EP2755927A1 - Photocatalytic material and glazing or photovoltaic cell comprising said material - Google Patents

Photocatalytic material and glazing or photovoltaic cell comprising said material

Info

Publication number
EP2755927A1
EP2755927A1 EP12773023.2A EP12773023A EP2755927A1 EP 2755927 A1 EP2755927 A1 EP 2755927A1 EP 12773023 A EP12773023 A EP 12773023A EP 2755927 A1 EP2755927 A1 EP 2755927A1
Authority
EP
European Patent Office
Prior art keywords
glass
deposition
underlayer
photocatalytic coating
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12773023.2A
Other languages
German (de)
French (fr)
Inventor
Rosiana Aguiar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2755927A1 publication Critical patent/EP2755927A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the invention relates to the field of materials comprising a glass substrate provided with a photocatalytic coating.
  • Titanium oxide is first of all photocatalytic, that is to say that it is capable under suitable radiation, generally ultraviolet radiation, of catalyzing the degradation reactions of organic compounds. This photocatalytic activity is initiated within the layer by the creation of an electron-hole pair.
  • the titanium dioxide has an extremely pronounced hydrophilicity when it is irradiated by this same type of radiation. This strong hydrophilicity, sometimes called “super-hydrophilic", allows the evacuation of mineral soils under water runoff, for example rainwater.
  • Such materials, in particular glazing are described for example in application EP-A-0 850 204.
  • Titanium dioxide has a high refractive index, which results in important light reflection factors for substrates with photocatalytic coatings. This is a disadvantage in the field of glazing for the building, and even more so in the field of photovoltaic cells, for which it is necessary to maximize the transmission to the photovoltaic material, and thus minimize any absorption and reflection of solar radiation.
  • photovoltaic cells with a photocatalytic coating, because the deposition of dirt is able to reduce the efficiency of photovoltaic cells by about 6% per month. This figure is obviously dependent on the geographical location of the cells.
  • the aim of the invention is to propose photocatalytic materials based on titanium oxide, combining both high photocatalytic activity and low light reflection factors.
  • the subject of the invention is a material comprising a glass or glass-ceramic sheet provided on at least a part of one of its faces with a photocatalytic coating based on titanium oxide deposited on an undercoat layer. based on silica deposited by chemical vapor deposition by combustion, the roughness Ra of which is between 4 and 30 nm, including terminals.
  • the invention also relates to a process for obtaining a material according to the invention.
  • This preferred method comprises the following steps: a silica-based underlayer is deposited on a sheet of glass or glass-ceramic using a chemical vapor deposition process by combustion, and then depositing on said silica-based underlayer a photocatalytic coating based on titanium oxide, said sublayer being subjected to a temperature of at least 300 ° C prior to deposition of said photocatalytic coating and / or during deposition of said photocatalytic coating. It has been found that the use of particularly rough silica-based undercoats obtained by chemical vapor deposition by combustion is able to significantly decrease the luminous reflectance of the material.
  • the roughness Ra corresponds to the arithmetic average deviation of the roughness profile. This value is measured by atomic force microscopy on a 1000 nm square, in non-contact mode and using a silicon tip with a radius of curvature of 15 nm.
  • the substrate is a sheet of glass or glass ceramic.
  • the sheet may be flat or curved, and have any type of dimensions, especially greater than 1 meter.
  • the glass is preferably of the silico-soda-lime type, but other types of glasses, such as borosilicate glasses or aluminosilicates can also be used.
  • the glass may be clear or extra-clear, or tinted, for example blue, green, amber, bronze or gray.
  • the thickness of the glass sheet is typically between 0.5 and 19 mm, especially between 2 and 12 mm, or even between 4 and 8 mm.
  • the glass is preferably extra-clear; it preferably comprises a total weight content of iron oxide of at most 150 ppm, or even 100 ppm and even 90 ppm, or even a redox of at most 0.2, especially 0.1 and even a zero redox.
  • the term "redox” refers to the weight ratio of ferrous iron oxide (expressed as FeO) to the total weight content of iron oxide (expressed as Fe 2 O 3 ).
  • the photocatalytic coating based on titanium oxide is preferably made of titanium oxide, in particular crystallized in anatase form, which is the most active form.
  • the titanium oxide may be pure or doped, for example by transition metals (especially W, Mo, V, Nb), lanthanide ions or noble metals (such as, for example, platinum or palladium), or by nitrogen, carbon or fluorine atoms.
  • transition metals especially W, Mo, V, Nb
  • lanthanide ions especially lanthanide ions
  • noble metals such as, for example, platinum or palladium
  • nitrogen, carbon or fluorine atoms nitrogen, carbon or fluorine atoms.
  • the photocatalytic coating is normally the last layer of the stack deposited on the substrate, that is to say the layer of the stack farthest from the substrate. It is important that the photocatalytic coating is in contact with the atmosphere and its pollutants. It is however possible to deposit on the photocatalytic layer a very thin layer, generally discontinuous or porous. For example, it may be a layer based on noble metals intended to increase the photocatalytic activity of the material
  • the thickness of the photocatalytic coating is preferably between 1 and 20 nanometers, especially between 2 and 15 nm, or even between 3 and 10 nm, inclusive. A high thickness increases the photocatalytic activity of the layer but at the expense of light reflection. Throughout this text, the thicknesses are physical thicknesses.
  • the silica-based underlayer is preferably silica, i.e., silica. It is understood that the silica may be pure or doped, or not be stoichiometric. The silica may, for example, be doped with boron or phosphorus atoms, or with carbon or nitrogen atoms.
  • the silica-based underlayer is preferably deposited in contact with the substrate.
  • the roughness Ra of the silica-based underlayer is advantageously between 5 and 25 nm, including terminals, in particular between 8 and 20 nm or between 10 and 15 nm.
  • the thickness of the silica-based underlayer is preferably between 10 and 100 nm, including limits, especially between 10 and 80 nm, or even between 15 and 50 nm, and even between 20 and 30 nm. A sufficient thickness allows the underlayer to act as a barrier layer to the migration of alkali ions from the substrate when the latter contains (for example if it is a soda-lime-calcium glass substrate) ).
  • the silica-based underlayer is preferably non-porous, especially in the sense that no pores are observed by microscopic techniques, such as transmission electron microscopy (TEM). Subjecting the undercoat at a temperature of at least 300 ° C. used in the preferred process according to the invention, prior to the deposition and / or during the deposition of the photocatalytic coating, has the effect of densifying the underlayer.
  • the material according to the invention preferably has a light transmittance (within the meaning of ISO 9050: 2003) of at least 85%, even 88% and even 90% or 91% and / or a light reflection factor (within the meaning of ISO 9050: 2003) of not more than 10%, in particular 9% or 8%.
  • the silica-based underlayer is deposited by chemical vapor deposition by combustion.
  • This technique also known by its acronym CCVD (For "CVD Combustion"), consists in reacting or decomposing at least one precursor of the layer to be deposited (generally an organometallic compound, a metal salt or a halide) in a flame placed near the substrate. The process is normally carried out at atmospheric pressure. The precursor, pure or dissolved in a solvent, decomposes under the effect of heat and is deposited on the substrate. In a continuous process, the flame is typically derived from a fixed linear burner extending over the entire width of the substrate, the latter coming past the burner.
  • the flame results from the reaction between a fuel (typically propane or butane, and in this case the solvent is preferably non-combustible, or the solvent when it is combustible) and an oxidizer (typically air, air enriched with oxygen or oxygen).
  • a fuel typically propane or butane, and in this case the solvent is preferably non-combustible, or the solvent when it is combustible
  • an oxidizer typically air, air enriched with oxygen or oxygen.
  • the silica precursor is typically an organometallic silicon compound or an organic salt, such as a silane or siloxane. Hexamethyldisiloxane (HDMSO) and tetraethylorthosilicate (TEOS) are particularly suitable.
  • the silica precursor may also be a halogenated compound, such as for example SiCl 4 .
  • the solvent may be combustible, such as an organic solvent, or preferably non-combustible, typically water.
  • the substrate may
  • the silica-based underlayer is preferably subjected to a temperature of at least 400 ° C, or even 500 ° C prior to deposition of said photocatalytic coating and / or during deposition of said photocatalytic coating.
  • the deposition of the photocatalytic coating is preferably carried out by chemical vapor deposition. It can also be achieved by other deposition techniques, such as chemical vapor deposition by combustion.
  • Chemical vapor deposition is a pyrolysis process using gaseous precursors decompose under the effect of the heat of the substrate.
  • the precursors may be, for example, titanium tetrachloride, titanium tetraisopropoxide or titanium tetraorthobutoxide.
  • the deposition of the underlayer and the deposition of the photocatalytic coating are carried out successively, on the glass production line by the float process (also called "float" process).
  • a glass ribbon is obtained by casting the glass at about 1100 ° C on a bath of molten tin in a chamber called floating chamber.
  • the temperature of the glass is of the order of 500 to 600 ° C, and the glass ribbon then passes into a chamber called lehr, where the glass is cooled in a controlled manner to eliminate any constraints mechanical residuals within it.
  • the deposition of the underlayer and the deposition of the photocatalytic coating are implemented successively, between the output of the floating vessel and the entrance of the lehr.
  • the burner used for chemical vapor deposition by combustion and the chemical vapor deposition nozzle are therefore preferably installed between the exit of the floating vessel and the inlet of the lehr.
  • the temperature of the glass during the implementation of the deposition of the silica-based underlayer is between 480 and 600 ° C., in particular between 500 and 550 ° C., and the temperature of the glass during the setting-up
  • the photocatalytic coating deposited is between 430 and 550 ° C., in particular between 450 and 500 ° C.
  • the silica-based underlayer is naturally subjected to a temperature of at least 300 ° C. prior to deposition and during deposition of the coating. photocatalytic, and therefore densified and attached to the substrate, without having to bring additional energy, for example by placing the substrate in an oven.
  • the invention also relates to a glazing unit or a photovoltaic cell comprising at least one material according to the invention.
  • the glazing may be single or multiple (in particular double or triple), in the sense that it may comprise several glass sheets leaving a space filled with gas.
  • the glazing can also be laminated and / or tempered and / or hardened and / or curved.
  • the other face of the material according to the invention may be coated with another functional layer or a stack of functional layers. It may especially be another photocatalytic layer. It may also be layers or stacks with thermal function, in particular antisolar or low-emissive, for example stacks comprising a silver layer protected by dielectric layers. It may still be a mirror layer, in particular based on silver. It can finally be a lacquer or an enamel intended to opacify the glazing to make a facade facing panel called lighter. The lighter is arranged on the facade alongside the non - opaque glazings and allows to obtain facades entirely glazed and homogeneous from the aesthetic point of view.
  • the material according to the invention is preferably the front face substrate of the cell, that is to say the one which is the first crossed by solar radiation.
  • the photocatalytic coating is then positioned outwards, so that the self-cleaning effect can be useful.
  • the glass sheet may advantageously be coated, on the face opposite to the face provided with the coating according to the invention, with at least one transparent and electroconductive thin layer, for example based on Sn0 2 : F, Sn0 2 : Sb, ZnO: Al, ZnO: Ga.
  • These layers may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by magnetic field (magnetron process).
  • CVD chemical vapor deposition
  • sputtering deposition in particular assisted by magnetic field (magnetron process).
  • magnetic field magnetic field
  • halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer.
  • the advantage of the CVD process is that it is possible to implement it in the process of forming the glass sheet, especially when it is a floating process. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
  • the glass sheet coated with a transparent and electroconductive layer may in turn be coated with a semiconductor based on amorphous or polycrystalline silicon, chalcopyrites (especially CIS - CuInSe2 or CIGS - CuInGaSe2) or CdTe to form a photovoltaic cell.
  • chalcopyrites especially CIS - CuInSe2 or CIGS - CuInGaSe2
  • CdTe to form a photovoltaic cell.
  • another advantage of the CVD process lies in obtaining a higher roughness, which generates a phenomenon of trapping light, which increases the amount of photons absorbed by the semiconductor.
  • the presence according to the invention of a rough silica underlayer also helps to amplify this phenomenon of trapping of light.
  • the surface of the glass sheet may be textured, for example have patterns (especially pyramid), as described in WO 03/046617, WO 2006/134300, WO 2006/134301 or WO 2007/015017. These textures are generally obtained using a glass forming by rolling.
  • FIGS. 1 and 2 The invention will be better understood in the light of the nonlimiting examples which follow, illustrated by FIGS. 1 and 2.
  • a glass substrate On a glass substrate is deposited a 30 nm thick silica underlayer by chemical vapor deposition by combustion (CCVD).
  • CCVD chemical vapor deposition by combustion
  • a flame obtained by combustion of propane (flow rate of 6 L / min) with air (flow rate of 150 L / min) is disposed at 15 mm from the surface to be coated.
  • the substrate travels at a speed of 2 m / min under the flame, while a precursor HDMSO (hexamethyldisiloxane) is introduced into the flame with a flow rate of 0.5 L / min.
  • HDMSO hexamethyldisiloxane
  • a photocatalytic coating of titanium oxide approximately 10 nm thick is deposited on the underlayer by a CVD technique.
  • the substrate provided with the underlayer is heated to about 530 ° C, and a titanium oxide precursor, titanium tetraisopropoxide, dissolved in a carrier gas (nitrogen) is brought into contact with the surface of the substrate. substrate.
  • a carrier gas nitrogen
  • Example 2 This example is carried out in the same manner as Example 1, the only difference being that the silica underlayer is thicker (60 nm), thanks to a second pass.
  • the propane flow rate is 10 L / min
  • the air flow rate is 250 L / min
  • the precursor flow rate is 1 L / min.
  • the distance between the flame and the substrate is 30 mm.
  • the photocatalytic coating is obtained in the same manner as in the case of Example 1 according to the invention.
  • the underlayer is a layer of silicon oxycarbide deposited by CVD (and not by CCVD), therefore much less rough.
  • the underlayer is a layer of silica deposited by cathodic sputtering magnetron, also much less rough.
  • the photocatalytic coating is the same as in the case of Comparative Example 1.
  • Figure 1 is a snapshot obtained by atomic force microscopy (AFM) of the surface of Example 1, to observe the high roughness imparted by the silica underlayer.
  • AFM atomic force microscopy
  • Figure 2 groups the transmission spectra of the four examples. Table 1 below summarizes the results of the tests. It indicates for each example the following quantities: the roughness Ra, expressed in nm, the photocatalytic activity Kb, expressed in ⁇ g .1 _1 . min -1 , the light reflection factor RL, the light transmittance TL and the energy transmission factor TE, in the meaning of ISO 9050: 2003, the transmittance "TSQE", corresponding to the convolution product of the spectrum of material transmission and the quantum efficiency curve of amorphous silicon.
  • This factor makes it possible to evaluate the transmission of the material in the relevant wavelengths for the photovoltaic cells using amorphous silicon.
  • the roughness Ra is measured using an atomic force microscope (AFM) Nanoscope Illa on a square of 1000 nm of side, in non-contact mode and using a silicon tip whose radius of curvature is 15 nm.
  • AFM atomic force microscope
  • the photocatalytic activity is evaluated by measuring the rate of degradation of methylene blue in the presence of ultraviolet radiation.
  • An aqueous solution methylene blue is placed in contact in a sealed cell with the coated substrate (the latter forming the bottom of the cell). After exposure to ultraviolet radiation for 30 minutes, the concentration of methylene blue is evaluated by a light transmission measurement.
  • the value of photocatalytic activity (denoted Kb and expressed in ⁇ g.l -1 .min -1 ) corresponds to the decrease in methylene blue concentration per unit of exposure time.
  • a silica underlayer 20 nm thick by CCVD is deposited on a 2 mm thick clear glass sheet.
  • 6 passes under an air-propane flame, using a solution of a precursor HDMSO in ethanol. Propane flows and of air are respectively 8 and 160 L / min.
  • the concentration of precursor in ethanol is 0.1 mol / l, and the rate of introduction of the precursor solution into the flame of 2 ⁇ l / min.
  • the distance between the burner and the substrate is 7 mm, and the speed of travel of the substrate 6 m / h.
  • the substrate is heated to a temperature of 520 ° C prior to deposition.
  • the photocatalytic coating is similar to that of the previous examples.
  • the deposition conditions of the silica underlayer differ from those of Example 3 in that the distance between the substrate and the burner is 5 mm, and the rate of introduction of the precursor solution is 1 ⁇ L. / min.
  • Comparative Example 3 induce a very low roughness, compared with those of Example 3 according to the invention.
  • Raman spectrometry analysis shows the presence of anatase for all samples.

Abstract

The subject matter of the invention is a material comprising a glass or vitroceramic sheet, of which at least part of one of the faces is furnished with a photocatalytic coating with titanium oxide base deposited on a silica-based substrate that is deposited by combustion chemical vapour deposition, having roughness Ra of between 4 and 30 nm including the limits thereof.

Description

MATERIAU PHOTOCATALYTIQUE ET VITRAGE OU CELLULE  PHOTOCATALYTIC MATERIAL AND GLAZING OR CELL
PHOTOVOLTAIQUE COMPRENANT CE MATERIAU  PHOTOVOLTAIC COMPRISING THIS MATERIAL
L' invention se rapporte au domaine des matériaux comprenant un substrat en verre muni d'un revêtement photocatalytique . The invention relates to the field of materials comprising a glass substrate provided with a photocatalytic coating.
Les revêtements photocatalytiques, notamment ceux à base de dioxyde de titane, sont connus pour conférer des propriétés autonettoyantes et antisalissure aux substrats qui en sont munis. Deux propriétés sont à l'origine de ces caractéristiques avantageuses. L'oxyde de titane est tout d'abord photocatalytique, c'est-à-dire qu'il est capable sous un rayonnement adéquat, généralement un rayonnement ultraviolet, de catalyser les réactions de dégradation de composés organiques. Cette activité photocatalytique est initiée au sein de la couche par la création d'une paire électron-trou. En outre, le dioxyde de titane présente une hydrophilie extrêmement prononcée lorsqu' il est irradié par ce même type de rayonnement. Cette forte hydrophilie, parfois qualifiée de « super-hydrophilie », permet l'évacuation des salissures minérales sous ruissellement d'eau, par exemple d'eau de pluie. De tels matériaux, en particulier vitrages, sont décrits par exemple dans la demande EP-A-0 850 204. Photocatalytic coatings, in particular those based on titanium dioxide, are known to impart self-cleaning and anti-fouling properties to the substrates which are provided with them. Two properties are at the origin of these advantageous characteristics. Titanium oxide is first of all photocatalytic, that is to say that it is capable under suitable radiation, generally ultraviolet radiation, of catalyzing the degradation reactions of organic compounds. This photocatalytic activity is initiated within the layer by the creation of an electron-hole pair. In addition, the titanium dioxide has an extremely pronounced hydrophilicity when it is irradiated by this same type of radiation. This strong hydrophilicity, sometimes called "super-hydrophilic", allows the evacuation of mineral soils under water runoff, for example rainwater. Such materials, in particular glazing, are described for example in application EP-A-0 850 204.
Le dioxyde de titane possède un fort indice de réfraction, qui entraîne des facteurs de réflexion lumineuse importants pour les substrats munis de revêtements photocatalytiques. Cela constitue un inconvénient dans le domaine des vitrages pour le bâtiment, et plus encore dans le domaine des cellules photovoltaïques , pour lesquelles il est nécessaire de maximiser la transmission vers le matériau photovoltaïque, et donc de minimiser toute absorption et réflexion du rayonnement solaire. Il existe pourtant un besoin de munir les cellules photovoltaïques d'un revêtement photocatalytique, car le dépôt de salissures est capable de réduire l'efficacité des cellules photovoltaïques d'environ 6% par mois. Ce chiffre est bien évidemment dépendant de la localisation géographique des cellules. Titanium dioxide has a high refractive index, which results in important light reflection factors for substrates with photocatalytic coatings. This is a disadvantage in the field of glazing for the building, and even more so in the field of photovoltaic cells, for which it is necessary to maximize the transmission to the photovoltaic material, and thus minimize any absorption and reflection of solar radiation. However, there is a need to provide photovoltaic cells with a photocatalytic coating, because the deposition of dirt is able to reduce the efficiency of photovoltaic cells by about 6% per month. This figure is obviously dependent on the geographical location of the cells.
Pour diminuer le facteur de réflexion lumineuse, il est possible de réduire l'épaisseur des revêtements photocatalytiques , mais cela se fait au détriment de leur activité photocatalytique.  To reduce the light reflection factor, it is possible to reduce the thickness of the photocatalytic coatings, but this is done to the detriment of their photocatalytic activity.
L' invention a pour but de proposer des matériaux photocatalytiques à base d'oxyde de titane alliant à la fois une forte activité photocatalytique et de faibles facteurs de réflexion lumineuse.  The aim of the invention is to propose photocatalytic materials based on titanium oxide, combining both high photocatalytic activity and low light reflection factors.
A cet effet, l'invention a pour objet un matériau comprenant une feuille de verre ou de vitrocéramique munie sur au moins une partie d'une de ses faces d'un revêtement photocatalytique à base d' oxyde de titane déposé sur une sous-couche à base de silice déposée par dépôt chimique en phase vapeur par combustion dont la rugosité Ra est comprise entre 4 et 30 nm, bornes comprises. For this purpose, the subject of the invention is a material comprising a glass or glass-ceramic sheet provided on at least a part of one of its faces with a photocatalytic coating based on titanium oxide deposited on an undercoat layer. based on silica deposited by chemical vapor deposition by combustion, the roughness Ra of which is between 4 and 30 nm, including terminals.
L'invention a également pour objet un procédé d'obtention d'un matériau selon l'invention. Ce procédé préféré comprend les étapes suivantes : l'on dépose sur une feuille de verre ou de vitrocéramique une sous-couche à base de silice à l'aide d'un procédé de dépôt chimique en phase vapeur par combustion, puis, l'on dépose sur ladite sous-couche à base de silice un revêtement photocatalytique à base d'oxyde de titane, ladite sous-couche étant soumise à une température d'au moins 300 °C préalablement au dépôt dudit revêtement photocatalytique et/ou pendant le dépôt dudit revêtement photocatalytique . II s'est avéré que l'utilisation de sous-couches à base de silice particulièrement rugueuses obtenues par dépôt chimique en phase vapeur par combustion était à même de diminuer de manière importante le facteur de réflexion lumineuse du matériau. La rugosité Ra correspond à l'écart moyen arithmétique du profil de rugosité. Cette valeur est mesurée par microscopie à force atomique sur un carré de 1000 nm de côté, en mode non-contact et en utilisant une pointe en silicium dont le rayon de courbure est de 15 nm. Le substrat est une feuille de verre ou de vitrocéramique . La feuille peut être plane ou bombée, et présenter tout type de dimensions, notamment supérieures à 1 mètre. Le verre est de préférence de type silico-sodo- calcique, mais d'autres types de verres, comme les verres borosilicatés ou les aluminosilicates peuvent aussi être utilisés. Le verre peut être clair ou extra-clair, ou encore teinté, par exemple en bleu, vert, ambre, bronze ou gris. L'épaisseur de la feuille de verre est typiquement comprise entre 0,5 et 19 mm, notamment entre 2 et 12 mm, voire entre 4 et 8 mm. Dans le domaine des cellules photovoltaïques , le verre est de préférence extra-clair ; il comprend de préférence une teneur pondérale totale en oxyde de fer d'au plus 150 ppm, voire 100 ppm et même 90 ppm, voire un rédox d'au plus 0,2, notamment 0,1 et même un rédox nul. On entend par « rédox » le rapport entre la teneur pondérale en oxyde de fer ferreux (exprimé sous la forme FeO) et la teneur pondérale totale en oxyde de fer (exprimé sous la forme Fe2Û3) . Le revêtement photocatalytique à base d' oxyde de titane est de préférence constitué d'oxyde de titane, notamment cristallisé sous forme anatase, qui est la forme la plus active. Un mélange de phases anatase et rutile est également concevable. L'oxyde de titane peut être pur ou dopé, par exemple par des métaux de transition (notamment W, Mo, V, Nb) , des ions lanthanides ou des métaux nobles (tels que par exemple platine, palladium) , ou encore par des atomes d'azote, de carbone ou de fluor. Ces différentes formes de dopage permettent soit d'augmenter l'activité photocatalytique du matériau, soit de décaler le gap de l'oxyde de titane vers des longueurs d'onde proches du domaine du visible ou comprises dans ce domaine. The invention also relates to a process for obtaining a material according to the invention. This preferred method comprises the following steps: a silica-based underlayer is deposited on a sheet of glass or glass-ceramic using a chemical vapor deposition process by combustion, and then depositing on said silica-based underlayer a photocatalytic coating based on titanium oxide, said sublayer being subjected to a temperature of at least 300 ° C prior to deposition of said photocatalytic coating and / or during deposition of said photocatalytic coating. It has been found that the use of particularly rough silica-based undercoats obtained by chemical vapor deposition by combustion is able to significantly decrease the luminous reflectance of the material. The roughness Ra corresponds to the arithmetic average deviation of the roughness profile. This value is measured by atomic force microscopy on a 1000 nm square, in non-contact mode and using a silicon tip with a radius of curvature of 15 nm. The substrate is a sheet of glass or glass ceramic. The sheet may be flat or curved, and have any type of dimensions, especially greater than 1 meter. The glass is preferably of the silico-soda-lime type, but other types of glasses, such as borosilicate glasses or aluminosilicates can also be used. The glass may be clear or extra-clear, or tinted, for example blue, green, amber, bronze or gray. The thickness of the glass sheet is typically between 0.5 and 19 mm, especially between 2 and 12 mm, or even between 4 and 8 mm. In the field of photovoltaic cells, the glass is preferably extra-clear; it preferably comprises a total weight content of iron oxide of at most 150 ppm, or even 100 ppm and even 90 ppm, or even a redox of at most 0.2, especially 0.1 and even a zero redox. The term "redox" refers to the weight ratio of ferrous iron oxide (expressed as FeO) to the total weight content of iron oxide (expressed as Fe 2 O 3 ). The photocatalytic coating based on titanium oxide is preferably made of titanium oxide, in particular crystallized in anatase form, which is the most active form. A mixture of anatase and rutile phases is also conceivable. The titanium oxide may be pure or doped, for example by transition metals (especially W, Mo, V, Nb), lanthanide ions or noble metals (such as, for example, platinum or palladium), or by nitrogen, carbon or fluorine atoms. These different forms of doping make it possible either to increase the photocatalytic activity of the material, or to shift the gap of the titanium oxide towards wavelengths close to the visible range or included in this range.
Le revêtement photocatalytique est normalement la dernière couche de l'empilement déposé sur le substrat, autrement dit la couche de l'empilement la plus éloignée du substrat. Il importe en effet que le revêtement photocatalytique soit en contact avec l'atmosphère et ses polluants. Il est toutefois possible de déposer sur la couche photocatalytique une très fine couche, généralement discontinue ou poreuse. Il peut par exemple s'agir d'une couche à base de métaux nobles destinée à accroître l'activité photocatalytique du matériau The photocatalytic coating is normally the last layer of the stack deposited on the substrate, that is to say the layer of the stack farthest from the substrate. It is important that the photocatalytic coating is in contact with the atmosphere and its pollutants. It is however possible to deposit on the photocatalytic layer a very thin layer, generally discontinuous or porous. For example, it may be a layer based on noble metals intended to increase the photocatalytic activity of the material
L'épaisseur du revêtement photocatalytique est de préférence comprise entre 1 et 20 nanomètres, notamment entre 2 et 15 nm, voire entre 3 et 10 nm, bornes comprises. Une épaisseur élevée permet d'accroître l'activité photocatalytique de la couche mais au détriment de la réflexion lumineuse. Dans l'ensemble du présent texte, les épaisseurs sont des épaisseurs physiques. The thickness of the photocatalytic coating is preferably between 1 and 20 nanometers, especially between 2 and 15 nm, or even between 3 and 10 nm, inclusive. A high thickness increases the photocatalytic activity of the layer but at the expense of light reflection. Throughout this text, the thicknesses are physical thicknesses.
La sous-couche à base de silice est de préférence en silice, c'est-à-dire constituée de silice. Il est entendu que la silice peut être pure ou dopée, ou ne pas être stœchiométrique . La silice peut par exemple être dopée par des atomes de bore ou de phosphore, ou encore par des atomes de carbone ou d'azote. The silica-based underlayer is preferably silica, i.e., silica. It is understood that the silica may be pure or doped, or not be stoichiometric. The silica may, for example, be doped with boron or phosphorus atoms, or with carbon or nitrogen atoms.
La sous-couche à base de silice est de préférence déposée en contact avec le substrat. The silica-based underlayer is preferably deposited in contact with the substrate.
La rugosité Ra de la sous-couche à base de silice est avantageusement comprise entre 5 et 25 nm, bornes comprises, notamment entre 8 et 20 nm ou entre 10 et 15 nm. The roughness Ra of the silica-based underlayer is advantageously between 5 and 25 nm, including terminals, in particular between 8 and 20 nm or between 10 and 15 nm.
L'épaisseur de la sous-couche à base de silice est de préférence comprise entre 10 et 100 nm, bornes comprises, notamment entre 10 et 80 nm, voire entre 15 et 50 nm, et même entre 20 et 30 nm. Une épaisseur suffisante permet à la sous-couche de jouer un rôle de couche barrière à la migration des ions alcalins provenant du substrat lorsque ce dernier en contient (par exemple s'il s'agit d'un substrat en verre silico-sodo-calcique) . The thickness of the silica-based underlayer is preferably between 10 and 100 nm, including limits, especially between 10 and 80 nm, or even between 15 and 50 nm, and even between 20 and 30 nm. A sufficient thickness allows the underlayer to act as a barrier layer to the migration of alkali ions from the substrate when the latter contains (for example if it is a soda-lime-calcium glass substrate) ).
La sous-couche à base de silice est de préférence non-poreuse, notamment au sens où l'on n'observe pas de pores par des techniques microscopiques, telles que la microscopie électronique en transmission (MET) . La soumission de la sous-couche à une température d'au moins 300°C utilisée dans le procédé préféré selon l'invention, préalablement au dépôt et/ou pendant le dépôt du revêtement photocatalytique, a pour effet de densifier la sous-couche. Le matériau selon l'invention présente de préférence un facteur de transmission lumineuse (au sens de la norme ISO 9050 :2003) d'au moins 85%, voire 88% et même 90% ou 91% et/ou un facteur de réflexion lumineuse (au sens de la norme ISO 9050 :2003) d'au plus 10%, notamment 9% ou 8%. La sous-couche à base de silice est déposée par dépôt chimique en phase vapeur par combustion. Cette technique, également connue sous son acronyme anglais CCVD (pour « Combustion CVD ») , consiste à faire réagir ou décomposer au moins un précurseur de la couche à déposer (généralement un composé organométallique, un sel métallique ou un halogénure) au sein d'une flamme placée à proximité du substrat. Le procédé est normalement mis en œuvre à la pression atmosphérique. Le précurseur, pur ou dissous dans un solvant, se décompose sous l'effet de la chaleur et vient se déposer sur le substrat. Dans un procédé continu, la flamme est typiquement issue d'un brûleur linéaire fixe s' étendant sur toute la largeur du substrat, ce dernier venant défiler en regard du brûleur. La flamme résulte de la réaction entre un combustible (typiquement le propane ou le butane, et dans ce cas le solvant est préférentiellement non combustible, ou encore le solvant lorsqu'il est combustible) et un comburant (typiquement l'air, l'air enrichi en oxygène ou l'oxygène). Le précurseur de silice est typiquement un composé organométallique du silicium ou un sel organique, tel qu'un silane ou un siloxane. L' hexamethyldisiloxane (HDMSO) et le tétraéthylorthosilicate (TEOS) sont particulièrement adaptés. Le précurseur de silice peut également être un composé halogéné, tel que par exemple SiCl4. Le solvant peut être combustible, comme un solvant organique, ou de préférence non combustible, typiquement de l'eau. Le substrat peut être chauffé préalablement au dépôt et/ou pendant le dépôt, par exemple à une température comprise entre 300 et 600°C, notamment entre 400 et 550°C. The silica-based underlayer is preferably non-porous, especially in the sense that no pores are observed by microscopic techniques, such as transmission electron microscopy (TEM). Subjecting the undercoat at a temperature of at least 300 ° C. used in the preferred process according to the invention, prior to the deposition and / or during the deposition of the photocatalytic coating, has the effect of densifying the underlayer. The material according to the invention preferably has a light transmittance (within the meaning of ISO 9050: 2003) of at least 85%, even 88% and even 90% or 91% and / or a light reflection factor (within the meaning of ISO 9050: 2003) of not more than 10%, in particular 9% or 8%. The silica-based underlayer is deposited by chemical vapor deposition by combustion. This technique, also known by its acronym CCVD (For "CVD Combustion"), consists in reacting or decomposing at least one precursor of the layer to be deposited (generally an organometallic compound, a metal salt or a halide) in a flame placed near the substrate. The process is normally carried out at atmospheric pressure. The precursor, pure or dissolved in a solvent, decomposes under the effect of heat and is deposited on the substrate. In a continuous process, the flame is typically derived from a fixed linear burner extending over the entire width of the substrate, the latter coming past the burner. The flame results from the reaction between a fuel (typically propane or butane, and in this case the solvent is preferably non-combustible, or the solvent when it is combustible) and an oxidizer (typically air, air enriched with oxygen or oxygen). The silica precursor is typically an organometallic silicon compound or an organic salt, such as a silane or siloxane. Hexamethyldisiloxane (HDMSO) and tetraethylorthosilicate (TEOS) are particularly suitable. The silica precursor may also be a halogenated compound, such as for example SiCl 4 . The solvent may be combustible, such as an organic solvent, or preferably non-combustible, typically water. The substrate may be heated prior to deposition and / or during deposition, for example at a temperature of between 300 and 600 ° C., in particular between 400 and 550 ° C.
Il s'est avéré qu'un tel procédé permettait, dans certaines conditions qui sont exposées ci-après, d'obtenir des couches de silice particulièrement rugueuses, notamment en comparaison avec d'autres techniques, telles que la CVD. Sans vouloir être liés par une quelconque théorie scientifique, il semblerait que dans certaines conditions qui sont précisées dans la suite du texte la décomposition du précurseur au sein de la flamme forme des nanoparticules de silice qui se déposent ensuite sur la couche en formant des amas, conférant de ce fait une rugosité importante. Le chauffage ultérieur de la sous-couche permet de la densifier et de la fixer au substrat, mais étonnamment sans amoindrir notablement sa rugosité. Une rugosité élevée de la couche à base de silice peut être obtenue en augmentant la taille des nanoparticules. Pour ce faire, il est possible de procéder à l'un au moins des réglages suivants : augmentation du temps de résidence des particules dans la flamme, diminution du débit de combustible et de comburant, augmentation de la distance entre le brûleur et le substrat, augmentation de la concentration de précurseur dans le solvant, augmentation du débit de précurseur. Les valeurs précises à donner à ces paramètres sont bien entendu fortement dépendantes du dispositif de dépôt utilisé, de sorte qu'elles ne peuvent être précisées ici dans l'absolu. Les exemples de réalisation détaillés dans la suite du texte précisent certaines valeurs. It has been found that such a process makes it possible, under certain conditions which are set out below, to obtain particularly rough silica layers, especially in comparison with other techniques, such as CVD. Without wishing to be bound by any scientific theory, it would seem that under certain conditions which are specified in the rest of the text the decomposition of the precursor within the flame forms silica nanoparticles which are then deposited on the layer forming clusters, thereby conferring a significant roughness. The subsequent heating of the underlayer makes it possible to densify it and to fix it to the substrate, but surprisingly without significantly reducing its roughness. High roughness of the silica-based layer can be achieved by increasing the size of the nanoparticles. To do this, it is possible to carry out at least one of the following adjustments: increase the residence time of the particles in the flame, decrease the flow of fuel and oxidizer, increase the distance between the burner and the substrate, increasing the precursor concentration in the solvent, increasing the precursor flow rate. The precise values to be given to these parameters are of course highly dependent on the depositing device used, so that they can not be specified here in absolute terms. The examples of realization detailed in the following of the text specify certain values.
La sous-couche à base de silice est de préférence soumise à une température d'au moins 400°C, voire 500°C préalablement au dépôt dudit revêtement photocatalytique et/ou pendant le dépôt dudit revêtement photocatalytique. The silica-based underlayer is preferably subjected to a temperature of at least 400 ° C, or even 500 ° C prior to deposition of said photocatalytic coating and / or during deposition of said photocatalytic coating.
Le dépôt du revêtement photocatalytique est de préférence réalisé par dépôt chimique en phase vapeur. Il peut aussi être réalisé par d'autres techniques de dépôt, comme par exemple le dépôt chimique en phase vapeur par combustion. The deposition of the photocatalytic coating is preferably carried out by chemical vapor deposition. It can also be achieved by other deposition techniques, such as chemical vapor deposition by combustion.
Le dépôt chimique en phase vapeur, généralement désigné sous son acronyme anglais CVD, est un procédé de pyrolyse utilisant des précurseurs gazeux qui se décomposent sous l'effet de la chaleur du substrat. Dans le cas de l'oxyde de titane, les précurseurs peuvent être à titre d'exemple du tétrachlorure de titane, du tétraisopropoxyde de titane ou du tétraorthobutoxyde de titane. Chemical vapor deposition, generally referred to as CVD, is a pyrolysis process using gaseous precursors decompose under the effect of the heat of the substrate. In the case of titanium oxide, the precursors may be, for example, titanium tetrachloride, titanium tetraisopropoxide or titanium tetraorthobutoxide.
De préférence, le dépôt de la sous-couche et le dépôt du revêtement photocatalytique sont réalisés successivement, sur la ligne de production du verre par le procédé de flottage (aussi appelée procédé « float ») . Dans ce procédé continu, un ruban de verre est obtenu en coulant le verre à environ 1100°C sur un bain d' étain en fusion au sein d'une enceinte appelée enceinte de flottage. A la sortie de cette enceinte, la température du verre est de l'ordre de 500 à 600°C, et le ruban de verre passe ensuite dans une enceinte appelée étenderie, où le verre est refroidi de manière contrôlée afin d'éliminer toutes contraintes mécaniques résiduelles en son sein. De préférence, le dépôt de la sous-couche et le dépôt du revêtement photocatalytique sont mis en œuvre successivement, entre la sortie de l'enceinte de flottage et l'entrée de l'étenderie. Le brûleur utilisé pour le dépôt chimique en phase vapeur par combustion et la buse de dépôt chimique en phase vapeur sont donc de préférence installés entre la sortie de l'enceinte de flottage et l'entrée de l'étenderie. Typiquement, la température du verre lors de la mise en œuvre du dépôt de la sous-couche à base de silice est comprise entre 480 et 600°C, notamment entre 500 et 550°C, et la température du verre lors de la mise en œuvre du dépôt du revêtement photocatalytique est comprise entre 430 et 550°C, notamment entre 450 et 500°C. De la sorte, la sous-couche à base de silice est naturellement soumise à une température d'au moins 300 °C préalablement au dépôt et pendant le dépôt du revêtement photocatalytique, et donc densifiée et fixée au substrat, sans avoir à apporter d'énergie supplémentaire, par exemple en plaçant le substrat dans un four. Preferably, the deposition of the underlayer and the deposition of the photocatalytic coating are carried out successively, on the glass production line by the float process (also called "float" process). In this continuous process, a glass ribbon is obtained by casting the glass at about 1100 ° C on a bath of molten tin in a chamber called floating chamber. At the outlet of this chamber, the temperature of the glass is of the order of 500 to 600 ° C, and the glass ribbon then passes into a chamber called lehr, where the glass is cooled in a controlled manner to eliminate any constraints mechanical residuals within it. Preferably, the deposition of the underlayer and the deposition of the photocatalytic coating are implemented successively, between the output of the floating vessel and the entrance of the lehr. The burner used for chemical vapor deposition by combustion and the chemical vapor deposition nozzle are therefore preferably installed between the exit of the floating vessel and the inlet of the lehr. Typically, the temperature of the glass during the implementation of the deposition of the silica-based underlayer is between 480 and 600 ° C., in particular between 500 and 550 ° C., and the temperature of the glass during the setting-up The photocatalytic coating deposited is between 430 and 550 ° C., in particular between 450 and 500 ° C. In this way, the silica-based underlayer is naturally subjected to a temperature of at least 300 ° C. prior to deposition and during deposition of the coating. photocatalytic, and therefore densified and attached to the substrate, without having to bring additional energy, for example by placing the substrate in an oven.
L'invention a également pour objet un vitrage ou une cellule photovoltaïque comprenant au moins un matériau selon l'invention. The invention also relates to a glazing unit or a photovoltaic cell comprising at least one material according to the invention.
Le vitrage peut être simple ou multiple (notamment double ou triple) , au sens où il peut comprendre plusieurs feuilles de verre ménageant un espace rempli de gaz. Le vitrage peut également être feuilleté et/ou trempé et/ou durci et/ou bombé. The glazing may be single or multiple (in particular double or triple), in the sense that it may comprise several glass sheets leaving a space filled with gas. The glazing can also be laminated and / or tempered and / or hardened and / or curved.
L'autre face du matériau selon l'invention, ou le cas échéant une face d'un autre substrat du vitrage multiple, peut être revêtue d'une autre couche fonctionnelle ou d'un empilement de couches fonctionnelles. Il peut notamment s'agir d'une autre couche photocatalytique. Il peut aussi s'agir de couches ou d'empilements à fonction thermique, notamment antisolaires ou bas-émissifs , par exemple des empilements comprenant une couche d'argent protégée par des couches diélectriques. Il peut encore s'agir d'une couche miroir, notamment à base d'argent. Il peut enfin s'agir d'une laque ou d'un émail destinée à opacifier le vitrage pour en faire un panneau de parement de façade appelé allège. L'allège est disposée sur la façade aux côtés des vitrages non opacifiés et permet d' obtenir des façades entièrement vitrées et homogènes du point de vue esthétique. The other face of the material according to the invention, or possibly a face of another substrate of the multiple glazing, may be coated with another functional layer or a stack of functional layers. It may especially be another photocatalytic layer. It may also be layers or stacks with thermal function, in particular antisolar or low-emissive, for example stacks comprising a silver layer protected by dielectric layers. It may still be a mirror layer, in particular based on silver. It can finally be a lacquer or an enamel intended to opacify the glazing to make a facade facing panel called lighter. The lighter is arranged on the facade alongside the non - opaque glazings and allows to obtain facades entirely glazed and homogeneous from the aesthetic point of view.
Dans la cellule photovoltaïque selon l'invention, le matériau selon l'invention est de préférence le substrat de face avant de la cellule, c'est-à-dire celui qui est le premier traversé par le rayonnement solaire. Le revêtement photocatalytique est alors positionné vers l'extérieur, afin que l'effet autonettoyant puisse se manifester utilement . In the photovoltaic cell according to the invention, the material according to the invention is preferably the front face substrate of the cell, that is to say the one which is the first crossed by solar radiation. The photocatalytic coating is then positioned outwards, so that the self-cleaning effect can be useful.
Pour les applications en tant que cellules photovoltaïques , et afin de maximiser le rendement énergétique de la cellule, plusieurs améliorations peuvent être apportées, cumulativement ou alternativement : For applications as photovoltaic cells, and in order to maximize the energy efficiency of the cell, several improvements can be made cumulatively or alternatively:
La feuille de verre peut avantageusement être revêtue, sur la face opposée à la face munie du revêtement selon l'invention, d'au moins une couche mince transparente et électroconductrice, par exemple à base de Sn02:F, Sn02:Sb, ZnO:Al, ZnO:Ga. Ces couches peuvent être déposées sur le substrat par différents procédés de dépôt, tels que le dépôt chimique en phase vapeur (CVD) ou le dépôt par pulvérisation cathodique, notamment assisté par champ magnétique (procédé magnétron) . Dans le procédé CVD, des précurseurs halogénures ou organométalliques sont vaporisés et transportés par un gaz vecteur jusqu'à la surface du verre chaud, où ils se décomposent sous l'effet de la chaleur pour former la couche mince. L'avantage du procédé CVD est qu'il est possible de le mettre en œuvre au sein du procédé de formage de la feuille de verre, notamment lorsqu'il s'agit d'un procédé de flottage. Il est ainsi possible de déposer la couche au moment où la feuille de verre est sur le bain d'étain, à la sortie du bain d'étain, ou encore dans l'étenderie, c'est-à-dire au moment où la feuille de verre est recuite afin d'éliminer les contraintes mécaniques. The glass sheet may advantageously be coated, on the face opposite to the face provided with the coating according to the invention, with at least one transparent and electroconductive thin layer, for example based on Sn0 2 : F, Sn0 2 : Sb, ZnO: Al, ZnO: Ga. These layers may be deposited on the substrate by various deposition methods, such as chemical vapor deposition (CVD) or sputtering deposition, in particular assisted by magnetic field (magnetron process). In the CVD process, halide or organometallic precursors are vaporized and transported by a carrier gas to the surface of the hot glass, where they decompose under the effect of heat to form the thin layer. The advantage of the CVD process is that it is possible to implement it in the process of forming the glass sheet, especially when it is a floating process. It is thus possible to deposit the layer when the glass sheet is on the tin bath, at the exit of the tin bath, or in the lehr, that is to say when the glass sheet is annealed to eliminate mechanical stress.
La feuille de verre revêtue d'une couche transparente et électroconductrice peut être à son tour revêtue d'un semi-conducteur à base de silicium amorphe ou polycristallin, de chalcopyrites (notamment du type CIS - CuInSe2 ou CIGS - CuInGaSe2) ou de CdTe pour former une cellule photovoltaïque . Dans ce cas, un autre avantage du procédé CVD réside en l'obtention d'une rugosité plus forte, qui génère un phénomène de piégeage de la lumière, lequel augmente la quantité de photons absorbée par le semi-conducteur. La présence selon l'invention d'une sous-couche à base de silice rugueuse aide également à amplifier ce phénomène de piégeage de la lumière. la surface de la feuille de verre peut être texturée, par exemple présenter des motifs (notamment en pyramide) , tel que décrit dans les demandes WO 03/046617, WO 2006/134300, WO 2006/134301 ou encore WO 2007/015017. Ces texturations sont en général obtenues à l'aide d'un formage du verre par laminage. The glass sheet coated with a transparent and electroconductive layer may in turn be coated with a semiconductor based on amorphous or polycrystalline silicon, chalcopyrites (especially CIS - CuInSe2 or CIGS - CuInGaSe2) or CdTe to form a photovoltaic cell. In this case, another advantage of the CVD process lies in obtaining a higher roughness, which generates a phenomenon of trapping light, which increases the amount of photons absorbed by the semiconductor. The presence according to the invention of a rough silica underlayer also helps to amplify this phenomenon of trapping of light. the surface of the glass sheet may be textured, for example have patterns (especially pyramid), as described in WO 03/046617, WO 2006/134300, WO 2006/134301 or WO 2007/015017. These textures are generally obtained using a glass forming by rolling.
L' invention sera mieux comprise à la lumière des exemples non limitatifs qui suivent, illustrés par les Figures 1 et 2. The invention will be better understood in the light of the nonlimiting examples which follow, illustrated by FIGS. 1 and 2.
PREMIERE SERIE D'EXEMPLES FIRST SERIES OF EXAMPLES
Exemple 1 Example 1
Sur un substrat de verre on dépose une sous-couche de silice de 30 nm d'épaisseur par dépôt chimique en phase vapeur par combustion (CCVD) . Pour ce faire, une flamme obtenue par combustion de propane (débit de 6 L/min) avec de l'air (débit de 150 L/min) est disposée à 15 mm de la surface à revêtir. Le substrat défile à une vitesse de 2 m/min sous la flamme, tandis qu'un précurseur HDMSO (hexamethyldisiloxane) est introduit dans la flamme avec un débit de 0,5 L/min. On a glass substrate is deposited a 30 nm thick silica underlayer by chemical vapor deposition by combustion (CCVD). To do this, a flame obtained by combustion of propane (flow rate of 6 L / min) with air (flow rate of 150 L / min) is disposed at 15 mm from the surface to be coated. The substrate travels at a speed of 2 m / min under the flame, while a precursor HDMSO (hexamethyldisiloxane) is introduced into the flame with a flow rate of 0.5 L / min.
Après dépôt de la sous-couche, un revêtement photocatalytique d'oxyde de titane d'environ 10 nm d'épaisseur est déposé sur la sous-couche par une technique CVD. Pour ce faire, le substrat muni de la sous-couche est chauffé à environ 530°C, et un précurseur d'oxyde de titane, le tétraisopropoxyde de titane, dissous dans un gaz porteur (azote) est amené en contact avec la surface du substrat. After deposition of the underlayer, a photocatalytic coating of titanium oxide approximately 10 nm thick is deposited on the underlayer by a CVD technique. To do this, the substrate provided with the underlayer is heated to about 530 ° C, and a titanium oxide precursor, titanium tetraisopropoxide, dissolved in a carrier gas (nitrogen) is brought into contact with the surface of the substrate. substrate.
Exemple 2 Example 2
Cet exemple est réalisé de la même manière que l'exemple 1, la seule différence tenant en ce que la sous- couche en silice est plus épaisse (60 nm) , grâce à un deuxième passage. Lors du deuxième passage, le débit de propane est de 10 L/min, le débit d'air de 250 L/min, et le débit de précurseur est de 1 L/min. La distance entre la flamme et le substrat est de 30 mm. This example is carried out in the same manner as Example 1, the only difference being that the silica underlayer is thicker (60 nm), thanks to a second pass. In the second pass, the propane flow rate is 10 L / min, the air flow rate is 250 L / min, and the precursor flow rate is 1 L / min. The distance between the flame and the substrate is 30 mm.
Exemples comparatifs Comparative examples
Dans l'exemple comparatif 1, le revêtement photocatalytique est obtenu de la même manière que dans le cas de l'exemple 1 selon l'invention. En revanche, la sous- couche est une couche d' oxycarbure de silicium déposée par CVD (et non par CCVD) , par conséquent beaucoup moins rugueuse . Dans l'exemple comparatif 2, la sous-couche est une couche de silice déposée par pulvérisation cathodique magnétron, également beaucoup moins rugueuse. Le revêtement photocatalytique est le même que dans le cas de l'exemple comparatif 1. In Comparative Example 1, the photocatalytic coating is obtained in the same manner as in the case of Example 1 according to the invention. On the other hand, the underlayer is a layer of silicon oxycarbide deposited by CVD (and not by CCVD), therefore much less rough. In Comparative Example 2, the underlayer is a layer of silica deposited by cathodic sputtering magnetron, also much less rough. The photocatalytic coating is the same as in the case of Comparative Example 1.
La Figure 1 est un cliché obtenu en microscopie à force atomique (AFM) de la surface de l'exemple 1, permettant d'observer la forte rugosité impartie par la sous-couche de silice. Figure 1 is a snapshot obtained by atomic force microscopy (AFM) of the surface of Example 1, to observe the high roughness imparted by the silica underlayer.
La Figure 2 regroupe les spectres en transmission des quatre exemples. Le tableau 1 ci-après récapitule les résultats des essais. Il indique pour chaque exemple les grandeurs suivantes : la rugosité Ra, exprimée en nm, l'activité photocatalytique Kb, exprimée en μg .1_1. min-1, le facteur de réflexion lumineuse RL, le facteur de transmission lumineuse TL et le facteur de transmission énergétique TE, au sens de la norme ISO 9050 :2003, le facteur de transmission « TSQE », correspondant au produit de convolution du spectre de transmission du matériau et de la courbe d'efficacité quantique du silicium amorphe. Ce facteur permet d'évaluer la transmission du matériau dans les longueurs d'onde pertinentes pour les cellules photovoltaïques utilisant du silicium amorphe. La rugosité Ra est mesurée à l'aide d'un microscope à force atomique (AFM) Nanoscope Illa sur un carré de 1000 nm de côté, en mode non-contact et en utilisant une pointe en silicium dont le rayon de courbure est de 15 nm. Figure 2 groups the transmission spectra of the four examples. Table 1 below summarizes the results of the tests. It indicates for each example the following quantities: the roughness Ra, expressed in nm, the photocatalytic activity Kb, expressed in μg .1 _1 . min -1 , the light reflection factor RL, the light transmittance TL and the energy transmission factor TE, in the meaning of ISO 9050: 2003, the transmittance "TSQE", corresponding to the convolution product of the spectrum of material transmission and the quantum efficiency curve of amorphous silicon. This factor makes it possible to evaluate the transmission of the material in the relevant wavelengths for the photovoltaic cells using amorphous silicon. The roughness Ra is measured using an atomic force microscope (AFM) Nanoscope Illa on a square of 1000 nm of side, in non-contact mode and using a silicon tip whose radius of curvature is 15 nm.
L'activité photocatalytique est évaluée grâce à une mesure de vitesse de dégradation de bleu de méthylène en présence de rayonnement ultraviolet. Une solution aqueuse de bleu de méthylène est placée en contact dans une cellule étanche avec le substrat revêtu (ce dernier formant le fond de la cellule) . Après exposition à un rayonnement ultraviolet pendant 30 minutes, la concentration de bleu de méthylène est évaluée par une mesure de transmission lumineuse. La valeur d'activité photocatalytique (notée Kb et exprimée en μg. l-1.min-1) , correspond à la diminution de la concentration en bleu de méthylène par unité de temps d' exposition . The photocatalytic activity is evaluated by measuring the rate of degradation of methylene blue in the presence of ultraviolet radiation. An aqueous solution methylene blue is placed in contact in a sealed cell with the coated substrate (the latter forming the bottom of the cell). After exposure to ultraviolet radiation for 30 minutes, the concentration of methylene blue is evaluated by a light transmission measurement. The value of photocatalytic activity (denoted Kb and expressed in μg.l -1 .min -1 ) corresponds to the decrease in methylene blue concentration per unit of exposure time.
Tableau 1  Table 1
DEUXIEME SERIE D'EXEMPLES SECOND SERIES OF EXAMPLES
Exemple 3 Example 3
On dépose sur une feuille de verre clair de 2 mm d'épaisseur une sous-couche de silice de 20 nm d'épaisseur par CCVD. Pour ce faire, on réalise 6 passages sous une flamme air-propane, en utilisant une solution d'un précurseur HDMSO dans l'éthanol. Les débits de propane et d'air sont respectivement de 8 et 160 L/min. La concentration de précurseur dans l'éthanol est de 0,1 mol/L, et le débit d'introduction de la solution de précurseur dans la flamme de 2 yL/min. La distance entre le brûleur et le substrat est de 7 mm, et la vitesse de défilement du substrat de 6 m/h. Le substrat est chauffé à une température de 520 °C préalablement au dépôt. A silica underlayer 20 nm thick by CCVD is deposited on a 2 mm thick clear glass sheet. To do this, 6 passes under an air-propane flame, using a solution of a precursor HDMSO in ethanol. Propane flows and of air are respectively 8 and 160 L / min. The concentration of precursor in ethanol is 0.1 mol / l, and the rate of introduction of the precursor solution into the flame of 2 μl / min. The distance between the burner and the substrate is 7 mm, and the speed of travel of the substrate 6 m / h. The substrate is heated to a temperature of 520 ° C prior to deposition.
Le revêtement photocatalytique est similaire à celui des exemples précédents. The photocatalytic coating is similar to that of the previous examples.
Exemple comparatif 3 Comparative Example 3
Les conditions de dépôt de la sous-couche de silice diffèrent de celles de l'exemple 3 en ce que la distance entre le substrat et le brûleur est de 5 mm, et le débit d' introduction de la solution de précurseur est de 1 yL/min. The deposition conditions of the silica underlayer differ from those of Example 3 in that the distance between the substrate and the burner is 5 mm, and the rate of introduction of the precursor solution is 1 μL. / min.
Tableau 2  Table 2
Les conditions de dépôt de l'exemple comparatif 3 induisent une très faible rugosité, comparées à celles de l'exemple 3 selon l'invention. Ces résultats démontrent que l'utilisation d'une sous-couche rugueuse obtenue par CCVD permet de réduire de manière importante la réflexion du matériau, jusqu'à atteindre des réflexions de l'ordre de celle du verre nu, voire inférieures. Il en résulte des transmissions lumineuses et énergétiques bien plus élevées, de 3 à 4 points, sans pour autant dégrader l'activité photocatalytique . The deposition conditions of Comparative Example 3 induce a very low roughness, compared with those of Example 3 according to the invention. These results demonstrate that the use of a rough undercoat obtained by CCVD makes it possible to significantly reduce the reflection of the material, until it reaches reflections of the order of that of bare glass, or even lower. This results in much higher light and energy transmissions of 3 to 4 points, without degrading the photocatalytic activity.
Une analyse par spectrométrie Raman montre la présence d' anatase pour tous les échantillons. Raman spectrometry analysis shows the presence of anatase for all samples.
L'observation des matériaux par microscopie électronique en transmission réalisée sur la tranche montre que la couche de silice est dense, exempte de toute porosité . Observation of the materials by transmission electron microscopy performed on the wafer shows that the silica layer is dense, free of any porosity.

Claims

REVENDICATIONS
1. Matériau comprenant une feuille de verre ou de vitrocéramique munie sur au moins une partie d'une de ses faces d'un revêtement photocatalytique à base d'oxyde de titane déposé sur une sous-couche à base de silice déposée par dépôt chimique en phase vapeur par combustion dont la rugosité Ra est comprise entre 4 et 30 nm, bornes comprises . 1. Material comprising a glass or glass-ceramic sheet provided on at least a part of one of its faces with a titanium oxide-based photocatalytic coating deposited on a silica-based underlayer deposited by chemical deposition in combustion vapor phase whose roughness Ra is between 4 and 30 nm, including terminals.
2. Matériau selon l'une des revendications précédentes, tel que le revêtement photocatalytique est en oxyde de titane, notamment cristallisé sous la forme anatase. 2. Material according to one of the preceding claims, such that the photocatalytic coating is titanium oxide, in particular crystallized in the anatase form.
3. Matériau selon l'une des revendications précédentes, tel que la sous-couche à base de silice est en silice . 3. Material according to one of the preceding claims, such that the silica-based underlayer is silica.
4. Matériau selon l'une des revendications précédentes, tel que la sous-couche est déposée en contact avec le substrat. 4. Material according to one of the preceding claims, such that the underlayer is deposited in contact with the substrate.
5. Matériau selon l'une des revendications précédentes, tel que la rugosité Ra de la sous-couche est comprise entre 5 et 25 nm, bornes comprises. 5. Material according to one of the preceding claims, such that the roughness Ra of the underlayer is between 5 and 25 nm, including terminals.
6. Matériau selon l'une des revendications précédentes, tel que l'épaisseur de la sous-couche à base de silice est comprise entre 10 et 100 nm, notamment entre 10 et 80 nm, bornes comprises. 6. Material according to one of the preceding claims, such that the thickness of the silica-based underlayer is between 10 and 100 nm, especially between 10 and 80 nm, including terminals.
7. Matériau selon l'une des revendications précédentes, tel que le revêtement photocatalytique est la dernière couche de l'empilement déposé sur la feuille de verre ou de vitrocéramique . 7. Material according to one of the preceding claims, such that the photocatalytic coating is the last layer of the stack deposited on the glass or glass-ceramic sheet.
8. Matériau selon l'une des revendications précédentes, tel que l'épaisseur du revêtement photocatalytique est comprise entre 1 et 20 nm, bornes comprises . 8. Material according to one of the preceding claims, such that the thickness of the photocatalytic coating is between 1 and 20 nm, including terminals.
9. Matériau selon l'une des revendications précédentes, présentant un facteur de transmission lumineuse au sens de la norme ISO 9050 :2003 d'au moins 80%, notamment 90% et un facteur de réflexion lumineuse au sens de la norme ISO 9050 :2003 d'au plus 10%, notamment 9%. 9. Material according to one of the preceding claims, having a light transmission factor according to ISO 9050: 2003 of at least 80%, in particular 90% and a light reflection factor according to ISO 9050: 2003 of not more than 10%, in particular 9%.
10. Vitrage ou cellule photovoltaïque comprenant au moins un matériau selon l'une des revendications précédentes.  10. Glazing or photovoltaic cell comprising at least one material according to one of the preceding claims.
11. Procédé d'obtention d'un matériau selon l'une des revendications 1 à 9, comprenant les étapes suivantes : l'on dépose sur une feuille de verre ou de vitrocéramique une sous-couche à base de silice à l'aide d'un procédé de dépôt chimique en phase vapeur par combustion, puis, l'on dépose sur ladite sous-couche à base de silice un revêtement photocatalytique à base d'oxyde de titane, ladite sous-couche étant soumise à une température d'au moins 300 °C préalablement au dépôt dudit revêtement photocatalytique et/ou pendant le dépôt dudit revêtement photocatalytique . 11. Process for obtaining a material according to one of claims 1 to 9, comprising the following steps: a silica-based underlayer is deposited on a glass or glass-ceramic sheet using a chemical vapor deposition process by combustion, then deposited on said silica-based underlayer a photocatalytic coating based on titanium oxide, said underlayer being subjected to a temperature of at least at least 300 ° C. prior to deposition of said photocatalytic coating and / or during deposition of said photocatalytic coating.
12. Procédé selon la revendication précédente, tel que le dépôt du revêtement photocatalytique est réalisé par dépôt chimique en phase vapeur. 12. Method according to the preceding claim, such that the deposition of the photocatalytic coating is carried out by chemical vapor deposition.
13. Procédé selon l'une des revendications 11 ou 12, tel que le revêtement photocatalytique est la dernière couche de l'empilement déposé sur la feuille de verre ou de vitrocéramique . 13. Method according to one of claims 11 or 12, such that the photocatalytic coating is the last layer of the stack deposited on the glass sheet or glass-ceramic.
14. Procédé selon l'une des revendications 11 à 13, tel que le dépôt de la sous-couche et le dépôt du revêtement photocatalytique sont réalisés successivement, sur une ligne de production du verre par le procédé de flottage . 14. Method according to one of claims 11 to 13, such that the deposition of the underlayer and the deposition of the photocatalytic coating are carried out successively on a glass production line by the float process.
15. Procédé selon la revendication précédente, tel que le dépôt de la sous-couche et le dépôt du revêtement photocatalytique sont mis en œuvre successivement, entre la sortie de l'enceinte de flottage et l'entrée de 1 ' étenderie . 15. Method according to the preceding claim, such that the deposition of the underlayer and the deposition of the photocatalytic coating are implemented successively, between the output of the floating vessel and the inlet of 1 lehr.
EP12773023.2A 2011-09-13 2012-09-12 Photocatalytic material and glazing or photovoltaic cell comprising said material Withdrawn EP2755927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158120A FR2979910B1 (en) 2011-09-13 2011-09-13 PHOTOCATALYTIC MATERIAL AND GLAZING OR PHOTOVOLTAIC CELL COMPRISING THIS MATERIAL
PCT/FR2012/052035 WO2013038104A1 (en) 2011-09-13 2012-09-12 Photocatalytic material and glazing or photovoltaic cell comprising said material

Publications (1)

Publication Number Publication Date
EP2755927A1 true EP2755927A1 (en) 2014-07-23

Family

ID=47022957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12773023.2A Withdrawn EP2755927A1 (en) 2011-09-13 2012-09-12 Photocatalytic material and glazing or photovoltaic cell comprising said material

Country Status (7)

Country Link
US (1) US20140338749A1 (en)
EP (1) EP2755927A1 (en)
JP (1) JP2014534143A (en)
KR (1) KR20140063682A (en)
CN (1) CN103781738A (en)
FR (1) FR2979910B1 (en)
WO (1) WO2013038104A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105669044B (en) * 2015-12-31 2018-05-29 株洲醴陵旗滨玻璃有限公司 A kind of online easy clean coated glass and preparation method thereof
EP3431455A1 (en) * 2017-07-20 2019-01-23 AGC Glass Europe Glass with easy maintenance
FR3083228B1 (en) * 2018-06-27 2020-06-26 Saint-Gobain Glass France GLAZING HAVING A STACK OF THIN FILMS ACTING ON THE SOLAR RADIATION AND OF A BARRIER LAYER
FR3105211B1 (en) * 2019-12-18 2021-12-31 Saint Gobain Photocatalytic glazing comprising a layer based on titanium nitride
CN114551606A (en) 2021-09-16 2022-05-27 晶科能源(海宁)有限公司 Solar cell and photovoltaic module

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738813B1 (en) 1995-09-15 1997-10-17 Saint Gobain Vitrage SUBSTRATE WITH PHOTO-CATALYTIC COATING
JP3700358B2 (en) * 1996-12-18 2005-09-28 日本板硝子株式会社 Antifogging and antifouling glass articles
FR2814094B1 (en) * 2000-09-20 2003-08-15 Saint Gobain SUBSTRATE WITH PHOTOCATALYTIC COATING AND MANUFACTURING METHOD THEREOF
FR2832811B1 (en) 2001-11-28 2004-01-30 Saint Gobain TRANSPARENT TEXTURED PLATE WITH HIGH LIGHT TRANSMISSION
WO2003078320A1 (en) * 2002-03-19 2003-09-25 National Institute Of Advanced Industrial Science And Technology Thin silica film and silica-titania composite film, and method for preparing them
FR2838735B1 (en) * 2002-04-17 2005-04-15 Saint Gobain SELF-CLEANING COATING SUBSTRATE
DE102005027799B4 (en) 2005-06-16 2007-09-27 Saint-Gobain Glass Deutschland Gmbh Method for producing a transparent pane with a surface structure and apparatus for carrying out the method
DE102005027737B4 (en) 2005-06-16 2013-03-28 Saint-Gobain Glass Deutschland Gmbh Use of a transparent disc with a three-dimensional surface structure as a cover plate for components for the use of sunlight
FR2889525A1 (en) 2005-08-04 2007-02-09 Palumed Sa NOVEL POLYQUINOLINE DERIVATIVES AND THEIR THERAPEUTIC USE.
US20070113881A1 (en) * 2005-11-22 2007-05-24 Guardian Industries Corp. Method of making solar cell with antireflective coating using combustion chemical vapor deposition (CCVD) and corresponding product
US7655274B2 (en) * 2007-11-05 2010-02-02 Guardian Industries Corp. Combustion deposition using aqueous precursor solutions to deposit titanium dioxide coatings
US20100203287A1 (en) * 2009-02-10 2010-08-12 Ngimat Co. Hypertransparent Nanostructured Superhydrophobic and Surface Modification Coatings
JP2011119626A (en) * 2009-12-07 2011-06-16 Central Glass Co Ltd Cover glass for solar panel covered with low reflecting coating and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013038104A1 *

Also Published As

Publication number Publication date
FR2979910A1 (en) 2013-03-15
JP2014534143A (en) 2014-12-18
CN103781738A (en) 2014-05-07
KR20140063682A (en) 2014-05-27
WO2013038104A1 (en) 2013-03-21
US20140338749A1 (en) 2014-11-20
FR2979910B1 (en) 2014-01-03

Similar Documents

Publication Publication Date Title
CA2806026C (en) Multilayered glazing
EP2438024B1 (en) Method for depositing a thin film
EP2961711B1 (en) Substrate coated with a low-emissivity coating
EP2822909B1 (en) Anti-condensation glazing
EP2523919B1 (en) Photocatalytic material and glass sheet or photovoltaic cell including said material
EP2475626A2 (en) Material and glazing comprising said material
EP0781257A1 (en) Glazing including a conductive and/or low-emissive layer
FR3022539A1 (en) ANTICONDENSATION GLAZING
EP2755927A1 (en) Photocatalytic material and glazing or photovoltaic cell comprising said material
WO2011006905A1 (en) Photocatalytic material
WO2010103237A1 (en) Thin film deposition method
BE1010321A5 (en) Glass solar protection and method for manufacturing a glass tel.
FR2971519A1 (en) METHOD FOR OBTAINING PHOTOCATALYTIC MATERIAL
FR3018801A1 (en) VERTICAL SUBSTRATE WITH ELECTROCONDUCTIVE LAYER AND REDUCED ROUGHNESS
FR3018802A1 (en) VERTICAL ELECTROCONDUCTIVE LAYER SUBSTRATE AND REDUCED DELAMINATION TREND

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170401