WO2003078320A1 - Thin silica film and silica-titania composite film, and method for preparing them - Google Patents

Thin silica film and silica-titania composite film, and method for preparing them Download PDF

Info

Publication number
WO2003078320A1
WO2003078320A1 PCT/JP2003/003326 JP0303326W WO03078320A1 WO 2003078320 A1 WO2003078320 A1 WO 2003078320A1 JP 0303326 W JP0303326 W JP 0303326W WO 03078320 A1 WO03078320 A1 WO 03078320A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
silica
titanium
silicon
Prior art date
Application number
PCT/JP2003/003326
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Okudera
Toru Nonami
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002075995A external-priority patent/JP4117371B2/en
Priority claimed from JP2002076093A external-priority patent/JP4482679B2/en
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to DE10392399T priority Critical patent/DE10392399T5/en
Priority to US10/505,878 priority patent/US20050175852A1/en
Priority to AU2003227187A priority patent/AU2003227187A1/en
Publication of WO2003078320A1 publication Critical patent/WO2003078320A1/en

Links

Classifications

    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/31
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/77Coatings having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]

Definitions

  • the present invention relates to a method for manufacturing a thin film, a thin film and a titania composite film, and a method for producing them
  • the present invention relates to a novel method for producing a silica thin film and a composite structure, and more particularly, to a method for forming a film on a substrate surface having arbitrary surface characteristics and surface shape and controlling the film thickness.
  • a new film forming method capable of forming a uniform and high quality silica thin film of a predetermined thickness on a substrate, and a high light transmission having a silica thin film formed by the method on a surface layer.
  • the present invention relates to a composite structure having properties such as properties.
  • This silica film is an electrical insulating film, a high-purity protective film using high strength, an optical waveguide forming film using high translucency, a low-reflection coating film using low refractive index, and fine defects on the substrate surface. It can be used in various ways as a repair film for repairing and recovering smoothness, an undercoat film for suppressing element diffusion from the substrate, a surface treatment film for modifying the substrate surface to an arbitrary surface roughness, and the like.
  • the present invention also relates to a novel silica-titania composite film, a method for producing the same, and a composite structure. More specifically, the present invention has one or more metal compound films containing a metal different from titanium as a component.
  • the present invention also relates to a composite film having a titanium oxide thin film composed of a crystalline anode phase as the outermost layer, a method for producing the composite film, and a composite structure.
  • INDUSTRIAL APPLICABILITY The present invention is useful as a method for producing a composite film in which a uniform and high-quality titania thin film is formed on an arbitrary substrate in a low temperature range of about 35.
  • the composite membrane is used for environmental purification materials such as wastewater treatment and water purification using photocatalytic activity, antifouling coating using strong hydrophilicity, coherent color developing film using transparency, photocatalytic activity and transparent Photocatalytic window glass utilizing characteristics that combine properties, and optical waveguide type utilizing a high refractive index It can be used for various purposes such as film formation.
  • environmental purification materials such as wastewater treatment and water purification using photocatalytic activity, antifouling coating using strong hydrophilicity, coherent color developing film using transparency, photocatalytic activity and transparent Photocatalytic window glass utilizing characteristics that combine properties, and optical waveguide type utilizing a high refractive index It can be used for various purposes such as film formation.
  • a sol-gel method prepares a partially hydrolyzed stabilized silica sol by adding a reaction catalyst, a stabilizer and the like to an alcohol solution of silicon alkoxide, and diving and spinning the solution as a coating solution.
  • a coating is applied to the surface of a substrate by a method such as the above, a hydrolysis and a polymerization reaction are performed on the surface of the substrate, and a film is formed by heating and firing.
  • the sputtering method is a method in which a substrate is fixed in a vacuum container, and silicon or a silicon compound vaporized by various methods is deposited on the substrate surface in the container to form a silica thin film on the substrate surface.
  • the LPD method is a method of forming a silica thin film on the surface of a substrate by precipitating silicon fluoride dissolved in the solution using the change in the degree of supersaturation in an aqueous solution and attaching the precipitated silicon fluoride to the surface of the substrate.
  • the sol-gel method is a method that can form a film at a low temperature in a relatively short time, but usually has a problem that it is difficult to maintain uniformity of the film.
  • organic substances such as a stabilizer tend to remain in the silica forming the film, and high-temperature baking is required to remove them.
  • the acid gas released during firing has an adverse effect on the firing apparatus.
  • the sputtering method has problems that it is difficult to form a film on a surface having a complicated shape, and the reaction apparatus is complicated, expensive, and expensive.
  • the LPD method has a problem that the process is complicated and that water and the like easily remain in the silica forming the film.
  • chemical methods for forming a titania thin film on a substrate surface include, for example, a coating method, a sol-gel method, a chemical vapor transport method, a self-assembled monolayer film method, a Langmuir-Brochet method, and sputtering in a vacuum.
  • a film formation method using a new chemical reaction different from the sol-gel method are known.
  • the coating method is a method of applying amorphous or crystalline anatase phase fine particles to a substrate together with a binder.
  • a stabilized titania sol obtained by partially hydrolyzing an alcohol solution of titanium alkoxide by adding a stabilizer is prepared, and the resulting solution is applied as a coating solution to a substrate surface by diving, spinning, or the like, and then dried.
  • This is a method for forming a stable amorphous thin film by performing a dehydration polycondensation reaction on a substrate surface.
  • the above-mentioned amorphous film is transformed into a crystalline anatase phase by heating and firing.
  • a vaporized titanium compound is introduced into a substrate fixed in a reaction vessel, and a titania film is formed on the substrate surface by utilizing a chemical bond between the substrate surface and the gas. It is a method of forming. At this time, the crystalline anatase phase is formed on the surface of the substrate by heating the substrate.
  • the self-assembled monolayer method is similar to the chemical vapor transport method, in which a liquid phase or a gas phase containing a titanium compound is introduced into a substrate fixed in a reaction vessel and the surface of the substrate is introduced. This is a method of forming a titania film on the surface of a substrate by utilizing a chemical bond between a monomolecular film formed on the substrate and titanium.
  • the method involves forming a film by spreading a hydrophobic liquid, in which amorphous titania or crystalline anatase phase particles are suspended, on water in which it has been allowed to stand, and scooping the film on the surface of the substrate using a technique such as diving. It is.
  • a substrate placed in a high-vacuum reaction chamber is heated to increase the reactivity of the substrate surface, and titanium atoms or titanium oxide complex molecules are heated in the reaction chamber using a technique such as heating or laser irradiation.
  • a technique such as heating or laser irradiation.
  • This is a method in which the substrate surface is covered with amorphous titania or a crystalline analog phase as in the chemical vapor transport method described above.
  • a film forming technique has been developed in which a new coating solution is prepared by a different kind of chemical reaction from the above-mentioned sol-gel method, and an anatase phase titania thin film is formed by baking after coating.
  • a coating solution is applied to a substrate, dried, and then heated at 400 to 500: to obtain an analog-phase titania thin film.
  • the sol-gel method is a method that can form a film at a low temperature in a relatively short time.However, 1) it takes time to prepare a sol solution for coating, and 2) it is difficult to prepare and apply a sol solution in the air. 3) Organic substances are likely to remain in the titania forming the film, and in order to transfer the phase constituting the film to the crystalline anatase in order to exhibit the photocatalytic function, baking at a high temperature of 600 ° C or higher is usually required. And 4) diffusion of elements from the substrate due to heating hinders crystallization to a crystalline anode phase.
  • the Langmuir-Brochet method requires that the surface of the substrate be a hydrophobic and smooth flat surface.
  • the chemical vapor transport method and the sputter method the size of the substrate is limited and the On a rough surface, film formation is difficult, and there is a problem that versatility is poor in that the possibility of film formation depends on the heat resistance of the substrate and the surface characteristics of the substrate.
  • the reactor is complicated, expensive, and expensive.
  • the self-assembled monolayer method has a problem that the processing procedure of the substrate is complicated and the versatility is poor.
  • heating is performed at 400 ° C or more to obtain a target analog phase titania thin film. Although a process is required, it is desired that the heating temperature be lower in consideration of the heat resistance limit of the substrate. Disclosure of the invention
  • the present inventors have made intensive studies with a view to developing a new film forming technique capable of drastically solving the problems of the above-mentioned conventional technology in view of the above-mentioned conventional technology.
  • the low-density silica colloid with a diameter of 1 to 30 nm is generated in the liquid by the hydrolysis of silicon alkoxide, and the film formation process in the liquid by adhesion to these substrates and dehydration polycondensation
  • Another object of the present invention is to provide a method for forming a uniform and high-quality silica thin film on a substrate by the above method.
  • the present invention provides a highly transparent silica thin film obtained by forming a silica thin film obtained by the above method on a surface layer of an arbitrary structure and forming a composite on the surface layer. It is an object of the present invention to provide a composite structure having: Furthermore, in view of the above-mentioned prior art, the present inventors have drastically solved the above-mentioned problems of the prior art, and particularly, have produced a uniform and high-quality titanium oxide film in a low temperature range of about 350. As a result of intensive research aimed at developing a new film forming technology that enables the formation of a silica film on a substrate under specific conditions, a titanium oxide film is formed under a specific condition. It has been found that the intended purpose can be achieved by constructing a titania composite membrane, and further studies have been made to complete the present invention.
  • the second aspect of the present invention solves the above-mentioned problems of the prior art, and provides a substrate surface of an arbitrary material having an arbitrary shape and surface characteristics in a much lower temperature range than the conventional method.
  • An object of the present invention is to provide a novel method for producing a crystalline anatase phase thin film that can be formed into a thin film.
  • Another object of the present invention is to provide a novel high-functional silica-titania composite film having a photocatalytic action, which is uniform and high-quality, produced by the above method.
  • Still another object of the present invention is to provide a composite structure having a photocatalytic action, having the composite film formed on the surface layer of an arbitrary structure to form the composite film on the surface layer.
  • a precipitate product of amorphous silica formed by hydrolysis of silicon alkoxide having a diameter of several tens of secondary particles as aggregation stabilization of unstable primary particles of nm or less.
  • a precipitate product of amorphous silica formed by hydrolysis of silicon alkoxide having a diameter of several tens of secondary particles as aggregation stabilization of unstable primary particles of nm or less.
  • FIG. 1 schematically shows a process of forming a silica thin film on a substrate having a hydrophilic surface and a smooth thin film obtained by the process.
  • FIG. 2 schematically shows a process of forming a silica film on a substrate having a hydrophobic surface and a thin film having a large surface roughness obtained by the process.
  • the present invention is based on the discovery of such a new fact.
  • the present invention provides a method of immersing a substrate in a solution composed of silicon alkoxide, alcohol, ammonia, and water at a temperature of room temperature or lower.
  • the present invention relates to a novel method for producing a silica thin film, wherein a silicide force generated by hydrolysis of an alkoxide is attached to a substrate surface.
  • the present invention broadly relates to a method for forming a silica thin film on the surface of a substrate, a method for controlling surface roughness by controlling the surface state of the substrate, and a method for forming a silica thin film obtained by the method on a surface layer. And a composite structure having the same.
  • the solution composed of silicon alkoxide, alcohol, water and alkali used for forming the thin film includes: 1) silicon alkoxide, preferably silicon methoxide, silicon ethoxide, silicon isopropoxide, silicon Butoxide, 2) alcohol as a solvent, preferably methanol, ethanol, isopropanol, butanol, and 3) water required for hydrolysis and a catalyst for promoting hydrolysis Alkali, preferably ammonia, You. These are preferably mixed in the following concentration ranges.
  • FIG. 1 An outline of the method of the present invention is shown in FIG.
  • the silica film of the present invention uses silicon alkoxide, alcohol, ammonia, and water, and after mixing and stirring a predetermined amount thereof, immerses the substrate therein and sets the temperature at a predetermined temperature for several minutes to several minutes. It is produced by holding for 10 hours.
  • Whether or not a film is formed on the substrate surface is governed by the rate of formation of silicon acid generated by hydrolysis of silicon alkoxide and the polymerization state, and the ratio of silicon alkoxide to water in the prepared solution composition Is important.
  • the formation of a film on the substrate surface is due to the attachment of transient primary particles of 1 to 30 nm in diameter generated during the hydrolysis reaction. Therefore, if the surface of the substrate is hydrophilic, the primary particles adhere to the surface of the object, and the film becomes uniform. If the surface of the substrate is hydrophobic, the probability of adhesion of the primary particles decreases, and aggregation occurs. Since the secondary particles, which are substances, adhere, the surface of the film becomes uneven. For this reason, the surface characteristics of the substrate are important for the desired film surface shape.
  • the substrate for example, metal, glass such as soda lime glass and silicon glass, plastics such as polyethylene and polystyrene, and silicon rubber are used as the substrate.
  • the surface of the substrate may be hydrophilic or hydrophobic.
  • the surface of the substrate may be hydrophobized by surface treatment by chemical modification represented by fluorine treatment.
  • the surface state of the substrate may be smooth or uneven.
  • the optimum mixing ratio of the above components that form a film on the surface of a hydrophobic substrate is the mixing ratio at which monodisperse spherical silica particles as secondary particles are formed in a solvent.
  • the optimum mixing ratio of the above components that forms a film on the surface of the hydrophilic substrate is 1) the mixing ratio at which monodisperse silica particles are formed as secondary particles in the solvent, and 2) the mixing ratio is 1). Therefore, the mixing ratio has a slightly lower hydrolysis rate, that is, the mixing ratio in which the water concentration or the ammonia concentration is lower than the condition under which monodisperse silica particles as secondary particles are formed in the solvent. If a uniform film is not formed due to rapid hydrolysis, hydrolysis is suppressed by setting the treatment temperature low, and a uniform film can be obtained.
  • the concentration of silicon alkoxide is not important, and when the concentration of silicon alkoxide is reduced, the concentration of water or ammonia is increased, and a uniform silica film is obtained by setting a long reaction time. Can be formed.
  • silicon alkoxide concentration When the silicon alkoxide concentration is increased, a uniform silica thin film can be formed by lowering the water concentration or the ammonia concentration and lowering the reaction temperature.
  • silicon alkoxide one or more of silicon methoxide, silicon ethoxide, silicon isopropoxide, and silicon butoxide can be used.
  • the solvent one or more of methanol, ethanol, isopropanol and butanol can be used. Among them, silicon tetraethoxide is preferable as the silicon alkoxide, and ethanol or isopropanol is preferable as the solvent.
  • Its concentration is 0.05-0.5 mol Zl, preferably 0:!-0.2 mo 11. Water is needed to cause the hydrolysis of silicon alkoxides to produce silicon acids.
  • the amount is silicon alkoxide
  • the molar ratio is in the range of 1 to 100.
  • the alkali is required as a catalyst that causes hydrolysis of silicon alkoxide to produce colloidal silicate.
  • ammonia is preferably used as the alkali.
  • the amount is in the range of 1 to 100 in molar ratio with respect to the silicon alkoxide.
  • the holding temperature of the reaction solution during the film formation process may be below freezing or above room temperature, but is preferably 0 ° C. or more and 30 or less.
  • the reaction may be performed in a closed vessel in order to prevent the solvent from volatilizing. It is necessary to keep the reaction solution in a dynamic state in order to promote the adhesion of the low-density silicate colloid to the substrate.
  • the reaction solution is shaken, preferably, the reaction tank is shaken, the solvent is circulated, the substrate is vibrated, And the like, but are not limited to these. Further, these operation means are not particularly limited, and any means can be used.
  • it is extremely important to keep the reaction solution in a dynamic state. When the reaction solution is allowed to stand, it is difficult to optimize the reaction conditions, and it is difficult to achieve the intended purpose.
  • “maintaining in a dynamic state” means that the reaction solution is kept in a non-static state without standing.
  • the film formation rate can be expressed as a logarithmic function of the retention time. Further, since the formation of the film is due to the transient attachment of the primary particles, the starting time of the immersion of the substrate in the reaction solution may be any time during the reaction is continued. Therefore, a desired film thickness can be obtained by appropriately setting the start time of immersion and the subsequent holding time.
  • the film formation rate is proportional to the silicon alkoxide concentration in the solvent. Therefore, by adjusting the silicon alkoxide concentration, the same The film thickness can be controlled by the processing time.
  • the surface of the substrate hydrophobic By making the surface of the substrate hydrophobic, the probability of transient primary particles adhering to the substrate surface is reduced, and at the same time, the probability of secondary particles, which are aggregates of primary particles, adhering to the substrate surface is increased. Can be. Therefore, the surface shape of the thin film can be controlled by increasing the hydrophobicity of the substrate surface. As described above, at this time, it is extremely important that the reaction solution is kept in a dynamic state as a film forming condition. Therefore, in the present invention, the shaking of the reaction vessel, the circulation of the solvent, or the substrate Is an important component.
  • the amorphous silicon film obtained by the method of the present invention has a high density in a deposited state, and the drying process can be omitted.
  • the amorphous silica film obtained by the method of the present invention becomes insoluble in alcohol by drying, and a thicker film can be obtained by repeating this process. Further, by heating and sintering this, OH and alkyl groups remaining inside the structure of the amorphous silicon film obtained by the method of the present invention can be removed, whereby high-purity amorphous silica can be obtained. Can be formed.
  • the silica film of the present invention has excellent properties such as high translucency, high insulating properties, high density, and super water repellency (due to hydrophobicity). From this, the silica film can be formed on the surface of an arbitrary structure to be composited. As a result, a composite structure having the above properties can be produced.
  • the silicon film of the present invention can be used, for example, as an insulating film, a low-reflection coating film, an optical waveguide forming film, a photoconductive material, an undercoat film, a surface treatment film, or the like. It can be applied to all kinds of composite structures such as films, optical glass, liquid crystal panels, cathode ray tubes, glass windows, protective covers, materials, electronic components, structures, etc. having this as a surface layer.
  • silicon alkoxide, alcohol, water and alkali The substrate is immersed in a solution consisting of the solution, and the silicon alkoxide is hydrolyzed in an alcohol solvent to form low-density colloidal silica of 1 to 30 nm in diameter.
  • the reaction solution in a dynamic state by any means during the process of forming the silica thin film, it is possible to promote the adhesion to these substrates and the film formation in the solution by dehydration polycondensation.
  • a silica film having a uniform thickness and a predetermined thickness can be formed on the substrate in the liquid.
  • the thickness of the silica film can be controlled by the silicon alkoxide concentration, the water concentration, the catalyst concentration, the treatment temperature, the treatment time, and the number of treatments.
  • the surface shape of the thin film can be controlled by increasing the hydrophobicity of the substrate surface.
  • the amorphous silica film produced by the above method has a uniform and high density, and by drying it at room temperature, high hardness can be added. By heating and baking this, a high-purity, high-density amorphous silicon film can be obtained.
  • the silica film of the present invention has, for example, a property of improving the light transmittance of a glass substrate, as shown in Examples described later.
  • Transient silicon acid generated by hydrolysis of silicon alkoxide repeatedly condenses and redissolves in a liquid.
  • transient silicon acid colloids formed by condensation only those that have a reduced surface area / volume ratio due to collision with each other escape from re-dissolution and become a solid phase.
  • This transitional siliconic acid colloid is constantly generating and dissolving during the course of the reaction, and its size is proportional to the degree of supersaturation of the dissolved siliconic acid.
  • the start and duration of immersion of the substrate can be arbitrarily set to form a silica film on the surface of the substrate.
  • the reaction solution in a dynamic state by, for example, relatively moving the solution and the substrate, even if the surface of the substrate is hydrophobic, transient silicon oxide colloid can be formed on the surface of the substrate. Adhere to It becomes possible.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, 1) a titanium alkoxide hydrolyzed in a solution composed of titanium alkoxide, alcohol, and water has a diameter of several tens of nanometers. The following transient primary particles of colloidal titanate are formed.2) By immersing the substrate in a solution consisting of titanium alkoxide, alcohol and water, the The present inventors have found that a titania thin film is formed on the surface of a substrate by one-loose bonding, and that a thin film of titania is formed on the surface of the substrate.
  • a metal compound film containing a metal element for example, an amorphous silica thin film
  • the diffusion of elements from the base material to the titania thin film is reliably inhibited, thereby providing a uniform and uniform film.
  • a high-quality titania thin film can be formed, and further, by heating and firing the composite film at about 350, titania, which is the outermost layer of the composite film, can be easily transferred to a crystalline phase. It is possible to find out.
  • the present invention relates to a metal compound film such as an oxide film of a metal other than titanium having a uniform thickness of 0.01 to 100 m, preferably a non-metallic film, between the surface of the substrate and the titanium oxide.
  • the present invention relates to a method for producing the composite film, and a highly functional composite structure having the composite film on the surface.
  • the composite film according to the present invention, wherein the outermost layer is a crystalline anamorphic titania thin film Basically, a) the substrate surface is coated with one or more layers of a metal compound film of a metal other than titanium, for example, a metal oxide thin film.b) The substrate of a) is coated with an amorphous titania thin film. C) baking the above b) at a temperature of 300 or more.
  • a metal compound film of a metal other than titanium, for example, an oxide thin film is provided between the base and the titania thin film to inhibit the diffusion of elements between the base and the titania thin film, thereby achieving uniform and high-quality titania. It is formed for the purpose of enabling a thin film to be formed.
  • a crystalline or silicic film it is preferable to use a crystalline or silicic film, and an amorphous silica film may be used as long as the above object can be achieved.
  • the present invention is not limited thereto, and compounds having low reactivity at high temperatures, for example, silicon compounds, preferably silicon nitride, other nitrides, etc., may be used as long as they have the same effect. be able to.
  • the substrate is immersed in a solution comprising silicon alkoxide, alcohol, water and ammonia, and the silicon alkoxide is hydrolyzed to form amorphous silica on the surface of the substrate.
  • a solution comprising silicon alkoxide, alcohol, water and ammonia
  • the silicon alkoxide is hydrolyzed to form amorphous silica on the surface of the substrate.
  • it is necessary to keep the reaction solution in a dynamic state (non-static condition). Thereby, a uniform and high quality silica thin film can be formed by optimizing the film forming process.
  • this operation is repeated, and the obtained silica film-coated substrate is dried, and if necessary, a temperature of at least 300 and at most 100, preferably around 350 ° C.
  • a method in which the silica film is made to have a high density by heating and calcining in the above manner is used.
  • This amorphous silica film is preferably further densified by heat treatment.
  • the diffusion of elements from the substrate to the titania thin film is reliably inhibited. This makes it possible to form a uniform, high-quality, highly durable titania film.
  • the formation of the silica film is not affected by the size, material, shape, surface hydrophilicity and hydrophobicity of the substrate. .
  • the formation of the silica-titania composite film of the present invention composed of this silica film and the titania film bonded thereon also involves the size, material, shape and hydrophilic / hydrophobic properties of the substrate. It is not affected separately.
  • the substrate include, but are not limited to, metals, metal oxides, glasses such as soda lime glass and silica glass, plastics such as polyethylene and polystyrene, and silicone rubber. , Any of them.
  • the surface state of the substrate may be smooth or uneven.
  • the surface of the substrate may be hydrophilic or hydrophobic, and these properties are not particularly limited.
  • the formation of the amorphous titania thin film as a stage prior to the formation of the crystalline analog phase thin film is performed by immersing the substrate in a solution composed of titanium alkoxide, alcohol, and water and holding the substrate for a predetermined time.
  • the titanium alkoxide is hydrolyzed to form a low-density titanate titanate having a diameter of 1 to 30 nm in the liquid, and the titanium oxide is attached to the surface of the substrate by adhesion to the substrate and dehydration polycondensation.
  • An object film is formed, and when the target thickness cannot be achieved by one operation, this operation is repeated.
  • the formation of the amorphous titania film is caused by the attachment of the transient colloidal titanate secondary particles having a diameter of several tens of nanometers or less generated in the solvent to the substrate surface. Therefore, the formation of the amorphous titania film is not affected by the size, material, shape, surface hydrophilicity or hydrophobicity of the substrate. Therefore, for example, prior to forming the amorphous titania film portion, the surface of the lower silica film portion can be chemically modified.
  • Whether a uniform and high-quality titania film is formed on the substrate surface depends on the polymerization state of titanic acid generated by the hydrolysis of titanium alkoxide and the transitional colloidal titanate having a diameter of tens of nanometers or less. It is governed by the particle generation power, and the ratio of titanium alkoxide to water is important in the prepared solution composition. Therefore, the concentration of titanium alkoxide is somewhat unimportant.Basically, if the concentration of titanium alkoxide is reduced, increase the concentration of water and set a long reaction time. By doing so, a titania film can be formed.
  • titanium alkoxide one or a mixture of two or more of titanium methoxide, titanium ethoxide, titanium isopropoxide, and titanium butoxide is preferably used. Titanium tetraethoxide or titanium tetraisopropoxide is used.
  • solvent one or a mixture of two or more of methanol, ethanol, isopropanol and butanol is used, and preferably, ethanol or isopropanol is used.
  • the concentration range is preferably from 0.01 to 1.0 Omol Zl, and the desired concentration range is from 0.025 to 0.1 Imol Zl. Water is necessary to cause hydrolysis and the production of colloidal titanate.
  • the amount is in the range of 1 to 100 in molar ratio to titanium alkoxide.
  • the holding temperature of the reaction solution during the film formation process may be below the freezing point, but is preferably 0 ° C. or more and 100 ° C. or less. More preferably, it is around room temperature. In this case, the reaction is performed in a closed container to prevent evaporation of the solvent. It is preferred to do so.
  • the above reaction may be carried out in a stationary state, but it is preferable to keep the reaction solution in a dynamic state in order to obtain a uniform film.
  • circulating the solution and using a substrate The reaction is preferably carried out in a shaking environment (non-static condition) by shaking or shaking the reaction tank.
  • the rate of film formation can be expressed as a logarithmic function of the retention time.
  • the formation of the film is caused by the transient adhesion of colloidal titanate particles having a diameter of several tens of nanometers or less, which are generated by hydrolysis of titanium alkoxide. By properly setting the thickness, the film thickness can be strictly controlled.
  • the amorphous titania film obtained in the present invention is fired at a temperature of at least 300 ° C. and at most 100 ° C., preferably at around 350 ° C., to form a high-purity, high-density crystalline anatase phase. Can be transferred. At this time, the ⁇ H and alkyl groups contained in the inside of the film structure can be removed, so that a composite film whose outermost layer is made of a highly pure crystalline anatase phase can be formed.
  • a metal compound film containing a different metal different from titanium as a component for example, a metal oxide film, preferably a substrate having one or more layers of a silica film on the surface is used.
  • a low-density colloid of titanate having a diameter of 1 to 30 nm is generated in the liquid, and the titanium adheres to the surface of the substrate in the liquid by adhesion to the substrate and dehydration polycondensation.
  • a uniform and high-quality titania film can be formed on the substrate.
  • the diffusion of elements from the substrate to the titania thin film can be reliably inhibited, whereby the uniform, high quality, high durability Of a titania film Becomes possible.
  • the method of the present invention makes it possible to produce a composite in which the titania film is formed on the surface of a substrate of any material having any shape and surface characteristics. Further, by firing the above-mentioned complex in a low temperature range of at least 300 and at most 100, preferably at around 350 ° C., it is possible to transform into a high-purity crystalline analog phase. . Transient titanic acid generated by the hydrolysis of titanium alkoxide repeatedly condenses and redissolves in the liquid, and among the transient colloidal titanate colloids formed by condensation, they collide with each other and surface area z volume ratio Only those having a reduced size escape from re-dissolution and become a solid phase.
  • FIG. 6 shows an outline of the method for producing a composite membrane of the present invention.
  • FIG. 1 shows a schematic diagram of a process of forming a smooth film on a substrate in the present invention.
  • FIG. 2 shows a schematic diagram of a process of forming a film having a large surface roughness on a substrate in the present invention.
  • FIG. 3 shows the outline of the method of the present invention.
  • Figure 4 shows the relationship between the thickness of the silica film and the reaction time.
  • Figure 5 shows the results of measuring the transmittance of glass with an ultraviolet-visible light spectrophotometer.
  • FIG. 6 shows an outline of the method for producing a composite membrane of the present invention.
  • Figure 7 shows the results of X-ray powder diffraction of the composite membrane (the diffraction line at a diffraction angle of 25 degrees indicates the presence of a crystalline anase phase).
  • Figure 8 shows the results of X-ray powder diffraction of the composite membrane (the diffraction line at a diffraction angle of 25 degrees indicates the presence of the crystalline anatase phase).
  • FIG. 9 shows the relationship between the thickness of the titania film and the reaction time.
  • FIG. 10 shows the relationship between the thickness of the titania film formed on the hydrophilic and hydrophobic substrates and the reaction time.
  • FIG. 11 shows the results of measuring the light transmittance of glass in the ultraviolet-visible light region.
  • a silicon substrate whose surface is hydrophilic a silicon substrate whose surface is chemically modified (fluorinated) with a 1H, 1H, 2H, 2H-perfluorodecyltrimethyloxysilane monomolecular film whose surface is strongly hydrophobic, It was used.
  • the substrate was immersed in the former solution. While the former vessel was shaken to keep the reaction solution in a dynamic state, the latter was added thereto, the vessel was sealed with a film, and the vessel was further shaken to keep the reaction solution in a dynamic state. While maintaining the temperature at 20 ° C.
  • the substrate was taken out, washed with 12 Oml of ethanol and 0.648 ml of water, and dried at 70 t.
  • the thickness of the obtained silica film was adjusted with an atomic force microscope (AFM). Beta.
  • the film thickness was expressed by the following equation as a function of the time t (min) from 60 minutes to 240 minutes in the reaction time (Fig. 4).
  • Example 1 the substrate was soda lime glass, and both surfaces of the glass plate were covered with an amorphous silica film having a thickness of 137 nm.
  • the transmittance of this sample was measured with an ultraviolet-visible light spectrophotometer. In comparison with the untreated substrate, it was found that the coating of the amorphous silicon film improved the light transmittance (Fig. 5).
  • a soda lime glass plate was used as a base.
  • a silica film was formed by the following procedure. A solution prepared by dissolving this in ethanol so that silicon tetraethoxide becomes 0.22 mo 1/1 at the time of reaction, and these were added so that water 6.Omol Z and ammonia 2.Omol Zl during the reaction. A solution dissolved in ethanol was prepared, and the substrate was immersed in the former. After the former was shaken and the reaction solution was kept in a dynamic state, and the latter was added thereto, the container was sealed with a film and held at 20 with shaking.
  • the substrate was taken out, washed with a mixture of 120 ml of ethanol and 0.648 ml of water, dried at 70, and baked at 35 for 48 hours. did.
  • the thickness was 0.12 ⁇ m.
  • the surface roughness of the silica film was 1 nm in RMS roughness.
  • a titania film was formed by the following procedure.
  • a solution in which 1.35 g of titanium ethoxide and 100 ml of isopropanol and a solution in which 0.648 ml of water and 20 ml of isopropanol were mixed were prepared, and the substrate was immersed in the former. After the former container was shaken and the reaction solution was shaken, and the latter was added thereto, the container was sealed with a film and held at 20 while shaking.
  • the substrate was taken out and dried at 70 ° C. for 2 hours.
  • a soda-lime glass substrate having no silica thin film on the surface and 2) a soda-lime glass having a silica thin film on the surface but not firing at 350 ° C after the formation of the silica thin film and before the formation of the titania thin film.
  • the same processing was performed on the substrate and the substrate. After that, these samples were heated and fired at 350 ° C.
  • a part of the unfired titania thin film was peeled off, and the thickness was measured with an atomic force microscope. As a result, the film thickness was 0.09 m and 0.18 m, respectively, for the films subjected to the film forming treatment for 4 hours and 8 hours.
  • the presence or absence of a crystal phase was examined using an X-ray diffractometer. As a result, no diffraction line due to the crystal phase was observed for any of the samples.
  • the heat-fired sample was examined for the presence of a crystal phase by an X-ray diffractometer, and it was found that a silica thin film was provided between the soda lime glass and the titania thin film. Diffraction lines due to the crystalline anatase phase were observed only in the case where the thickness of the tania film was 0.18 m and the silica thin film was fired at 350. (Fig. 7).
  • a silica film and a titania film were formed in the same manner as in Example 3 above.
  • the titania film formation time was 4 hours.
  • the titania film thickness of 0.24 m after firing at 350 at 48 hours, is due to the crystalline anaphase. Diffraction lines were observed (Fig. 8).
  • Example 6 In the same manner as in Example 3 above, titanium alkoxide was used as titanium isopropoxide, and a silica glass plate was used instead of the silica film.
  • the titania film formation time was 6 hours, and the titania film thickness was 0. Diffraction lines attributable to the crystalline phosphor phase were also observed at 14 m .
  • the firing temperature at this time was lower than that of Examples 3 and 4, and was 300.
  • a titania film was formed on a substrate in the same manner as in Example 3 described above, and the film thickness of the titania film when a silicon plate and a soda lime glass plate were used as the substrates was examined. As a result, it was found that the titania film thickness was expressed by the following equation as a logarithmic function of the reaction time t (min) (Fig. 9).
  • Example 3 the solvent was ethanol, a silicon plate was used as a hydrophilic substrate, and a 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane monomolecular film whose surface was strongly hydrophobic was used as a strongly hydrophobic substrate.
  • a titania film was formed in the same manner as in Example 3 except that a chemically modified (fluorinated) silicon plate was used as a substrate.
  • the film thickness was represented by the following equation as a logarithmic function of the reaction time t (min) (FIG. 10).
  • Example 8 The composite film having a silica film thickness of 0.12 m, a titanium film thickness of 0.18 m, and a crystalline anamorphic phase produced in Example 3 was bonded to one surface. For soda-lime glass, the light transmittance in the ultraviolet-visible light range was measured. As a result, it was found that the decrease in light transmittance over the entire visible light region was as low as about 10% (FIG. 11). Further, when the photocatalytic activity of this composite film was examined by a conventional method, it was found that the composite titania film had an excellent photocatalytic effect. Industrial applicability
  • the present invention relates to a novel method for producing a silica thin film and a composite structure.
  • the present invention has the following special effects.
  • an amorphous silica thin film is formed on a substrate having an arbitrary surface property and an arbitrary surface shape by controlling the film thickness.
  • a uniform and high quality silica film having a predetermined film thickness can be formed thereon.
  • This silica thin film uses an electrical insulating film that uses electrical insulation, a high-purity protective film that uses high strength, an optical waveguide forming film that uses high translucency, and fine irregularities on the surface. It can be diversifiedly used for industrial applications such as a low-reflection film that has been repaired and a repair film that repairs minute defects on the substrate surface.
  • the present invention relates to a silica-titania composite film, a method for producing the same, and a composite structure. According to the present invention, the following special effects can be obtained. Is played.
  • the crystalline anode phase thin film can be formed in any surface state and in any desired state. It can be formed on a surface-shaped substrate.
  • This crystalline analog thin film is used for environmental purification applications such as wastewater treatment and water purification treatment utilizing its photocatalytic activity, antifouling coating utilizing strong hydrophilicity, and coherent coloring film utilizing transparency.
  • environmental purification applications such as wastewater treatment and water purification treatment utilizing its photocatalytic activity, antifouling coating utilizing strong hydrophilicity, and coherent coloring film utilizing transparency.
  • surface decoration applications such as surface applications, living environment improvement applications such as photocatalytic functional window glass utilizing both photocatalytic activity and transparency, and industrial applications such as optical waveguide forming films using a high refractive index. Can be.

Abstract

A method for preparing a thin silica film having a high density and being excellent in the transmittance of light on a substrate having an arbitrary shape and arbitrary surface characteristics; a method for controlling the surface roughness of the thin silica film; a production method for a silica-titania composite film; a composite film and a composite structure exhibiting a photocatalyst action produced by the production method.

Description

明細書 シリ力薄膜、 シリ力ーチタニア複合膜及びそれらの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a method for manufacturing a thin film, a thin film and a titania composite film, and a method for producing them
本発明は、 新規シリカ薄膜の製造方法及び複合構造体に関するもので あり、 更に詳しくは、 任意の表面特性及び表面形状を有する基体表面へ の成膜と膜厚の制御を可能とする成膜方法であって、 基体上に均一かつ 高品質な所定の膜厚のシリカ薄膜を作製することを可能とする新しい成 膜方法、 及び該方法によって作製されたシリカ薄膜を表層に有する、 高 い透光性等の特性を有する複合構造体に関するものである。 このシリカ 膜は、 電気的絶縁膜、 高い強度を利用した高純度保護膜、 高い透光性を 利用した光導波形成膜、 低い屈折率を利用した低反射コーティング膜、 基体表面の微細な欠陥を修復し平滑性を回復する修復膜、 基体からの元 素拡散を抑制するアンダーコート膜、 基体表面を任意の表面粗さに改質 する表面処理膜等として多角的に利用することができる。  The present invention relates to a novel method for producing a silica thin film and a composite structure, and more particularly, to a method for forming a film on a substrate surface having arbitrary surface characteristics and surface shape and controlling the film thickness. A new film forming method capable of forming a uniform and high quality silica thin film of a predetermined thickness on a substrate, and a high light transmission having a silica thin film formed by the method on a surface layer. The present invention relates to a composite structure having properties such as properties. This silica film is an electrical insulating film, a high-purity protective film using high strength, an optical waveguide forming film using high translucency, a low-reflection coating film using low refractive index, and fine defects on the substrate surface. It can be used in various ways as a repair film for repairing and recovering smoothness, an undercoat film for suppressing element diffusion from the substrate, a surface treatment film for modifying the substrate surface to an arbitrary surface roughness, and the like.
また、 本発明は、 新規シリカーチタニア複合膜とその製造方法及び複 合構造体に関するものであり、 更に詳しくは、 チタンとは異種の金属を 成分とする金属化合物膜を 1層又は複数層有し、 最表層に結晶質アナ夕 ース相からなるチタン酸化物薄膜を有する複合膜、 その製造方法及び複 合構造体に関するものである。 本発明は、 3 5 前後の低温域で均一 かつ高品質なチタニア薄膜を任意の基体上に形成した複合膜を生産する 方法として有用である。 また、 その複合膜は、 その光触媒活性を利用し た廃水処理や浄水処理などの環境浄化材料、 強親水性を利用した防汚被 膜、 透明性を利用した干渉性発色膜、 光触媒活性と透明性を併せ持つ特 性を利用した光触媒機能性窓ガラス、 高い屈折率を利用した光導波路形 成膜などとして多角的に利用することができる。 背景技術 The present invention also relates to a novel silica-titania composite film, a method for producing the same, and a composite structure. More specifically, the present invention has one or more metal compound films containing a metal different from titanium as a component. The present invention also relates to a composite film having a titanium oxide thin film composed of a crystalline anode phase as the outermost layer, a method for producing the composite film, and a composite structure. INDUSTRIAL APPLICABILITY The present invention is useful as a method for producing a composite film in which a uniform and high-quality titania thin film is formed on an arbitrary substrate in a low temperature range of about 35. In addition, the composite membrane is used for environmental purification materials such as wastewater treatment and water purification using photocatalytic activity, antifouling coating using strong hydrophilicity, coherent color developing film using transparency, photocatalytic activity and transparent Photocatalytic window glass utilizing characteristics that combine properties, and optical waveguide type utilizing a high refractive index It can be used for various purposes such as film formation. Background art
従来、 基体表面にシリカ薄膜を形成する化学的手法として、 例えば、 ゾルーゲル法、 スパッタリング法、 L P D法などがよく知られている。 これらのうち、 ゾル—ゲル法は、 シリコンアルコキシドのアルコール溶 液に反応触媒、 安定化剤等を添加することにより部分的に加水分解した 安定化シリカゾルを調製し、 これをコーティング液としてディッビング 、 スピニングなどの方法で基体表面に塗布し、 該基体表面上で加水分解 と重合反応を行わせた後、 加熱焼成により膜形成する方法である。 スパ ッ夕リング法は、 真空容器中に基体を固定し、 該容器内で種々の方法で 気化させたシリコンあるいはシリコン化合物を基体表面に堆積せしめる ことにより基体表面にシリカ薄膜を形成する方法である。 L P D法は、 水溶液中における過飽和度の変化を利用して液中に溶解したふつ化シリ コンを沈殿せしめると共に基体表面に付着させることにより基体表面に シリカ薄膜を形成する方法である。  Conventionally, as a chemical method for forming a silica thin film on a substrate surface, for example, a sol-gel method, a sputtering method, an LPD method and the like are well known. Among them, the sol-gel method prepares a partially hydrolyzed stabilized silica sol by adding a reaction catalyst, a stabilizer and the like to an alcohol solution of silicon alkoxide, and diving and spinning the solution as a coating solution. This is a method in which a coating is applied to the surface of a substrate by a method such as the above, a hydrolysis and a polymerization reaction are performed on the surface of the substrate, and a film is formed by heating and firing. The sputtering method is a method in which a substrate is fixed in a vacuum container, and silicon or a silicon compound vaporized by various methods is deposited on the substrate surface in the container to form a silica thin film on the substrate surface. . The LPD method is a method of forming a silica thin film on the surface of a substrate by precipitating silicon fluoride dissolved in the solution using the change in the degree of supersaturation in an aqueous solution and attaching the precipitated silicon fluoride to the surface of the substrate.
しかし、 これらの従来技術の問題点として、 以下の点が指摘される。 まず、 ゾル-ゲル法は、 低温で比較的短時間に膜形成できる方法である が、 通常、 膜の均一性を保つことが難しいという問題がある。 また、 膜 を形成するシリカ中に安定化剤等の有機物が残存し易く、 これらの除去 には高温焼成が必要とされる。 また、 焼成の際に放出される酸性ガスは 、 焼成装置に悪影響を与える。 スパッタリング法は、 形状が複雑な面に は膜形成が難しく、 かつ反応装置が複雑かつ高額であり、 高コストであ るという問題がある。 L P D法は、 工程が煩雑であり、 かつ膜を形成す るシリカ中に水などが残存し易いという問題がある。  However, the following points are pointed out as problems of these conventional technologies. First, the sol-gel method is a method that can form a film at a low temperature in a relatively short time, but usually has a problem that it is difficult to maintain uniformity of the film. In addition, organic substances such as a stabilizer tend to remain in the silica forming the film, and high-temperature baking is required to remove them. In addition, the acid gas released during firing has an adverse effect on the firing apparatus. The sputtering method has problems that it is difficult to form a film on a surface having a complicated shape, and the reaction apparatus is complicated, expensive, and expensive. The LPD method has a problem that the process is complicated and that water and the like easily remain in the silica forming the film.
また、 金属アルコキシドの加水分解を利用したシリカ薄膜の製造方法 に関するものとして、 以下のものが挙げられる。 Also, a method for producing a silica thin film utilizing hydrolysis of a metal alkoxide The following can be cited as relevant items.
1 ) 特開平 9 - 2 9 5 8 0 4 「シリカ薄膜の製造方法」  1) Japanese Patent Application Laid-Open No. 9-295058 "Method for producing silica thin film"
しかし、 金属アルコキシドの加水分解を利用した方法では、 1 ) 膜厚 を厳密に制御する方法が提案されていない、 2 ) 表面粗さを制御するこ とができない、 3 ) 基体表面が疎水性である場合の被覆方法を提示して いない、 等の問題がある。  However, methods utilizing hydrolysis of metal alkoxides have not been proposed for 1) a method for strictly controlling the film thickness, 2) cannot control the surface roughness, and 3) the substrate surface is hydrophobic. There is a problem that the method of coating in certain cases is not presented.
また、 従来、 基体表面にチタニア薄膜を形成する化学的手法として、 例えば、 塗布法、 ゾルーゲル法、 化学的気相輸送法、 自己組織化単分子 膜法、 ラングミュア · ブロシェ法、 真空中でのスパッタ法、 及びゾル— ゲル法とは別種の新しい化学反応による成膜法などが知られている。 こ れらの内、 まず、 塗布法は、 非晶質あるいは結晶質アナタース相チ夕二 ァ微粒子をバインダ一とともに基体に塗布する方法である。 ゾルーゲル 法は、 チタンアルコキシドのアルコール溶液を安定化剤を添加すること により部分的に加水分解した安定化チタニアゾルを調製し、 これをコー ティング液としてディッビング、 スピニングなどで基体表面に塗布し、 乾燥により基体表面上で脱水重縮合反応を行わせ安定な非晶質薄膜を形 成せしめる方法である。 この方法では、 必要に応じて、 加熱焼成により 上記非晶質膜を結晶質アナタース相に転移せしめることが行われる。 化学的気相輸送法は、 反応容器内に固定した基体に対し、 該容器内に 気化させたチタン化合物を導入し、 基体表面と該気体との化学結合を利 用して基体表面にチタニア膜を形成する方法である。 このとき、 基体を 加熱することにより基体表面で結晶質アナタース相を形成せしめる。 自 己組織化単分子膜法は、 化学的気相輸送法に類似し、 反応容器内に固定 した基体に対し、 該容器内にチタン化合物を含む液相あるいは気相を導 入し、 基体表面に形成した単分子膜とチタンとの間の化学結合を利用し て基体表面にチタニア膜を形成する方法である。 ラングミュア · ブロシ 工法は、 非晶質チタニアあるいは結晶質アナタース相微粒子を懸濁した 疎水性液体を静置した水上に展開し、 その膜をディッビング等の手法に より基体表面に掬い取ることで膜を形成する方法である。 Conventionally, chemical methods for forming a titania thin film on a substrate surface include, for example, a coating method, a sol-gel method, a chemical vapor transport method, a self-assembled monolayer film method, a Langmuir-Brochet method, and sputtering in a vacuum. And a film formation method using a new chemical reaction different from the sol-gel method are known. Among these, first, the coating method is a method of applying amorphous or crystalline anatase phase fine particles to a substrate together with a binder. In the sol-gel method, a stabilized titania sol obtained by partially hydrolyzing an alcohol solution of titanium alkoxide by adding a stabilizer is prepared, and the resulting solution is applied as a coating solution to a substrate surface by diving, spinning, or the like, and then dried. This is a method for forming a stable amorphous thin film by performing a dehydration polycondensation reaction on a substrate surface. In this method, if necessary, the above-mentioned amorphous film is transformed into a crystalline anatase phase by heating and firing. In the chemical vapor transport method, a vaporized titanium compound is introduced into a substrate fixed in a reaction vessel, and a titania film is formed on the substrate surface by utilizing a chemical bond between the substrate surface and the gas. It is a method of forming. At this time, the crystalline anatase phase is formed on the surface of the substrate by heating the substrate. The self-assembled monolayer method is similar to the chemical vapor transport method, in which a liquid phase or a gas phase containing a titanium compound is introduced into a substrate fixed in a reaction vessel and the surface of the substrate is introduced. This is a method of forming a titania film on the surface of a substrate by utilizing a chemical bond between a monomolecular film formed on the substrate and titanium. Langmuir Brossi The method involves forming a film by spreading a hydrophobic liquid, in which amorphous titania or crystalline anatase phase particles are suspended, on water in which it has been allowed to stand, and scooping the film on the surface of the substrate using a technique such as diving. It is.
スパッタ法は、 高真空反応室内に静置した基体を加熱して基体表面の 反応性を高めるとともに、 反応室中にて加熱あるいはレーザ一照射等の 手法を用いてチタン原子あるいは酸化チタン錯体分子を蒸散せしめ、 上 記化学的気相輸送法と同様に、 基体表面を非晶質チタニアあるいは結晶 質アナ夕一ス相により被覆せしめる方法である。 更に、 上記ゾルーゲル 法とは別種の化学反応による新たな塗布液を調製し、 これの塗布後の焼 成によるアナタース相チタニア薄膜を作製する成膜技術が開発されてい る。 この成膜技術では、 塗布液を基板に塗布、 乾燥後、 4 0 0〜 5 0 0 :で加熱することによりアナ夕一ス相チタニア薄膜を得ることができる とされている。  In the sputtering method, a substrate placed in a high-vacuum reaction chamber is heated to increase the reactivity of the substrate surface, and titanium atoms or titanium oxide complex molecules are heated in the reaction chamber using a technique such as heating or laser irradiation. This is a method in which the substrate surface is covered with amorphous titania or a crystalline analog phase as in the chemical vapor transport method described above. Further, a film forming technique has been developed in which a new coating solution is prepared by a different kind of chemical reaction from the above-mentioned sol-gel method, and an anatase phase titania thin film is formed by baking after coating. According to this film forming technique, a coating solution is applied to a substrate, dried, and then heated at 400 to 500: to obtain an analog-phase titania thin film.
しかし、 上記塗布法により作製された膜の耐候性は、 バインダーの耐 候性に依存し、 かつ結晶質アナ夕ース相の光触媒活性が強いほどこれに よるバインダーの劣化が早いという欠点がある。 ゾルーゲル法は、 低温 で比較的短時間に膜形成できる方法であるが、 1 ) 塗布用のゾル液の調 製に時間がかかる、 2 ) ゾル液の調製や塗布を大気中で行うことが難し レ 3 ) 膜を形成するチタニア中に有機物が残存し易く、 光触媒機能を 発現させるために膜を構成する相を結晶相アナタースへ転移させるには 通常 6 0 0 °C以上の高温での焼成を必要とする、 及び、 4 ) 加熱による 基体からの元素の拡散によって結晶質アナ夕一ス相への結晶化が阻害さ れる、 等の問題がある。  However, the weather resistance of the film produced by the above coating method depends on the weather resistance of the binder, and the stronger the photocatalytic activity of the crystalline anase phase, the faster the deterioration of the binder due to this. . The sol-gel method is a method that can form a film at a low temperature in a relatively short time.However, 1) it takes time to prepare a sol solution for coating, and 2) it is difficult to prepare and apply a sol solution in the air. 3) Organic substances are likely to remain in the titania forming the film, and in order to transfer the phase constituting the film to the crystalline anatase in order to exhibit the photocatalytic function, baking at a high temperature of 600 ° C or higher is usually required. And 4) diffusion of elements from the substrate due to heating hinders crystallization to a crystalline anode phase.
上記ラングミュア · ブロシェ法は、 基体表面が疎水性かつ平滑な平面 であることが必要である。 化学的気相輸送法、 スパッ夕法については、 それらの手法自体の問題として、 基体の大きさに制限があり、 形状が複 雑な面には膜形成が難しく、 成膜の可能性が基体の耐熱性や基体の表面 特性に依存する点で汎用性に乏しいという問題がある。 また、 その反応 装置が複雑かつ高額であり、 高コストである。 自己組織化単分子膜法は 、 基体の処理手順が煩雑であり、 かつ汎用性に乏しいという問題がある 。 更に、 ゾル—ゲル法とは別種の化学反応によるアナ夕一ス相チタニア 薄膜の成膜技術は、 目的とするアナ夕一ス相チタニア薄膜を得るために は 4 0 0 °C以上で加熱する過程を必要とするが、 基体の耐熱限界を考慮 すると、 この加熱温度は、 更に低いことが望まれる。 発明の開示 The Langmuir-Brochet method requires that the surface of the substrate be a hydrophobic and smooth flat surface. As for the chemical vapor transport method and the sputter method, the size of the substrate is limited and the On a rough surface, film formation is difficult, and there is a problem that versatility is poor in that the possibility of film formation depends on the heat resistance of the substrate and the surface characteristics of the substrate. Moreover, the reactor is complicated, expensive, and expensive. The self-assembled monolayer method has a problem that the processing procedure of the substrate is complicated and the versatility is poor. Furthermore, in the technique of forming an analog phase titania thin film by a chemical reaction different from that of the sol-gel method, heating is performed at 400 ° C or more to obtain a target analog phase titania thin film. Although a process is required, it is desired that the heating temperature be lower in consideration of the heat resistance limit of the substrate. Disclosure of the invention
このような状況の中で、 本発明者らは、 上記従来技術に鑑みて、 上記 従来技術の諸問題を抜本的に解決することが可能な新しい成膜技術を開 発することを目標として鋭意研究を積み重ねた結果、 シリコンアルコキ シドの加水分解により液中に直径 1〜 3 0 n mの低密度ケィ酸コロイド を生ぜしめ、 これらの基体への付着と脱水重縮合による液中での膜成形 過程を最適化してそれらの過程を制御することにより所期の目的を達成 し得ることを見出し、 更に研究を重ねて、 本発明を完成するに至った。 すなわち、 本発明の第 1の態様は、 上記従来技術の課題を解決し、 1 Under these circumstances, the present inventors have made intensive studies with a view to developing a new film forming technique capable of drastically solving the problems of the above-mentioned conventional technology in view of the above-mentioned conventional technology. As a result, the low-density silica colloid with a diameter of 1 to 30 nm is generated in the liquid by the hydrolysis of silicon alkoxide, and the film formation process in the liquid by adhesion to these substrates and dehydration polycondensation It has been found that the desired object can be achieved by optimizing and controlling those processes, and further studies have been made to complete the present invention. That is, the first aspect of the present invention solves the above-mentioned problems of the prior art, and
) 非晶質シリカ薄膜を親水性、 疎水性の別を問わず任意の形状の基体表 面に形成できるシリカ薄膜の製造方法、 2 ) 該シリカ薄膜の表面粗さを 制御する方法、 及び、 3 ) 反応時間の設定により該シリカ薄膜の膜厚を 厳密に制御する方法、 を提供することを目的とするものである。 ) A method for producing a silica thin film capable of forming an amorphous silica thin film on a substrate surface of any shape irrespective of hydrophilicity or hydrophobicity; 2) a method for controlling the surface roughness of the silica thin film; ) A method of strictly controlling the thickness of the silica thin film by setting a reaction time.
また、 本発明は、 上記方法により、 基体上に均一かつ高品質なシリカ 薄膜を形成する方法を提供することを目的とする。  Another object of the present invention is to provide a method for forming a uniform and high-quality silica thin film on a substrate by the above method.
更に、 本発明は、 上記方法により得られたシリカ薄膜を任意の構造体 の表層に形成して複合化した該シリカ薄膜を表層に有する、 高い透光性 を有する複合構造体を提供することを目的とするものである。 更に、 本発明者らは、 上記従来技術に鑑みて、 上記従来技術の諸問題 を抜本的に解消し、 特に、 3 5 0 前後の低温域で、 均一かつ高品質の チタン酸化物膜を作製することを可能とする新しい成膜技術を開発する ことを目標として鋭意研究を積み重ねた結果、 特定の条件下で基体上に シリカ膜を形成し、 更に、 チタン酸化物膜を形成してシリカーチタニア 複合膜を構築することにより所期の目的を達成し得ることを見出し、 更 に研究を重ねて、 本発明を完成するに至った。 Further, the present invention provides a highly transparent silica thin film obtained by forming a silica thin film obtained by the above method on a surface layer of an arbitrary structure and forming a composite on the surface layer. It is an object of the present invention to provide a composite structure having: Furthermore, in view of the above-mentioned prior art, the present inventors have drastically solved the above-mentioned problems of the prior art, and particularly, have produced a uniform and high-quality titanium oxide film in a low temperature range of about 350. As a result of intensive research aimed at developing a new film forming technology that enables the formation of a silica film on a substrate under specific conditions, a titanium oxide film is formed under a specific condition. It has been found that the intended purpose can be achieved by constructing a titania composite membrane, and further studies have been made to complete the present invention.
すなわち、 本発明の第 2の態様は、 上記従来技術の課題を解決し、 従 来の方法に比べてはるかに低温域で、 かつ任意の形状と表面特性を有す る任意の材質の基体表面に成膜することができる新規な結晶質アナター ス相薄膜の製造方法を提供することを目的とする。  That is, the second aspect of the present invention solves the above-mentioned problems of the prior art, and provides a substrate surface of an arbitrary material having an arbitrary shape and surface characteristics in a much lower temperature range than the conventional method. An object of the present invention is to provide a novel method for producing a crystalline anatase phase thin film that can be formed into a thin film.
また、 本発明は、 上記方法により作製された均一かつ高品質の、 光触 媒作用を有する新規な高機能性シリカーチタニア複合膜を提供すること を目的とする。  Another object of the present invention is to provide a novel high-functional silica-titania composite film having a photocatalytic action, which is uniform and high-quality, produced by the above method.
更に、 本発明は、 上記複合膜を任意の構造体の表層に形成して複合化 した当該複合膜を表層に有する、 光触媒作用を有する複合構造体を提供 することを目的とする。 次に、 本発明の第 1の態様について更に詳細に説明する。  Still another object of the present invention is to provide a composite structure having a photocatalytic action, having the composite film formed on the surface layer of an arbitrary structure to form the composite film on the surface layer. Next, the first embodiment of the present invention will be described in more detail.
本発明者らは、 上記従来技術における諸問題の解決を種々検討した結 果、 1 ) シリコンアルコキシドの加水分解による非晶質シリカの沈殿生 成物が、 加水分解反応過程で生成した直径数十 n m以下の不安定な一次 粒子の凝集安定化物としての二次粒子であること、 2 ) 沈殿生成物の生 成過程において、 反応溶液中に任意の物体を浸漬させておくと、 その物 体の表面が親水性であれば一次粒子が物体の表面に付着し、 均一な薄膜 を形成すること (図 1 )、 3 ) こうして得られたシリカ薄膜は、 緻密で あり、 乾燥後の加熱焼成を要さずとも高い密着性と高い強度を有するこ と、 更に、 4 ) 該基体の表面が疎水性であれば一次粒子及び反応溶液中 で一次粒子が凝集して生成した二次粒子が、 溶液内でのブラウン運動と ファンデルヮ一ルス結合により基体表面に低い確率で付着し、 これらが 、 均一ではあるが表面粗さの大きな薄膜を形成すること (図 2 )、 を見 出した。 図 1に、 親水性表面を有する基体へのシリカ薄膜の形成過程及 びこれによつて得られる平滑な薄膜を模式的に示す。 また、. 図 2に、 疎 水性表面を有する基体へのシリカ膜の形成過程及びこれによつて得られ る表面粗さの大きい薄膜を模式的に示す。 As a result of various studies to solve the above-mentioned problems in the prior art, the present inventors have found that: 1) a precipitate product of amorphous silica formed by hydrolysis of silicon alkoxide having a diameter of several tens of secondary particles as aggregation stabilization of unstable primary particles of nm or less.2) During the process of generating precipitated products, if any object is immersed in the reaction solution, If the surface of the body is hydrophilic, the primary particles will adhere to the surface of the body and form a uniform thin film (Fig. 1). 3) The silica thin film thus obtained is dense, and is heated and fired after drying. And 4) if the surface of the substrate is hydrophobic, the primary particles and the secondary particles formed by aggregating the primary particles in the reaction solution, It was found that Brownian motion and van der Waals coupling in the solution caused the film to adhere to the substrate surface with a low probability, and that they formed a uniform but large surface roughness thin film (Fig. 2). FIG. 1 schematically shows a process of forming a silica thin film on a substrate having a hydrophilic surface and a smooth thin film obtained by the process. FIG. 2 schematically shows a process of forming a silica film on a substrate having a hydrophobic surface and a thin film having a large surface roughness obtained by the process.
本発明は、 斯る新事実の発見に基づくものであり、 本発明は、 シリコ ンアルコキシド、 アルコール、 アンモニア、 水からなる溶液に、 基体を 浸潰し、 室温以下の温度で保持することにより、 シリコンアルコキシド の加水分解により生成したシリ力を基体表面に付着させることを特徴と する新規なシリカ薄膜の製造方法に係るものである。 本発明は、 広義に は、 基体の表面にシリカ薄膜を形成する方法、 更には、 基体の表面状態 を制御することで表面粗さを制御する方法、 及び該方法により得られた シリカ薄膜を表層に有する複合構造体を提供するものである。  The present invention is based on the discovery of such a new fact. The present invention provides a method of immersing a substrate in a solution composed of silicon alkoxide, alcohol, ammonia, and water at a temperature of room temperature or lower. The present invention relates to a novel method for producing a silica thin film, wherein a silicide force generated by hydrolysis of an alkoxide is attached to a substrate surface. The present invention broadly relates to a method for forming a silica thin film on the surface of a substrate, a method for controlling surface roughness by controlling the surface state of the substrate, and a method for forming a silica thin film obtained by the method on a surface layer. And a composite structure having the same.
本発明において、 薄膜形成に使用するシリコンアルコキシド、 アルコ ール、 水及びアルカリからなる溶液とは、 1 ) シリコンアルコキシドと して、 好適には、 シリコンメ トキシド、 シリコンエトキシド、 シリコン イソプロポキシド、 シリコンブトキシド、 2 ) 溶媒であるアルコールと して、 好適には、 メタノール、 エタノール、 イソプロパノール、 ブ夕ノ —ル、 及び、 3 ) 加水分解のために必要とされる水及び加水分解を促進 する触媒としてのアルカリ、 好適には、 アンモニア、 からなるものであ る。 これらは、 それぞれが、 以下の濃度範囲で混合されたものであるこ とが好ましい。 In the present invention, the solution composed of silicon alkoxide, alcohol, water and alkali used for forming the thin film includes: 1) silicon alkoxide, preferably silicon methoxide, silicon ethoxide, silicon isopropoxide, silicon Butoxide, 2) alcohol as a solvent, preferably methanol, ethanol, isopropanol, butanol, and 3) water required for hydrolysis and a catalyst for promoting hydrolysis Alkali, preferably ammonia, You. These are preferably mixed in the following concentration ranges.
1 ) シリコンアルコキシド : 0. 05〜0. 5mo l / l  1) Silicon alkoxide: 0.05 to 0.5 mol / l
2) アルカリ (アンモニア) : 0. 5〜5. 0 m o 1 / 1  2) Alkali (ammonia): 0.5 to 5.0 m o 1/1
3) 水 : :!〜 l Omo lZ l 3) Water ::! ~ L Omo lZ l
次に、 本発明の方法の概要を図 3に示す。  Next, an outline of the method of the present invention is shown in FIG.
本発明のシリカ膜は、 好適には、 シリコンアルコキシド、 アルコール 、 アンモニア及び水を用い、 これらを所定量混合撹拌した後、 そこに基 体を浸潰し、 所定の温度に設定した状態で数分から数十時間保持するこ とにより作製される。  Preferably, the silica film of the present invention uses silicon alkoxide, alcohol, ammonia, and water, and after mixing and stirring a predetermined amount thereof, immerses the substrate therein and sets the temperature at a predetermined temperature for several minutes to several minutes. It is produced by holding for 10 hours.
基体表面に膜が形成されるかどうかは、 シリコンアルコキシドが加水 分解して生成するシリコン酸の生成速度と重合状態に支配されており、 調製する溶液組成のうち、 シリコンアルコキシドと水との量比は重要で ある。 基体表面への膜の形成は、 加水分解反応過程で生成した直径 1〜 30 nmの過渡的な一次粒子の付着によるものである。 そのため、 基体 の表面が親水性であれば一次粒子が物体の表面に付着し、 膜は均一なも のとなり、 基体の表面が疎水性であれば、 一次粒子の付着確率が減少し 、 かつ凝集物である二次粒子が付着するため、 膜の表面に凹凸が生じる 。 このため、 目的とする膜表面の形状に対して、 基体の表面特性は重要 である。  Whether or not a film is formed on the substrate surface is governed by the rate of formation of silicon acid generated by hydrolysis of silicon alkoxide and the polymerization state, and the ratio of silicon alkoxide to water in the prepared solution composition Is important. The formation of a film on the substrate surface is due to the attachment of transient primary particles of 1 to 30 nm in diameter generated during the hydrolysis reaction. Therefore, if the surface of the substrate is hydrophilic, the primary particles adhere to the surface of the object, and the film becomes uniform.If the surface of the substrate is hydrophobic, the probability of adhesion of the primary particles decreases, and aggregation occurs. Since the secondary particles, which are substances, adhere, the surface of the film becomes uneven. For this reason, the surface characteristics of the substrate are important for the desired film surface shape.
本発明では、 基体として、 例えば、 金属、 ソーダライムガラスゃシリ 力ガラス等のガラス、 ポリエチレンやポリスチレン等のプラスチクス、 シリコンゴムなどが使用される。 しかし、 これらに制限されるものでは なく、 いずれのものでもよい。 また、 基体表面は、 親水性であっても疎 水性であってもよく、 例えば、 基体表面をフッ素処理に代表される化学 的修飾により表面処理することにより基体の表面を疎水化してもよい。 基体の表面状態は、 平滑であっても凹凸があってもよい。 疎水性の基体 表面に膜が形成される上記成分の最適混合比は、 溶媒中に二次粒子とし ての単分散球状シリカ粒子が形成される混合比、 である。 In the present invention, for example, metal, glass such as soda lime glass and silicon glass, plastics such as polyethylene and polystyrene, and silicon rubber are used as the substrate. However, the present invention is not limited to these, and may be any one. The surface of the substrate may be hydrophilic or hydrophobic. For example, the surface of the substrate may be hydrophobized by surface treatment by chemical modification represented by fluorine treatment. The surface state of the substrate may be smooth or uneven. The optimum mixing ratio of the above components that form a film on the surface of a hydrophobic substrate is the mixing ratio at which monodisperse spherical silica particles as secondary particles are formed in a solvent.
親水性の基体表面に膜が形成される上記成分の最適混合比は、 1 ) 溶 媒中に二次粒子としての単分散シリカ粒子が形成される混合比、 2 ) 上 記 1 ) に比して、 若干加水分解速度の遅い混合比、 すなわち、 溶媒中に 二次粒子としての単分散シリカ粒子が形成される条件よりも水濃度ある いはアンモニア濃度が低い混合比、 である。 急速な加水分解の進行によ り均一な膜が形成されない場合には、 処理温度を低く設定することによ り加水分解を抑制し、 均一な膜を得ることができる。 したがって、 本発 明では、 シリコンアルコキシド濃度は重要ではなく、 シリコンアルコキ シド濃度を下げた場合には水濃度あるいはアンモニア濃度を上げること 、 及び長時間の反応時間を設定することによって均一なシリカ膜を形成 することができる。  The optimum mixing ratio of the above components that forms a film on the surface of the hydrophilic substrate is 1) the mixing ratio at which monodisperse silica particles are formed as secondary particles in the solvent, and 2) the mixing ratio is 1). Therefore, the mixing ratio has a slightly lower hydrolysis rate, that is, the mixing ratio in which the water concentration or the ammonia concentration is lower than the condition under which monodisperse silica particles as secondary particles are formed in the solvent. If a uniform film is not formed due to rapid hydrolysis, hydrolysis is suppressed by setting the treatment temperature low, and a uniform film can be obtained. Therefore, in the present invention, the concentration of silicon alkoxide is not important, and when the concentration of silicon alkoxide is reduced, the concentration of water or ammonia is increased, and a uniform silica film is obtained by setting a long reaction time. Can be formed.
シリコンアルコキシド濃度を上げた場合には、 水濃度あるいはアンモ ニァ濃度を下げること、 及び反応温度を下げることによって、 均一なシ リカ薄膜を形成することができる。 本発明では、 前述したとおり、 シリ コンアルコキシドとしては、 シリコンメ トキシド、 シリコンエトキシド 、 シリコンイソプロポキシド、 シリコンブトキシドのうちの一つ以上を 使用することができる。 溶媒としては、 メタノール、 エタノール、 イソ プロパノール、 ブ夕ノ一ルのうちの一つ以上を使用することができる。 これらのうち、 シリコンアルコキシドとしては、 シリコンテトラエトキ シド、 溶媒としては、 エタノールかイソプロパノールが好ましい。 その 濃度は、 0 . 0 5〜 0 . 5 m o l Z l 、 望ましくは 0 . :!〜 0 . 2 m o 1 1である。 水は、 シリコンアルコキシドの加水分解を起こし、 シリ コン酸を生成させるのに必要である。 その量は、 シリコンアルコキシド に対して、 モル比で 1〜 1 0 0の範囲である。 When the silicon alkoxide concentration is increased, a uniform silica thin film can be formed by lowering the water concentration or the ammonia concentration and lowering the reaction temperature. In the present invention, as described above, as the silicon alkoxide, one or more of silicon methoxide, silicon ethoxide, silicon isopropoxide, and silicon butoxide can be used. As the solvent, one or more of methanol, ethanol, isopropanol and butanol can be used. Among them, silicon tetraethoxide is preferable as the silicon alkoxide, and ethanol or isopropanol is preferable as the solvent. Its concentration is 0.05-0.5 mol Zl, preferably 0:!-0.2 mo 11. Water is needed to cause the hydrolysis of silicon alkoxides to produce silicon acids. The amount is silicon alkoxide The molar ratio is in the range of 1 to 100.
本発明において、 アルカリは、 シリコンアルコキシドの加水分解を起 こし、 ケィ酸コロイ ドを生成させる触媒として必要である。 本発明では 、 アルカリとして、 好適には、 アンモニアが使用される。 その量は、 シ リコンアルコキシドに対して、 モル比で 1〜 1 0 0の範囲である。 膜形 成過程における反応液の保持温度は、 氷点下であっても室温以上であつ てもよいが、 0 °C以上 3 0で以下が好ましい。 この場合、 溶媒の揮発を 防ぐ目的で、 反応を密閉容器で行ってもよい。 低密度ケィ酸コロイドの 基体への付着を促進させるために、 反応液を動的な状態に保持させるこ とが必要とされる。 この場合、 反応液を動的な状態に保持させる方法と しては、 反応液を揺動させること、 好適には、 反応槽を震盪すること、 溶媒を循環させること、 基体を振動させること、 等が例示されるが、 こ れらに制限されるものではない。 また、 これらの操作手段は、 特に制限 されるものではなく、 任意の手段を用いることができる。 本発明におい て、 反応液を動的な状態に保持することはきわめて重要である。 反応液 を静置させた場合には、 反応条件を最適化することが難しくなり、 所期 の目的を達成することが困難となる。 尚、 本発明において、 「動的な状 態に保持」 とは、 反応液を静置状態にしないで非静止状態に保つことを 意味する。  In the present invention, the alkali is required as a catalyst that causes hydrolysis of silicon alkoxide to produce colloidal silicate. In the present invention, ammonia is preferably used as the alkali. The amount is in the range of 1 to 100 in molar ratio with respect to the silicon alkoxide. The holding temperature of the reaction solution during the film formation process may be below freezing or above room temperature, but is preferably 0 ° C. or more and 30 or less. In this case, the reaction may be performed in a closed vessel in order to prevent the solvent from volatilizing. It is necessary to keep the reaction solution in a dynamic state in order to promote the adhesion of the low-density silicate colloid to the substrate. In this case, as a method of maintaining the reaction solution in a dynamic state, the reaction solution is shaken, preferably, the reaction tank is shaken, the solvent is circulated, the substrate is vibrated, And the like, but are not limited to these. Further, these operation means are not particularly limited, and any means can be used. In the present invention, it is extremely important to keep the reaction solution in a dynamic state. When the reaction solution is allowed to stand, it is difficult to optimize the reaction conditions, and it is difficult to achieve the intended purpose. In the present invention, “maintaining in a dynamic state” means that the reaction solution is kept in a non-static state without standing.
本発明では、 反応条件を適切に設定することにより、 膜の形成速度は 、 保持時間の対数関数として表すことができる。 また、 膜の形成は、 過 渡的な一次粒子の付着によるのであるから、 基体の反応液への浸潰の開 始時間は反応が継続している間のいつでもよい。 したがって、 浸潰の開 始時間とその後の保持時間を適宜設定することにより所望の膜厚を得る ことができる。 膜の形成速度は、 溶媒中のシリコンアルコキシド濃度に 比例する。 したがって、 シリコンアルコキシド濃度の調整により同一の 処理時間でも膜厚を制御することができる。 基体の表面を疎水化するこ とにより、 過渡的な一次粒子が基体表面に付着する確率を低下させ、 同 時に一次粒子の凝集体である二次粒子が基体表面に付着する確率を上げ ることができる。 したがって、 基体表面の疎水性を上げることにより薄 膜の表面形状を制御することができる。 前述したように、 このとき、 製 膜条件として、 反応液を動的な状態に保持させることはきわめて重要で あり、 そのために、 本発明において、 反応槽の震盪、 溶媒の循環、 ある いは基体の振動は重要な構成要素として位置づけられるものである。 本発明の方法で得られる非晶質シリ力膜は、 堆積状態で既に高密度で あり、 乾燥のプロセスを省略することができる。 更に、 室温で乾燥する ことにより、 充分な硬度を示す。 本発明の方法で得られる非晶質シリカ 膜は、 乾燥によりアルコールに不溶となり、 この処理を繰り返すことに より、 更に厚い膜を得ることができる。 更に、 これを加熱焼成すること により、 本発明の方法で得られる非晶質シリ力膜の構造内部に残留する O H、 アルキル基を除去することができ、 それにより、 純度の高い非晶 質シリカからなる薄膜を形成することができる。 In the present invention, by appropriately setting the reaction conditions, the film formation rate can be expressed as a logarithmic function of the retention time. Further, since the formation of the film is due to the transient attachment of the primary particles, the starting time of the immersion of the substrate in the reaction solution may be any time during the reaction is continued. Therefore, a desired film thickness can be obtained by appropriately setting the start time of immersion and the subsequent holding time. The film formation rate is proportional to the silicon alkoxide concentration in the solvent. Therefore, by adjusting the silicon alkoxide concentration, the same The film thickness can be controlled by the processing time. By making the surface of the substrate hydrophobic, the probability of transient primary particles adhering to the substrate surface is reduced, and at the same time, the probability of secondary particles, which are aggregates of primary particles, adhering to the substrate surface is increased. Can be. Therefore, the surface shape of the thin film can be controlled by increasing the hydrophobicity of the substrate surface. As described above, at this time, it is extremely important that the reaction solution is kept in a dynamic state as a film forming condition. Therefore, in the present invention, the shaking of the reaction vessel, the circulation of the solvent, or the substrate Is an important component. The amorphous silicon film obtained by the method of the present invention has a high density in a deposited state, and the drying process can be omitted. In addition, it shows sufficient hardness when dried at room temperature. The amorphous silica film obtained by the method of the present invention becomes insoluble in alcohol by drying, and a thicker film can be obtained by repeating this process. Further, by heating and sintering this, OH and alkyl groups remaining inside the structure of the amorphous silicon film obtained by the method of the present invention can be removed, whereby high-purity amorphous silica can be obtained. Can be formed.
本発明のシリカ膜は、 高透光性、 高絶縁性、 高密度、 (疎水化による ) 超撥水性等の優れた特性を有する。 このことから、 このシリカ膜を任 意の構造物の表面に形成して複合化することができる。 これにより、 上 記特性の付加された複合構造物を作製することができる。 本発明のシリ 力膜は、 例えば、 絶縁膜、 低反射コーティング膜、 光導波形成膜、 光伝 達材料、 アンダーコート膜、 又は表面処理膜等として利用することがで き、 該シリカ膜は、 これを表層に有するフィルム、 光学用ガラス、 液晶 パネル、 ブラウン管、 ガラス窓、 保護カバー、 材料、 電子部品、 構造物 等のあらゆる種類の複合構造体に適用することができる。  The silica film of the present invention has excellent properties such as high translucency, high insulating properties, high density, and super water repellency (due to hydrophobicity). From this, the silica film can be formed on the surface of an arbitrary structure to be composited. As a result, a composite structure having the above properties can be produced. The silicon film of the present invention can be used, for example, as an insulating film, a low-reflection coating film, an optical waveguide forming film, a photoconductive material, an undercoat film, a surface treatment film, or the like. It can be applied to all kinds of composite structures such as films, optical glass, liquid crystal panels, cathode ray tubes, glass windows, protective covers, materials, electronic components, structures, etc. having this as a surface layer.
本発明では、 シリコンアルコキシド、 アルコール、 水及びアルカリか らなる溶液に基体を浸漬し、 アルコール溶媒中でのシリコンアルコキシ ドの加水分解により液中に直径 1〜 3 0 n mの低密度ケィ酸コロイ ドを 生成させる。 シリカ薄膜の形成過程で、 反応液を任意の手段で動的な状 態に保持させることにより、 これらの基体への付着と脱水重縮合による 液中での膜形成を促進することができる。 それにより、 液中で基体上に 均一な所定の膜厚のシリカ膜を作製することができる。 この場合、 シリ コンアルコキシド濃度、 水濃度、 触媒濃度、 処理温度、 処理時間、 処理 回数などによりシリカ膜の膜厚を制御することができる。 また、 基体表 面の疎水性を上げることにより薄膜の表面形状を制御することができる 。 上記方法で作製される非晶質シリカ膜は、 均一かつ高密度であり、 こ れを室温で乾燥することにより高い硬度性を付加することができる。 ま た、 これを加熱焼成することにより、 高純度、 かつ高密度の非晶質シリ 力膜とすることができる。 本発明のシリカ膜は、 後記する実施例に示さ れるように、 例えば、 ガラス基体の透光率を向上させる特性を有する。 本発明における上記低密度ゲイ酸コロイ ドの基体への付着と脱水重縮 合について説明すると、 シリコンアルコキシドの加水分解によって生じ た過渡的なシリコン酸は、 液中で凝縮と再溶解を繰り返しており、 凝縮 によって形成された過渡的なシリコン酸コロイ ドのうち、 互いに衝突し て表面積/体積比が小さくなったものだけが再溶解を免れて固相となる 。 この過渡的なシリコン酸コロイ ドは、 反応が進行する間、 常に生成と 溶解を繰り返しており、 かつその大きさは溶存シリコン酸の過飽和度に 比例する。 本発明では、 これにより、 上記反応が進行している間であれ ば、 基体の浸漬開始と継続時間を任意に設定して、 基体表面にシリカ膜 を形成することができる。 また、 溶液と基体とを相対的に運動させるこ と等により反応液を動的な状態に保持することにより、 基体の表面が疎 水性であっても、 過渡的なシリコン酸コロイ ドを基体表面に付着せしめ ることが可能となる。 次に、 本発明の第 2の態様を更に詳細に説明する。 In the present invention, silicon alkoxide, alcohol, water and alkali The substrate is immersed in a solution consisting of the solution, and the silicon alkoxide is hydrolyzed in an alcohol solvent to form low-density colloidal silica of 1 to 30 nm in diameter. By maintaining the reaction solution in a dynamic state by any means during the process of forming the silica thin film, it is possible to promote the adhesion to these substrates and the film formation in the solution by dehydration polycondensation. As a result, a silica film having a uniform thickness and a predetermined thickness can be formed on the substrate in the liquid. In this case, the thickness of the silica film can be controlled by the silicon alkoxide concentration, the water concentration, the catalyst concentration, the treatment temperature, the treatment time, and the number of treatments. In addition, the surface shape of the thin film can be controlled by increasing the hydrophobicity of the substrate surface. The amorphous silica film produced by the above method has a uniform and high density, and by drying it at room temperature, high hardness can be added. By heating and baking this, a high-purity, high-density amorphous silicon film can be obtained. The silica film of the present invention has, for example, a property of improving the light transmittance of a glass substrate, as shown in Examples described later. The adhesion of the low-density gay acid colloid to the substrate and the dehydration polycondensation in the present invention will be described. Transient silicon acid generated by hydrolysis of silicon alkoxide repeatedly condenses and redissolves in a liquid. Of the transient silicon acid colloids formed by condensation, only those that have a reduced surface area / volume ratio due to collision with each other escape from re-dissolution and become a solid phase. This transitional siliconic acid colloid is constantly generating and dissolving during the course of the reaction, and its size is proportional to the degree of supersaturation of the dissolved siliconic acid. Thus, in the present invention, as long as the above-mentioned reaction is in progress, the start and duration of immersion of the substrate can be arbitrarily set to form a silica film on the surface of the substrate. In addition, by maintaining the reaction solution in a dynamic state by, for example, relatively moving the solution and the substrate, even if the surface of the substrate is hydrophobic, transient silicon oxide colloid can be formed on the surface of the substrate. Adhere to It becomes possible. Next, the second embodiment of the present invention will be described in more detail.
本発明者らは、 上記従来技術の課題を解決するために、 鋭意研究を重 ねた結果、 1 ) チタンアルコキシド、 アルコール、 水からなる溶液中で 加水分解したチタンアルコキシドが、 直径数十ナノメートル以下の過渡 的なチタン酸コロイ ド一次粒子を形成すること、 2 ) チタンアルコキシ ド、 アルコール、 水からなる溶液に基体を浸漬しておくことにより、 そ れらが溶液内でのブラウン運動とファンデルヮ一ルス結合により基体表 面に付着し、 基体の表面にチタニア薄膜が形成されること、 を見出した 更に、 本発明者らは、 3 ) 該薄膜と基体との間にチタンとは異種の金 属を成分とする金属化合物膜、 例えば、 非晶質シリカ薄膜、 を置くこと により、 基体よりチタニア薄膜への元素の拡散を確実に阻害し、 それに より、 均一かつ高品質のチタニア薄膜の形成を可能とし、 更に、 該複合 膜を 3 5 0 前後で加熱焼成することにより、 該複合膜の最表層である チタニアを容易に結晶相アナ夕ースへと転移せしめることが可能である こと、 を見出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, 1) a titanium alkoxide hydrolyzed in a solution composed of titanium alkoxide, alcohol, and water has a diameter of several tens of nanometers. The following transient primary particles of colloidal titanate are formed.2) By immersing the substrate in a solution consisting of titanium alkoxide, alcohol and water, the The present inventors have found that a titania thin film is formed on the surface of a substrate by one-loose bonding, and that a thin film of titania is formed on the surface of the substrate. By placing a metal compound film containing a metal element, for example, an amorphous silica thin film, the diffusion of elements from the base material to the titania thin film is reliably inhibited, thereby providing a uniform and uniform film. A high-quality titania thin film can be formed, and further, by heating and firing the composite film at about 350, titania, which is the outermost layer of the composite film, can be easily transferred to a crystalline phase. It is possible to find out.
本発明は、 基体の表面と該チタン酸化物との間に、 均一な 0 . 0 1— 1 0 0 mの厚みのチタン以外の金属の酸化物膜等の金属化合物膜、 好 ましくは非晶質シリ力膜を有するものであって、 最表層をなす均一な 0 . 0 1 - 1 0 0 mの厚みのチタン酸化物が結晶質アナタース相である ことを特徴とする複合膜に係るものであり、 更に、 本発明は、 その複合 膜の製造方法、 及び表面にその複合膜を有する高機能性複合構造体、 に 係るものである。  The present invention relates to a metal compound film such as an oxide film of a metal other than titanium having a uniform thickness of 0.01 to 100 m, preferably a non-metallic film, between the surface of the substrate and the titanium oxide. A composite film having a crystalline silicon film, wherein a uniform titanium oxide having a thickness of 0.01 to 100 m as the outermost layer is a crystalline anatase phase. Further, the present invention relates to a method for producing the composite film, and a highly functional composite structure having the composite film on the surface.
本発明の、 最表層が結晶質アナ夕一ス相チタニア薄膜である複合膜は 、 基本的には、 a ) 基体表面を一層あるいは複数層のチタン以外の金属 の金属化合物膜、 例えば、 金属酸化物薄膜、 で被覆する、 b ) 前記 a ) の基体を非晶質チタニア薄膜で被覆する、 c ) 前記 b ) を 3 0 0 以上 の温度で焼成する、 という段階を経て作製される。 チタン以外の金属の 金属化合物膜、 例えば、 酸化物薄膜は、 基体とチタニア薄膜との間にあ つて、 基体とチタニア薄膜間の元素の拡散を阻害すること、 それにより 、 均一かつ高品質のチタニア薄膜を形成することを可能とすること、 を 目的として形成される。 これらの目的のためには、 結晶質あるいはシリ 力膜の使用が好ましく、 また、 上記目的を達成できるものであれば非晶 質シリカ膜でよい。 しかし、 これらに制限されるものではなく、 高温で 反応性の低い化合物、 例えば、 ケィ素化合物、 好ましくは窒化ケィ素、 他の窒化物等、 これらと同効のものであれば同様に使用することができ る。 The composite film according to the present invention, wherein the outermost layer is a crystalline anamorphic titania thin film Basically, a) the substrate surface is coated with one or more layers of a metal compound film of a metal other than titanium, for example, a metal oxide thin film.b) The substrate of a) is coated with an amorphous titania thin film. C) baking the above b) at a temperature of 300 or more. A metal compound film of a metal other than titanium, for example, an oxide thin film is provided between the base and the titania thin film to inhibit the diffusion of elements between the base and the titania thin film, thereby achieving uniform and high-quality titania. It is formed for the purpose of enabling a thin film to be formed. For these purposes, it is preferable to use a crystalline or silicic film, and an amorphous silica film may be used as long as the above object can be achieved. However, the present invention is not limited thereto, and compounds having low reactivity at high temperatures, for example, silicon compounds, preferably silicon nitride, other nitrides, etc., may be used as long as they have the same effect. be able to.
非晶質シリカ膜の作製には、 好適には、 シリコンアルコキシド、 アル コール、 水及びアンモニアからなる溶液中に基体を浸漬し、 該シリコン アルコキシドを加水分解して該基体の表面に非晶質シリカ膜を形成する 。 この場合、 反応液を動的な状態 (非静止条件) に保持させることが必 要とされる。 それにより、 膜形成過程を最適化して均一かつ高品質のシ リカ薄膜を形成することができる。 目的の厚さを達成しない時にはこの 操作を繰り返し、 得られたシリカ膜被覆基体を乾燥させて、 必要であれ ば、 3 0 0 以上 1 0 0 0 以下、 好ましくは 3 5 0 °C前後の温度で加 熱焼成することにより該シリカ膜を高密度なものとする、 等の方法が用 いられる。 しかし、 これらの方法に制限されるものではない。 この非晶 質シリカ膜は、 熱処理により更に高密度化されていることが好ましい。 この高密度化された非晶質シリカを基体とチタニア膜との間に形成する ことにより、 基体よりチタニア薄膜への元素の拡散を確実に阻害するこ とができ、 それにより、 均一かつ高品質で高耐久性のチタニア膜の形成 が可能となる。 このような非晶質シリカ膜を形成しない場合には、 後記 する実施例に示されるように、 上記チタニア膜を高純度の結晶アナ夕一 ス相へ転移させることは困難である。 本発明の方法では、 前記の非晶質 シリカ膜の作製方法における、 該シリカ膜の形成は、 基体の大きさ、 材 質、 形状、 表面の親水性 Z疎水性の別に影響されることがない。 For the preparation of the amorphous silica film, preferably, the substrate is immersed in a solution comprising silicon alkoxide, alcohol, water and ammonia, and the silicon alkoxide is hydrolyzed to form amorphous silica on the surface of the substrate. Form a film. In this case, it is necessary to keep the reaction solution in a dynamic state (non-static condition). Thereby, a uniform and high quality silica thin film can be formed by optimizing the film forming process. When the target thickness is not achieved, this operation is repeated, and the obtained silica film-coated substrate is dried, and if necessary, a temperature of at least 300 and at most 100, preferably around 350 ° C. For example, a method in which the silica film is made to have a high density by heating and calcining in the above manner is used. However, it is not limited to these methods. This amorphous silica film is preferably further densified by heat treatment. By forming this densified amorphous silica between the substrate and the titania film, the diffusion of elements from the substrate to the titania thin film is reliably inhibited. This makes it possible to form a uniform, high-quality, highly durable titania film. When such an amorphous silica film is not formed, it is difficult to transfer the above-mentioned titania film to a high-purity crystalline analog phase, as shown in Examples described later. In the method of the present invention, in the method for producing an amorphous silica film, the formation of the silica film is not affected by the size, material, shape, surface hydrophilicity and hydrophobicity of the substrate. .
そのため、 このシリカ膜とその上に接合されたチタニア膜によって構 成される本発明のシリカ—チタニア複合膜の形成も、 また、 基体の大き さ、 材質、 形状、 表面の親水性/疎水性の別に影響されることがない。 これにより、 任意の形状と表面特性を有する任意の材質の基体表面にチ タニア膜を形成することが可能となる。 本発明において、 基体としては 、 例えば、 金属、 金属酸化物、 ソーダライムガラスやシリカガラス等の ガラス、 ポリエチレンやポリスチレン等のプラスチクス、 シリコンゴム などが例示されるが、 これらに制限されるものではなく、 いずれのもの でもよい。 基体の表面状態は、 平滑であっても凹凸があってもよい。 ま た、 基体表面は、 親水性であっても疎水性であってもよく、 これらの性 状は特に制限されない。  Therefore, the formation of the silica-titania composite film of the present invention composed of this silica film and the titania film bonded thereon also involves the size, material, shape and hydrophilic / hydrophobic properties of the substrate. It is not affected separately. This makes it possible to form a titania film on the surface of a substrate of any material having any shape and surface characteristics. In the present invention, examples of the substrate include, but are not limited to, metals, metal oxides, glasses such as soda lime glass and silica glass, plastics such as polyethylene and polystyrene, and silicone rubber. , Any of them. The surface state of the substrate may be smooth or uneven. The surface of the substrate may be hydrophilic or hydrophobic, and these properties are not particularly limited.
本発明では、 結晶質アナ夕ース相の薄膜形成に至る前段階としての非 晶質チタニア薄膜の形成は、 チタンアルコキシド、 アルコール、 水から なる溶液中に基体を浸潰し、 所定時間保持することにより、 チタンアル コキシドを加水分解して液中に直径 1〜 3 0 n mの低密度チタン酸コ口 ィ ドを生成させ、 これらの基体への付着と脱水重縮合により該基体の表 面にチタン酸化物膜を形成し、 一度の操作によって目的の厚さを達成で きない時にはこの操作を繰り返すことにより実施される。 前記の非晶質 チタニア膜の生成は、 溶媒中で生成する直径数十ナノメートル以下の過 渡的なチタン酸コロイドー次粒子を基体表面に付着せしむることに因る ものであるから、 非晶質チタニア膜の形成は、 基体の大きさ、 材質、 形 状、 表面の親水性 疎水性の別に影響されない。 そのため、 例えば、 非 晶質チタニア膜部の形成に先立ち、 下層のシリカ膜部の表面を化学的に 修飾することができる。 In the present invention, the formation of the amorphous titania thin film as a stage prior to the formation of the crystalline analog phase thin film is performed by immersing the substrate in a solution composed of titanium alkoxide, alcohol, and water and holding the substrate for a predetermined time. Thus, the titanium alkoxide is hydrolyzed to form a low-density titanate titanate having a diameter of 1 to 30 nm in the liquid, and the titanium oxide is attached to the surface of the substrate by adhesion to the substrate and dehydration polycondensation. An object film is formed, and when the target thickness cannot be achieved by one operation, this operation is repeated. The formation of the amorphous titania film is caused by the attachment of the transient colloidal titanate secondary particles having a diameter of several tens of nanometers or less generated in the solvent to the substrate surface. Therefore, the formation of the amorphous titania film is not affected by the size, material, shape, surface hydrophilicity or hydrophobicity of the substrate. Therefore, for example, prior to forming the amorphous titania film portion, the surface of the lower silica film portion can be chemically modified.
基体表面に均一かつ高品質のチタニア膜が形成されるかどうかは、 チ タンアルコキシドが加水分解して生成するチタン酸の重合状態と直径数 十ナノメ一トル以下の過渡的なチタン酸コロイ ドー次粒子の生成力イネ テイクスに支配されており、 調製する溶液組成のうち、 チタンアルコキ シドと水との量比は重要である。 したがって、 チタンアルコキシドの濃 度は、 どとらかと言えば重要ではなく、 基本的には、 チタンアルコキシ ドの濃度を下げた場合には、 水の濃度を上げること、 及び長時間の反応 時間を設定すること、 によってチタニア膜を形成することができる。 本発明においては、 前述のとおり、 チタンアルコキシドとしては、 チ タンメトキシド、 チタンエトキシド、 チタンイソプロポキシド、 及びチ タンブトキシドのうちの一つあるいは二つ以上の混合物が使用されるが 、 好ましくは、 チタンテトラエトキシドあるいはチタンテトライソプロ ポキシドを使用される。 溶媒としては、 メタノール、 エタノール、 イソ プロパノール、 ブ夕ノールのうちの一つあるいは二つ以上の混合物が使 用されるが、 好ましくは、 エタノールあるいはイソプロパノールを使用 される。 その濃度範囲は、 好適には、 0 . 0 1〜 1 . O m o l Z lであ り、 望ましい濃度範囲は、 0 . 0 2 5〜0 . I m o l Z lである。 水は、 加水分解を起こし、 チタン酸コロイ ドを生成させるのに必要で ある。 その量は、 チタンアルコキシドに対してモル比で 1〜 1 0 0の範 囲である。 上記膜形成過程における反応液の保持温度は、 氷点下であつ てもよいが、 0 °C以上 1 0 0 °C以下が好ましい。 更に好ましくは、 室温 付近である。 この場合、 反応は、 溶媒の揮発を防ぐ目的で、 密閉容器で 行うことが好ましい。 Whether a uniform and high-quality titania film is formed on the substrate surface depends on the polymerization state of titanic acid generated by the hydrolysis of titanium alkoxide and the transitional colloidal titanate having a diameter of tens of nanometers or less. It is governed by the particle generation power, and the ratio of titanium alkoxide to water is important in the prepared solution composition. Therefore, the concentration of titanium alkoxide is somewhat unimportant.Basically, if the concentration of titanium alkoxide is reduced, increase the concentration of water and set a long reaction time. By doing so, a titania film can be formed. In the present invention, as described above, as the titanium alkoxide, one or a mixture of two or more of titanium methoxide, titanium ethoxide, titanium isopropoxide, and titanium butoxide is preferably used. Titanium tetraethoxide or titanium tetraisopropoxide is used. As the solvent, one or a mixture of two or more of methanol, ethanol, isopropanol and butanol is used, and preferably, ethanol or isopropanol is used. The concentration range is preferably from 0.01 to 1.0 Omol Zl, and the desired concentration range is from 0.025 to 0.1 Imol Zl. Water is necessary to cause hydrolysis and the production of colloidal titanate. The amount is in the range of 1 to 100 in molar ratio to titanium alkoxide. The holding temperature of the reaction solution during the film formation process may be below the freezing point, but is preferably 0 ° C. or more and 100 ° C. or less. More preferably, it is around room temperature. In this case, the reaction is performed in a closed container to prevent evaporation of the solvent. It is preferred to do so.
上記反応は、 静置して行ってもよいが、 均一な膜を得るためには反応 液を動的な状態に保持することが好ましく、 そのための方法として、 溶 液を循環させること、 基体を振動させること、 反応槽を震盪させること 等により、 反応を震盪環境下 (非静置条件下) で行うことが好ましい。 本発明の方法において、 膜の形成速度は、 保持時間の対数関数として表 すことができる。 また、 膜の形成は、 チタンアルコキシドが加水分解し て生成する直径数十ナノメートル以下の過渡的なチタン酸コロイ ドー次 粒子の付着に因っているため、 基体の浸漬開始時間と保持時間を適宜設 定することによって、 膜厚を厳密に制御することができる。 本発明で得 られる非晶質チタニア膜は、 3 0 0 以上 1 0 0 0 °C以下、 好ましくは 3 5 0 前後で焼成することで、 高純度、 かつ高密度の結晶質アナター ス相へと転移させることができる。 このときに、 膜構造内部に含有され ていた〇H、 アルキル基を除去することができ、 これにより、 最表層が 、 純度の高い結晶質アナタース相からなる複合膜を形成することができ る。  The above reaction may be carried out in a stationary state, but it is preferable to keep the reaction solution in a dynamic state in order to obtain a uniform film. As a method for this, circulating the solution and using a substrate The reaction is preferably carried out in a shaking environment (non-static condition) by shaking or shaking the reaction tank. In the method of the present invention, the rate of film formation can be expressed as a logarithmic function of the retention time. In addition, the formation of the film is caused by the transient adhesion of colloidal titanate particles having a diameter of several tens of nanometers or less, which are generated by hydrolysis of titanium alkoxide. By properly setting the thickness, the film thickness can be strictly controlled. The amorphous titania film obtained in the present invention is fired at a temperature of at least 300 ° C. and at most 100 ° C., preferably at around 350 ° C., to form a high-purity, high-density crystalline anatase phase. Can be transferred. At this time, the ΔH and alkyl groups contained in the inside of the film structure can be removed, so that a composite film whose outermost layer is made of a highly pure crystalline anatase phase can be formed.
本発明では、 チタンアルコキシド溶液中に、 チタンとは異なる異種の 金属を成分とする金属化合物膜、 例えば、 金属酸化物膜、 好適には、 シ リカ膜を表面に 1層又は複数層有する基体を浸潰し、 該チタンアルコキ シドを加水分解することにより液中に直径 1〜 3 0 n mの低密度チタン 酸コロイドを生成させ、 これらの基体への付着と脱水重縮合により液中 で基体の表面にチタン酸化物膜を形成させる過程で、 これらを最適化す ることで基体上に均一かつ高品質のチタニア膜を形成することが可能と なる。 本発明では、 上記チタニア膜部の下層に上記シリカ膜部を形成す ることで基体よりチタニア薄膜への元素の拡散を確実に阻害することが でき、 それにより、 上記均一かつ高品質で高耐久性のチタニア膜の形成 が可能となる。 In the present invention, in a titanium alkoxide solution, a metal compound film containing a different metal different from titanium as a component, for example, a metal oxide film, preferably a substrate having one or more layers of a silica film on the surface is used. By immersing and hydrolyzing the titanium alkoxide, a low-density colloid of titanate having a diameter of 1 to 30 nm is generated in the liquid, and the titanium adheres to the surface of the substrate in the liquid by adhesion to the substrate and dehydration polycondensation. By optimizing these in the process of forming the oxide film, a uniform and high-quality titania film can be formed on the substrate. In the present invention, by forming the silica film portion below the titania film portion, the diffusion of elements from the substrate to the titania thin film can be reliably inhibited, whereby the uniform, high quality, high durability Of a titania film Becomes possible.
本発明の方法は、 任意の形状と表面特性を有する任意の材質の基体表 面に上記チタニア膜を形成した複合体を作製することを可能とする。 ま た、 上記複合体を 3 0 0 以上 1 0 0 以下、 好ましくは 3 5 0 °C前 後の低温域で焼成することにより高純度の結晶質アナ夕一ス相へ転移さ せることができる。 チタンアルコキシドの加水分解によって生じた過渡 的なチタン酸は、 液中で凝縮と再溶解を繰り返しており、 凝縮によって 形成された過渡的なチタン酸コロイ ドのうち、 互いに衝突して表面積 z 体積比が小さくなったものだけが再溶解を免れて固相となる。 この過渡 的なチタン酸コロイドは反応が進行する間、 常に生成と溶解を繰り返し ており、 かつその大きさは溶存チタン酸の過飽和度に比例する。 本発明 は、 この事実の発見により、 反応が進行している間であれば基体の浸漬 開始と継続時間を任意に設定しても基体表面にチタニア膜を形成できる ことを実現化したものである。 尚、 図 6に、 本発明の複合膜の製造方法 の概略を示す。 図面の簡単な説明  The method of the present invention makes it possible to produce a composite in which the titania film is formed on the surface of a substrate of any material having any shape and surface characteristics. Further, by firing the above-mentioned complex in a low temperature range of at least 300 and at most 100, preferably at around 350 ° C., it is possible to transform into a high-purity crystalline analog phase. . Transient titanic acid generated by the hydrolysis of titanium alkoxide repeatedly condenses and redissolves in the liquid, and among the transient colloidal titanate colloids formed by condensation, they collide with each other and surface area z volume ratio Only those having a reduced size escape from re-dissolution and become a solid phase. This transitional colloid of titanate constantly repeats generation and dissolution during the course of the reaction, and its size is proportional to the degree of supersaturation of the dissolved titanic acid. The present invention, based on the discovery of this fact, has realized that a titania film can be formed on the surface of a substrate even when the start and duration of immersion of the substrate are arbitrarily set as long as the reaction is in progress. . FIG. 6 shows an outline of the method for producing a composite membrane of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明における基体上への平滑な膜形成過程の模式図を示す 図 2は、 本発明における基体上への表面粗さの大きい膜形成過程の模 式図を示す。  FIG. 1 shows a schematic diagram of a process of forming a smooth film on a substrate in the present invention. FIG. 2 shows a schematic diagram of a process of forming a film having a large surface roughness on a substrate in the present invention.
図 3は、 本発明の方法の概要を示す。  FIG. 3 shows the outline of the method of the present invention.
図 4は、 シリカ膜の膜厚と反応時間の関係を示す。  Figure 4 shows the relationship between the thickness of the silica film and the reaction time.
図 5は、 紫外一可視光分光光度計でガラスの透光率を計測した結果を 示す。  Figure 5 shows the results of measuring the transmittance of glass with an ultraviolet-visible light spectrophotometer.
図 6は、 本発明の複合膜の製造方法の概略を示す。 図 7は、 複合膜の X線粉末回折の結果を示す (回折角 2 5度の位置の 回折線が結晶質アナ夕ース相の存在を示す)。 FIG. 6 shows an outline of the method for producing a composite membrane of the present invention. Figure 7 shows the results of X-ray powder diffraction of the composite membrane (the diffraction line at a diffraction angle of 25 degrees indicates the presence of a crystalline anase phase).
図 8は、 複合膜の X線粉末回折の結果を示す (回折角 2 5度の位置の 回折線が結晶質アナタース相の存在を示す)。  Figure 8 shows the results of X-ray powder diffraction of the composite membrane (the diffraction line at a diffraction angle of 25 degrees indicates the presence of the crystalline anatase phase).
図 9は、 チタニア膜の膜厚と反応時間の関係を示す。  FIG. 9 shows the relationship between the thickness of the titania film and the reaction time.
図 1 0は、 親水性及び疎水性基板上に'形成されるチタニア膜の膜厚と 反応時間の関係を示す。  FIG. 10 shows the relationship between the thickness of the titania film formed on the hydrophilic and hydrophobic substrates and the reaction time.
図 1 1は、 紫外一可視光領域におけるガラスの光の透過率を計測した 結果を示す。 発明を実施するための最良の形態  FIG. 11 shows the results of measuring the light transmittance of glass in the ultraviolet-visible light region. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の第 1の態様の実施例を具体的に説明する。  Next, an example of the first aspect of the present invention will be specifically described.
実施例 1 Example 1
基体として、 表面が親水性であるシリコン基板と、 表面が強疎水性で ある 1 H、 1 H、 2 H、 2H- p e r f l u o r o d e c y l t r i me t h o x y s i l a n e単分子膜によって表面を化学修飾 (フッ素 処理) したシリコン基板、 を使用した。 反応時にシリコンテトラエトキ シド 0. 1 1 mo 1 1 となるようにこれをエタノールに溶解した溶液 、 並びに反応時に水 3. Omo 1 / 1、 アンモニア 1. Omo l Z l と なるようにこれらをエタノールに溶解した溶液を調製し、 前者に基体を 浸潰した。 前者の容器を震盪して反応液を動的な状態に保持した状態で 、 これに後者を投入した後、 容器をフィルムで密閉し、 更に震盪して反 応液を動的な状態に保持しつつ 2 0°Cで保持した。  As a substrate, a silicon substrate whose surface is hydrophilic, a silicon substrate whose surface is chemically modified (fluorinated) with a 1H, 1H, 2H, 2H-perfluorodecyltrimethyloxysilane monomolecular film whose surface is strongly hydrophobic, It was used. A solution prepared by dissolving this in ethanol so that it becomes 0.11 mo 11 silicon tetraethoxylate at the time of reaction, and adding ethanol 3.Omo 1/1 and ammonia 1. The substrate was immersed in the former solution. While the former vessel was shaken to keep the reaction solution in a dynamic state, the latter was added thereto, the vessel was sealed with a film, and the vessel was further shaken to keep the reaction solution in a dynamic state. While maintaining the temperature at 20 ° C.
所定の時間が経過した後に、 基体を取りだし、 これをエタノール 1 2 Om lに対して水 0. 648 m 1を加えたもので洗浄し、 70tで乾燥 した。 得られたシリカ膜について原子間力顕微鏡 (AFM) で膜厚を調 ベた。 膜厚は、 反応時間 6 0分から 240分にかけて、 時間 t (分) の 関数として次式で表された (図 4)。 After a predetermined time had elapsed, the substrate was taken out, washed with 12 Oml of ethanol and 0.648 ml of water, and dried at 70 t. The thickness of the obtained silica film was adjusted with an atomic force microscope (AFM). Beta. The film thickness was expressed by the following equation as a function of the time t (min) from 60 minutes to 240 minutes in the reaction time (Fig. 4).
未処理シリコン板上: d (nm) = 3 0 l o g ( t ) - 8. 8 疎水処理シリコン板上: d (nm) = 3 3 l o g ( t ) - 3 6 また、 シリコン単結晶基板上のシリカ膜の表面粗さは RMS粗さで 1 nmであった。 フッ素処理済シリコン単結晶基板の表面粗さは RMS粗 さで 1 0〜: L 4 nmであった。 実施例 2 On untreated silicon plate: d (nm) = 30 log (t)-8.8 On hydrophobically treated silicon plate: d (nm) = 33 log (t)-36 Also, silica on silicon single crystal substrate The surface roughness of the film was 1 nm in RMS roughness. The surface roughness of the fluorine-treated silicon single crystal substrate was 10 to RMS roughness: L 4 nm. Example 2
上記実施例 1において、 基体をソ一ダライムガラスとし、 該ガラス板 の両表面を膜厚 1 37 nmの非晶質シリカ膜で被覆した。 この試料につ いて、 紫外一可視光分光光度計で透光率を計測した。 未処理の基体と比 較したところ、 非晶質シリ力膜の被覆により透光率が向上することが分 かった (図 5 )。 次に、 本発明の第 2の態様の実施例を具体的に説明する。  In Example 1, the substrate was soda lime glass, and both surfaces of the glass plate were covered with an amorphous silica film having a thickness of 137 nm. The transmittance of this sample was measured with an ultraviolet-visible light spectrophotometer. In comparison with the untreated substrate, it was found that the coating of the amorphous silicon film improved the light transmittance (Fig. 5). Next, an example of the second aspect of the present invention will be specifically described.
実施例 3 Example 3
( 1) シリカ薄膜の形成  (1) Formation of silica thin film
本実施例では、 ソ一ダライムガラス板を基体として使用した。 シリカ 膜を、 以下の手順により形成した。 反応時にシリコンテトラエトキシド 0. 2 2 mo 1 / 1 となるようにこれをエタノールに溶解した溶液、 並 びに反応時に水 6. Omo l Zし アンモニア 2. Omo l Z l となる ようにこれらをエタノールに溶解した溶液を調製し、 前者に基体を浸漬 した。 前者の容器を震盪して反応液を動的な状態に保持した状態でこれ に後者を投入した後、 容器をフィルムで密閉し、 震盪しつつ 20 で保 持した。 2時間が経過した後に、 基体を取りだし、 これを、 エタノール 1 20 m l に対して水 0. 648 m 1 を加えたもので洗浄し、 7 0 で乾燥し た後、 3 5 にて 48時間焼成した。 得られたシリカ膜の膜厚を、 原 子間力顕微鏡 (AFM) で調べた結果、 膜厚は 0. 1 2 ^mであった。 シリカ膜の表面粗さは RMS粗さで 1 nmであった。 In this example, a soda lime glass plate was used as a base. A silica film was formed by the following procedure. A solution prepared by dissolving this in ethanol so that silicon tetraethoxide becomes 0.22 mo 1/1 at the time of reaction, and these were added so that water 6.Omol Z and ammonia 2.Omol Zl during the reaction. A solution dissolved in ethanol was prepared, and the substrate was immersed in the former. After the former was shaken and the reaction solution was kept in a dynamic state, and the latter was added thereto, the container was sealed with a film and held at 20 with shaking. After 2 hours, the substrate was taken out, washed with a mixture of 120 ml of ethanol and 0.648 ml of water, dried at 70, and baked at 35 for 48 hours. did. As a result of examining the thickness of the obtained silica film with an atomic force microscope (AFM), the thickness was 0.12 ^ m. The surface roughness of the silica film was 1 nm in RMS roughness.
(2) チタニア膜の形成  (2) Formation of titania film
次に、 チタニア膜を、 以下の手順により形成した。 チタンエトキシド 1. 3 5 gとイソプロパノール 1 0 0 m 1 を混合した溶液、 並びに水 0 . 648m 1 とイソプロパノール 2 0m 1 を混合した溶液を調製し、 前 者に基体を浸潰した。 前者の容器を震盪して反応液を震盪した状態でこ れに後者を投入した後、 容器をフィルムで密閉し、 2 0でで震盪しつつ 保持した。  Next, a titania film was formed by the following procedure. A solution in which 1.35 g of titanium ethoxide and 100 ml of isopropanol and a solution in which 0.648 ml of water and 20 ml of isopropanol were mixed were prepared, and the substrate was immersed in the former. After the former container was shaken and the reaction solution was shaken, and the latter was added thereto, the container was sealed with a film and held at 20 while shaking.
4時間及び 8時間経過した時点で、 基体を取りだし、 これを 7 0°Cで 2時間乾燥した。 対照として、 1 ) 表面にシリカ薄膜を有しないソーダ ライムガラス基体、 及び、 2) 表面にシリカ薄膜を有するがシリカ薄膜 形成後チタニア薄膜形成前に 3 5 0 °Cでの焼成を経ないソーダライムガ ラス基体、 にも同様の処理を行った。 その後、 これらの試料を 3 50 °C で加熱焼成した。  After 4 hours and 8 hours, the substrate was taken out and dried at 70 ° C. for 2 hours. As controls, 1) a soda-lime glass substrate having no silica thin film on the surface, and 2) a soda-lime glass having a silica thin film on the surface but not firing at 350 ° C after the formation of the silica thin film and before the formation of the titania thin film. The same processing was performed on the substrate and the substrate. After that, these samples were heated and fired at 350 ° C.
(3) 結果  (3) Result
作製された未焼成のチタニア薄膜の一部を剥離し、 原子間力顕微鏡で 膜厚を計測した。 その結果、 膜厚は 4時間及び 8時間の製膜処理を行つ たものについて、 それぞれ 0. 0 9 m、 0. 1 8 mであった。 次に 、 X線回折装置で結晶相の有無について調べた。 その結果、 いずれの試 料についても結晶相に起因する回折線は見られなかった。 次に、 加熱焼 成した試料について、 X線回折装置で結晶相の有無について調べたとこ ろ、 ソ一ダライムガラスとチタニア薄膜との間にシリカ薄膜を有し、 チ タニア膜厚が 0. 1 8 mであり、 かつシリカ薄膜について 3 5 0 で の焼成を経たものについてのみ結晶質アナタース相に起因する回折線が 観測された (図 7)。 A part of the unfired titania thin film was peeled off, and the thickness was measured with an atomic force microscope. As a result, the film thickness was 0.09 m and 0.18 m, respectively, for the films subjected to the film forming treatment for 4 hours and 8 hours. Next, the presence or absence of a crystal phase was examined using an X-ray diffractometer. As a result, no diffraction line due to the crystal phase was observed for any of the samples. Next, the heat-fired sample was examined for the presence of a crystal phase by an X-ray diffractometer, and it was found that a silica thin film was provided between the soda lime glass and the titania thin film. Diffraction lines due to the crystalline anatase phase were observed only in the case where the thickness of the tania film was 0.18 m and the silica thin film was fired at 350. (Fig. 7).
シリカ薄膜について、 3 5 0 :での焼成を経たものであっても、 チタ ニァ膜厚が 0. 0 9 mより薄いものについては、 結晶質アナ夕ース相 に起因する回折線は観察されなかった。 このシリカ薄膜について、 焼成 条件を 45 0 、 1 0時間としたものについても、 これと同様の結果が 得られた。  Even though the silica thin film was fired at 350 :, the diffraction line due to the crystalline anamorphous phase was observed for the titanium film with a thickness of less than 0.09 m. Did not. With respect to the silica thin film, the same results were obtained when the firing conditions were set at 450 and 10 hours.
これらの実験から、 シリカ薄膜が厚いほど基体からの元素の拡散が阻 害されるので、 チタニア膜が薄くてもアナタース相に転移できること、 また、 シリカ膜が薄くても、 チタニア膜が厚ければアナタース相に転移 できること、 が分かった。 実施例 4  From these experiments, it is found that the thicker the silica film, the more the diffusion of elements from the substrate is hindered. Therefore, even if the titania film is thin, it can be transferred to the anatase phase. It was found that the phase could be changed. Example 4
上記実施例 3と同様にして、 シリカ膜の形成とチタニア膜の形成を行 つた。 シリカ膜の膜厚を 0. 24 / mとしたものは、 チタニア膜形成時 間が 4時間であった。 チタニア膜厚が 0. 0 9 / mであるものについて も、 シリカ膜の膜厚を 0. 24 mとすることによって 3 50 で 48 時間の焼成を経たものは結晶質アナ夕ース相に起因する回折線が観測さ れた (図 8)。 実施例 5  A silica film and a titania film were formed in the same manner as in Example 3 above. When the thickness of the silica film was 0.24 / m, the titania film formation time was 4 hours. Regarding the titania film with a thickness of 0.09 / m, the silica film thickness of 0.24 m, after firing at 350 at 48 hours, is due to the crystalline anaphase. Diffraction lines were observed (Fig. 8). Example 5
上記実施例 3と同様にして、 チタンアルコキシドをチタンイソプロボ キシドとし、 シリカ膜の代わりにシリカガラス板を使用したもので、 チ タニア膜形成時間が 6時間であって、 チタニア膜厚が 0. 14 mであ るものについても、 結晶質アナ夕ース相に起因する回折線が観測された 。 この時の焼成温度は、 実施例 3及び 4と比して低く、 3 0 0 であつ た。 実施例 6 In the same manner as in Example 3 above, titanium alkoxide was used as titanium isopropoxide, and a silica glass plate was used instead of the silica film.The titania film formation time was 6 hours, and the titania film thickness was 0. Diffraction lines attributable to the crystalline phosphor phase were also observed at 14 m . The firing temperature at this time was lower than that of Examples 3 and 4, and was 300. Example 6
上記実施例 3と同様の方法によりチタニア膜を基体に形成して、 シリ コン板及びソーダライムガラス板を基体としたときのチタニア膜の膜厚 について調べた。 その結果、 チタニア膜厚は、 反応時間 t (分) の対数 関数として次式で表されることが分かった (図 9)。  A titania film was formed on a substrate in the same manner as in Example 3 described above, and the film thickness of the titania film when a silicon plate and a soda lime glass plate were used as the substrates was examined. As a result, it was found that the titania film thickness was expressed by the following equation as a logarithmic function of the reaction time t (min) (Fig. 9).
シリコン板上: d (nm) = 2 32 l o ( t ) - 4 5 1 ソ一ダライムガラス板上: d (nm) = 243 l o g ( t ) - 47 5 実施例 7 On a silicon plate: d (nm) = 232 l o (t)-45 1 On a soda lime glass plate: d (nm) = 243 l o g (t)-47 5 Example 7
上記実施例 3において、 溶媒をエタノールとし、 親水性基板としてシ リコン板を、 及び、 強疎水性基板として表面が強疎水性である 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysi lane単分子膜にて化学修飾 (フッ 素処理) したシリコン板を基体として使用した他は、 上記実施例 3と同 様にして、 チタニア膜を形成した。 得られたチタニア膜の膜厚を原子間 力顕微鏡で計測して調べた結果、 膜厚は反応時間 t (分) の対数関数と して次式で表されることが分かった (図 1 0)。  In Example 3, the solvent was ethanol, a silicon plate was used as a hydrophilic substrate, and a 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane monomolecular film whose surface was strongly hydrophobic was used as a strongly hydrophobic substrate. A titania film was formed in the same manner as in Example 3 except that a chemically modified (fluorinated) silicon plate was used as a substrate. As a result of measuring and examining the thickness of the obtained titania film with an atomic force microscope, it was found that the film thickness was represented by the following equation as a logarithmic function of the reaction time t (min) (FIG. 10). ).
未処理シリコン板上: d (nm) = 1 4 1. 8 9 1 o g ( t ) 一 1 3 1 . 1 7 On untreated silicon plate: d (nm) = 1 4 1.89 1 og (t) 1 1 3 1 .1 7
疎水処理シリコン板上: d (nm) = 1 2 7. 2 3 1 o g ( t ) 一 1 1 9. 3 3 実施例 8 上記実施例 3において作製した、 シリカ膜厚が 0 . 1 2 m、 チタ二 ァ膜厚が 0 . 1 8 mであり、 かつ結晶質アナ夕一ス相である複合膜を 、 片面に接合したソーダライムガラスについて、 紫外一可視光領域での 光の透過率を計測した。 その結果、 可視光領域全般に亘つて透光率の低 下は 1 0 %程度の低い値であることが分かった (図 1 1 )。 また、 この 複合膜の光触媒活性を常法により調べたところ、 上記結晶質チタニア膜 による優れた光触媒作用を有することが分かった。 産業上の利用可能性 On hydrophobically treated silicon plate: d (nm) = 1 2 7. 2 3 1 og (t) 1 1 1 9. 3 3 Example 8 The composite film having a silica film thickness of 0.12 m, a titanium film thickness of 0.18 m, and a crystalline anamorphic phase produced in Example 3 was bonded to one surface. For soda-lime glass, the light transmittance in the ultraviolet-visible light range was measured. As a result, it was found that the decrease in light transmittance over the entire visible light region was as low as about 10% (FIG. 11). Further, when the photocatalytic activity of this composite film was examined by a conventional method, it was found that the composite titania film had an excellent photocatalytic effect. Industrial applicability
以上詳述したように、 本発明は、 新規シリカ薄膜の製造方法及び複合 構造体に係るものであり、 本発明により、 以下のような格別の作用効果 が奏される。  As described in detail above, the present invention relates to a novel method for producing a silica thin film and a composite structure. The present invention has the following special effects.
( 1 ) 本発明のシリカ薄膜の製造方法によれば、 非晶質シリカ薄膜を、 膜厚を制御して、 任意の表面特性及び任意の表面形状を有するの基体上 に成膜して、 基体上に均一かつ高品質な所定の膜厚のシリカ膜を作製す ることができる。  (1) According to the method for producing a silica thin film of the present invention, an amorphous silica thin film is formed on a substrate having an arbitrary surface property and an arbitrary surface shape by controlling the film thickness. A uniform and high quality silica film having a predetermined film thickness can be formed thereon.
( 2 ) 基体の耐熱温度以下の温度であれば加熱焼成により膜内部に残留 する不純物を除去して高純度化することができる。  (2) If the temperature is lower than the heat-resistant temperature of the substrate, high-purity can be achieved by removing the impurities remaining inside the film by heating and firing.
( 3 ) このシリカ薄膜は、 電気的絶縁性を利用した電気的絶縁膜、 高い 強度を利用した高純度保護膜、 高い透光性を利用した光導波形成膜、 表 面の微細な凹凸を利用した低反射膜、 基体表面の微細な欠陥を修復する 修復膜などの工業的用途に多角的に利用することができる。  (3) This silica thin film uses an electrical insulating film that uses electrical insulation, a high-purity protective film that uses high strength, an optical waveguide forming film that uses high translucency, and fine irregularities on the surface. It can be diversifiedly used for industrial applications such as a low-reflection film that has been repaired and a repair film that repairs minute defects on the substrate surface.
( 4 ) 上記方法により得られたシリカ薄膜を表層に有する、 高い光透過 性を有する複合構造体を提供することができる。  (4) It is possible to provide a composite structure having high light transmittance, having a silica thin film obtained by the above method in a surface layer.
また、 本発明は、 シリカーチタニア複合膜、 その製造方法及び複合構 造体に係るものであり、 本発明により、 以下のような格別の作用効果が 奏される。 Further, the present invention relates to a silica-titania composite film, a method for producing the same, and a composite structure. According to the present invention, the following special effects can be obtained. Is played.
( 1 ) 本発明のシリカーチタニア複合膜の製造方法によれば、 基体の耐 熱温度が 3 0 0 °C以上であれば結晶質アナ夕一ス相薄膜を任意の表面状 態かつ任意の表面形状の基体の上に形成することができる。  (1) According to the method for producing a silica-titania composite film of the present invention, if the heat resistance temperature of the substrate is 300 ° C. or higher, the crystalline anode phase thin film can be formed in any surface state and in any desired state. It can be formed on a surface-shaped substrate.
( 2 ) この結晶質アナ夕ース薄膜は、 その光触媒活性を利用した廃水処 理ゃ浄水処理などの環境浄化用途、 強親水性を利用した防汚被膜や透明 性を利用した干渉性発色膜などの表面装飾用途、 光触媒活性と透明性を 併せ持つことを利用した光触媒機能性窓ガラスなど住環境改善用途、 高 い屈折率を利用した光導波路形成膜などの工業的用途に好適に利用する ことができる。  (2) This crystalline analog thin film is used for environmental purification applications such as wastewater treatment and water purification treatment utilizing its photocatalytic activity, antifouling coating utilizing strong hydrophilicity, and coherent coloring film utilizing transparency. Suitable for use in surface decoration applications such as surface applications, living environment improvement applications such as photocatalytic functional window glass utilizing both photocatalytic activity and transparency, and industrial applications such as optical waveguide forming films using a high refractive index. Can be.
( 3 ) 上記複合膜を表層に形成した、 光触媒作用を有する複合構造体を 提供することができる。  (3) It is possible to provide a composite structure having a photocatalytic action, wherein the composite film is formed on a surface layer.

Claims

請求の範囲 The scope of the claims
1 . 基体表面に接合したシリカ薄膜の製造方法であって、1. A method for producing a silica thin film bonded to a substrate surface,
( 1 ) シリコンアルコキシド、 アルコール、 水及びアルカリからなる溶 液に基体を浸漬する、 (1) immersing the substrate in a solution composed of silicon alkoxide, alcohol, water and alkali;
( 2 ) アルコール溶媒中でのシリコンアルコキシドの加水分解により液 中に直径 1〜 3 0 n mの低密度ゲイ酸コロイ ドを生ぜしめる、  (2) Hydrolysis of silicon alkoxide in an alcohol solvent produces low-density gay acid colloid with a diameter of 1 to 30 nm in the liquid.
( 3 ) これらの基体への付着と脱水重縮合により液中で基体上に均一な 所定の膜厚のシリカ薄膜を形成する、  (3) forming a uniform silica thin film of a predetermined thickness on the substrate in the liquid by adhesion to the substrate and dehydration polycondensation;
( 4 ) 上記膜形成過程で反応液を動的な状態に保持する、  (4) maintaining the reaction solution in a dynamic state during the film formation process,
ことを特徴とするシリ力薄膜の製造方法。 A method for producing a silicon thin film.
2 . シリコンアルコキシドが、 シリコンテトラメ トキシド、 シ リコンテトラエトキシド、 シリコンテトライソプロポキシド、 及びシリ コンテトラブトキシドの群から選ばれた少なくとも 1種である請求項 1 に記載の方法。  2. The method according to claim 1, wherein the silicon alkoxide is at least one selected from the group consisting of silicon tetramethoxide, silicon tetraethoxide, silicon tetraisopropoxide, and silicon tetrabutoxide.
3 . 溶媒であるアルコールが、 メタノール、 エタノール、 及び イソプロパノールの群から選ばれた少なくとも 1種である請求項 1に記 載の方法。  3. The method according to claim 1, wherein the alcohol as the solvent is at least one selected from the group consisting of methanol, ethanol, and isopropanol.
4 . シリカ膜の膜厚が、 1 n m〜 1 0 / mである請求項 1に記 載の方法。  4. The method according to claim 1, wherein the silica film has a thickness of 1 nm to 10 / m.
5 . 反応液を揺動させることにより反応液を動的な状態に保持 して、 低密度ケィ酸コロイ ドの基体への付着を促進させる請求項 1に記 載の方法。  5. The method according to claim 1, wherein the reaction solution is maintained in a dynamic state by shaking the reaction solution to promote the adhesion of the low-density colloidal colloid to the substrate.
6 . 溶媒を循環させること、 基体を振動させること、 又は反応 槽を震盪することにより反応液を動的な状態に保持する請求項 1に記載 の方法。 6. The method according to claim 1, wherein the reaction solution is maintained in a dynamic state by circulating the solvent, vibrating the substrate, or shaking the reaction vessel.
7 . 基体表面の疎水度を設定することにより薄膜の表面粗さを 制御する請求項 1に記載の方法。 7. The method according to claim 1, wherein the surface roughness of the thin film is controlled by setting the hydrophobicity of the substrate surface.
8 . 基体の浸潰の開始時間とその後の保持時間を任意に設定す ることにより所定の膜厚にする請求項 1に記載の方法。  8. The method according to claim 1, wherein a predetermined film thickness is obtained by arbitrarily setting a start time of immersion of the substrate and a subsequent holding time.
9 . 基体が、 フッ素処理に代表される化学的修飾により表面が 疎水化された基体、 シリコーンゴム、 アクリル樹脂、 又はセルロースで ある請求項 1に記載の方法。  9. The method according to claim 1, wherein the substrate is a substrate whose surface is hydrophobized by chemical modification represented by fluorine treatment, silicone rubber, acrylic resin, or cellulose.
1 0 . 請求項 1から 9のいずれかに記載の方法により得られた シリカ薄膜を、 乾燥することを特徴とするシリ力薄膜の製造方法。  10. A method for producing a silica thin film, comprising drying a silica thin film obtained by the method according to any one of claims 1 to 9.
1 1 . 乾燥後の熱処理によって膜の密度を任意に設定する請求 項 1 0に記載の方法。  11. The method according to claim 10, wherein the density of the film is arbitrarily set by a heat treatment after drying.
1 2 . 請求項 1カゝら 1 1のいずれかに記載の方法により得られ たシリカ薄膜を表層に有することを特徴とする高い光透過性を有する複 合構造体。  12. A composite structure having high light transmittance, comprising a silica thin film obtained by the method according to any one of claims 1 to 11 in a surface layer.
1 3 . チタンとは異種の金属を成分とする金属化合物膜を 1層 又は複数層有し、 最表面にチタン酸化物膜を有する複合膜を製造する方 法であって、  13. A method for producing a composite film having one or more metal compound films containing components of metals different from titanium and having a titanium oxide film on the outermost surface,
( 1 ) チタンアルコキシド溶液中に、 チタンとは異種の金属を成分とす る金属化合物膜を表面に 1層又は複数層有する基体を浸漬する、 ( 2 ) 該チタンアルコキシドを加水分解することにより液中に直径 1〜 3 0 n mの低密度チタン酸コロイ ドを生ぜしめる、  (1) A substrate having one or more layers of a metal compound film containing a metal different from titanium is immersed in a titanium alkoxide solution. (2) A liquid is obtained by hydrolyzing the titanium alkoxide. Produces low-density colloidal titanate of 1 to 30 nm in diameter,
( 3 ) これらの基体への付着と脱水重縮合により液中で該基体の表面を チタン酸化物を以て被覆せしめる、  (3) coating the surface of the substrate with titanium oxide in a liquid by adhesion to the substrate and dehydration polycondensation;
ことを特徴とする複合膜の製造方法。 A method for producing a composite membrane, comprising:
1 4 . チタンとは異種の金属を成分とする金属化合物膜が、 非 晶質シリカからなる請求項 1 3に記載の方法。 14. The method according to claim 13, wherein the metal compound film containing a metal different from titanium as a component is made of amorphous silica.
1 5. 非晶質シリカからなる膜が、 熱処理により高密度化され ている請求項 1 4に記載の方法。 15. The method according to claim 14, wherein the film made of amorphous silica is densified by heat treatment.
1 6. チタンアルコキシドが、 チタンテトラメ トキシド、 チタ ンテトラエトキシド、 チタンテトライソプロポキシド、 及びチタンテト ラブトキシドの群から選ばれた少なくとも 1種以上である請求項 1 3に 記載の方法。  16. The method according to claim 13, wherein the titanium alkoxide is at least one selected from the group consisting of titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, and titanium tetrabutoxide.
1 7. 溶媒であるアルコールが、 メタノール、 エタノール、 及 びイソプロパノールの群から選ばれた少なくとも 1種以上である請求項 1 3に記載の方法。  17. The method according to claim 13, wherein the solvent alcohol is at least one selected from the group consisting of methanol, ethanol, and isopropanol.
1 8. 上記反応液の保持温度が、 0 以上 1 0 O :以下である 請求項 1 3に記載の方法。  18. The method according to claim 13, wherein the holding temperature of the reaction solution is 0 or more and 100 or less.
1 9. 請求項 1 3から 1 8のいずれかに記載の方法により得ら れた複合膜を、 熱処理することでチタン酸化物を結晶質アナ夕ース相に 転移せしめることを特徴とする複合膜の製造方法。  1 9. A composite characterized in that the composite film obtained by the method according to any one of claims 13 to 18 is subjected to a heat treatment so that the titanium oxide is transformed into a crystalline anode phase. Manufacturing method of membrane.
2 0. 3 00で以上 1 0 0 0 以下で熱処理する請求項 1 8に 記載の方法。  19. The method according to claim 18, wherein the heat treatment is carried out at a temperature of not less than 200 and not more than 100.
2 1. 請求項 1 3から 2 0のいずれかに記載の方法により得ら れた複合膜であって、 基体の表面に接合された、 均一な 0. 0 1— 1 0 0 mの厚みの、 チタンとは異種の金属を成分とする金属化合物膜を 1 層又は複数層有し、 最表面に均一な 0. 0 1— 1 0 0 zmの厚みのチタ ン酸化物膜を有することを特徴とする複合膜。  2 1. A composite film obtained by the method according to any one of claims 13 to 20, wherein the composite film has a uniform thickness of 0.01 to 100 m, which is bonded to a surface of a substrate. It is characterized by having one or more layers of a metal compound film containing a metal different from titanium as a component, and having a uniform titanium oxide film with a thickness of 0.01 to 100 zm on the outermost surface. And a composite membrane.
2 2. 請求項 2 1に記載の複合膜を表層に有することを特徴と する光触媒作用を有する複合構造体。  2 2. A composite structure having a photocatalytic action, comprising the composite film according to claim 21 in a surface layer.
PCT/JP2003/003326 2002-03-19 2003-03-19 Thin silica film and silica-titania composite film, and method for preparing them WO2003078320A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10392399T DE10392399T5 (en) 2002-03-19 2003-03-19 Thin silica film, silica-titania composite film and method of making the same
US10/505,878 US20050175852A1 (en) 2002-03-19 2003-03-19 Thin silica film and silica-titania composite film, and method for preparing them
AU2003227187A AU2003227187A1 (en) 2002-03-19 2003-03-19 Thin silica film and silica-titania composite film, and method for preparing them

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-075995 2002-03-19
JP2002075995A JP4117371B2 (en) 2002-03-19 2002-03-19 Silica-titania composite membrane, production method thereof and composite structure
JP2002076093A JP4482679B2 (en) 2002-03-19 2002-03-19 Method for producing silica thin film on substrate surface having arbitrary surface characteristics and surface shape, and composite structure
JP2002-076093 2002-03-19

Publications (1)

Publication Number Publication Date
WO2003078320A1 true WO2003078320A1 (en) 2003-09-25

Family

ID=28043770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003326 WO2003078320A1 (en) 2002-03-19 2003-03-19 Thin silica film and silica-titania composite film, and method for preparing them

Country Status (4)

Country Link
US (1) US20050175852A1 (en)
AU (1) AU2003227187A1 (en)
DE (1) DE10392399T5 (en)
WO (1) WO2003078320A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112359A1 (en) * 2008-11-03 2010-05-06 Sharma Pramod K Titanium dioxide coatings having barrier layers and methods of forming titanium dioxide coatings having barrier layers
FR2979910B1 (en) * 2011-09-13 2014-01-03 Saint Gobain PHOTOCATALYTIC MATERIAL AND GLAZING OR PHOTOVOLTAIC CELL COMPRISING THIS MATERIAL
US20150072171A1 (en) * 2013-09-12 2015-03-12 Sri Lanka Institute of Nanotechnology (Pvt) Ltd. Hydrophobic surface treatment compositions comprising titanium precursors
KR101905225B1 (en) * 2014-08-06 2018-10-08 (주)엘지하우시스 Photo catalyst functional films and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247268A (en) * 1988-08-10 1990-02-16 Stanley Electric Co Ltd Dip solution
JPH07101715A (en) * 1993-10-06 1995-04-18 Ebara Corp Production of silicon dioxide coating film and device therefor
JPH09295804A (en) * 1996-05-08 1997-11-18 Tosoh Corp Production of silica thin membrane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175027A (en) * 1990-02-23 1992-12-29 Lord Corporation Ultra-thin, uniform sol-gel coatings
BR9607868A (en) * 1995-03-20 1998-06-30 Toto Ltd Mirror lens and transparent leaf member with anti-clogging composite with a hydrophilic surface anti-fog process to prevent a mirror, lens or transparent leaf member from becoming cloudy or cloudy with moisture condensate and / or water droplets adhering processes to make the surface of the water hydrophilic a substrate to clean a substrate to keep the surface of a substrate positioned outdoors clean to prevent the growth of adherent water droplets on a substrate and to prepare a mirror a lens and a transparent leaf member with fogging and a self-cleaning compound with a hydrophilic surface and anti-fog glass
JP3781888B2 (en) * 1998-02-13 2006-05-31 日産自動車株式会社 Hydrophilic substrate and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247268A (en) * 1988-08-10 1990-02-16 Stanley Electric Co Ltd Dip solution
JPH07101715A (en) * 1993-10-06 1995-04-18 Ebara Corp Production of silicon dioxide coating film and device therefor
JPH09295804A (en) * 1996-05-08 1997-11-18 Tosoh Corp Production of silica thin membrane

Also Published As

Publication number Publication date
AU2003227187A1 (en) 2003-09-29
US20050175852A1 (en) 2005-08-11
DE10392399T5 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
Balasubramanian et al. Titania powder modified sol-gel process for photocatalytic applications
CN104910656B (en) A kind of method that super-hydrophobic silica powder and super-hydrophobic coat are prepared with compound silicon source
JP4520418B2 (en) Optical transparent member and optical system using the same
JP4974459B2 (en) Support comprising a photocatalytic TiO2 layer
JP4182236B2 (en) Optical member and optical member manufacturing method
JP4883383B2 (en) Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP4330661B2 (en) Tantalum oxide-based inorganic polymer material having high refractive index and mechanical wear resistance, process for producing the same, and optical material containing the polymer
Shokuhfar et al. SiO2-TiO2 nanostructure films on windshields prepared by sol-gel dip-coating technique for self-cleaning and photocatalytic applications
JP2010209337A (en) Uniformly dispersed photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained by using the same
JP2002180003A (en) AQUEOUS COATING SOLUTION FOR ABRASION RESISTANT SiO2 ANTI- REFLECTIVE LAYER
GB2086367A (en) Producing glass from silicon alkoxide solution
CN102712526B (en) Method, patterned surface and the purposes of surface structuration are made by reactive ion etching
JPH1143327A (en) Titanium oxide particle, its water dispersing sol, coated film and their production
WO2000010921A1 (en) Finely particulate titanium-containing substance, coating fluid containing the same, processes for producing these, and molded article having thin film comprising the substance
JP5118067B2 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST THIN FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED PRODUCT
JP4488764B2 (en) Transparent antireflection film, method for producing the same, and optical member
JP4117371B2 (en) Silica-titania composite membrane, production method thereof and composite structure
WO2003078320A1 (en) Thin silica film and silica-titania composite film, and method for preparing them
US20150225569A1 (en) Method for producing hollow particles, hollow particles, antireflection coating, and optical element
JP4482679B2 (en) Method for producing silica thin film on substrate surface having arbitrary surface characteristics and surface shape, and composite structure
Alzamani et al. Sol–gel synthesis of TiO 2 nanostructured film on SiO 2 pre-coated glass with a comparative study of solvent effect on the film properties
US20030054207A1 (en) Metal oxide films
Alzamani et al. Study of annealing temperature variation on the structural properties of dip-coated TiO2-SiO2 nanostructured films
JP2009023854A (en) Epitaxial nano tio2 particle coating and method for preparing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10505878

Country of ref document: US

122 Ep: pct application non-entry in european phase
RET De translation (de og part 6b)

Ref document number: 10392399

Country of ref document: DE

Date of ref document: 20050616

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10392399

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607