EP2768997A1 - Plasma spraying method - Google Patents

Plasma spraying method

Info

Publication number
EP2768997A1
EP2768997A1 EP12769371.1A EP12769371A EP2768997A1 EP 2768997 A1 EP2768997 A1 EP 2768997A1 EP 12769371 A EP12769371 A EP 12769371A EP 2768997 A1 EP2768997 A1 EP 2768997A1
Authority
EP
European Patent Office
Prior art keywords
weight
plasma
wire
coating
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12769371.1A
Other languages
German (de)
French (fr)
Inventor
Leander Schramm
Clemens Maria Verpoort
Alexander Schwenk
Enrico Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Original Assignee
Ford Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH filed Critical Ford Werke GmbH
Publication of EP2768997A1 publication Critical patent/EP2768997A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0075Nozzle arrangements in gas streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/224Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material having originally the shape of a wire, rod or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/0627Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies
    • B05B13/0636Arrangements of nozzles or spray heads specially adapted for treating the inside of hollow bodies by means of rotatable spray heads or nozzles

Definitions

  • the present invention relates to a method for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner of an internal combustion engine, e.g. is made of an aluminum, coated with an alloy, preferably with an iron alloy.
  • EP 1 967 601 A2 From EP 1 967 601 A2 it is known that e.g. To coat an aluminum engine block, in particular its cylinder bore with an iron alloy while performing the arc wire spraying.
  • EP 1 967 601 A2 proposes to use an iron alloy which contains inter alia 5 to 25% by weight of chromium. It is essential in the EP 1 967 601 A2, that the molten iron also an additional powder, namely Borcabid is supplied.
  • the arc wire spraying method of EP 1 967 601 A2 is the so-called TWAS method, in which two wires are fed to a spray head in such a way that power is transmitted to the wires. When the two wires touch each other, a permanent short circuit causes an arc to melt the wires. Behind the nozzle is a nozzle from which compressed air or an inert gas such as nitrogen escapes. This gas stream atomizes the molten iron alloy and supplies it with the molten borocabid powder to the surface to be coated.
  • DE 44 1 1 296 A1 and DE 44 47 514 A1 deal with coatings by means of plasma spraying, wherein, however, a metal powder or a filler wire are melted, and wherein the material mixture nitrogen is supplied by means of metallic nitrogen compounds to harden the coating.
  • Today's internal combustion engines or their engine blocks can be cast from a metal or aluminum, in particular aluminum blocks on their Cylinder bores have an iron or metal layer.
  • the metal layer may be thermally sprayed.
  • thermal spraying methods the above-mentioned methods are known.
  • PTWA inner coating process Pulsma Transfer Wire Are
  • bores cylinder bores
  • the plasma strikes the preheated wire-form spray additive.
  • the plasma gas is usually an argon-hydrogen mixture.
  • transport gas or atomizing gas air or compressed air is used in the PTWA process.
  • the layers produced by this process are characterized by a low porosity.
  • the PTWA internal coating process has so far proven itself in the interior coating of cylinder bores.
  • the metal or iron coatings of the cylinder bores produced according to the hitherto possible coating methods do not withstand the particular corrosion conditions of ethanol-containing fuels or ethanol fuels. This is particularly observed when the motor vehicle or the internal combustion engine is not used for a long time, which may be the case, for example, when parking during a vacation. Even an alloy containing 17% by weight of chromium had corrosive attack marks on the protective coating.
  • the invention is based on the object to provide a method of the type mentioned above, with which a coating improved in this respect can be produced.
  • a method for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner of an internal combustion engine made of aluminum or cast, is coated with an alloy is proposed in which nitrogen is at least is supplied as a transport gas, wherein a Spitzzusatzwerkstoff is a solid alloy wire, which is fed into a plasma stream, wherein additional powder-free or powder-free is coated.
  • the plasma spraying is a PTWA inner coating (Plasma Transfer Wire Are).
  • additive powder-free or “powder-free” in the sense of the invention means that neither a filler wire filled with (metal) powder nor a separately supplied (metal) powder is used. In fact, in the invention, only a solid, that is to say homogeneous or an unfilled spray additive wire is advantageously used.
  • a suitable alloy for coating has as alloying element chromium and mainly iron. A preferred metal or iron alloy is disclosed below.
  • the spray additive wire according to the invention comprises an iron alloy with 23 wt.% Cr, 5 wt.% Al, less than 0.5 wt.% Si, less than 0.2 wt.% Mn, less than 0.05 Wt% C, the remaining ingredients having an amount less than 2% by weight and the remainder being iron.
  • inventive method can also be used for coating other components.
  • FIG. 1 shows a nozzle unit 1 of a PTWA internal coating device.
  • the PTWA (Plasma Transferred Wire Are) coating system is a system for coating bores, in particular cylinders in engine blocks of internal combustion engines.
  • the nozzle unit 1 consists of a cathode 2, a plasma nozzle 3, and the electrically conductive alloy wire 4 as an anode, which is supplied perpendicular to the plasma nozzle 3.
  • Tungsten is preferably used as the material for the cathode 2, which may be doped with thorium, for example.
  • the plasma gas 5, for example a mixture of argon and hydrogen, is supplied through bores located in the nozzle body 6 and located tangentially to the circumference.
  • the cathode holder 7 insulates the cathode 2 relative to the nozzle body 6.
  • the alloy wire 4 is rotatably guided in the wire feed 15 and longitudinally displaceable.
  • the process is started by a high-voltage discharge which ionizes and dissociates the plasma gas 5 between alloy wire 4, nozzle body 6 and cathode 2.
  • the plasma thus generated flows through the plasma nozzle 3 at high speed.
  • the plasma gas 5 is transported toward the alloy wire 4 fed continuously perpendicular to the nozzle 3, whereby the electric circuit is closed.
  • a transport gas 9 or a Zerstäubergas 9 via feed channels 10 and auxiliary nozzles 1 1 is supplied to the plasma jet 8 emerging from the pilot nozzle 3.
  • the melting and the atomization of the alloy wire 4 are influenced by two phenomena.
  • the wire 4 is on the one hand by high currents, typically 65-90 amps, resistance heated.
  • the impact of the plasma jet 8 on the preheated wire 4 causes its melting at the wire end 12.
  • a plasma is generated within the plasma nozzle 3 by means of high-voltage discharge.
  • a targeted nitrogen gas flow so the transport gas 9 along the discharge path transports the plasma and the molten spray material 13 to the surface 14 of the workpiece to be coated.

Abstract

The invention relates to a method for producing a coating by means of thermal spraying, in particular by means of plasma spraying, in which a component, in particular a cylinder liner, is internally coated with an alloy. According to the invention, nitrogen is supplied as a transport gas, wherein a spraying additive is a solid alloy wire, which is led into a plasma stream, and wherein the coating is carried out without additive powder.

Description

Plasmaspritzverfahren  Plasma spray process
Beschreibung description
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen einer Beschichtung durch thermisches Spritzen, insbesondere durch Plasmaspritzen, bei welchem eine Komponente, insbesondere eine Zylinderbuchse eines Verbrennungsmotors, der z.B. aus einem Aluminium hergestellt ist, mit einer Legierung, bevorzugt mit einer Eisenlegierung beschichtet wird. The present invention relates to a method for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner of an internal combustion engine, e.g. is made of an aluminum, coated with an alloy, preferably with an iron alloy.
Aus der EP 1 967 601 A2 ist bekannt, dass z.B. ein Aluminium-Motorblock, insbesondere dessen Zylinderlaufbahn mit einer Eisenlegierung unter Durchführung des Lichtbogendrahtspritzens zu beschichten. Dabei schlägt die EP 1 967 601 A2 vor, eine Eisenlegierung zu verwenden, welche unter anderem 5 bis 25 Gew.% Chrom enthält. Wesentlich ist bei der EP 1 967 601 A2, dass der Eisenschmelze zudem noch ein Zusatzpulver, und zwar Borcabid zugeführt wird. Bei dem Lichtbogendrahtspritzverfahren der EP 1 967 601 A2 handelt es sich um das so genannte TWAS-Verfahren, bei welchem zwei Drähte einem Spritzkopf derart zugeführt werden, dass an die Stromübertragung an die Drähte erfolgt. Berühren sich die beiden Drähte, wird durch einen permanenten Kurzschluss ein Lichtbogen gebildet, der die Drähte schmelzen lässt. Hinter der Düse befinde sich eine Düse, aus der Druckluft oder ein inertes Gas wie Stickstoff austritt. Dieser Gasstrom zerstäubt die geschmolzene Eisenlegierung und führt sie mit dem aufgeschmolzenen Borcabidpulver der zu beschichtenden Oberfläche zu. From EP 1 967 601 A2 it is known that e.g. To coat an aluminum engine block, in particular its cylinder bore with an iron alloy while performing the arc wire spraying. In this case, EP 1 967 601 A2 proposes to use an iron alloy which contains inter alia 5 to 25% by weight of chromium. It is essential in the EP 1 967 601 A2, that the molten iron also an additional powder, namely Borcabid is supplied. The arc wire spraying method of EP 1 967 601 A2 is the so-called TWAS method, in which two wires are fed to a spray head in such a way that power is transmitted to the wires. When the two wires touch each other, a permanent short circuit causes an arc to melt the wires. Behind the nozzle is a nozzle from which compressed air or an inert gas such as nitrogen escapes. This gas stream atomizes the molten iron alloy and supplies it with the molten borocabid powder to the surface to be coated.
Die DE 44 1 1 296 A1 und DE 44 47 514 A1 beschäftigen sich mit Beschichtungen mittels des Plasmaspritzens, wobei allerdings ein Metallpulver oder ein Fülldraht aufgeschmolzen werden, und wobei dem Werkstoffgemisch Stickstoff mittels metallischer Stickstoffverbindungen zugeführt wird, um die Beschichtung aufzuhärten. DE 44 1 1 296 A1 and DE 44 47 514 A1 deal with coatings by means of plasma spraying, wherein, however, a metal powder or a filler wire are melted, and wherein the material mixture nitrogen is supplied by means of metallic nitrogen compounds to harden the coating.
Heutige Verbrennungsmotoren bzw. deren Motorblöcke können aus einem Metall oder Aluminium gegossen sein, wobei insbesondere Aluminiumblöcke an ihren Zylinderbohrungen eine Eisen- bzw. Metallschicht aufweisen. Die Metallschicht kann thermisch aufgespritzt sein. Als thermische Spritzverfahren sind die oben genannten Verfahren bekannt. Bekannt ist auch das so genannte PTWA-Innenbeschichtungsverfahren (Plasma Transfer Wire Are). Bei diesem Verfahren können Bohrungen (Zylinderbohrungen) mit einem drahtformigen Spritzzusatzwerkstoff von innen beschichtet werden. Hier wird also nur ein einziger drahtförmiger Spritzzusatzwerkstoff zugeführt, wobei möglich ist einen Fülldraht zu verwenden, oder auch Spritzpulver zuzuführen. Das Plasma trifft auf den vorgeheizten drahtformigen Spritzzusatzwerkstoff. Das Plasmagas ist meist eine Argon-Wasserstoff-Mischung. Als Transportgas bzw. Zerstäubergas wird bei dem PTWA- Verfahren Luft bzw. Druckluft eingesetzt. Die mit diesem Verfahren hergestellten Schichten zeichnen sich durch eine geringe Porosität aus. Das PTWA-Innenbeschichtungsverfahren hat sich bisher bei der Innenbeschichtung von Zylinderbohrungen bewährt. Today's internal combustion engines or their engine blocks can be cast from a metal or aluminum, in particular aluminum blocks on their Cylinder bores have an iron or metal layer. The metal layer may be thermally sprayed. As thermal spraying methods, the above-mentioned methods are known. Also known is the so-called PTWA inner coating process (Plasma Transfer Wire Are). In this method, bores (cylinder bores) can be coated with a wire-form spray additive from the inside. Here, therefore, only a single wire-shaped spray additive material is supplied, wherein it is possible to use a filler wire, or to supply also wettable powder. The plasma strikes the preheated wire-form spray additive. The plasma gas is usually an argon-hydrogen mixture. As transport gas or atomizing gas, air or compressed air is used in the PTWA process. The layers produced by this process are characterized by a low porosity. The PTWA internal coating process has so far proven itself in the interior coating of cylinder bores.
Allerdings hat sich gezeigt, dass die nach den bisher möglichen Beschichtungsverfahren hergestellten Metall- bzw. Eisenbeschichtungen der Zylinderbohrungen den besonderen Korrosionsbedingungen von ethanolhaltigen Kraftstoffen bzw. Ethanol-Kraftstoffen nicht standhalten. Dies wird insbesondere beobachtet wenn das Kraftfahrzeug bzw. der Verbrennungsmotor über eine längere Zeit nicht benutzt wird, was zum Beispiel bei einem Abstellen während eines Urlaubs der Fall sein kann. Sogar eine 17 Gew.% Chrom enthaltene Legierung wies an der Schutzbeschichtung korrosive Angriffsspuren auf. However, it has been found that the metal or iron coatings of the cylinder bores produced according to the hitherto possible coating methods do not withstand the particular corrosion conditions of ethanol-containing fuels or ethanol fuels. This is particularly observed when the motor vehicle or the internal combustion engine is not used for a long time, which may be the case, for example, when parking during a vacation. Even an alloy containing 17% by weight of chromium had corrosive attack marks on the protective coating.
Ausgehend von den erkanntem Korrosionsproblem ethanolhaltiger Kraftstoffe an Metallbeschichtungen von Zylinderbohrungen liegt der Erfindung die Aufgabe zu Grunde, ein Verfahren der Eingangs genannten Art anzugeben, mit welchem eine diesbezüglich verbesserte Beschichtung herstellbar ist. Based on the recognized corrosion problem of ethanol-containing fuels to metal coatings of cylinder bores, the invention is based on the object to provide a method of the type mentioned above, with which a coating improved in this respect can be produced.
Erfindungsgemäß wird die Aufgabe mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Weitere, besonders vorteilhafte Ausgestaltungen der Erfindung offenbaren die Unteransprüche. Es ist darauf hinzuweisen, dass die in der nachfolgenden Beschreibung einzeln aufgeführten Merkmale in beliebiger, technisch sinnvoller Weise miteinander kombiniert werden können und weitere Ausgestaltungen der Erfindung aufzeigen. Gemäß der Erfindung wird ein Verfahren zum Herstellen einer Beschichtung durch thermisches Spritzen, insbesondere durch Plasmaspritzen, bei welchem eine Komponente, insbesondere eine Zylinderbuchse eines Verbrennungsmotors, der aus Aluminium hergestellt bzw. gegossen ist, mit einer Legierung beschichtet wird, vorgeschlagen, bei welchem Stickstoff zumindest als Transportgas zugeführt wird, wobei ein Spitzzusatzwerkstoff ein solider Legierungsdraht ist, der in einen Plasmastrom geführt wird, wobei zusatzpulverfrei bzw. pulverfrei beschichtet wird. Vorteilhaft ist, wenn das Plasmaspritzen ein PTWA-Innenbeschichten (Plasma Transfer Wire Are) ist. Der Begriff„zusatzpulverfrei" bzw.„pulverfrei" bedeutet im Sinne der Erfindung, dass weder ein mit (Metall)pulver gefüllter Fülldraht noch ein separat zugeführtes (Metall)pulver Verwendung findet. Bei der Erfindung wird nämlich vorteilhaft lediglich ein solider, also homogener bzw. ein ungefüllter Spritzzusatzdraht verwendet. Eine geeignete Legierung zum Beschichten weist als Legierungselement Chrom und hauptsächlich Eisen auf. Eine bevorzugte Metall- bzw. Eisenlegierung wird weiter unten offenbart. According to the invention the object is achieved by a method having the features of claim 1. Further, particularly advantageous embodiments of the invention disclose the dependent claims. It should be noted that the features listed individually in the following description can be combined with one another in any technically meaningful manner and show further embodiments of the invention. According to the invention, a method for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner of an internal combustion engine made of aluminum or cast, is coated with an alloy, is proposed in which nitrogen is at least is supplied as a transport gas, wherein a Spitzzusatzwerkstoff is a solid alloy wire, which is fed into a plasma stream, wherein additional powder-free or powder-free is coated. It is advantageous if the plasma spraying is a PTWA inner coating (Plasma Transfer Wire Are). The term "additive powder-free" or "powder-free" in the sense of the invention means that neither a filler wire filled with (metal) powder nor a separately supplied (metal) powder is used. In fact, in the invention, only a solid, that is to say homogeneous or an unfilled spray additive wire is advantageously used. A suitable alloy for coating has as alloying element chromium and mainly iron. A preferred metal or iron alloy is disclosed below.
Aufgrund des vorteilhaften Verwendung von Stickstoffgas als Transportgas anstelle von Luft bzw. anstelle von Druckluft, wie diese zum Beispiel bei dem bekannten PTWA-Verfahren eingesetzt wird, wird die Umwandlung bzw. der Abbau des Chroms durch den Sauerstoff der bisher verwendeten Luft ausgeschlossen, so dass der gesamte Chromanteil der Legierung zur Bildung einer stabilen Schutzschicht heranziehbar ist. Aufgrund der Differenz in der freien Enthalpie (bzw. der Gibbsschen freien Energie) werden überwiegend Aluminiumnitride anstelle von Chromnitriden gebildet. Diese Aluminiumnitride ersetzen die bisherigen verschleißfesten Metalloxide, welche während des PTWA-Spritzverfahrens mit Druckluft entstehen. Als Resultat ergibt sich bei der Erfindung so nicht nur eine verschleißfeste Beschichtung sondern auch eine (Korrosions)schutzschicht, welche den Korrosionsangriffen insbesondere ethanolhaltiger Kraftstoffe standhält. Ethanolhaltige Kraftstoffe für Verbrennungsmotoren können im Sinne der Erfindung als Beimischung von Ethanol konventionellen, fossilen Kraftstoff enthalten (z.B. E5, E10 oder E85), oder in Reinform (E100) verwendet werden. Bei dem bisher bekannten PTWA-Verfahren wurde davon ausgegangen, dass eine Legierung mit 17 Gew.% Cr besonders geeignet ist den Anforderungen gerecht zu werden. Bei der Erfindung dagegen ist zielführend vorgesehen, dass der Spritzzusatzdraht eine Eisenlegierung mit einem Chrom Anteil von 12 bis 35% Gew.% aufweist. Weitere Legierungsbestandteile können Aluminium (2-10Gew.%), Silizium (0-1 Gew.%); Mangan (0-1 Gew.%), Kohlenstoff (0-1 Gew.%) und weitere wie z.B. Phosphor (0-1 Gew.%), Schwefel (0-0,09Gew.%), Molybdän (0-5Gew.%), Nickel (0-1 Gew.%), Kupfer (0-0,5Gew.%), Stickstoff (0-0,5Gew.%) sein, wobei der Rest Eisen ist. In besonders bevorzugter Ausführung weist der Spritzzusatzdraht gemäß der Erfindung eine Eisenlegierung mit 23 Gew.% Cr, 5 Gew.%AI, weniger als 0,5 Gew.% Si, weniger als 0,2 Gew.% Mn, weniger als 0,05 Gew.%C auf, wobei die übrigen Bestandteile einen Betrag weniger als 2 Gew.% aufweisen, und wobei der Rest Eisen ist. Due to the advantageous use of nitrogen gas as a transport gas instead of air or instead of compressed air, as used for example in the known PTWA method, the conversion or degradation of the chromium is excluded by the oxygen of the air previously used, so that the entire chromium portion of the alloy can be used to form a stable protective layer. Due to the difference in the free enthalpy (or Gibbs's free energy) predominantly aluminum nitrides are formed instead of chromium nitrides. These aluminum nitrides replace the previous wear-resistant metal oxides that are produced during the PTWA spraying process with compressed air. As a result, results in the invention not only a wear-resistant coating but also a (corrosion) protective layer, which withstands the corrosive attacks especially ethanol-containing fuels. Ethanol-containing fuels for internal combustion engines, according to the invention as an admixture of ethanol conventional fossil fuel contain (eg E5, E10 or E85), or in pure form (E100) can be used. In the previously known PTWA method, it was assumed that an alloy with 17% by weight Cr is particularly suitable for meeting the requirements. By contrast, in the case of the invention, it is expedient to provide for the spray additive wire to have an iron alloy with a chromium content of 12 to 35% by weight. Other alloying constituents may be aluminum (2-10% by weight), silicon (0-1% by weight); Manganese (0-1% by weight), carbon (0-1% by weight) and others such as phosphorus (0-1% by weight), sulfur (0-0.09% by weight), molybdenum (0-5% by weight). %), Nickel (0-1% by weight), copper (0-0.5% by weight), nitrogen (0-0.5% by weight), the remainder being iron. In a particularly preferred embodiment, the spray additive wire according to the invention comprises an iron alloy with 23 wt.% Cr, 5 wt.% Al, less than 0.5 wt.% Si, less than 0.2 wt.% Mn, less than 0.05 Wt% C, the remaining ingredients having an amount less than 2% by weight and the remainder being iron.
Selbstverständlich kann das erfindungsgemäße Verfahren auch zum Beschichten anderer Komponenten herangezogen werden. Of course, the inventive method can also be used for coating other components.
Figur 1 zeigt eine Düseneinheit 1 einer PTWA-Innenbeschichtungsvorrichtung. Bei dem PTWA (Plasma Transferred Wire Are) Beschichtungssystem handelt es sich um eine Anlage zur Beschichtung von Bohrungen, insbesondere von Zylindern in Motorblöcken von Verbrennungsmotoren. Die Düseneinheit 1 besteht aus einer Kathode 2, einem Plasmadüse 3, und dem elektrisch leitfähigen Legierungsdraht 4 als Anode, der senkrecht zur Plasmadüse 3 zugeführt wird. Bevorzugt wird als Werkstoff für die Kathode 2 Wolfram eingesetzt, welcher noch z.B. mit Thorium dotiert sein kann. Das Plasmagas 5, beispielsweise eine Mischung aus Argon und Wasserstoff, wird durch im Düsenkörper 6 angebrachte, tangential zum Umfang liegende Bohrungen zugeführt. Der Kathodenhalter 7 isoliert die Kathode 2 gegenüber dem Düsenkörper 6. Der Legierungsdraht 4 ist in der Drahtzuführung 15 drehbeweglich und längsverschiebbar geführt. FIG. 1 shows a nozzle unit 1 of a PTWA internal coating device. The PTWA (Plasma Transferred Wire Are) coating system is a system for coating bores, in particular cylinders in engine blocks of internal combustion engines. The nozzle unit 1 consists of a cathode 2, a plasma nozzle 3, and the electrically conductive alloy wire 4 as an anode, which is supplied perpendicular to the plasma nozzle 3. Tungsten is preferably used as the material for the cathode 2, which may be doped with thorium, for example. The plasma gas 5, for example a mixture of argon and hydrogen, is supplied through bores located in the nozzle body 6 and located tangentially to the circumference. The cathode holder 7 insulates the cathode 2 relative to the nozzle body 6. The alloy wire 4 is rotatably guided in the wire feed 15 and longitudinally displaceable.
Der Prozess wird durch eine Hochspannungsentladung, welche das Plasmagas 5 zwischen Legierungsdraht 4, Düsenkörper 6 und Kathode 2 ionisiert und dissoziiert, gestartet. Das so erzeugte Plasma strömt mit hoher Geschwindigkeit durch die Plasmadüse 3. Dabei wird das Plasmagas 5 zum senkrecht zur Düse 3 kontinuierlich zugeführten Legierungsdraht 4 hin transportiert, wodurch der elektrische Kreis geschlossen wird. The process is started by a high-voltage discharge which ionizes and dissociates the plasma gas 5 between alloy wire 4, nozzle body 6 and cathode 2. The plasma thus generated flows through the plasma nozzle 3 at high speed. In this process, the plasma gas 5 is transported toward the alloy wire 4 fed continuously perpendicular to the nozzle 3, whereby the electric circuit is closed.
Zusätzlich wird dem aus der Pilotdüse 3 austretenden Plasmastrahl 8 ein Transportgas 9 bzw. eine Zerstäubergas 9 über Zuführkanäle 10 und Hilfsdüsen 1 1 zugeführt. Das Aufschmelzen und die Zerstäubung des Legierungsdrahtes 4 werden dabei von zwei Phänomenen beeinflusst. Der Draht 4 wird zum einen durch große Stromstärken, typisch sind 65 - 90 Ampere, widerstandserhitzt. Der Aufprall des Plasmastrahls 8 auf den vorgeheizten Draht 4 sorgt für dessen Aufschmelzen am Drahtende 12. Mit anderen Worten wird innerhalb der Plasmadüse 3 mittels Hochspannungsentladung ein Plasma erzeugt. Eine gezielte Stickstoffgasströmung, also das Transportgas 9 entlang der Entladungsstrecke transportiert das Plasma und den aufgeschmolzenen Spritzwerkstoff 13 an die Oberfläche 14 des zu beschichtenden Werkstücks. In addition, a transport gas 9 or a Zerstäubergas 9 via feed channels 10 and auxiliary nozzles 1 1 is supplied to the plasma jet 8 emerging from the pilot nozzle 3. The melting and the atomization of the alloy wire 4 are influenced by two phenomena. The wire 4 is on the one hand by high currents, typically 65-90 amps, resistance heated. The impact of the plasma jet 8 on the preheated wire 4 causes its melting at the wire end 12. In other words, a plasma is generated within the plasma nozzle 3 by means of high-voltage discharge. A targeted nitrogen gas flow, so the transport gas 9 along the discharge path transports the plasma and the molten spray material 13 to the surface 14 of the workpiece to be coated.

Claims

Patentansprüche claims
1 . Verfahren zum Herstellen einer Beschichtung durch thermisches Spritzen, insbesondere durch Plasmaspritzen, bei welchem eine Komponente, insbesondere eine Zylinderlaufbahn, mit einer Legierung beschichtet wird, wobei 1 . Process for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner, is coated with an alloy, wherein
Stickstoffgas zumindest als Transportgas zugeführt wird, wobei ein Spritzzusatzwerkstoff ein solider Legierungsdraht ist, der in einen Plasmastrom geführt wird, und wobei zusatzpulverfrei beschichtet wird.  Nitrogen gas is supplied at least as a transport gas, wherein a spray additive is a solid alloy wire, which is guided in a plasma stream, and wherein additional powder is coated free.
2. Verfahren nach Anspruch 1 , 2. The method according to claim 1,
dadurch gekennzeichnet, dass  characterized in that
das Plasmaspritzen ein PTWA-Beschichten ist.  the plasma spraying is a PTWA coating.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
dadurch gekennzeichnet, dass  characterized in that
der Spritzusatzdraht eine Eisenlegierung aufweisend 12 bis 35% Gew.% Cr, 2- 10Gew.%AI, 0-1 Gew.%Si; 0-1 Gew.%Mn, 0-1 Gew.%C und weitere wie z.B. 0- 1 Gew.%P, 0-0,09Gew.%S, 0-5Gew.%Mo, 0-1 Gew.%Ni, 0-0,5Gew.%Cu, 0- 0,5Gew.%N, Rest Fe.  the sprayed wire comprising an iron alloy 12 to 35% by weight of Cr, 2 to 10% by weight of Al, 0 to 1% by weight of Si; 0-1% by weight of Mn, 0-1% by weight of C and others such as e.g. 0-1 wt% P, 0-0.09 wt% S, 0-5 wt% Mo, 0-1 wt% Ni, 0-0.5 wt% Cu, 0-0.5 wt% N, Rest Fe.
4. Verfahren nach einem der vorhergehenden Ansprüche, 4. The method according to any one of the preceding claims,
dadurch gekennzeichnet, dass  characterized in that
der Spritzzusatzdraht eine Eisenlegierung mit 23 Gew.% Cr, 5 Gew.% AI, weniger als 0,5 Gew.% Si, weniger als 0,2 Gew.% Mn, weniger als 0,05 Gew.%C ist, wobei die übrigen Bestandteile einen Betrag von weniger als 2 Gew.% aufweisen, und wobei der Rest Eisen ist.  the filler wire is an iron alloy containing 23% by weight Cr, 5% by weight Al, less than 0.5% by weight Si, less than 0.2% by weight Mn, less than 0.05% by weight C, the remaining constituents have an amount of less than 2% by weight and the remainder being iron.
EP12769371.1A 2011-10-17 2012-09-27 Plasma spraying method Withdrawn EP2768997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011084608A DE102011084608A1 (en) 2011-10-17 2011-10-17 Plasma spray process
PCT/EP2012/069021 WO2013056961A1 (en) 2011-10-17 2012-09-27 Plasma spraying method

Publications (1)

Publication Number Publication Date
EP2768997A1 true EP2768997A1 (en) 2014-08-27

Family

ID=46982554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12769371.1A Withdrawn EP2768997A1 (en) 2011-10-17 2012-09-27 Plasma spraying method

Country Status (7)

Country Link
US (1) US20140186540A1 (en)
EP (1) EP2768997A1 (en)
CN (1) CN104053810A (en)
DE (1) DE102011084608A1 (en)
IN (1) IN2014CN02566A (en)
RU (1) RU2650222C2 (en)
WO (1) WO2013056961A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103785B (en) * 2014-01-29 2020-02-14 马勒国际有限公司 Piston with coated pin bores
DE102015014192A1 (en) * 2015-11-03 2016-09-08 Daimler Ag functional layer
US10440808B2 (en) 2015-11-17 2019-10-08 Southwest Research Institute High power impulse plasma source
US10354845B2 (en) * 2016-02-18 2019-07-16 Southwest Research Institute Atmospheric pressure pulsed arc plasma source and methods of coating therewith
CN107052549A (en) * 2016-08-29 2017-08-18 镇江市天通新材料科技有限公司 A kind of preparation method of aluminium radiator low melting point Zn Al alloy brazeds layer
CN107164715B (en) * 2017-06-09 2019-03-26 华晨宝马汽车有限公司 Method, equipment and product for electric arc line-material coating
CN112941452A (en) * 2019-12-10 2021-06-11 扬州市恒宇金属制品有限公司 Preparation method of wear-resistant high-strength metal product
CN111085359B (en) * 2019-12-31 2021-06-15 北京航空航天大学 Fluid guiding device for spraying, spraying system and spraying method
EP4134463A4 (en) * 2020-04-09 2023-11-15 NISSAN MOTOR Co., Ltd. Spray coating

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4626648A (en) * 1985-07-03 1986-12-02 Browning James A Hybrid non-transferred-arc plasma torch system and method of operating same
DE3816310A1 (en) * 1987-06-26 1989-01-12 Bbc Brown Boveri & Cie Process for enriching titanium in the immediate surface zone of a component consisting of a nickel-based superalloy containing at least 2.0 % by weight of titanium, and use of the surface enriched according to the process
US4992337A (en) * 1990-01-30 1991-02-12 Air Products And Chemicals, Inc. Electric arc spraying of reactive metals
US5296667A (en) * 1990-08-31 1994-03-22 Flame-Spray Industries, Inc. High velocity electric-arc spray apparatus and method of forming materials
DE4411296C2 (en) 1994-01-14 1995-12-21 Castolin Sa Two-phase or multi-phase corrosion-resistant coating, process for its production and use of coating material
DE4447514C2 (en) 1994-01-14 1996-07-25 Castolin Sa Process for the preparation of a thermal spraying aid and its use as a filler wire powder fill
US5958521A (en) * 1996-06-21 1999-09-28 Ford Global Technologies, Inc. Method of depositing a thermally sprayed coating that is graded between being machinable and being wear resistant
US5808270A (en) * 1997-02-14 1998-09-15 Ford Global Technologies, Inc. Plasma transferred wire arc thermal spray apparatus and method
DE19845349B4 (en) * 1998-10-02 2005-03-31 Amil Werkstofftechnologie Gmbh Cored wire for thermal spraying on heat exchangers and combustion plants
RU2186148C2 (en) * 2000-06-09 2002-07-27 Акционерное общество открытого типа "Научно-производственная фирма по внедрению научных и инженерно-технических инноваций" Method for spraying coating on internal surface of tubular articles
US6651795B2 (en) * 2002-03-11 2003-11-25 Ford Global Technologies, Llc Clutch pressure plate and flywheel with friction wear surfaces
US6706993B1 (en) * 2002-12-19 2004-03-16 Ford Motor Company Small bore PTWA thermal spraygun
DE10310865B3 (en) * 2003-03-11 2004-05-27 Thyssenkrupp Vdm Gmbh Use of an iron-chromium-aluminum alloy containing additions of hafnium, silicon, yttrium, zirconium and cerium, lanthanum or neodymium for components in Diesel engines and two-stroke engines
US20080124480A1 (en) * 2004-09-03 2008-05-29 Mo-How Herman Shen Free layer blade damper by magneto-mechanical materials
DE102007010698A1 (en) 2007-03-06 2008-09-11 Bayerische Motoren Werke Aktiengesellschaft Process for the preparation of a coating
EP2236211B1 (en) * 2009-03-31 2015-09-09 Ford-Werke GmbH Plasma transfer wire arc thermal spray system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2013056961A1 *

Also Published As

Publication number Publication date
DE102011084608A1 (en) 2013-04-18
US20140186540A1 (en) 2014-07-03
RU2014119972A (en) 2015-11-27
WO2013056961A1 (en) 2013-04-25
CN104053810A (en) 2014-09-17
RU2650222C2 (en) 2018-04-11
IN2014CN02566A (en) 2015-08-07

Similar Documents

Publication Publication Date Title
EP2768997A1 (en) Plasma spraying method
DE102010021300B4 (en) Wire-shaped spray material, functional layer that can be produced therewith and method for coating a substrate with a spray material
DE3152549C2 (en) Powder coating material for thermal coating
EP1967601A2 (en) Method for manufacturing a coating
DE4321673A1 (en) Thermal spraying of metal and solid lubricant compositions using wire as the starting material
DE102012013020B3 (en) Function layer comprises an iron based alloy having a martensitic structure, and alloy components indicated in characteristics consisting of nickel equivalent and chromium equivalent
EP1230413B1 (en) Method for producing machine components that are provided with at least one sliding surface
DE102011085324A1 (en) Plasma spray process
DE10124250C2 (en) Method of forming a high strength and wear resistant composite layer
DE2432061A1 (en) FLAME SPRAYING MATERIALS
WO2005012590A2 (en) Valve seat rings made of basic co or co/mo alloys, and production thereof
EP0608468B1 (en) Method to produce a metallic powder for making wear-resistant coatings
DE102013112809A1 (en) A method for producing a sprayed cylinder surface of a cylinder crankcase of an internal combustion engine and such a cylinder crankcase
DE102008034548B3 (en) Steel wire used to coat vehicle engine cylinders by electric arc metal-spraying, includes carbon as micro-alloy constituent, in specified composition
DE202008009962U1 (en) Wire-shaped spray material
DE102008034549B3 (en) Steel wire used for electric-arc metal-spraying of e.g. vehicle engine cylinders, comprises micro-alloyed steel containing carbon, which solidifies with bainite and martensite content
JP5871152B2 (en) Thermal spray material, thermal spray coating and structure
DE202008009966U1 (en) Wire-shaped spray material
DE19845349A1 (en) Core-filled thermal spraying wire, for producing wear and-or corrosion resistant coatings on heat exchanger and firing unit surfaces, contains an atomized iron-chromium alloy powder
DE102019131181A1 (en) Material composition for a coating for components of internal combustion engines
DE102009004201A1 (en) Process useful for wire arc spraying of workpieces, especially hollow bodies using wires made from different materials gives improved coating quality combined with shorter coating time
DE202008009961U1 (en) Wire-shaped spray material
WO2020229588A1 (en) Coated metal substrates that are susceptible to wear, and method for the manufacture thereof
DE202008009963U1 (en) Wire-shaped spray material
EP4082670A1 (en) Device for thermal coating by means of wire arc spraying

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171106

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180317