweiten Produktdruck gebracht (20) wird, der höher als der Betriebsdruck der Hochdrucksäule (4) ist, unter diesem zweiten Produktdruck auf etwa Umgebungstemperatur angewärmt und schließlich als Hochdruck-Stickstoff-Produktstrom (21) gewonnen wird,
    - die Abkühlung eines ersten Teilstroms (201) des zweiten Einsatzluftstroms (200) durch indirekten Wärmeaustausch außerhalb des Hochdruck-Wärmetauscher-Systems (11, 12) durchgeführt wird,
    - die Abkühlung eines zweiten Teilstroms (202, 221) des zweiten Einsatzluftstroms (200) in dem Hochdruck-Wärmetauscher-System (11, 12) durchgeführt wird, und wobei
    - der erste und der zweite Teilstrom (211, 221) des zweiten Einsatzluftstroms stromabwärts ihrer Abkühlung zusammengeführt werden und
    dadurch gekennzeichnet, dass
    - die Anwärmung des flüssig auf Druck gebrachten Stickstoffstroms in dem Hauptwärmetauscher (2) durchgeführt wird,
    - die Abkühlung eines ersten Teilstroms (201) des zweiten Einsatzluftstroms (200) im Hauptwärmetauscher (2) durchgeführt wird,
    - der zusammengeführte zweite Einsatzluftstrom vor seiner Einleitung (205, 3) in das Destillationssäulensystem in einer Flüssigturbine (13) arbeitsleistend entspannt wird,
    - das Hochdruck-Wärmetauscher-System (11, 12) zwei seriell verbundene gewickelte Wärmetauscher aufweist,
    - ein dritter Teilstrom (230) des zweiten Einsatzluftstroms (200) zwischen den beiden gewickelten Wärmetauschern (11, 12) vom zweiten Teilstrom (206) abgezweigt und in den Hauptwärmetauscher (2) an einer Zwischenstelle eingeleitet und dort weiter abgekühlt wird,
    - während der zweite Teilstrom (206) des zweiten Einsatzluftstroms in dem Hochdruck-Wärmetauscher-System (12) weiter abgekühlt wird.
  2. Verfahren nach Anspruch , dadurch gekennzeichnet, dass der dritte Teilstrom (231) mit dem ersten und dem zweiten Teilstrom (211, 221) stromaufwärts der Flüssigturbine (13) zusammenführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Produktdruck höher als 100 bar, insbesondere höher als 110 bar ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der zweite Produktdruck niedriger als 100 bar, insbesondere niedriger als 90 bar ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der zweite, überkritische Druck niedriger als der erste Produktdruck ist und insbesondere weniger als 100 bar, insbesondere weniger als 90 bar beträgt.
  6. Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff durch Tieftemperaturzerlegung von Luft mit einem Destillationssäulen-System, das ein Hochdrucksäule (4) und eine Niederdrucksäule (5) aufweist, die über einen Hauptkondensator (6), der als Kondensator-Verdampfer ausgebildet ist, in Wärmeaustauschverbindung stehen, und mit
    - Mitteln zum Abkühlen eines ersten Einsatzluftstroms (100) unter einem ersten, unterkritischen Druck, der weniger als 1 bar über dem Betriebsdruck der Hochdrucksäule (4) liegt, in einem Hauptwärmetauscher (2) auf etwa Taupunkt,
    - Mitteln (3) zum Einleiten des abgekühlten ersten Einsatzluftstroms (101) in die Hochdrucksäule (4).
    - Mitteln zum Abkühlen eines zweiten Einsatzluftstroms (200) unter einem zweiten, überkritischen Druck,
    - Mitteln zum Entspannen und Einleiten in das Destillationssäulen-System des abgekühlten zweiten Einsatzluftstroms (211, 221, 231)
    - Mitteln (17), um einen flüssigen Sauerstoffstrom (16) aus der Niederdrucksäule (5) auf einen ersten Produktdruck zu bringen, der höher als der Betriebsdruck der Niederdrucksäule ist,
    - Mitteln zum Anwärmen des auf Druck gebrachten Sauerstoffstroms unter diesem ersten Produktdruck in einem Hochdruck-Wärmetauscher-System (11, 12), das mindestens einen gewickelten Wärmetauscher aufweist, auf etwa Umgebungstemperatur und
    - Mitteln zum Gewinnen des angewärmten Sauerstoffstroms als Hochdruck-Sauerstoff-Produktstrom (18) gewonnen wird,
    - Mitteln (20), um einen flüssigen Stickstoffstrom (26) aus der Hochdrucksäule (4) oder aus dem Hauptkondensator (6) auf einen zweiten Produktdruck zu bringen, der höher als der Betriebsdruck der Hochdrucksäule (4) ist,
    - Mitteln zum Anwärmen des auf Druck gebrachten Stickstoffstroms unter diesem zweiten Produktdruck,
    - Mitteln zum Gewinnen des angewärmten Stickstoffstroms als Hochdruck-Stickstoff-Produktstrom (21),
    - Mittel zum Abkühlen eines ersten Teilstroms (201) des zweiten Einsatzluftstroms (200) durch indirekten Wärmeaustausch,
    - Mittel zum Einleiten eines zweiten Teilstroms (202, 221) des zweiten Einsatzluftstroms (200) in das warme Ende des Hochdruck-Wärmetauscher-Systems (11, 12) und mit
    - Mittel zum Zusammenführen des abgekühlten ersten Teilstroms (211) und des abgekühlten zweiten Teilstroms (221) des zweiten Einsatzluftstroms stromabwärts von Hauptwärmetauscher (2) beziehungsweise Hochdruck-Wärmetauscher-System (11, 12)
    gekennzeichnet durch
    - Mittel zum Einleiten des flüssig auf Druck gebrachten Stickstoffstroms in den Hauptwärmetauscher (2),
    - Mittel zum Einleiten eines ersten Teilstroms (201) des zweiten Einsatzluftstroms (200) in das warme Ende des Hauptwärmetauschers (2), und durch
    - eine Flüssigturbine (13) zum arbeitsleistenden Entspannen des zusammengeführten zweiten Einsatzluftstroms vor seiner Einleitung (205, 3) in das Destillationssäulensystem, wobei.
    - das Hochdruck-Wärmetauscher-System (11, 12) zwei seriell verbundene gewickelte Wärmetauscher aufweist, und weiter gekennzeichnet durch
    - Mittel zum Abzweigen eines dritten Teilstroms (230) des zweiten Einsatzluftstroms (200) vom zweiten Teilstrom (206) zwischen den beiden gewickelten Wärmetauschern (11, 12),
    - Mittel zum Einleiten des dritten Teilstroms (230) in den Hauptwärmetauscher (2) an einer Zwischenstelle und durch
    - Mittel zum weiteren Abkühlen des zweiten Teilstroms (206) des zweiten Einsatzluftstroms in dem Hochdruck-Wärmetauscher-System (12).
  7. Vorrichtung nach Anspruch 6, gekennzeichnet durch Mittel Zusammenführen des dritten Teilstroms (231) mit dem ersten und dem zweiten Teilstrom (211, 221) stromaufwärts der Flüssigturbine (13).
EP14000438.3A 2013-02-21 2014-02-06 Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff Active EP2770286B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14000438.3A EP2770286B1 (de) 2013-02-21 2014-02-06 Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff
PL14000438T PL2770286T3 (pl) 2013-02-21 2014-02-06 Sposób i urządzenie do pozyskiwania tlenu pod wysokim ciśnieniem i azotu pod wysokim ciśnieniem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13000875 2013-02-21
EP14000438.3A EP2770286B1 (de) 2013-02-21 2014-02-06 Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff

Publications (2)

Publication Number Publication Date
EP2770286A1 true EP2770286A1 (de) 2014-08-27
EP2770286B1 EP2770286B1 (de) 2017-05-24

Family

ID=47845689

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14000438.3A Active EP2770286B1 (de) 2013-02-21 2014-02-06 Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff

Country Status (4)

Country Link
US (1) US9989306B2 (de)
EP (1) EP2770286B1 (de)
CN (1) CN104006628B (de)
PL (1) PL2770286T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980514A1 (de) * 2014-07-31 2016-02-03 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
CN109737691B (zh) * 2019-01-31 2020-05-19 东北大学 一种钢铁企业空气分离系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3216510A1 (de) * 1982-05-03 1983-11-03 Linde Ag, 6200 Wiesbaden Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
US5355682A (en) 1993-09-15 1994-10-18 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
EP0869322A1 (de) * 1997-04-03 1998-10-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Anlage zur Lufttrennung durch Tieftemperaturdestillation
WO2012155318A1 (en) * 2011-05-13 2012-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of oxygen at high pressure by cryogenic distillation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793069A1 (de) * 1996-03-01 1997-09-03 Air Products And Chemicals, Inc. Mit einem Aufkochkompressor versehener Generator für Sauerstoff von zwei Reinheitsgraden
FR2789165B1 (fr) * 1999-02-01 2001-03-09 Air Liquide Echangeur de chaleur, notamment echangeur de chaleur a plaques d'un appareil de separation d'air
US6718795B2 (en) * 2001-12-20 2004-04-13 Air Liquide Process And Construction, Inc. Systems and methods for production of high pressure oxygen
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air
CN100494839C (zh) * 2007-04-11 2009-06-03 杭州杭氧股份有限公司 获得液氧和液氮的空气分离系统
US9222725B2 (en) * 2007-06-15 2015-12-29 Praxair Technology, Inc. Air separation method and apparatus
DE102007051183A1 (de) * 2007-10-25 2009-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperatur-Luftzerlegung
CN101925790B (zh) * 2008-01-28 2015-10-21 林德股份公司 用于低温分离空气的方法和设备
DE102009048456A1 (de) * 2009-09-21 2011-03-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US20110192194A1 (en) * 2010-02-11 2011-08-11 Henry Edward Howard Cryogenic separation method and apparatus
DE102010052544A1 (de) * 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3216510A1 (de) * 1982-05-03 1983-11-03 Linde Ag, 6200 Wiesbaden Verfahren zur gewinnung von gasfoermigem sauerstoff unter erhoehtem druck
US5355682A (en) 1993-09-15 1994-10-18 Air Products And Chemicals, Inc. Cryogenic air separation process producing elevated pressure nitrogen by pumped liquid nitrogen
EP0869322A1 (de) * 1997-04-03 1998-10-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Verfahren und Anlage zur Lufttrennung durch Tieftemperaturdestillation
WO2012155318A1 (en) * 2011-05-13 2012-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of oxygen at high pressure by cryogenic distillation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"METHOD FOR HIGH PRESSURE OXYGEN PRODUCTION", RESEARCH DISCLOSURE, MASON PUBLICATIONS, HAMPSHIRE, GB, no. 450, 1 October 2001 (2001-10-01), pages 1676 - 1678, XP001100122, ISSN: 0374-4353 *
CASTLE W F: "MODERN LIQUID PUMP OXYGEN PLANTS: EQUIPMENT AND PERFORMANCE", AICHE INTERSOCIETY CRYOGENIC SYMPOSIUM, XX, XX, 1 April 1991 (1991-04-01), pages 14 - 17, XP009057309 *
HAUSEN/LINDE: "Tieftemperaturtechnik", 1985, pages: 471 - 475
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985
LATIMER, CHEMICAL ENGINEERING PROGRESS, vol. 63, no. 2, 1967, pages 35

Also Published As

Publication number Publication date
PL2770286T3 (pl) 2017-10-31
CN104006628A (zh) 2014-08-27
US9989306B2 (en) 2018-06-05
EP2770286B1 (de) 2017-05-24
CN104006628B (zh) 2017-11-28
US20140230486A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1994344A1 (de) Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2980514A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Luftzerlegungsanlage
EP2880267B1 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
EP1666822A1 (de) Vorrichtung zur Tieftemperaturzerlegung eines Gasgemisches, insbesondere von Luft
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2010017968A2 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2014026738A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
WO2014000882A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
EP3059536A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckstickstoffprodukts
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
EP2835507B1 (de) Verfahren zur Erzeugung von elektrischer Energie und Energieerzeugungsanlage
DE102010056560A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Druckstickstoff durch Tieftemperaturzerlegung von Luft
EP2770286B1 (de) Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
WO2021078405A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP4065910A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2369281A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102011113262A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP1189001B1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
EP2824407A1 (de) Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
EP2600090A1 (de) Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 3/04 20060101AFI20161215BHEP

INTG Intention to grant announced

Effective date: 20170113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 896225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003911

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170524

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170924

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003911

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 896225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014003911

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210223

Year of fee payment: 8

Ref country code: GB

Payment date: 20210222

Year of fee payment: 8

Ref country code: PL

Payment date: 20210126

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014003911

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220206

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901