EP2753681B1 - Verbesserungen im zusammenhang mit gezielten pflegestoffen und substratbehandlungszusammensetzungen - Google Patents

Verbesserungen im zusammenhang mit gezielten pflegestoffen und substratbehandlungszusammensetzungen Download PDF

Info

Publication number
EP2753681B1
EP2753681B1 EP11871374.2A EP11871374A EP2753681B1 EP 2753681 B1 EP2753681 B1 EP 2753681B1 EP 11871374 A EP11871374 A EP 11871374A EP 2753681 B1 EP2753681 B1 EP 2753681B1
Authority
EP
European Patent Office
Prior art keywords
polymer
poet
particle
polyester
pet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11871374.2A
Other languages
English (en)
French (fr)
Other versions
EP2753681A4 (de
EP2753681A1 (de
Inventor
Honggang Chen
Christopher Clarkson Jones
Xiaoyun Pan
Jinfang Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP2753681A1 publication Critical patent/EP2753681A1/de
Publication of EP2753681A4 publication Critical patent/EP2753681A4/de
Application granted granted Critical
Publication of EP2753681B1 publication Critical patent/EP2753681B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/005Compositions containing perfumes; Compositions containing deodorants
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules

Definitions

  • the present invention relates to substrate treatment compositions and, more specifically, to a novel deposition aid, compositions comprising particles which comprise a benefit agent (preferentially perfume) and the deposition aid.
  • a novel deposition aid compositions comprising particles which comprise a benefit agent (preferentially perfume) and the deposition aid.
  • the invention also relates to the uses of said particles in the formulation of treatment (preferably laundry detergent) compositions, and, delivery of the benefit agent (preferably perfume) especially to fabric during laundering.
  • deposition of a perfume is used, for example, during fabric treatment processes such as fabric washing and conditioning.
  • Methods of deposition are diverse and include deposition during the wash or rinse stages of the laundry process or direct deposition before or after the wash, such as by spraying or rubbing or by use of impregnated sheets during tumble drying or water additives during steam ironing.
  • the perfume is often incorporated into a carrier or delivery system.
  • Carrier systems for perfumes are typically based on encapsulation or entrapment of the perfume within a matrix. After deposition onto a surface, a problem exists in that longevity of adherence to that surface of the perfume, in a surfactant containing environment, is inherently poor.
  • a perfume which has been deposited onto a fabric may be washed off again during a main wash, or in the perfume may be leached from its carrier into the wash. Protection of the perfume is, therefore, required before and after it has been deposited onto a surface. Much the same problems are encountered with other benefit agents, which are, like perfume, typically relatively expensive and present in laundry compositions at relatively low levels.
  • WO 94/19448 relates to compositions which comprise both a soil release polymer and an encapulated perfume.
  • the soil release polymer is said to improve the deposition of the perfume containing particles.
  • WO 99/36469 relates to compositions which are substantive to cotton and which contain both perfume containing particles and a polymer which is substantive to cotton, such as locust bean gum.
  • WO 01/46357 relates to a fusion protein comprising a cellulose binding domain and a domain having a high binding affinity for another ligand. This high affinity binding domain is preferably directed at a Benefit Agent.
  • WO 07/62833 relates to compositions which comprise core-shell encapsulated perfume particles decorated with locust bean gum, which are substantive to cellulose.
  • WO 09/037060 relates to compositions which comprise particles which are targeted by means of phthalate-containing deposition aids, such as PET-POET polymers and consequently are substantive to polyester.
  • polyester deposition aids for particles arises from the fact that the particle can acquire an electrostatic charge which repels them from the substrate, and prevents close approach of the particle and the substrate. This prevents or reduces the interaction of the typically quite short polyester deposition aid with the substrate. Making longer polyester deposition aids is difficult, due to the condensation polymerisation reaction used to synthesise these polymers.
  • a first aspect of the present invention provides a particle comprising:
  • the polyester substantive region or regions can be phthalate-containing or a polysaccharide which is substantive to polyester.
  • the phthalate-containing regions are phthalate/polyol regions.
  • the regions may be phthalate/polyamine or phthalate/polyamide regions.
  • the phthalate-containing region comprises units derived from polyethylene or polyproplyene glycol and terephthalate. These can be derived from sub-units comprising polypropylene glycol (PPG), polyethylene glycol (PEG), polyethylene terephthalate (PET), or polyoxyethyleneterephthalate (POET). Other polyol monomers such as glycerol may be present. Most preferably, the structure of the, or each, such region is that of a polymer selected from the group comprising PPT/POET PET/POET, PEG/POET, PET/PEG and phthalate/glycerol/ethylene glycol polymers.
  • Suitable polysaccharides substantive to polyester are non-ionic polysaccharides, preferably selected from the group consisting of: dextran, hydroxyl-propyl cellulose, hydroxy-propyl methyl cellulose, hydroxy-ethyl methyl cellulose, hydroxy-propyl guar, hydroxy-ethyl ethyl cellulose or methyl cellulose.
  • dextran hydroxyl-propyl cellulose
  • hydroxy-propyl methyl cellulose hydroxy-ethyl methyl cellulose
  • hydroxy-propyl guar hydroxy-ethyl ethyl cellulose or methyl cellulose.
  • these particular polymers have a balance of hydrophobicity and hydrophillicity which means that they are able to interact with a fabric without being so hydrophobic as to be insoluble.
  • Other non-ionic, modified polysaccharides for example hydroxyl-ethyl cellulose, do not have the correct properties and show poor performance as deposition aids on polyester
  • the water-soluble spacer region is preferably a region which is a water soluble polymer with a molecular weight above 100kD.
  • the spacer region preferably has the structure of a polyvinyl alcohol, polyacrylamide, or a polysaccharide.
  • the polysaccharide is preferably a glucan and can have an alpha- or a beta- linked backbone. Suitable alpha-linked polysaccharides include starch.
  • the spacer region comprises polysaccharide having a ß-1,4-linked backbone, and more preferably the or each such region has the structure of polymannan, poly-glucan, poly-glucomannan, poly-xyloglucan and polygalactomannan or a mixture thereof. This confers the extra advantage of substantivity to cellulose.
  • the polymer is a graft polymer of the form LBG-graft-PET-POET.
  • Particles which have a core-shell structure are especially preferred. It is preferred that the shell is polymeric. It is preferred that the core comprises a benefit agent.
  • the substantivity to polyester is maintained in the presence of surfactant at concentrations of above 0.1 g/L and preferably also above the surfactants critical micelle concentration in the liquor.
  • the benefit agent shows improved deposition on cloth during laundering or other fabric treatment, such as conditioning, due to the presence of the polymer as a deposition aid.
  • the polymer can comprises at least one region of a phthalate containing polymer, more preferably a (poly)ethylene- or (poly)propylene-containing terephthalate polymer, more preferably a PPT/POET, PET/POET, PEG/POET or PET/PEG polymer.
  • a phthalate containing polymer more preferably a (poly)ethylene- or (poly)propylene-containing terephthalate polymer, more preferably a PPT/POET, PET/POET, PEG/POET or PET/PEG polymer.
  • Materials of this type are widely available to the laundry formulator as they are commonly used as so-called "soil-release polymers".
  • phthalate includes substituted phthalates, for example sulphonated phthalates as well as isophthalates and terephthalates.
  • the phthalate containing region may be linear or branched.
  • Polymer units having the structure of any polymeric soil release agent known to those skilled in the art can be employed in polymers according to the invention.
  • Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This is commonly done to enable stains occurring subsequent to treatment with the soil release agent to be more easily removed in later washing procedures.
  • the polymers useful herein especially include those having one or more nonionic hydrophilic components comprising oxyethylene, polyoxyethylene, oxypropylene or polyoxypropylene segments, and, one or more hydrophobic components comprising terephthalate segments.
  • oxyalkylene segments of these deposition aids will have a degree of polymerization of from 1 to about 400, although higher levels can be used, preferably from 100 to about 350, more preferably from 200 to about 300.
  • One type of preferred polymer is one having regions which comprise a copolymer having random blocks of ethylene terephthalate (PET) and polyethylene oxide terephthalate (POET).
  • PET ethylene terephthalate
  • POET polyethylene oxide terephthalate
  • the preferred molecular weight of this class of these regions is in the range of from about 2kD to about 55kD, more preferably 4-40kD.
  • polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate (PET) units together with 90-80% by weight of polyoxyethylene terephthalate (POET) units, derived from a polyethylene glycol (PEG) of average molecular weight 0.2kD-40kD.
  • PET ethylene terephthalate
  • POET polyoxyethylene terephthalate
  • PEG polyethylene glycol
  • Examples of this class of polymer include the commercially available material ZELCON 5126 (from DuPont) and MILEASE T (from ICI). Examples of related polymers can be found in US 4702857 .
  • Another preferred structure is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
  • soil release agents are described fully in US 4968451 .
  • Other suitable polymeric structures include that of the terephthalate polyesters of US 4711730 , , the anionic end-capped oligomeric esters of US 4721580 , and the block polyester oligomeric compounds of US 4702857 .
  • Preferred polymeric structures also include that of the soil release agents of U.S. 4877896 which discloses anionic, especially sulfoarolyl, end-capped terephthalate esters.
  • Still another preferred structure is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units.
  • the repeat units form the backbone of the oligomer and are preferably terminated with a modified isethionate end-cap.
  • a particularly preferred deposition aid of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and an end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
  • the sulphonated materials are less preferred as they carry a negative charge which can cause repulsion of the polymer from the substrate.
  • Particularly preferred phthalate containing polymers are those derived from PPT/POET and PET/POET.
  • the phthalate containing polymers are relatively short in comparison to the typical distance at which the repulsive forces between a particle and a substrate become significant. Typically this distance is a few nanometres and the problem becomes worse as the ionic strength of the medium in which the interaction occurs is reduced. It is difficult to make the phthalate polymers longer due to the chemistry of the condensation reactions which are used to make them.
  • the non-ionic polysaccharide deposition aid has a molecular weight above 50kD and more preferably above 140kD, most preferably above 500kD.
  • the average number of substituted hydroxyl groups per glucose unit is referred to as the degree of substitution (DS).
  • DS degree of substitution
  • polyester-substantive polysaccharide region is a cellulose ether
  • DS is typically in the range from 1.0 to 3, more preferably above 1.5 to 3, most preferably, where possible from 2.0 to 3.0.
  • a typical MS for the polyester-substantive polysaccharide region is 1.5-6.5.
  • the MS is in the range from 2.8 to 4.0, more preferably above 3.0, most preferably from 3.2 to 3.8.
  • the spacer region comprises a polysaccharide region
  • this may gain an affinity for cellulose upon hydrolysis, such as is the case with materials such as cellulose mono-acetate or, preferably, may have a natural affinity for cellulose, such as hydroxyethylcellulose.
  • the spacer region may have no affinity for cellulose either in its natural state of when hydrolysed.
  • the molecular weight of the spacer region is preferably greater than 100kD. It is more preferably 200-600kD. This is typically significantly longer than any phthalate region, such that, when the spacer region is attached to a particle, the polyester-substantive region is sufficiently far away from the particle to be able to bridge and spacing between the particle and the substrate caused by electrostatic repulsion.
  • Particularly preferred polysaccharide structures for the spacer region are selected from the group consisting of poly-glucan, poly-xyloglucan and poly-galactomannan. Naturally-occuring polymer structures or the shorter hydrolysis products of naturally occurring polymer structures are particularly preferred.
  • preferred polysaccharide structures are that of locust bean gum, tamarind xyloglucan, guar gum or mixtures thereof.
  • the polysaccharide region has the structure of locust bean gum (LBG). This does not hydrolyse and has a natural affinity for cellulose.
  • LBG is (also called Carob bean gum and Carubin) is extracted from the seed (kernels) of the carob tree (Ceratonia siliqua).
  • Modified celluloses can also be employed as the polysaccharide spacer region provided that they are not polyester-substantive.
  • the polysaccharide spacer region or regions have only ß-1,4 linkages in the polymer backbone.
  • Grafting is preferably performed with a reactive linker species which is reacted with the polymer that will form the polyester-substantive regions, to form an intermediate which can than be grafted onto the polymer that will form the spacer regions.
  • Suitable linkers include epichlorohydrin and cyanuric chloride.
  • the graft polymer will typically comprise a weight ratio of >3:1 spacer region to phthalate region and more preferably this weight ratio will be in excess of 10:1.
  • Benefit agents provide a range of benefits to cloth. These include benefits of softening, conditioning, lubricating, crease reducing, ease of ironing, moisturising, colour preserving and/or anti-pilling, quick drying, UV protecting, shape retaining, soil releasing, texturising, insect repelling, fungicidal, dyeing and/or fluorescent benefit to the fabric.
  • a highly preferred benefit is the delivery of fragrance.
  • Preferred benefit agents are perfumes (whether free and/or encapsulated), pro-fragrance, clays, enzymes, antifoams, fluorescers, bleaching agents and precursors thereof (including photo-bleach), shading dyes and/or pigments, fabric conditioning agents (for example cationic surfactants including water-insoluble quaternary ammonium materials and/or silicones), lubricants, photo-protective agents (including sunscreens), antioxidants, reducing agents, sequestrants, colour care additives (including dye fixing agents), unsaturated oil, emollients insect repellents and/or pheromones and anti-microbial and microbe control agents. Mixtures of two or more of these may be employed. Particular benefit agents are described in further detail below.
  • zeolite X and Y a faujasite-type zeolite loaded with perfume.
  • zeolite X and Y a faujasite-type zeolite loaded with perfume.
  • East German Patent Publication No. 137,599, published Sep. 12, 1979 teaches compositions for use in powdered washing agents to provide thermoregulated release of perfume.
  • Zeolites A, X and Y are taught for use in these compositions.
  • Other perfume delivery systems are taught by WO 97/34982 and WO 98/41607 , published by The Procter & Gamble.
  • WO 97/34982 discloses particles comprising perfume loaded zeolite and a release barrier, which is an agent derived from a wax and having a size (i.e., a cross-sectional area) larger than the size of the pore openings of the zeolite carrier.
  • WO 98/41607 discloses glassy particles comprising agents useful for laundry or cleaning compositions and a glass derived from one or more of at least partially-water-soluble hydroxylic compounds.
  • PVP polyvinyl pyrrolidone
  • PVA polyvinyl alcohol
  • cellulose ethers polystyrene
  • polyacrylates polymethacrylates
  • Polymer particles are preferred.
  • the polymer, as deposition aid is attached to at least partially pre-formed particles.
  • the polymer is bound to the particle by means of a covalent bond, entanglement or strong adsorption, preferably by a covalent bond or entanglement and most preferably by means of a covalent bond.
  • entanglement as used herein is meant that the deposition aid is adsorbed onto the particle as the polymerisation proceeds and the particle grows in size. It is believed that under such circumstances part of the adsorbed deposition aid becomes buried within the interior of the particle. Hence at the end of the polymerisation, part of the deposition aid is entrapped and bound in the polymer matrix of the particle, whilst the remainder is free to extend into the aqueous phase.
  • the deposition aid is preferably mainly attached to the particle surface and is not, to any significant extent, distributed throughout the internal bulk of the particle.
  • the particle which is produced when using a deposition aid according to the preferred process of the invention can be thought of as a "hairy particle". This feature of the invention provides significant cost reduction opportunities for the manufacturer as much less polymer is required as a deposition aid.
  • particle surface morphology may be produced when a deposition aid is attached to the particle of the invention.
  • a deposition aid may be attached to the particle of the invention.
  • loops may result, or the deposition aid may be in the form of a swollen polymer layer at the particle surface.
  • the polymer carrier particles of the invention can comprise a wide selection of monomeric units.
  • monomer units as used herein is meant the monomeric units of the polymer chain, thus references to "a polymer particle comprising insoluble monomer units” as used herein means that the polymer particles is derived from insoluble monomers, and so forth.
  • the monomer units are preferably derived from monomers which are suitable for either step growth polymerisation or addition/free radical polymerisation.
  • perfume is typically present in an amount of from 10-85% by total weight of the carrier particle, preferably from 20 to 75 % by total weight of the particle.
  • the perfume suitably has a molecular weight of from 50 to 500. Where pro-fragrances are used the molecular weight will generally be higher.
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • perfume in this context is not only meant a fully formulated product fragrance, but also selected components of that fragrance, particularly those which are prone to loss, such as the so-called 'top notes'.
  • the perfume component could also be in the form of a profragrance.
  • WO 2002/038120 P&G
  • Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]). Examples of well known top-notes include citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Top notes typically comprise 15-25%wt of a perfume composition and in those embodiments of the invention which contain an increased level of top-notes it is envisaged at that least 20%wt would be present within the encapsulate.
  • Typical perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius.
  • perfume components which have a low LogP (ie. those which will be partitioned into water), preferably with a LogP of less than 3.0.
  • materials, of relatively low boiling point and relatively low LogP have been called the "delayed blooming" perfume ingredients and include the following materials:
  • perfume components it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the encapsulated perfume.
  • Part or all of the perfume may be in the form of a pro-fragrance.
  • a pro-fragrance is any material which comprises a fragrance precursor that can be converted into a fragrance.
  • Suitable pro-fragrances are those that generate perfume components which are aldehydes.
  • Aldehydes useful in perfumery include but are not limited to phenylacetaldehyde, p-methyl phenylacetaldehyde, p-isopropyl phenylacetaldehyde, methyinonyl acetaldehyde, phenylpropanal, 3-(4-t-butylphenyl)-2-methyl propanal, 3- (4-t-butylphenyl)- propanal, 3- (4-methoxyphenyl)-2-methylpropanal, 3- (4-isopropylphenyl)-2- methylpropanal, 3- (3, 4-methylenedioxyphenyl)-2-methyl propanal, 3- (4- ethylpheny)-2, 2-dimethylpropanal, phenylbutanal, 3-methyl-5-phenylpentanal, hexanal, trans-2-hexenal, cis
  • perfumes with which the present invention can be applied are the so-called 'aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian. By means of the present invention these materials can be transferred to textile articles that will be worn or otherwise come into contact with the human body (such as handkerchiefs and bed-linen).
  • essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • Insect repellents are related to perfume species (many fall into both classes) and are another preferred benefit agent.
  • the most commonly used insect repellents include: DEET (N,N-diethyl-m-toluamide), essential oil of the lemon eucalyptus (Corymbia citriodora) and its active compound p-menthane-3,8-diol (PMD), Icaridin, also known as Picaridin, D-Limonene, Bayrepel, and KBR 3023, Nepetalactone, also known as "catnip oil", Citronella oil, Permethrin, Neem oil and Bog Myrtle.
  • Known insect repellents derived from natural sources include: Achillea alpina, alpha-terpinene, Basil oil (Ocimum basilicum), Callicarpa americana (Beautyberry), Camphor, Carvacrol, Castor oil (Ricinus communis), Catnip oil (Nepeta species), Cedar oil (Cedrus atlantica), Celery extract (Apium graveolens), Cinnamon (Cinnamomum Zeylanicum, leaf oil), Citronella oil (Cymbopogon fleusus), Clove oil (Eugenic caryophyllata), Eucalyptus oil (70%+ eucalyptol, also known as cineol), Fennel oil (Foeniculum vulgare), Garlic Oil (Allium sativum), Geranium oil (also known as Pelargonium graveolens), Lavender oil (Lavandula officinalis), Lemon eucalyptus (Corymbia citri
  • cinerariifolium and C. coccineum Rosemary oil (Rosmarinus officinalis), Spanish Flag Lantana camara (Helopeltis theivora), Solanum villosum berry juice, Tea tree oil (Melaleuca alternifolia) and Thyme (Thymus species) and mixtures thereof.
  • the perfume may be encapsulated alone or co-encapsulated with carrier materials, further deposition aids and/or fixatives.
  • Preferred materials to be co-encapsulated in carrier particles with the perfume include waxes, paraffins, stabilizers and fixatives.
  • carrier particles An optional yet preferred component of carrier particles is a formaldehyde scavenger.
  • formaldehyde scavenger is chosen from: sodium bisulfite, urea, cysteine, cysteamine, lysine, glycine, serine, carnosine, histidine, glutathione, 3,4-diaminobenzoic acid, allantoin, glycouril, anthranilic acid, methyl anthranilate, methyl 4-aminobenzoate, ethyl acetoacetate, acetoacetamide, malonamide, ascorbic acid, 1,3-dihydroxyacetone dimer, biuret, oxamide, benzoguanamine, pyroglutamic acid, pyrogallol, methyl gallate, ethyl gallate, propyl gallate, triethanol amine, succinamide, thiabendazole,
  • Preferred formaldehyde scavengers are sodium bisulfite, ethyl acetoacetate, acetoacetamide, ethylenediamine-N,N'-bisacetoacetamide, ascorbic acid, 2,2-dimethyl-1,3-dioxan-4,6-dione, helional, triplal, lilial and mixtures thereof.
  • the process for the preparation of the particles is preferably a two step process in which the first step forms a particle comprising the benefit agent and the second step applies a coating to the capsule which includes the polymer as a deposition aid.
  • the first step can either be step-growth or addition polymerisation and the second step is preferably addition polymerisation.
  • Suitable classes of monomers for step-growth polymerisation are given in the group consisting of the melamine/urea/formaldehyde class, the isocyanate/diol class (preferably the polyurethanes) and polyesters.
  • Preferred are the melamine/urea formaldehyde class and the polyurethanes.
  • Suitable classes of monomers for addition/free radical polymerisation are given in the group consisting of olefins, ethylene, vinylaromatic monomers, esters of vinyl alcohol with mono- and di- carboxylic acids, esters of ⁇ , ⁇ -monoethylenically unsaturated mono- and dicarboxylic acids with alcohols, nitriles of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, conjugated dienes, ⁇ , ⁇ -monoethylenically unsaturated monocarboxylic and dicarboxylic acids and their amides, methacrylic acid and its esters with alcohols and diols, acrylic acid and its esters with alcohols and diols, dimethyl or di-n-butyl maleate, and vinyl-sulfonic acid and its water-soluble salts, and mixtures thereof.
  • the polymer particle may comprise mixtures of monomer units.
  • the polymer particle may optionally comprise monomers which are cross-linkers.
  • Such cross-linkers may have at least two non-conjugated ethylenically unsaturated double bonds. Examples are alkylene glycol diacrylates and dimethacrylates.
  • a further type of suitable cross-linking monomers are those that are conjugated, such as divinyl benzene. If present, these monomers constitute from 0.1 to 10 % by weight, based on the total amount of monomers to be polymerised.
  • the monomers are preferably selected from: styrene; ⁇ -methylstyrene; o-chlorostyrene; vinyl acetate; vinyl propionate; vinyl n-butyrate; esters of acrylic, methacrylic, maleic, fumaric or itaconic acid with methyl, ethyl, n- butyl, isobutyl, n-hexyl and 2-ethylhexyl alcohol; 1 ,3-butadiene; 2,3 dimethyl butadiene; and isoprene.
  • the preferred monomers are vinyl acetate and methyl acrylate.
  • the monomers are used as co-polymers with one or more of acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, poly (alkylene oxide) monoacrylates and monomethacrylates, N-vinyl-pyrrolidone, methacrylic and acrylic acid, 2-hydroxyethyl acrylates and methacrylates, glycerol acrylates and methacrylates, poly(ethylene glycol) methacrylates and acrylates, n-vinyl pyrrolidone, acryloyl morpholine, vinyl formamide, n-vinyl acetamide and vinyl caprolactone, acrylonitrile (71 g/l), acrylamide, and methacrylamide at levels of less than 10 % by weight of the monomer unit content of the particle; 2-(dimethylamino) ethyl methacrylate, 2-(diethylamino) ethyl methacrylate, 2-(tert-butyla
  • Optional cross linkers include vinyltoluenes, divinyl benzene, ethylene glycol diacrylate, 1 ,2-propylene glycol diacrylate, 1 ,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1 ,4-butylene glycol diacrylates, ethylene glycol dimethacrylate, 1 ,2-propylene glycol dimethacrylate, 1 ,3-propylene glycol dimethacrylate, 1 ,3-butylene glycol dimethacrylate, 1 ,4-butylene glycol dimethacrylate, divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, methylenebisacrylamide, cyclopentadienyl acrylate, and triallyl cyanurate.
  • the ratio of the monomers used in the shell formation and those used in deposition aid attachment are the ratio of 20:1 to 1 :1 (as shell formendeposition linker).
  • the ratio is 5:1 -2:1 , more preferably 4:1-2:1 as better particle deposition on fabric is found as the ratio approaches 2:1.
  • the process for the preparation of the particles is preferably a two step process in which the first step forms a capsule around the benefit agent and the second step applies a coating to the capsule which includes the deposition aid.
  • the first step can either be step-growth or addition polymerisation and the second step is preferably addition polymerisation.
  • the first step uses monomers selected from melamine/urea-formaldehyde or methyl-methacrylate or isocyanate/diol
  • the second step uses monomers selected from vinyl acetate and/or methyl acyrlate.
  • non-ionic deposition aid is not added until the second step.
  • step-growth polymerisation some heating is generally necessary to cause polymerisation to proceed.
  • Initiators and chain transfer agents may also be present in the polymerisation mixture where use is made of any addition polymerisation.
  • a chemical initiator will generally be required for addition polymerisation but that there are instances in which alternative forms of initiation will be possible, e.g. ultrasonic initiation or initiation by irradiation.
  • the initiator is preferably a chemical or chemicals capable of forming free radicals.
  • free radicals can be formed either by homolytic scission (i.e. homolysis) of a single bond or by single electron transfer to or from an ion or molecule (e.g. redox reactions).
  • homolysis may be achieved by the application of heat (typically in the range of from 50 to 100°C).
  • Homolysis may also be achieved by the action of radiation (usually ultraviolet), in which case it is termed photolysis.
  • radiation usually ultraviolet
  • examples are the dissociation of 2,2'-azobis (2-cyanopropane) and the formation of free radicals from benzophenone and benzoin.
  • Redox reactions can also be used to generate free radicals.
  • an oxidising agent is paired with a reducing agent which then undergo a redox reaction.
  • Some examples of appropriate pairs in the context of the invention are ammonium persulphate/sodium metabisulphite, cumyl hydroperoxide/ferrous ion and hydrogen peroxide/ascorbic acid.
  • Preferred initiators are selected from the following:
  • Preferred initiators are ammonium persulphate and hydrogen peroxide/ascorbic acid mixture.
  • the preferred level of initiator is in the range of from 0.1 to 5.0 % w/w by weight of monomer, more preferably, the level is in the range of from 1.0 to 3.0 % w/w by weight of monomer.
  • Chain transfer agents can optionally be used.
  • a chain transfer agent contains very labile hydrogen atoms that are easily abstracted by a propagating polymer chain. This terminates the polymerisation of the growing polymer, but generates a new reactive site on the chain transfer agent that can then proceed to initiate further polymerisation of the remaining monomer.
  • Chain transfer agents in the context of the invention typically contain thiol (mercaptan) functionality and can be represented by the general chemical formula RS-H, such as n-dodecyl mercaptan and 2-mercaptoethanol.
  • Preferred chain transfer agents are monothioglycerol and n-dodecyl mercaptan, used at levels of, preferably from 0 to 5 % w/w based on the weight of the monomer and more preferably at a level of 0.25 % w/w based on the weight of the monomer.
  • the preferred product of such a process is a slurry or dispersion comprising some 30-50% of solids.
  • the deposition aid linked polymer particles of the invention may be incorporated into laundry compositions. This may be done by mixing a slurry/dispersion product with some or all of the other components of the composition, preferably by spraying onto the components.
  • the slurry/dispersion need not be dried extensively (if at all) and this reduces benefit agent losses.
  • the polymer particles are typically included in said compositions at levels of from 0.001% to 10%, preferably from 0.005% to 5%, most preferably from 0.01% to 3% by weight of the total composition.
  • the active ingredient in the compositions is preferably a surface active agent or a fabric conditioning agent. More than one active ingredient may be included. For some applications a mixture of active ingredients may be used.
  • compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, especially, an aqueous based liquid.
  • a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or liquid, especially, an aqueous based liquid.
  • the compositions may be used in laundry compositions, especially in liquid, powder or tablet laundry composition.
  • compositions of the present invention are preferably laundry compositions, especially main wash (fabric washing) compositions or rinse-added softening compositions.
  • the main wash compositions may include a fabric softening agent and the rinse-added fabric softening compositions may include surface-active compounds, particularly non-ionic surface-active compounds.
  • the detergent compositions of the invention may contain a surface-active compound (surfactant) which may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
  • surfactant may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
  • surface-active compound surfactant
  • surfactant may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
  • the preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic, and non-ionic compounds.
  • preferred levels of surfactant in the composition are such that at the specified dosage level the wash liquor has a surfactant (other than soap) concentration of less than 1 g/L, more preferably less than 0.5 g/L.
  • This is a low level of surfactant as compared with conventional wash liquors.
  • Such low dosage and/or low surfactant products have environmental advantages in that the products require transport of smaller quantities of material and have a reduced usage of surfactants.
  • the ionic strength of the wash liquor is typically low and under such circumstances the problem of electrostatic repulsion of the particles and the substrate is more marked.
  • particles which have a delivery aid according to the present invention have particular advantages in these environmentally beneficial cleaning systems.
  • PPT-POET with Mw 4500 under trademark SRN300 was received from Clariant.
  • Epichlorohydrin was purchased from Aldrich. Cyanuric chloride and Meso-erythritol were supplied by Alfa Aesor.
  • Locus bean gum (LBG) was purchased from Sigma and dehydrated by distilling water off in toluene prior to use. Extra dry solvents tetrahydrofuran (THF) and dimethyl sulfoxide (DMSO) over molecular sieves were obtained form Acros Organics.
  • THF tetrahydrofuran
  • DMSO dimethyl sulfoxide
  • Antimony trioxide Sb 2 O 3
  • ethylene glycol EG
  • 2, 6-di-tert-butyl-4-methylphenol DBMP
  • dimethyl-p-phthalate DMT
  • zinc acetate polyethylene glycol 2000
  • concentrated sulphuric acid and phenol were purchased from Sinopharm Chemical Reagent Co., Ltd.
  • Example 1 Synthesis of LBG- graft -PPT-POET and LBG- graft -PET-POET
  • the PET-POET sample was prepared utilising a stainless steel reaction kettle which offers mechanical stirring, fine thermo-controlling and high vacuum level.
  • the reaction kettle was supplied by Weihai Auto-control Reaction Kettle Ltd. 80 grams of PEG of 20,000 molecular weight and 5 grams of PET-4900 were used for the transesterification polymerisation.
  • Antimony oxide (20mg) and calcium acetate (20mg) were utilised as the catalyst and 2,6-ditert-butyl-4-methylphenol (80mg) as anti-oxidant. Before heating the reaction mixture, vacuum was applied to the kettle, followed with re-filling with nitrogen.
  • the branched PET-POET sample was prepared utilising a stainless steel reaction kettle which offers mechanical stirring, fine thermo-controlling and high vacuum level.
  • the reaction kettle was supplied by Weihai Auto-control Reaction Kettle Ltd.
  • 19.302 g of EG-DMT oligomer, 75.526 g polyethylene glycol 2000, 1.921 g meso-erythritol (brancher), 0.016 g Sb2O3 (catalyst) and 0.042 g DBMP (anti-oxidant) were added into the reaction kettle. Vacuum was applied to the reaction kettle followed by re-filling with nitrogen and such gas-exchange process repeated three times.
  • the low molecular weight PPT-POET SRN300 (4.114g) was dissolved in 150 ml DMSO and the solution stirred at room temperature for one hour. Then 33 ml epichlorohydrin was added dropwise. The mixture was stirred at 50°C for three days, and then at 150°C for another 5 hours. After DMSO was removed through rota-evaporator under vacuo, the mixture was precipitated in ether to yield lightly yellowish solid followed by vacuum drying at 80°C for 10 hours.
  • the synthesis was carried out by empolying epichlorohydrin as linker.
  • 0.203 g LBG and 0.025 g NaOH were dissolved in 80 ml DMSO in 250 ml round-bottomed flask.
  • 0.702g epichlorohydrin derived SRN300 in 30 ml DMSO was added dropwise to the reaction bottle over a period of 0.5 hour.
  • the reaction mixture was then stirred at different temperature for different batches (40°C, 80°C, 120°C and 150°C) for 3 days.
  • the resultant graft copolymer was collected through precipitation in acetone followed by vacuum drying at 60°C overnight.
  • the resultant graft copolymer samples were analyzed by 1 H NMR in deuterium oxide.
  • 0.250 g LBG and 0.031g NaOH were dissolved in 150 ml DMSO in 500 ml round-bottomed flask. Then 0.500 g cyanuric chloride modified PE170707 in 40 ml DMSO was added drop-wise to the reactor over a period of 0.5 hour. The reaction mixture was then stirred at different temperature for different batches (40 °C and 80°C) for 36 hours. The mixture was purified utilizing membrane separation device with polyvinylidene fluoride (PVDF) membrane with cut-offs Mw 70k. After DMSO was removed through rota-evaporator under vacuo, the product was obtained by drying in vacuum at 80°C for 10 hours.
  • PVDF polyvinylidene fluoride
  • 0.250 g LBG and 0.031g NaOH were dissolved in 150 ml DMSO in 500 ml round-bottomed flask. Then 0.500 g cyanuric chloride modified SH524 in 40 ml DMSO was added dropwise to the reactor over a period of 0.5 hour. The reaction mixture was then stirred at different temperature for different batches (40°C and 80°C) for 36 hours. The mixture was purified utilizing membrane separation device with polyvinylidene fluoride (PVDF) membrane with cut-offs Mw 70k. After DMSO was removed through rota-evaporator under vacuo, the product was obtained by drying in vacuum at 80°C for 10 hours.
  • PVDF polyvinylidene fluoride
  • Example 2 Deposition Performance of LBG- graft- PET-POET on Fabrics
  • Surfactant stock solution was prepared by dissolving LAS (5.000 g) and Synperonic A7 (5.000 g) in de-ionised water to a total of 1.0 litre.
  • the surfactant concentration of final solution is 10.000 g/L (50% LAS, 50% Synperonic A7).
  • Base buffer stock solution was prepared by dissolving sodium carbonate (7.547 g) and sodium bicarbonate (2.420 g) in de-ionised water to a total of 1.0 litre.
  • the base buffer concentration is 0.1 M.
  • LBG- graft -PET-POET stock solution was prepared by dissolving 0.500g of LBG- graft -PET-POET (as produced by the method of Example 1) in 500ml of de-ionised water to obtain polymer concentration 1.0 g/l.
  • the constant temperature shaking (model THZ platform, supplied by Shanghai Jing Hong laboratory instrument Co. Ltd.) was utilized to simulate wash procedure for deposition performances assessment.
  • the typical procedure was described as below.
  • a piece of unfluoresced knitted polyester (around 5.0 g with 20x20cm) or three pieces with (10x10cm) of cotton fabric (totally around 4.7 g) was placed into a 60ml bottle containing the model wash liquor (1.0 g/L surfactant, 0.01M base buffer) and polymer sample (0.64 g/L) and the bottle sealed.
  • a bottle containing model wash liquor and fabric but no polymer sample was prepared as control. The purpose was to check whether the fabric caused any changes to the absorbance levels on its own.
  • the shaker bath was heated to 40°C and the bottles were clamped into it and shaken at 125rpm for 45mins. Wash liquor before/after shaking was taken out for further evaluation.
  • the absorbance of PET-POET in wash liquor before/after deposition was recorded at wavelength 288nm.
  • the deposition amount of polymer sample onto fabric could be calculated based upon the difference of absorbance.
  • Phenol-sulphuric procedure was utilized for determination of polysaccharide concentration ( Dubois, M., Gilles, K.A., Hamilton, J.K., Roberts, P.A. and Smith, F., 1956, Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28, 350-356 ).
  • a typical procedure was shown as below: 2 ml polymer solution was transferred into a 20 ml glass vial. To this solution 1.0 ml of a 5 % (w/w) phenol solution in distilled water was added and the solution gently mixed. Then 5.0 ml concentrated sulphuric acid was added dropwise (Caution: this gives rise to a very exothermic reaction). The solution was allowed to cool for at least 45 minutes before absorbance was measured at 489 nm. The deposition amount of polymer sample onto fabric could be calculated based upon the absorbency difference of polysaccharide in wash liquor before/after deposition evaluation.
  • LBG- graft -PET-POET samples onto polyester and cotton were illustrated in the following table: Amount adsorbed on polyester after main wash (mg/g) Amount adsorbed on cotton after main wash (mg/g) LBG- graft -PE170707-40°C 1.84 2.48 LBG- graft -PE170707-80°C 1.97 4.26 LBG- graft -SH524-40°C 1.16 4.15 LBG- graft -SH524-80°C 1.79 3.76 mg/g: mg polymer deposited on per g fabric
  • Example 3 Surface Attachment of LBG- graft -PET-POET onto Latex Particles (600 nm) via EDAC Coupling
  • EDAC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrogen chloride
  • Carboxyl functional polystyrene particles were synthesized by emulsifier-free emulsion polymerization. 250 mL three-neck flask was charged with 9.230 g styrene, 0.196 g methylacrylate and 90 mL de-ionised water. A nitrogen blanket and stirring rate of 350 rpm were maintained. This solution was deoxygenated by bubbling with nitrogen for 1 h. After thorough deoxygenation, the temperature was increased to 70°C and a solution of 0.089 g potassium persulfate in 3 mL water injected. The mixture was allowed to react at 70°C for 16 hrs. After being allowed to cool down to room temperature, the colloid was filtered and the filtrate collected.
  • the carboxyl functional polyester particle (600 nm, 7.1 % solids) was purified via the following procedure: Step 1: 1.0 mL latex was diluted with 0.5 mL pH 9.01 buffer and centrifuged at 10000 rpm for 15 minutes. Step 2: The supernatant was decanted off. The latex was re-dispersed in 1.0 ml of pH 7 buffer. The latex was centrifuged again at 10000 rpm for 15 minutes. The wash in pH7 buffer was repeated once. Step 3: The supernatant decanted off. The latex was re-dispersed in 1.0 ml de-ionised water. The latex was centrifuged at 10000 rpm for 15 minutes and the supernatant decanted off. The wash in de-ionised water was also repeated once.
  • the purified latex (1.0 mL, 7.1 % solids) was re-dispersed in EDAC solution (0.027g in 1.0 ml of de-ionised water) and stirred at 25 °C for 3 hours. Then the latex was centrifuged at 10000 rpm for 15 minutes and purified in pH 7 buffer and de-ionised water according to Step 2 and 3 shown in example 3b. Then the latex was re-dispersed in 14g of 0.1% (w/w) LBG- graft -PET-POET (LBG- graft -PE1707 or LBG- graft -SH524 as produced by the method shown in Example 1) in de-ionised water solution.
  • EDAC solution 0.027g in 1.0 ml of de-ionised water
  • the dispersion was stirred at 25°C for 18 hours. After that, the latex was centrifuged at 10000 rpm for 15 minutes and purified in pH 7 buffer and de-ionised water again according to Step 2 and 3 shown in example 3b. At last, the latex was re-dispersed in de-ionised water to give a final latex dispersion of LBG- graft -PET-POET grafted particles with solids of 1.0% (w/w).
  • a comparative (control) sample without any addition of LBG- graft -PET-POET was prepared according to the identical procedure shown in example 3a.
  • the final solid content of latex was adjusted to 1.0% (w/w).
  • Example 4 Deposition Performance of Polystyrene Latex (600 nm) on Fabrics
  • dodecylbenzenesulphonic acid sodium salt (LAS) was purchased from Aldrich.
  • Synperonic A7 (NI, Fatty alcohol ethoxylate) was obtained from Uniqema.
  • Sodium carbonate and potassium carbonate were supplied by Shanghai Lingfeng Chemical Reagent Co., Ltd, and sodium bicarbonate supplied by Shanghai Hongguang Co., Ltd.
  • Surfactant stock was prepared by dissolving LAS (5.0 g) and Synperonic A7 (5.0 g) in de-ionised water to a total of 1.0 litre.
  • the surfactant concentration of final solution is 10 g/L (50% LAS, 50% Synperonic A7).
  • Base buffer stock was prepared by dissolving sodium carbonate (7.546 g) and sodium bicarbonate (2.419 g) in de-ionised water to a total of 1.0 litre.
  • the base buffer concentration is 0.1 M.
  • the bottle was then thoroughly rinsed. Wrung fabrics were put back to the bottles and 50 mL of DI water added. The bottle was shaken at 40 °C for 10 minutes under 125 rpm to simulate a rinse procedure. The fabrics were then removed and wrung by hand again. A 5.0 mL aliquot of the rinse solution was taken out for absorbance recording at 400 nm. The loss amount of adsorbed polystyrene latex from fabric in rinse 1 stage could be determined according to turbidity. The rinse procedure was repeated once and the loss amount of polystyrene latex from fabric in rinse 2 stage could be determined.
  • LBG- graft -PET-POET LBG- graft -PE170707-40°C, LBG- graft- PE170707-80°C or LBG- graft -SH524-40°C
  • EDAC coupling improved particle (600 nm) deposition significantly onto polyester and cotton.
  • Example 5 Surface Attachment of LBG- graft -PET-POET onto Latex Particles (4 ⁇ m) via EDAC Coupling
  • EDAC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrogen chloride
  • EDAC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrogen chloride
  • All other chemicals were obtained from Sinopharm Chemical Reagent Co., Ltd.
  • 2, 2'- azo-bisisobutylnitrile (AIBN) was purified before use by re-crystallization in acetone.
  • Carboxyl functional polystyrene particles were synthesized by dispersion copolymerization. 250 mL three-neck flask was charged with 70 g ethanol and 6 mL de-ionised water containing 19.1 g styrene, 0.69 g acrylic acid and 1.5 g poly (N-vinylprrolidiene). A nitrogen blanket and stirring rate of 350 rpm were maintained. This solution was deoxygenated by bubbling with nitrogen for 1 h. After thorough deoxygenation, the temperature was increased to 70°C and 2.4 g AIBN added to this solution. The reaction was kept at 70°C for 20 hrs.
  • the latex After being to cool to room temperature, the latex was centrifuged at 10000 rpm for 15 minutes and the supernatant decanted off. The latex particles were re-dispersed in 50 ml ethanol, centrifuged at 10000 rpm for 15 minutes and the supernatant decanted off. The latex was then re-dispersed in ethanol and centrifuged again. Finally the latex particles were re-dispersed in 50 ml DI water with solids of 2.7% (w/w).
  • the carboxyl functional polyester particle (4 ⁇ m, 2.7% solids) was purified according to the produce shown in Example 3b.
  • the purified polyester particle (4 ⁇ m, 2.7% solids) was grafted with LBG-graft-PET-POET_according to the produce shown in Example 3c.
  • the latex was re-dispersed in de-ionised water to give a final latex dispersion of LBG- graft -PET-POET grafted particles with solids of 1.0% (w/w).
  • a comparative (control) sample without any addition of LBG- graft -PET-POET was prepared according to the identical procedure shown in example 5a.
  • the final solid content of latex was adjusted to 1.0% (w/w).
  • polystyrene latex (4 ⁇ m, with or without LBG- graft -PET-POET) were assessed with LAS and Synperonic A7 as surfactant stock using the constant temperature shaking (model THZ platform, supplied by Shanghai Jing Hong laboratory instrument Co., Ltd.).
  • dodecylbenzenesulphonic acid sodium salt (LAS) was purchased from Aldrich.
  • Synperonic A7 (NI, Fatty alcohol ethoxylate) was obtained from UNIQEMA.
  • Sodium carbonate and potassium carbonate were supplied by Shanghai Lingfeng Chemical Reagent Co., Ltd, and sodium bicarbonate supplied by Shanghai Hongguang Co., Ltd.

Claims (12)

  1. Teilchen, umfassend:
    a) ein Pflegemittel,
    b) auf der äußeren Oberfläche des Teilchens ein Polymer, umfassend:
    i) entfernt von der äußeren Oberfläche des Teilchens mindestens eine Region, die substantiv zum Polyester ist, und
    ii) nahe der äußeren Oberfläche des Teilchens eine Distanzregion, die wasserlöslich ist und zum Polyester nicht-substantiv ist.
  2. Teilchen gemäß Anspruch 1, wobei die Region, die zu Polyester substantiv ist, eine Phthalat-enthaltende Region ist.
  3. Teilchen nach Anspruch 2, wobei die Phthalat-enthaltende Region des Weiteren ein Polyol umfasst.
  4. Teilchen gemäß Anspruch 3, wobei die mindestens eine Phthalat/Polyol-Region Einheiten umfasst, die von Polyethylen- und/oder Polypropylenglycol und einem Terephthalat abgeleitet sind.
  5. Teilchen gemäß Anspruch 4, wobei die Struktur der oder jeder Region, abgeleitet vom Polyglycol und Terephthalat, die eines Polymers ist, ausgewählt aus der Gruppe umfassend PPT/POET, PET/POET, PEG/POET, PET/PEG und Phthalat/Glycerol/Ethylenglycol-Polymeren.
  6. Teilchen gemäß Anspruch 1, wobei die Region, substantiv zum Polyester, ein Polysaccharid ist.
  7. Teilchen gemäß Anspruch 6, wobei das Polysaccharid ausgewählt ist aus der Gruppe bestehend aus Dextran, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Hydroxyethylmethylcellulose, Hydroxypropylguar, Hydroxyethylethylcellulose oder Methylcellulose.
  8. Teilchen gemäß irgendeinem der Ansprüche 1 bis 8, wobei die Distanzregion ein Polymer der Struktur von Polyvinylalkohol, Polyacrylamid oder Polysaccharid umfasst.
  9. Teilchen gemäß Anspruch 8, wobei die Distanzregion umfasst ein β-1,4-verknüpftes Polysaccharid, vorzugsweise ein Polymannan, Polyglucan, Polyglucomannan, Polyxyloglucan, Polygalactomannan oder eine Mischung davon.
  10. Teilchen gemäß irgendeinem der Ansprüche 1 bis 5, wobei das Polymer ein Pfropfpolymer von Johannisbrot(kern)gummi und einem PET-POET- oder PPT-POET-Polymer ist.
  11. Teilchen gemäß irgendeinem vorhergehenden Anspruch, wobei das Pflegemittel ein Duftstoff ist.
  12. Zusammensetzung, umfassend mindestens ein Tensid und ein Teilchen gemäß irgendeinem der Ansprüche 1 bis 11.
EP11871374.2A 2011-08-24 2011-08-24 Verbesserungen im zusammenhang mit gezielten pflegestoffen und substratbehandlungszusammensetzungen Active EP2753681B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001412 WO2013026181A1 (en) 2011-08-24 2011-08-24 Improvements relating to targeted benefit agents and substrate treatment compositions

Publications (3)

Publication Number Publication Date
EP2753681A1 EP2753681A1 (de) 2014-07-16
EP2753681A4 EP2753681A4 (de) 2015-07-08
EP2753681B1 true EP2753681B1 (de) 2016-01-20

Family

ID=47745833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11871374.2A Active EP2753681B1 (de) 2011-08-24 2011-08-24 Verbesserungen im zusammenhang mit gezielten pflegestoffen und substratbehandlungszusammensetzungen

Country Status (5)

Country Link
EP (1) EP2753681B1 (de)
CN (1) CN103748203B (de)
BR (1) BR112014003419B1 (de)
WO (1) WO2013026181A1 (de)
ZA (1) ZA201400797B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3073985B1 (de) 2013-11-28 2018-09-05 Unilever PLC Verbesserungen in bezug auf verkapselte wirkstoffe
US11266144B2 (en) 2017-01-10 2022-03-08 Conopco, Inc. Biofilm targeting microcapsule carrying a non-volatile functional material
CN110317307A (zh) * 2019-07-04 2019-10-11 北京中纺化工股份有限公司 一种无氟拒水易去污多功能整理剂及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5977275A (en) * 1998-02-17 1999-11-02 National Starch And Chemical Investment Holding Corporation Polymers having pendant polysaccharide moieties and uses thereof
MXPA01000556A (es) * 1998-07-17 2002-05-14 Novozymes As Un conjugado de polipeptido-polimero con desempeno de lavado mejorado.
GB0412853D0 (en) * 2004-06-09 2004-07-14 Unilever Plc Fabric care composition
GB0718532D0 (en) * 2007-09-22 2007-10-31 Unilever Plc Improvements relating to fabric treatment compositions
GB0719164D0 (en) * 2007-10-01 2007-11-07 Unilever Plc Improvements relating to fabric treatment compositions
WO2011056934A1 (en) * 2009-11-06 2011-05-12 The Procter & Gamble Company High efficiency capsules comprising benefit agent

Also Published As

Publication number Publication date
EP2753681A4 (de) 2015-07-08
ZA201400797B (en) 2015-11-25
BR112014003419A2 (pt) 2017-06-13
BR112014003419B1 (pt) 2020-06-23
EP2753681A1 (de) 2014-07-16
WO2013026181A1 (en) 2013-02-28
CN103748203B (zh) 2017-06-23
CN103748203A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
AU2011290745B2 (en) Fabric treatment compositions comprising targeted benefit agents
AU2008300795B2 (en) Improvements relating to fabric treatment compositions
EP2155847B1 (de) Verbesserungen im zusammenhang mit parfümpartikeln
EP1954796B1 (de) Verbesserungen bei textilbehandlungsmitteln
EP3027303B1 (de) Verbesserungen an verkapselten wirkstoffen
EP2748297B1 (de) Verbesserungen an polymeren, ablagerungshilfsmittel, gezielte pflegestoffe und substratbehandlungszusammensetzungen
EP2753681B1 (de) Verbesserungen im zusammenhang mit gezielten pflegestoffen und substratbehandlungszusammensetzungen
US20190330571A1 (en) Swellable silica microparticle
BRPI0812552B1 (pt) Processo para fabricação de partículas núcleo-casca de perfume, dispersão aquosa de partículas e uso da mesma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150605

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 3/37 20060101AFI20150529BHEP

Ipc: C11D 17/00 20060101ALI20150529BHEP

Ipc: C11D 3/50 20060101ALI20150529BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150915

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011022924

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 771736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011022924

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

26N No opposition filed

Effective date: 20161021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160824

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011022924

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210819

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210823

Year of fee payment: 11

Ref country code: DE

Payment date: 20210819

Year of fee payment: 11

Ref country code: GB

Payment date: 20210820

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011022924

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220824