EP2754204A1 - Rfid antenna modules and methods of making - Google Patents

Rfid antenna modules and methods of making

Info

Publication number
EP2754204A1
EP2754204A1 EP12753450.1A EP12753450A EP2754204A1 EP 2754204 A1 EP2754204 A1 EP 2754204A1 EP 12753450 A EP12753450 A EP 12753450A EP 2754204 A1 EP2754204 A1 EP 2754204A1
Authority
EP
European Patent Office
Prior art keywords
module
antenna
ma
chip
mt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12753450.1A
Other languages
German (de)
French (fr)
Inventor
David Finn
Lionel Carré
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feinics Amatech Teoranta
Original Assignee
Feinics Amatech Teoranta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201161533228P priority Critical
Priority to US13/294,578 priority patent/US20120055013A1/en
Priority to US201161561938P priority
Priority to US13/310,718 priority patent/US8366009B2/en
Priority to US201161569317P priority
Priority to US201261586781P priority
Priority to US201261595088P priority
Priority to US201261624384P priority
Priority to US201261624412P priority
Priority to US201261646369P priority
Priority to US201261660668P priority
Application filed by Feinics Amatech Teoranta filed Critical Feinics Amatech Teoranta
Priority to PCT/EP2012/066183 priority patent/WO2013034426A1/en
Publication of EP2754204A1 publication Critical patent/EP2754204A1/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Abstract

A winding core (WC) having a tubular body portion (B) and two ends is mounted by one of its ends to a module tape (MT), a module antenna (MA) is wound around the winding core (WC), a chip (CM) is disposed on the module tape (MT) within the winding core (WC). Connections (wb) are made, and glob-top (GT) is applied over the chip (CM), substantially filling the interior area of the winding core (WC). The module antenna (MA), winding core (WC) and chip (CM) may subsequently be overmolded with a mold mass (MM). The winding core (WC) may have a flange (F) at one end.

Description

RFID ANTENNA MODULES AND METHODS OF MAKING

TECHNICAL FIELD

The invention relates to "secure documents" such as electronic passports, electronic ID cards and smart cards (data carriers) having RFID (radio frequency identification) chips or chip modules (CM) and operating in a "contactless" mode (ISO 14443) including dual interface (DI, or DIF) cards which can also operate in contact mode (ISO 7816-2), and more particularly to improving coupling between components within the smart card, such as between a module antenna (MA) connected with the RFID chip (CM) and a booster antenna (BA) on the card body (CB) of the smart card and inductively coupled with the module antenna (MA) and consequent improvements in the RFID chip (CM) interacting with external RFID readers.

BACKGROUND

For purposes of this discussion, an RFID transponder generally comprises a substrate, an RFID chip or chip module (CM) disposed on or in the substrate, and an antenna disposed on or in the substrate. The transponder may form the basis of a secure document such as an electronic passport, smart card or national ID card, which may also be referred to as "data carriers".

The RFID chip (CM) may operate solely in a contactless (non-contact) mode (such as ISO 14443), or may be a dual interface (DI, DIF) chip module (CM) which may additionally be operative to function in a contact mode (such as ISO 7816-2) and a contactless mode. The RFID chip (CM) may harvest energy from an RF signal supplied by an external RFID reader device with which it communicates. The chip module (CM) may be a leadframe-type chip module or an epoxy-glass type chip module. The epoxy-glass module can be metallized on one side (contact side) or on both sides with through-hole plating to facilitate the interconnection with the antenna.

The substrate, which may be referred to as an "inlay substrate" (such as for electronic passport) or "card body" (such as for smart card) may comprise one or more layers of material such as Polyvinyl Chloride (PVC), Polycarbonate (PC), polyethylene (PE), PET (doped PE), PET-G (derivative of PE), Teslin™, Paper or Cotton/Noil, and the like. An antenna, which may be referred to as a "card antenna" (CA), may be mounted to the inlay substrate using a sonotrode (ultrasonic tool) and electrically connected with the chip module (CM). See, for example US 6,698,089 and US 6,233,818, incorporated by reference herein. A typical pattern for a card antenna (CA) is generally rectangular, in the form of a flat (planar) coil (spiral) having a number of turns, disposed around the periphery of the substrate (or relevant portion thereof). See, for example, US 7,980,477 (2011, Finn).

Rather than directly electrically connecting the RFID chip (CM) to a card antenna (CA), a module antenna (MA) may be incorporated into an antenna module (AM) comprising the RFID chip (CM) and the module antenna (MA). The module antenna (MA) may be quite small (such as approximately 15mm x 15mm), in contrast with the card antenna (CA) (such as approximately 50mm x 80mm). The module antenna (MA) may be inductively coupled rather than electrically connected to the card antenna (CA). In such cases, the card antenna (CA) may be referred to as a booster antenna (BA). The booster antenna (BA) may comprise a portion disposed around the periphery of the card body (CB), and another portion which may comprise a coupler coil (CC) disposed at an interior area of the card body (CB) for inductively coupling with the module antenna (MA). The terms card antenna (CA) and booster antenna (BA) may be used interchangeably herein.

US 20120038445 (2012, Finn) discloses a transponder with an antenna module (AM) having a chip module (CM) and an antenna (MA); a booster antenna (BA) having outer and inner antenna structures (D,E) in the form of flat coils disposed around the periphery of the card body (CB). The antenna module (AM) may be positioned so that its antenna (MA) overlaps only one of the antenna structures or the second antenna structure, for inductive coupling thereto.

US 5,084,699 (1992, Trovan) entitled Impedance Matching Coil Assembly For An Inductively Coupled Transponder. Attention is directed to Fig. 5. A coil assembly for use in an inductively powered transponder includes a primary coil (156) and a secondary coil (158) wrapped around the same coil forming ferrite rod (160). The primary coil's leads (162) are left floating while the secondary coil's leads (164) are connected to the integrated identification circuit of the transponder.

US 5,955,723 (1999, Siemens) entitled Contactless Chip Card discloses a data carrier configuration includes a semiconductor chip. Attention is directed to FIG. 1. A first conductor loop (2) is connected to the semiconductor chip (1) and has at least one winding and a cross- sectional area with approximately the dimensions of the semiconductor chip. At least one second conductor loop (3) has at least one winding, a cross-sectional area with approximately the dimensions of the data carrier configuration and a region forming a third loop (4) with approximately the dimensions of the first conductor loop (2). The third loop (4) inductively couples the first conductor loop (2) and the at least one second conductor loop (3) to one another.

US 6,378,774 (2002, Toppan) discloses a smart card comprising an IC module and an antenna for non-contact transmission. The IC module has both a contact-type function and a non-contact- type function. The IC module has a first coupler coil (8), the antenna has a second coupler coil (3). The first and second coupler coils are disposed to be closely coupled to each other, and are coupled in a non-contact state by transformer coupling. Various ways of forming the first coupler coil (8) are shown. For example, in FIG. 14, the first coupler coil (8) is wound around a coil frame (17), which is provided around the seal resin (16) of IC chip (6).

US 7,928,918 (2011, Gemalto) entitled Adjusting Resonance Frequency By Adjusting Distributed Inter-Turn Capacity discloses a method for adjusting frequency tuning of a resonant circuit with turns having a regular spacing generating stray inter-turn capacity.

US 8,130,166 (2012, Assa Abloy) discloses Coupling Device For Transponder And Smart Card With Such Device. Attention is directed to Fig. 6. A coupling device is formed by a continuous conductive path having a central section (12) and two extremity sections (11, 1 ), the central section (12) forming at least a small spiral for inductive coupling with the transponder device, the extremities sections (11, 11 ') forming each one large spiral for inductive coupling with the reader device. US2010/0176205 (2010, SPS) entitled Chip Card With Dual Communication Interface. Attention is directed to FIGURE 4. A card body (22) includes a device (18) for concentrating and/or amplifying electromagnetic waves, which can channel the electromagnetic flow received, in particular, from a contactless chip card reader toward the coils of the antenna (13) of the microelectronic module (11). The device (18) for concentrating and/or amplifying electromagnetic waves may consist of a metal sheet disposed in the card body (22) below the cavity (23) receiving the microelectronic module (11), or may consist of an antenna consisting of at least one coil, disposed in the card body (22) below the cavity (23) receiving the microelectronic module (11).

The following patents and publications are referenced, and may be "incorporated by reference", herein: CA 2,279,176 (1998, PAV); DE 39 35 364 (1990, ADE); DE 43 11 493 (2000, Amatech); NL 9100347 (1992, 'Nedap'); US 5,773,812 (1998, ADE); US 6,008,993 (1999, ADE); US 6,142,381(2000, Finn et al.); US 6,190,942 (2001, "PAV"); US 6,095,423 (2000, Siemens); US 6,310,778 (2001, Finn et al.); US 6,406,935 (2002, ASK); US 6,719,206 (2004, On Track); US 7,320,738 (2008, FCI); US 8,100,337 (2012, "SPS"); US 2008/0283615 (2008, Finn); US 2008/0308641 (2008, Finn); US 2008/0314990 (2008, Smartrac); US 20090057414; US 2002/0020903 (2002, ADE); US 20100283690(2010, SPS); US 2011/0163167 (2011, SPS).

SUMMARY

A winding core (WC) having a tubular body portion (B) and two ends is mounted by one of its ends to a module tape (MT), a module antenna (MA) is wound around the winding core (WC), a chip (CM) is disposed on the module tape (MT) within the winding core (WC). Connections (wb) are made, and glob-top (GT) is applied over the chip (CM), substantially filling the interior area of the winding core (WC). The module antenna (MA), winding core (WC) and chip (CM) may subsequently be overmolded with a mold mass (MM). The winding core (WC) may have a flange (F) at one end.

According to an embodiment of the invention, an antenna module (AM, 200, 400) for a smart card (SC) may comprise: a module tape (MT, 202, 402); a chip (CM, 210, 410) disposed on a surface of the module tape (MT); and a module antenna (MA, 230, 430) disposed on the surface of the module tape (MT), and connected with the chip (CM); characterized by: a support structure (DS, WC, 220, 420) secured to the surface of the module tape (MT), serving as a winding core for the module antenna (MA) and as a dam for glob-top (GT) covering the chip (CM); wherein the support structure (DS, WC, 220, 420) comprises a tubular body portion (B) having two opposite open ends (220a/b, 420a/b), one of which is secured to the surface of the module tape (MT), the other of which is a free end. The support structure (WC, 420) may have a flange (F, 424) disposed around the free end (420a) of the body portion (B). The module antenna (MA) may be disposed external to the body portion (B); and the chip (CM) may be disposed on the module tape (MT) internal to the body portion (B). At least one slot (S) may extending through the body portion (B) to allow corresponding at least one end of the module antenna (MA) to pass through the body portion (B) from external the body portion (B) to internal the body portion (B). Glob-top may cover at least the chip (CM), within the support structure. A mold mass (MM) may cover the chip (CM) the support structure (DS, WC) and the module antenna (MA). Contact pads (CP) may be disposed on an opposite surface of the module tape (MT) for a contact interface.

A smart card (SC) may comprise the antenna module (AM) disposed in a card body (CB) having a booster antenna (BA) having an outer portion disposed around a periphery of the card body (CB) and a coupler coil (CC) disposed at an interior area of the card body (CB); wherein the antenna module (AM) is disposed at the interior area of the card body (CB) for inductive coupling of the module antenna (MA) with the coupler coil (CC). A recess (R) may be provided in the card body (CB) for receiving the antenna module (AM). At least a portion of the coupler coil (CC) may be embedded in the recess (R).

According to an embodiment of the invention, a method of making an antenna module (AM) may comprise: affixing a tubular support structure (DS, WC, 220, 420) having two opposite open ends (220a/b, 410a/b) on a surface of a module tape (MT, 202, 402); and winding a wire for a module antenna (MA) around the tubular support structure (DS, WC). The module antenna (MA, 230, 430) may be wound using a flyer winding technique (FIG. 3). Before winding the wire around the support structure, a first end of the wire for forming the module antenna (MA) may be secured to a first pin; and a first end portion of the wire may be passed over a first bond pad (BP) on the module tape (MT). After winding the wire around the support structure, a second end portion of the wire may be passed over a second bond pad (BP) on the module tape (MT); and a second end of the wire for forming the module antenna (MA) may be secured to a second pin. The first and second end portions may be connected to the first and second bond pads.

According to an embodiment of the invention, a method of making an antenna module (AM, FIG. IB, 4E) may comprise: mounting a module antenna (MA) to a module tape (MT); mounting and connecting a chip (CM) to the module tape (MT); covering the chip (CM) and its connections with resin (GT); characterized by: the chip (CM) and its connections are covered with resin (GT) by filling an interior area of the module antenna (MA) with resin after mounting the module antenna (MA) and after mounting and connecting the chip (CM).

A smart card (SC) may comprise a card body (CB) and an antenna module (AM). The card body (CB) may have a booster antenna (BA) comprising windings disposed around the periphery of the card body (CB) and a coupler coil (CC) disposed at an interior area of the card body (CB). An antenna module (AM) having a module antenna (MA), may be disposed in a recess of the card body (CB), within the interior of the coupler coil (CC), and may be substantially coplanar with the coupler coil (CC), so that the module antenna (MA) couples inductively (transformer coupling) with the coupler coil (CC).

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will be made in detail to embodiments of the disclosure, non-limiting examples of which may be illustrated in the accompanying drawing figures (FIGs). The figures are generally diagrams. Some elements in the figures may be exaggerated, others may be omitted, for illustrative clarity. Although the invention is generally described in the context of various exemplary embodiments, it should be understood that it is not intended to limit the invention to these particular embodiments, and individual features of various embodiments may be combined with one another. Any text (legends, notes, reference numerals and the like) appearing on the drawings are incorporated by reference herein. Some figures may be in the form of diagrams. FIG. 1 is a cross-sectional view of a portion of a dual interface (DI) smart card (SC), also showing external "contact" and "contactless" reader devices.

FIGs. 1A and IB are cross-sectional views of an antenna modules (AM) that may be used in the smart card (SC) of FIG. 1, according to some embodiments of the invention.

FIG. 1C is a cross-sectional view of a module antenna (MA) subassembly that can be used with some of the antenna modules (AM) disclosed herein, according to the invention.

FIG. 2 is a cross-sectional view of an antenna module (AM), according to an embodiment of the invention.

FIG. 2A is a cross-sectional view of a dam structure (DS) component for the antenna module (AM) of FIG. 2.

FIGs. 2B, 2C are plan views of the underside of a module tape (MT) for an antenna module (AM), according to some embodiments of the invention.

FIG. 3 is a perspective view and FIG. 3A is a plan view of techniques for forming the module antennas (MAs) of antenna modules (AMs), according to some embodiments of the invention.

FIG. 4 is a cross-sectional view of a winding core WC upon which a module antenna may be wound, according to an embodiment of the invention.

FIGs. 4A-4F are cross-sectional views of a technique for forming antenna modules (AMs), according to an embodiment of the invention.

FIG. 5 is an exploded cross-sectional view showing an antenna module (AM) being installed in a card body (CB) of a smart card (SC).

DETAILED DESCRIPTION

Various embodiments will be described to illustrate teachings of the invention(s), and should be construed as illustrative rather than limiting. Any dimensions and materials or processes set forth herein should be considered to be approximate and exemplary, unless otherwise indicated. In the main hereinafter, transponders in the form of secure documents which may be smart cards or national ID cards may be discussed as exemplary of various features and embodiments of the invention(s) disclosed herein. As will be evident, many features and embodiments may be applicable to (readily incorporated in) other forms of secure documents, such as electronic passports. As used herein, any one of the terms "transponder", "smart card", "data carrier", and the like, may be interpreted to refer to any other of the devices similar thereto which operate under ISO 14443 or similar RFID standard. The following standards are incorporated in their entirety by reference herein:

ISO/IEC 14443 (Identification cards - Contactless integrated circuit cards - Proximity cards) is an international standard that defines proximity cards used for identification, and the transmission protocols for communicating with it.

ISO/IEC 7816 is an international standard related to electronic identification cards with contacts, especially smart cards.

A typical data carrier described herein may comprise (i) an antenna module (AM) having an RFID chip or chip module (CM) and a module antenna (MA), (ii) a card body (CB) and (iii) a booster antenna (BA) disposed on the card body (CB) to enhance coupling between the module antenna (MA) and the antenna of an external RFID "reader". When "chip module" is referred to herein, it should be taken to include "chip", and vice versa, unless explicitly otherwise stated. The module antenna (MA) may comprise a coil of wire, conductive traces etched or printed on a module tape (MT) substrate for the antenna module (AM), or may be incorporated directly on the chip itself.

The booster antenna (BA) may be formed by embedding wire in an inlay substrate or card body (CB). However, it should be understood that the antenna may be formed using a processes other than by embedding wire in a substrate, such as additive or subtractive processes such as printed antenna structures, coil winding techniques (such as disclosed in US 6,295,720), antenna structures formed on a separate antenna substrate and transferred to the inlay substrate (or layer thereof), antenna structures etched (including laser etching) from a conductive layer on the substrate, conductive material deposited on the substrate or in channels formed in the substrate, or the like. When "inlay substrate" is referred to herein, it should be taken to include "card body", and vice versa, as well as any other substrate for a secure document, unless explicitly otherwise stated.

The descriptions that follow are mostly in the context of dual interface (DI, DIF) smart cards, and relate mostly to the contactless operation thereof. Many of the teachings set forth herein may be applicable to electronic passports and the like having only a contactless mode of operation. Generally, any dimensions set forth herein are approximate, and materials set forth herein are intended to be exemplary.

Generally, coupling between the module antenna (MA) and the antenna of an external RFID reader may be enhanced by incorporating a booster antenna (BA) on the card body (CB). In some respects, a booster antenna (BA) is similar to a card antenna (CA). However, in contrast with a card antenna (CA) which is directly electrically connected with the RFID chip or chip module (such as in US 7,980,477), the booster antenna (BA) is inductively coupled with the module antenna (MA) which may be connected with the RFID chip (CM). Such inductive coupling may be more difficult to accomplish than a direct electrical connection.

The booster antenna BA (and other features) disclosed herein may increase the effective operative ("reading") distance between the antenna module AM and an external contactless reader with capacitive and inductive coupling. With reading distances typically on the order of only a few centimeters, an increase of 1cm can represent a significant improvement.

Dual Interface (DI) Smart Card and Readers

FIG. 1 illustrates a dual interface (DI) smart card SC comprising:

an RFID chip (or chip module) CM, which may be a dual interface (DI) chip or chip module, disposed on an underside of a substrate or module tape MT (or chip carrier tape, or metal leadframe.);

a number (such as six) of contact pads CP for implementing a contact interface (ISO 7816) on a top side of the module tape MT; and

a module antenna MA disposed on the underside of the module tape MT, typically formed from an etched conductor or wire, in a spiral (coil) pattern.

The module tape MT supports and effects interconnections between the RFID chip CM, contact pads CP and module antenna MA, and may be single- sided, having metallization on only one side, or double- sided, having metallization on both sides.

The RFID chip CM may be connected in any suitable manner, such as flip-chip connected or wire bonded to the module tape MT. The RFID chip CM and module antenna MA may be overmolded by a mold mass MM, for protecting the CM and MA components, and interconnections.

As used herein, "chip module" includes one or more bare semiconductor dice (chips). A "hybrid" chip module may comprise a chip for contact interface and a chip for contactless interface, or the like. Reference is made to US 6,378,774 (2002, Toppan) for an example of a DIF chip solution, and to US 2010/0176205 (2010, SPS) for an example of a two chip solution wherein one chip performs the contact function and the other chip performs the contactless function.

A ferrite element (film or layer) may be incorporated into the antenna module AM, between the contact pads CP and the module antenna MA to reduce attenuating effects which may be caused by the conductive contact pads CP.

Together, the RFID chip CM, chip tape MT, contact pads CP and module antenna MA constitute an "antenna module" AM.

The smart card SC further comprises:

a substrate which for smart cards may be referred to as a "card body" CB. (For an electronic passport, the substrate would be an "inlay substrate".)

a booster antenna BA (or card antenna CA) is shown disposed around (just within) the periphery of the card body CB, typically in the form of a rectangular, planar spiral having a number of turns.

As used herein, the term card body CB is intended to embrace any substrate supporting the booster antenna BA and receiving the antenna module AM. A recess may be provided in the card body CB for receiving the antenna module AM.

The smart card may be referred to as a "data carrier", or "transponder", or the like.

Some exemplary and/or approximate dimensions, materials and specifications may be:

Module Tape (MT): epoxy-based tape, 60μιη thick

- Chip Module (CM): NXP SmartMx or Infineon SLE66, or other

Antenna Module (AM): 15mm x 15mm and 300μιη thick

Module Antenna (MA): several windings of approximately 50μιη copper wire, surrounding the chip module CM. Card Body CB: approximately 54 mm x 86 mm, 810μιη thick, polycarbonate (PC). The card body and its card antenna (CA, or booster antenna BA) are significantly (such as 20 times) larger than the chip module CM and its module antenna MA.

Booster Antenna BA: 3-12 turns of 112μιη copper, self-bonding wire, ultrasonically embedded in the card body CB. Alternatively, the booster antenna BA may comprise insulated 80μιη copper wire, disposed in a spiral pattern approximately 46mm x 76mm (slightly smaller than the card body CB), pitch of the turns 300μιη, exhibiting a resonant frequency of 13.56 MHz. The optimized self -resonance frequency of the booster antenna BA may be approximately 13 ~ 17 MHz.

o An example of a booster antenna with external sections forming a large spiral (11, 11 ') and a central portion forming a small spiral (12) may be found in US 8,130,166 (2012, "Assa Abloy"), incorporated by reference herein. The large spiral is comparable (or analogous) to the BA in FIG. 1, the small spiral is comparable to the CC in FIG. 1.

o An example of a booster antenna with an antenna coil (4) and a coupler coil (3) may be found in US 6,378,774 (2002, "Toppan") incorporated by reference herein. The antenna coil is comparable (or analogous) to the BA in FIG. 1, the coupler coil is comparable to the CC in FIG. 1.

o The present invention is not limited to the use of any specific booster antenna, rather it is directed to particulars of the antenna module AM and its manufacture.

To enhance coupling between the module antenna MA and the booster antenna BA, a material exhibiting electromagnetic coupling properties, such as ferrite, may be disposed as a thin film on surface of the card body CB or may be incorporated or embedded as particles in the card body, or both (film and particles), in any desired pattern. The use of ferrite as a material to enhance coupling or to shield (prevent) coupling is discussed herein as exemplary of a material exhibiting high electromagnetic permeability, often being used in one form or another in conjunction with antennas. See, for example, US 5,084,699 (1992, "Trovan").

Additional layers (not shown), such as cover layers, may be laminated to the card body CB to complete the construction of the smart card. The antenna module (AM) may be disposed in the card body (CB), such as in a milled recess so that its module antenna MA overlaps, or is within, is substantially coplanar with or on another level from the coupler coil CC. See, for example, US 6,378,774 (2002, Toppan), incorporated in its entirety by reference herein.

FIG. 1 further illustrates a contact reader having contacts for interacting (providing power and exchanging data) with the chip module CM via the contact pads CP in a contact mode (ISO 7816), and a contactless reader having an antenna for interacting with the chip module CM via the booster antenna BA and the module antenna MA (alternatively via a card antenna CA) in a contactless mode (ISO 14443).

An embodiment of an Antenna Module (AM)

FIG. 1A shows an antenna module (AM) 100 having an RFID chip (CM) 110 and a wound wire module antenna (MA) 130, both of which may be wire bonded to bond pads (BP) 106 on a lower surface of a module tape (MT) 102. More particularly,

an epoxy glass substrate (MT) 102 having a number of contact pads (CP) 104 on its top (as viewed) surface for making a contact interface with an external reader in a "contact mode" of operation, and a number of bond pads (BP) 106 disposed on an opposite surface of the module tape (MT) 102;

The chip (CM) 110 may be mounted to the underside (as viewed) of the module tape (MT) 102 with its terminals (CT) 110a, 110b connected such as by conventional wire bonding to selected ones of the bond pads (BP) 106 on the underside (as viewed) of the module tape (MT) 102. Only two of the wire bond connections 114a and 114b are shown, for illustrative clarity.

a module antenna (MA) 130 comprising (for example) several turns of wire, such as in a 3x6 configuration (3 layers, each layer having 6 turns), and having two ends 130a and 130b. The module antenna 130 may be connected by its ends 130a, 130b such as be thermo compression bonding to two of the bond pads (BP) 106 on the underside of the module tape (MT) 102, as illustrated. o To protect the wire bonds (connections) between the chip terminals CT and the bond pads BP, after mounting the module antenna MA to the module tape MT, and after mounting and connecting the chip CM to the module tape MT (either before or after mounting the module antenna MA), the interior area of the module antenna MA may be filled with resin GT, the module antenna MA acting as a "dam" to contain the resin GT. See FIG. IB

o The module antenna MA and its ends, as well as the chip CM and its connections (which may already be covered with resin GT) may be overmolded with a mold mass (MM).

The aggregate of the elements described above, generally the module tape (MT) 102, chip module (CM) 110 and module antenna (MA) 130 may be referred to as an "antenna module" (AM) 100.

FIG. 1C illustrates a module antenna (MA), or coil subassembly 130, that can be used in antenna modules disclosed herein, such as (but not limited to) the antenna module of FIG. 1A. A coil of wire 112 for the module antenna (MA) may be wound, using any suitable coil- winding tool, and disposed on a film support layer 132. The module antenna MA may comprise several turns of wire, and may be in the form of a ring (cylinder), having an inner diameter (ID) of approximately 9mm, and an outer diameter (OD) of approximately 10mm.

The film support layer 132 may be nitrile film, 60 μιη thick and have overall outer dimensions of approximately 10-15mm x 10-15mm, or approximately twice as large (across, in one dimension) as the module antenna MA which will be mounted thereto. A central opening 134 may be provided through the film 132, generally aligned with the position of the module antenna MA, and having a diameter which is nearly as large as the ID of the module antenna MA. The opening 134 may be formed by a punching operation. The opening 134 is for accommodating a chip CM (such as 110, FIG. 1A) and its wire bonds when the antenna module AM is assembled.

Two openings 136a and 136b may be provided (in the same punching operation as the central opening 134) through the film 132 for accommodating bonding of the antenna wire ends 112a and 112b, respectively, to the bond pads BP (106, FIG. 1A) on the module tape MT (102). A release liner 138 may be provided on one side of the film 132, such as the side opposite the module antenna MA. The central opening 134 may or may not extend through the release liner 138, which may be paper, having a thickness of approximately 60μιη.

After being mounted to the module tape MT (102), and after the chip CM (110) is mounted and connected, the module antenna MA 112 may be filled with resin to protect the chip CM and its connections. The module antenna MA may be connected before connecting the chip CM so as to avoid damaging the chip CM connections.

Winding the Module Antenna on a Dam Structure

FIG. 2 shows that a dam structure (or simply "dam") DS 220 may be disposed on the underside (top, as viewed) of the module tape MT 202, and affixed thereto (such as with an adhesive). (The module tape MT 202 is illustrated inverted in contrast with FIGs. 1, 1A, the contact pads CP 204 being on the bottom, as viewed, in this figure.)

The dam DS 230, which may be referred to as a "winding core WC" or a "support structure" or simply as a "ring", has an elongate tubular body portion B and two opposite open ends 230a and 230b, and may be cylindrical (as illustrated) or substantially rectangular in cross-section (or any other suitable shape). One end 230b of the body portion B is mounted to the module tape MT, using a suitable adhesive, the other end 230a is a free end (un-mounted). The dam DS may be formed of a plastic material such as Mylar, having a thickness 't' of approximately 200μιη. The inner diameter (ID) of the dam DS may be approximately 7mm, the outer diameter (OD) of the dam DS may be approximately 8mm.

Although shown as round (cylindrical), the cross-section of the dam DS may be substantially rectangular, or other suitable shape (for winding an module antenna MA thereupon), in which case "ID" would be inner dimension, and "OD" would be outer dimension of the body portion B.

A module antenna MA 230 (compare 130) having several layers and turns of self-bonding wire may be wound on the dam DS. The dam DS should have a height 'h' which is at least as high as the resulting module antenna MA, such as approximately 350μιη. The dam DS may be impregnated with ferrite to increase the inductance of the module antenna MA. A fixture (not shown) may be used to support the DS during winding the module antenna MA. The resulting interim product comprising a module antenna MA and dam DS mounted to a module tape MT, may be considered to be a subassembly for an antenna module AM. The two ends a, b (compare 112a, 112b) of the module antenna MA are shown, extending outwardly, to bond pads BP 206 (compare 106) on the surface of the module tape MT.

An RFID chip CM 210 (compare 110) may be subsequently be mounted to surface of the module tape MT, within the interior of the dam DS and wire-bonded from its terminals CT to bond pads BP on the underside (top, as viewed in FIG. 2) of the module tape MT. Then, glob-top potting compound GT (not shown) may be applied within the interior of the dam DS to protect the chip CM and wire bonds, resulting in a substantially complete antenna module AM 200. The RFID chip CM and module antenna MA may be overmolded by a mold mass MM (not shown, see FIG. 1), for protecting the chip CM and module MA components, and respective interconnections to bond pads BP on the module tape MT, completing the antenna module AM.

FIG. 2A shows that at least one slot S 232 may be provided through the body portion B of the dam DS (winding core WC) to accommodate corresponding at least one end (a, b) of the module antenna MA wire (not shown) passing therethrough, inwardly, from external to the body portion B to the "interior" space enclosed by the dam DS. One or both ends (a, b) of the module antenna MA may extend inwardly, through one or two slots in the body portion B (two ends can extend through a single slot, at different levels) so that the ends (a, b) terminate in an area on the module tape MT enclosed by the dam DS. The slot(s) S should be sized to (wide enough) accommodate the diameter of the antenna wire passing therethrough. Having the ends of the antenna wire terminate interior to the dam DS has the advantage that they can be protected by the same glob- top GT that protects the chip CM (see FIG. 4E).

Antenna Modules formed on 35mm chip carrier tape

FIG. 2B illustrates a technique for forming one of many module antennas MA on a winding core WC on a 35 mm chip carrier tape (module tape MT). The two ends a, b of the module antenna MA wire may extend inward (such as though one or more slots in the winding core WC), for bonding to bond pads BP disposed on the module tape MT internal to the winding core WC. Alternatively, the winding core WC may be omitted, and the module antenna MA may be an air- core coil.

FIG. 2C illustrates a technique for forming one of many module antennas MA on a winding core WC on a 35 mm chip carrier tape (module tape MT). The two ends a, b of the module antenna MA wire may extend outward for bonding to bond pads BP disposed on the module tape MT external to the winding core WC (in the manner shown in FIG. 2). Alternatively, the winding core WC may be omitted, and the module antenna MA may be an air-core coil. illustrates a technique for forming module antennas MA's on winding cores WCs, for example on a 35 mm chip carrier tape (module tape MT). The two ends a, b of the module antenna MA wire may extend outward, and are connected to bonding pads BP on the module tape MT external the winding core WC. Alternatively, the winding core WC may be omitted, and the module antenna may be an air-core coil.

In FIGs. 2B and 2C, a square pad is shown for receiving the chip CM. A number of smaller bond pads are shown inside the winding cores WC which are connected internally to the module tape to the contact pads CP (not shown) on the face-up side of the module tape MT, and various contact terminals of the chip may be wire bonded thereto, followed by glob-top filling of the winding core WC to protect the wire bonds. In FIGs. 2B and 2C, some interconnects are shown, others may be omitted, for illustrative clarity.

"Flyer" coil winding

FIG. 3 illustrates a plurality (approximately fifteen) of module antennas MA, such as the type shown in FIG. 2C (ends extending outward from WC) being wound on winding cores WC, on a 35mm chip carrier tape (module tape MT). The winding cores WC may be disposed in two rows, two winding cores WC conveniently fitting side-by-side across the width of the 35mm carrier tape. The 35mm chip carrier tape may advance along a stage, stopping to have a number (such as two) of modules antennas MA wound at a time. A plurality (such as fifteen) of pairs of retractable "fixation" pins extend from the stage, adjacent the 35mm carrier tape, on both sides thereof, each pair of pins being associated with each of the (fifteen) winding cores WC. A lesser number (fewer), such as two, of nozzles may be provided for supplying and winding the wire for the module antenna MA around a like number (such as two) of wire cores WC.

Generally, to form a given module antenna MA, the nozzle may first wrap a first end of the wire around a first of the pair of pins, securing (anchoring, "fixing") the first end of the wire to the first pin. The nozzle then moves towards the winding core WC, a first end portion of the wire extending (passing) over (across) a first of two bond pads BP on the module tape MT. Then the nozzle "flies" (orbits) around the winding core WC, a number (such as twenty) of times, winding the wire around the winding core WC - hence, the nomenclature "flyer" winding technique. After completing the designated number (such as twenty) of turns, the nozzle heads away from the winding core WC, a second end portion of the wire passing over a second of the two bond pads for the module antenna MA, to secure (tie off) the second end of the wire on the second of the pair of pins. Then the end portions of the wire passing over the two bond pads BP for the module antenna MA may be bonded to the respective bond pads.

It may be convenient to first form a plurality of module antennas MA, before bonding the end portions of the module antennas BP. Note in the figure that several /(six) module antennas MA have already been formed, with their two end portions extending over bond pads BP and tied off to a corresponding pairs of pins. Then, in a subsequent step, the end portions of the module antennas MA can be bonded (such as using a thermode) to the respective bond pads BP. After completing formation of the module antennas MA, residual portions (between the bond pads BP and associated pins) of the ends of the wire may be cut, the pins retracted, and "waste" wire removed such a with a suction system.

The formation of the module antenna MAs and bonding of their end portions to respective bond pads BP may be performed prior to inserting the chip CM onto module tape MT. By completing these steps before wire bonding of the chip CM (see, for example, FIG. 4D), the wire bonds to the chip CM will not disturbed during bonding of the ends of the module antenna MA. The flyer winding technique illustrated in FIG. 3 is applicable to winding a module antenna MA on the dam structure DS of FIGs. 2,2A, as well as on the dam structure WC of FIG. 4.

The following patent relating to flyer winding are incorporated by reference herein:

US 5,261,615 (1993, Gustafson); US 5,393,001 (1995, Gustafson); US 5,572,410 (1996,

Gustafson); US 5,606,488 (1997, Gustafson); US 5,649,352 (1997, Gustafson)

FIG. 3A shows some additional detail and/or variation(s) on the technique described above. A row of four antenna modules (AMs) being formed are shown disposed along one side of a 35mm carrier tape. A plurality of tubular, open-ended support structures (WC, DS) have been placed at a corresponding plurality of sites for forming a corresponding plurality of antenna modules AMs. A plurality of retractable fixation pins for the wire ends are integrated into the shuttle (stage). A pair of these pins (labeled #a, #b) is located adjacent the carrier tape at each corresponding site for an antenna modules. An exemplary method of forming a sequence of module antennas MAs at sites for antenna modules AMs may comprise some or all of the following steps, in generally (but not limited to) the following sequence ...

The wire may be clamped by a clamping mechanism.

The wire may then be guided by the nozzle past a first pin la of a first pair {la, lb) of retractable fixation pins associated with a first (shown at the right) of the antenna modules AMs.

o The winding nozzle may be controlled by an x-y-z servo system (not shown) The wire may then be guided past a first opening in the shuttle to a first of the winding cores WC associated with the first antenna module AM

o The openings in the shuttle may facilitate disconnection of the wire during bonding (occurs later)

The nozzle then moves (orbits) around the winding core WC, forming a predetermined number (such as 20) of turns of wire for the module antenna MA

The nozzle is then guided outwards, past the edge of the 35mm carrier tape, passing over a second opening in the shuttle, to the second lb of the first pair of retractable pins associated with the first antenna module Then, rather than tying the wire off on the second pin lb, the nozzle guides the wire partially (such as approximately 90 degrees) around the second pin lb towards a first pin 2a of a next pair of pins (2a, 2b) associated with a next (second from the right) of the antenna modules. This partial wrap of the wire may be sufficient to anchor (secure) the wire to the pin 2a.

Then, the nozzle guides the wire around the pin 2a towards the wire core of the second

(from the right) antenna module, passing over another opening in the shuttle.

The nozzle then moves (orbits) around the second winding core WC, forming a predetermined number (such as 20) of turns of wire for the module antenna MA.

The above steps (nozzle guided outward over an opening in the shuttle to a second pin of a pair of retractable pins, to a first pin of a next pair of retractile pins, wrapping partially around (securing the wire) and being guided inward over an opening in the shuttle to a next winding core, etc.) continues until a last winding core has been wound with a module antenna MA. Then the wire can be tied off (by the nozzle) around the second pin

(4b) of the last pair of retractable pins (4a, 4b).

o In FIG. 3A, the nozzle is shown exiting the third (from the right) winding core, headed towards the second of the pair of pins 3a, 3b associated with that antenna module site.

The end portions of the wire passing over respective bond pads BP may then be bonded, as described above with respect to FIG. 3.

In a last step, the wire can be cut, pins retracted, and residual wire removed. Single-Flange Winding Core

FIG. 4 illustrates a winding core WC 420 upon which a module antenna MA may be wound. The winding core WC, which may be referred to as a "support structure", may be made of a plastic material, such as glass fiber reinforced PPS (Polyphenylene Sulfide). As with the dam structure DS 220, the winding core WC may be in the form of a ring, or tubular structure, having a circular or substantially rectangular cross-section, and two opposite open ends 420a, 420b, one of which ends will be secured (affixed) to the underside of a module tape MT, the other of which is a free end (un-mounted). The winding core WC comprises a main body portion B 422, and a flange portion F 424 extending radially (to the left or right, as viewed) outward from the top (as viewed) free end of the body portion B. (This is in contrast with the dam DS 220 in which both ends are essentially the same as one another.)

The flange F serves to stiffen the body portion B, and also to constrain (contain) the windings of the module antenna MA as it is being wound. By way of analogy, when installed on the module tape MT, the flange F serves as one flange of a "bobbin", the surface of the module tape MT serves as the second flange of the "bobbin". The module antenna MA will be wound in a coil winding area between the two "bobbin" flanges. FIG. 4 shows a portion of the module tape MT in phantom (dashed lines), and indicates the coil winding area formed between the flange F and the underside surface of the module tape MT. (The module tape MT may be epoxy-glass, copper-clad on both sides, etched to form bond pads BP on the underside, contact pads CP on the face-up side.)

The winding core WC 420 may have the following dimensions (approximate):

thickness t of the body portion B =~ 0.85 mm

width fw of the flange F =~ 0.5 mm

outer diameter OD of the winding core WC (including flange F) =~ 9.4 mm

inner diameter ID of the winding core WC =~ 6.7 mm

height hi of coil winding area =~ 0.250 mm

- height h2 of the flange F =~ 0.100 mm

overall height h3 of the body portion B =~ 0.350 mm

The coil winding area between the flange F and the surface of the module tape MT may accommodate (contain) approximately 20 turns of 112 μιη diameter self -bonding wire for the module antenna MA. Wire having other diameters, greater or less than 112μιη may be used for the module antenna MA.

A process for forming a module antenna MA 430 on the winding core WC, further forming an antenna module AM is described with respect to FIGs. 4A - 4F, and generally comprises: fix WC to MT

wind MA on WC

dispense adhesive for the CM

place CM, cure adhesive (cure self -bonding

wire bonding (CM and MA to BPs on MT)

glob top fill interior of WC (covering CM)

overmold MA, WC, CM

FIG. 4A illustrates a first step, wherein the winding core WC 420 is affixed to the module tape MT, such as with an adhesive. The adhesive may be applied to either of the end 420b of the winding core WC or the surface of the module tape MT. The final thickness of the adhesive may be approximately 30 μιη. Alternatively, the winding core WC may be affixed to the module tape MT without adhesive, such as by spin- welding (a frictional welding technique). In a production process, a winding core WC (or simply "ring") may be placed at a plurality of locations along a 35mm carrier tape in preparation for coil winding (winding of the module antenna MA on the winding core WC, or dam DS). This step may be referred to as "ring placement".

Contact pads CPs (compare 104) for a contact interface (with an external reader) are shown in on the face-up (bottom, as viewed) surface of the module tape MT, for a dual interface (DI) antenna module AM. However, is should be understood that the invention can be practiced in the context of an antenna module AM that operates solely in contactless mode, without such contact pads CP.

FIG. 4B illustrates the winding core WC affixed (assembled, mounted) to the module tape MT. A coil winding area is formed between the flange F and the surface of the module tape MT. In this and in subsequent figures, the adhesive is omitted, for illustrative clarity.

FIG. 4C illustrates a next step, wherein the module antenna MA 430 is wound on the winding core WC, around the body portion B, in the coil winding area between the flange F and the surface of the module tape MT. This may be done in the manner shown in and described with respect to FIG. 3 (using the "flyer" winding technique). Other coil winding techniques may be used to form the coils of the module antenna MA. The ends (a, b) of the module antenna MA, extending outward from the winding core WC, may be connected with respective bond pads BP in this step. Although not shown, the winding core 420 may have at least one slot (S), comparable to the at least one slot (S) shown in FIG. 2B, to allow the ends (a, b) of the module antenna MA to extend to bond pads (BP) located the inside of the winding core WC.

The coils (turns) of wire may not be so neatly arranged, as illustrated. Nevertheless, the coils (turns) of wire are constrained within the coil winding area by the flange F and the surface of the module tape MT, as shown. The module antenna MA may comprise a total of 20 turns (coils) of wire in the coil winding area, and two ends (a, b) extending over respective bond pads BP on the surface of the module tape MT.

FIG. 4D illustrates a next step of forming the antenna module MA, wherein the chip CM (compare 110) is installed in the interior area of the winding core WC. Then, wire bonds wb (compare 114a, 114b) may be formed between the terminals (compare 110a, 110b) of the chip 110 and selected ones of the bond pads BP on the surface of the module tape MT. The ends (a, b) of the module antenna MA may also be bonded to the selected ones of the bond pads BP on the surface of the module tape MT in this step, if they were not previously connected.

FIG. 4E illustrates a next step, wherein the interior area of the winding core WC may be filled with glob-top potting compound GT, or the like, to protect the chip CM and wire bonds wb. If heat is applied to cure the glob-top GT, the heat may also cause sticking together of the self- bonding wire forming the turns (coils) of the module antenna MA.

FIG. 4F illustrates a next step, wherein a mold mass MM may be formed (by overmolding) over the module antenna MA, the ends (a, b) of the module antenna MA, the winding core WC, the glob-top GT (including over the chip CM and wire bonds). The mold mass MM may extend over the outer edge (lip) of the flange F, slightly into the coil winding area (except where there is wire), which may helping retain the mold mass MM in place. To a lesser extent, the dam structure DS (FIG. 2), which is also affixed at one end to the module tape MT, if used in lieu of the winding core WC, may also help to support (retain, capture) the mold mass MM. The process of forming a module antenna MA for an antenna module AM described above may be contrasted with Toppan '774 which shows (FIG. 14) a coil wound around a coil frame or core having flanges mounted around the epoxy resin protecting the die and wire bonds to the die. For example, in the technique described above (FIGs. 4A-4F) ...

the winding core WC has only one flange (the other "virtual" flange at the opposite open end of the support structure being the surface of the module tape MT),

the tubular support structure (WC, DS) may serve as a dam for containing later-applied glob-top GT resin,

the chip CM may be installed after the module antenna MA is formed upon the module tape MT (and the wire bonds to the chip CM also being performed after bonding the ends of the module antenna MA)

FIG. 5 (compare FIG. 1) illustrates the antenna module AM, which could be the antenna module 200 of FIG. 2 or the antenna module AM 400 of FIG. 4F, installed in a recess R in a card body CB of a smart card SC having a booster antenna BA having an outer portion at the periphery of the card body and a coupler coil CC at an interior area of the card body, such as surrounding the recess R. At least some (including all) of the turns of wire of the coupler coil CC may be embedded in the bottom of the recess R, to enhance the inductive (transformer) coupling between the coupler coil CC and the module antenna MA. Channels or a wide trench for receiving the turns of wire in the bottom of the recess R may be formed by laser ablation.

While the invention(s) has/have been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention(s), but rather as examples of some of the embodiments. Those skilled in the art may envision other possible variations, modifications, and implementations that are also within the scope of the invention(s), based on the disclosure(s) set forth herein.

Claims

CLAIMS What is claimed is:
1. An antenna module (AM, 200, 400) for a smart card (SC) comprising:
a module tape (MT, 202, 402);
a chip (CM, 210, 410) disposed on a surface of the module tape (MT); and
a module antenna (MA, 230, 430) disposed on the surface of the module tape (MT), and connected with the chip (CM);
characterized by:
a support structure (DS, WC, 220, 420) secured to the surface of the module tape (MT), serving as a winding core for the module antenna (MA) and as a dam for glob-top (GT) covering the chip (CM);
wherein the support structure (DS, WC, 220, 420) comprises a tubular body portion (B) having two opposite open ends (220a/b, 420a/b), one of which is secured to the surface of the module tape (MT), the other of which is a free end.
2. The antenna module (AM) of claim 1, wherein:
the support structure (WC, 420) has a flange (F, 424) disposed around the free end (420a) of the body portion (B).
3. The antenna module (AM) of claim 1, wherein:
the module antenna (MA) is disposed external to the body portion (B); and
the chip (CM) is disposed on the module tape (MT) internal to the body portion (B);
further comprising:
at least one slot (S) extending through the body portion (B) to allow corresponding at least one end of the module antenna (MA) to pass through the body portion (B) from external the body portion (B) to internal the body portion (B).
4. The antenna module (AM) of claim 1, further comprising:
glob-top (GT) covering at least the chip (CM), within the support structure.
5. The antenna module (AM) of claim 1, further comprising:
a mold mass (MM) covering the chip (CM), the support structure (DS, WC) and the module antenna (MA).
6. The antenna module (AM) of claim 1, further comprising:
contact pads (CP) on an opposite surface of the module tape (MT) for a contact interface.
7. A smart card (SC) comprising the antenna module (AM) of claim 1, and further comprising: a card body (CB);
a booster antenna (BA) having an outer portion disposed around a periphery of the card body (CB); and
a coupler coil (CC) disposed at an interior area of the card body (CB);
wherein the antenna module (AM) is disposed at the interior area of the card body (CB) for inductive coupling of the module antenna (MA) with the coupler coil (CC).
8. The smart card (SC) of claim 7, wherein:
a recess (R) is provided in the card body (CB) for receiving the antenna module (AM).
9. The smart card (SC) of claim 8, wherein:
at least a portion of the coupler coil (CC) is embedded in the recess (R).
10. A method of making an antenna module (AM) comprising:
affixing a tubular support structure (DS, WC, 220, 420) having two opposite open ends (220a/b, 410a/b) on a surface of a module tape (MT, 202, 402); and
winding a wire for a module antenna (MA) around the tubular support structure (DS, WC).
11. The method of claim 10, further comprising:
winding the module antenna (MA, 230, 430) using a flyer winding technique (FIG. 3).
12. The method of claim 10, further comprising, before winding the wire around the support structure: securing a first end of the wire for forming the module antenna (MA) to a first pin; and passing a first end portion of the wire over a first bond pad (BP) on the module tape (MT).
13. The method of claim 12 further comprising, after winding the wire around the support structure:
passing a second end portion of the wire over a second bond pad (BP) on the module tape (MT); and
securing a second end of the wire for forming the module antenna (MA) to a second pin.
14. The method of claim 13, further comprising:
connecting the first and second end portions to the first and second bond pads.
15. A method of making an antenna module (AM, FIG. IB, 4E) comprising:
mounting a module antenna (MA) to a module tape (MT);
mounting and connecting a chip (CM) to the module tape (MT);
covering the chip (CM) and its connections with resin (GT);
characterized by:
the chip (CM) and its connections are covered with resin (GT) by filling an interior area of the module antenna (MA) with resin after mounting the module antenna (MA) and after mounting and connecting the chip (CM).
EP12753450.1A 2010-07-13 2012-08-20 Rfid antenna modules and methods of making Withdrawn EP2754204A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US201161533228P true 2011-09-11 2011-09-11
US13/294,578 US20120055013A1 (en) 2010-07-13 2011-11-11 Forming microstructures and antennas for transponders
US201161561938P true 2011-11-21 2011-11-21
US13/310,718 US8366009B2 (en) 2010-08-12 2011-12-03 Coupling in and to RFID smart cards
US201161569317P true 2011-12-12 2011-12-12
US201261586781P true 2012-01-14 2012-01-14
US201261595088P true 2012-02-05 2012-02-05
US201261624384P true 2012-04-15 2012-04-15
US201261624412P true 2012-04-16 2012-04-16
US201261646369P true 2012-05-14 2012-05-14
US201261660668P true 2012-06-15 2012-06-15
PCT/EP2012/066183 WO2013034426A1 (en) 2011-09-11 2012-08-20 Rfid antenna modules and methods of making

Publications (1)

Publication Number Publication Date
EP2754204A1 true EP2754204A1 (en) 2014-07-16

Family

ID=46763058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12753450.1A Withdrawn EP2754204A1 (en) 2010-07-13 2012-08-20 Rfid antenna modules and methods of making

Country Status (8)

Country Link
EP (1) EP2754204A1 (en)
KR (1) KR20140071423A (en)
CN (1) CN103891045B (en)
AU (1) AU2012306568A1 (en)
BR (1) BR112014005507A2 (en)
CA (1) CA2847968A1 (en)
MX (1) MX336040B (en)
WO (1) WO2013034426A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112272B2 (en) 2010-08-12 2015-08-18 Feinics Amatech Teoranta Antenna modules for dual interface smart cards, booster antenna configurations, and methods
EP3005242A1 (en) * 2013-05-28 2016-04-13 Féinics AmaTech Teoranta Antenna modules for dual interface smartcards, booster antenna configurations, and methods
CN103730733B (en) * 2013-09-09 2019-03-22 胜美达集团株式会社 Electronic module

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084699A (en) 1989-05-26 1992-01-28 Trovan Limited Impedance matching coil assembly for an inductively coupled transponder
DE69011292D1 (en) 1989-07-03 1994-09-08 Sokymat S A A process for the production of electronic components with a coil of thin wire.
DE3935364C1 (en) 1989-10-24 1990-08-23 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf, De
WO1991016718A1 (en) 1990-04-19 1991-10-31 Ake Gustafson Method for assembling a coil on a printed circuit
WO1992015105A1 (en) 1991-02-25 1992-09-03 Ake Gustafson Method for fixing a winding to an electronic circuit
CH684642A5 (en) 1991-02-25 1994-11-15 Ake Gustafson holding clamp a bobbin in a winding machine.
NL9100347A (en) 1991-02-26 1992-03-02 Nedap Nv An integrated transformer for a noncontact IC card.
DE4311493C2 (en) 1993-04-07 2000-04-06 Amatech Advanced Micromechanic IC card module for producing an IC card
DE4403753C1 (en) 1994-02-08 1995-07-20 Angewandte Digital Elektronik Combined smart card
DE4443980C2 (en) 1994-12-11 1997-07-17 Angewandte Digital Elektronik A process for the production of chip cards and smart card produced according to this method
US5955723A (en) 1995-05-03 1999-09-21 Siemens Aktiengesellschaft Contactless chip card
DE19534480C2 (en) 1995-09-18 1999-11-11 David Finn IC card module for producing an IC card and IC card with an IC-card module
KR100373063B1 (en) 1996-02-12 2003-05-12 만프레트 리츨러 Wire conductor connecting method and apparatus
ES2146989T3 (en) 1996-02-12 2000-08-16 David Finn Method and device for contacting a conductor wire.
FR2744863B1 (en) * 1996-02-13 1998-03-06 Schlumberger Ind Sa A method of making a portable object has coil antenna
DE19654902C2 (en) 1996-03-15 2000-02-03 David Finn smart card
DE19632813C2 (en) 1996-08-14 2000-11-02 Siemens Ag A process for producing a chip card module, produced using this method smart card module and this chip card module containing combi smart card
DE19634661A1 (en) 1996-08-28 1998-03-05 David Finn Method and apparatus for producing a coil assembly
US6190942B1 (en) 1996-10-09 2001-02-20 Pav Card Gmbh Method and connection arrangement for producing a smart card
DE19703029A1 (en) 1997-01-28 1998-07-30 Amatech Gmbh & Co Kg Transmission module for a transponder device and transponder apparatus and method for operating a transponder device
DE69831592T2 (en) * 1997-11-14 2006-06-22 Toppan Printing Co. Ltd. Composite ic-card
IL122250A (en) 1997-11-19 2003-07-31 On Track Innovations Ltd Smart card amenable to assembly using two manufacturing stages and a method of manufacture thereof
DE69804254T2 (en) * 1998-04-14 2002-10-02 Goodyear Tire & Rubber Verkaselungspackung and method for packaging from one electronic circuit module
EP1105837B1 (en) 1998-08-10 2003-04-09 Hans-Diedrich Kreft Microchip card with increased safety
FR2801707B1 (en) 1999-11-29 2002-02-15 A S K Method for manufacturing a hybrid chip card has contact-free contact with a fibrous material antenna support
US6424301B1 (en) * 2000-03-01 2002-07-23 Siemens Vdo Automotive Corporation Combination battery holder and antenna for keyfob
FR2838850B1 (en) 2002-04-18 2005-08-05 Framatome Connectors Int electronic microcircuit packaging method for smart card and electronic microcircuit thus obtained
US8322624B2 (en) 2007-04-10 2012-12-04 Feinics Amatech Teoranta Smart card with switchable matching antenna
FR2882174B1 (en) 2005-02-11 2007-09-07 Smart Packaging Solutions Sps Method for manufacturing a microelectronic device with non-contact functioning, in particular for electronic passport
FR2890212B1 (en) 2005-08-30 2009-08-21 Smart Packaging Solutions Sps Electronic module with a double communication interface, in particular for a chip card
FR2890502A1 (en) 2005-09-02 2007-03-09 Gemplus Sa Resonance frequency adjustment by inter-spire distributed capacity adjustment
DE102005058101B4 (en) 2005-12-05 2019-04-25 Smartrac Ip B.V. Chip card and method for producing a chip card
DE102006024247A1 (en) * 2006-05-23 2007-11-29 Denso Corp., Kariya Antenna coil for communication module, has flat coil body whose thickness is in coil body axial direction, where coil carrier construction unit is arranged between substrate and coil body, which is carried on substrate surface
FR2915011B1 (en) 2007-03-29 2009-06-05 Smart Packaging Solutions Sps Chip card with double communication interface
US7980477B2 (en) 2007-05-17 2011-07-19 Féinics Amatech Teoranta Dual interface inlays
FR2919409B1 (en) 2007-07-26 2009-09-04 Smart Packaging Solutions Sps Secure document with non-contact chip with data protection against unauthorized reading.
ES2371366T3 (en) 2007-10-03 2011-12-30 Assa Abloy Ab Coupling device for transponder and smart card with such device.
FR2932910B1 (en) 2008-06-20 2011-02-11 Smart Packaging Solutions Sps Card without contact with security logo
US8474726B2 (en) 2010-08-12 2013-07-02 Feinics Amatech Teoranta RFID antenna modules and increasing coupling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013034426A1 *

Also Published As

Publication number Publication date
KR20140071423A (en) 2014-06-11
AU2012306568A1 (en) 2014-03-20
BR112014005507A2 (en) 2017-06-13
CN103891045B (en) 2016-08-17
CN103891045A (en) 2014-06-25
WO2013034426A1 (en) 2013-03-14
MX2014002897A (en) 2014-10-14
CA2847968A1 (en) 2013-03-14
MX336040B (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US5598032A (en) Hybrid chip card capable of both contact and contact-free operation and having antenna contacts situated in a cavity for an electronic module
US5671525A (en) Method of manufacturing a hybrid chip card
JP5573937B2 (en) Antenna module
AU2005274012B2 (en) Tunable spiral antenna for security tag
US8544754B2 (en) Wireless IC device and wireless IC device composite component
EP2166618B1 (en) Radio ic device and component for radio ic device
US7980477B2 (en) Dual interface inlays
JP3779328B2 (en) Card or contactless electronic module for a label
JP2010041906A (en) Contactless power transmission apparatus, soft magnetic sheet, and module using the same
US6095423A (en) Method of producing a smart card module, a smart card module produced by the method, and a combination smart card containing the smart card module
CN1241145C (en) Chip card
US20110011939A1 (en) Contact-less and dual interface inlays and methods for producing the same
JP5725225B2 (en) Wireless ic device
US6308894B1 (en) IC module, method of manufacturing the same and IC card provided with IC module
TWI420398B (en) Contactless device with miniaturized antenna
KR20130005811A (en) Semiconductor package and manufacturing method thereof
JPWO2008140037A1 (en) Wireless IC device
KR20080098412A (en) Rfid tag, method for manufacturing rfid tag and method for arranging rfid tag
US5946198A (en) Contactless electronic module with self-supporting metal coil
US7629667B2 (en) Semiconductor device including an on-chip coil antenna formed on a device layer which is formed on an oxide film layer
KR101006808B1 (en) Wireless ic device
US8668151B2 (en) Wireless IC device
US20140035793A1 (en) Antenna device and communication terminal apparatus
JP3800766B2 (en) Composite ic module and the composite ic card
US20170076859A1 (en) Wireless power receiver and method of manufacturing the same

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140402

AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (to any country) deleted
18D Deemed to be withdrawn

Effective date: 20170301