EP2750844A1 - Process for producing refractory ceramics for gas turbine plants - Google Patents

Process for producing refractory ceramics for gas turbine plants

Info

Publication number
EP2750844A1
EP2750844A1 EP12748202.4A EP12748202A EP2750844A1 EP 2750844 A1 EP2750844 A1 EP 2750844A1 EP 12748202 A EP12748202 A EP 12748202A EP 2750844 A1 EP2750844 A1 EP 2750844A1
Authority
EP
European Patent Office
Prior art keywords
refractory
gas turbine
casting
heat shield
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12748202.4A
Other languages
German (de)
French (fr)
Inventor
Claus Krusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP16001473.4A priority Critical patent/EP3120982A3/en
Publication of EP2750844A1 publication Critical patent/EP2750844A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/087Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/14Producing shaped prefabricated articles from the material by simple casting, the material being neither forcibly fed nor positively compacted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/022Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form combined with vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components

Definitions

  • the invention relates to a process for the production of refractory ceramics for use as a heat shield in the hot gas path of gas turbine plants according to the preamble of claim 1.
  • Gas turbine plants essentially consist of a compressor, a burner and an expansion turbine.
  • In the compressor intake air is compressed before it is mixed in the nachge ⁇ off and disposed in the compressor plenum burner in a combustion chamber with fuel and burned this mixture.
  • the downstream of the combustion chamber for drinks ⁇ cycle turbine then withdraws the resulting Verbrennungsabga ⁇ sen thermal energy and converts it into mechanical energy ⁇ Ener.
  • a generator connected to the expansion turbine converts this mechanical energy for generating electricity into electrical energy.
  • Such heat shields can be carried out both metallic and ceramic.
  • ceramic materials vorzugt loading that are provided ⁇ for example by a casting process ago.
  • air pockets can form in the casting compound, which lead to defects (blowholes) in the green body or in the finished component can. These defects are present both in volume and on the surface of the refractory ceramics.
  • surface defects are the main criterion for quality control in the context of quality control, as these particularly affect the mechanical properties. Due to the voids, it can lead to a weakening of the mechanical structures and thus to increased cracking in the refractory ceramic.
  • the object of the invention is to provide a method to stel ⁇ len, which avoids this disadvantage.
  • a heat shield consisting of at least one refractory ceramic manufactured by the method according to the invention is particularly robust and a gas turbine plant equipped with such a heat shield can be safely operated.
  • the invention will now be explained by way of example with reference to the refractory ceramic K shown in the figure.
  • a non-nä ⁇ forth shown mold cover is used, which dips when placed on the mold shell in the molding compound therein and the casting compound when closing the lid zuneh ⁇ ing up to the mold closure with a previously defined static Pressure applied.
  • the filling level of the casting compound represents the essential process parameter, which determines the mass displacement degree and thus the resulting static pressure.
  • the placing of the mold cover can already be carried out with vibration.
  • For secure mold closure is the
  • a clamping device with the high clamping forces can be generated.
  • a clamping ⁇ device represent, for example, toggle clamps.
  • the geometry of the mold closure already corresponds to the actual geometry of the produced refractory ceramic K, so that a reworking of the component surfaces can be completely eliminated and also the grinding of any existing sprue webs can be significantly reduced.
  • the sealed, static pressure mold is then vibrated directionally. With the vibration ⁇ or force introduction direction V, which is determined by the position of the mold relative to the vibration direction, the distribution of surface and volume errors (voids) in the component K can be controlled.
  • the force direction V is to be chosen such that it toward the Oberflä ⁇ normals N of the quality-critical component area - acts - here the hot gas side HS of refractory ceramics.
  • a virtually void-free surface of the hot gas side HS of the refractory ceramic for gas turbine plants can be achieved.
  • the side surfaces SF - similar quality requirements as the hot gas side described above are subjected to HS, the directed Vib ⁇ ration for these areas is to be repeated in the same manner.
  • the casting mold is then vibrated one after the other in a direction normal to the quality-critical component surfaces.
  • the essential process parameters for the directed vibration make the vibration direction, time, frequency and - amplitude and the stati ⁇ specific pressure generated by the mold closure is Overall, there are therefore by the inventions dung process according to the following advantages:.

Abstract

The invention relates to a process for producing refractory ceramics (K) for use as heat shield in the hot gas path of gas turbine plants, which comprises the steps: • - introduction of a casting composition into a component casting mould for the refractory ceramic (K), • - closing of the casting mould so that the casting composition is under a defined static pressure after closure, • - oriented vibration of the casting mould in the direction (V) of a normal (N) to a surface of the refractory ceramic (K) to be produced, which is required to meet particular quality requirements for use as heat shield, and • - subsequent removal from the mould and firing of the cast component.

Description

Beschreibung description
Verfahren zum Herstellen von Feuerfestkeramiken für Gasturbinenanlagen Process for producing refractory ceramics for gas turbine installations
Die Erfindung betrifft ein Verfahren zur Herstellung von Feuerfestkeramiken für den Einsatz als Hitzeschild im Heißgaspfad von Gasturbinenanlagen gemäß dem Oberbegriff des Anspruchs 1. The invention relates to a process for the production of refractory ceramics for use as a heat shield in the hot gas path of gas turbine plants according to the preamble of claim 1.
Gasturbinenanlagen bestehen im Wesentlichen aus einem Verdichter, einem Brenner und einer Entspannungsturbine. Im Verdichter wird angesaugte Luft verdichtet, bevor sie im nachge¬ schalteten und im Verdichterplenum angeordneten Brenner in einer Brennkammer mit Brennstoff gemischt und dieses Gemisch verbrannt wird. Die der Brennkammer nachgeschaltete Entspan¬ nungsturbine entzieht dann den entstandenen Verbrennungsabga¬ sen thermische Energie und wandelt diese in mechanische Ener¬ gie um. Ein mit der Entspannungsturbine verbundener Generator wandelt diese mechanische Energie zur Stromerzeugung noch in elektrische Energie um. Gas turbine plants essentially consist of a compressor, a burner and an expansion turbine. In the compressor intake air is compressed before it is mixed in the nachge ¬ off and disposed in the compressor plenum burner in a combustion chamber with fuel and burned this mixture. The downstream of the combustion chamber for drinks ¬ cycle turbine then withdraws the resulting Verbrennungsabga ¬ sen thermal energy and converts it into mechanical energy ¬ Ener. A generator connected to the expansion turbine converts this mechanical energy for generating electricity into electrical energy.
Im Betrieb der Gasturbinenanlage entstehen in der Brennkammer, die den Heißgaspfad zwischen Brenner und Gasturbine bil- det, Temperaturen, die typischerweise in der Größenordnung von ca. 1300 bis 1500 Grad Celsius liegen. Zur thermischen Abschirmung der den Heißgaspfad umschließenden Bauteile und Tragstrukturen werden deshalb entsprechende Brennkammeraus¬ kleidungen, beispielsweise in Form von Hitzeschilden, einge- setzt. During operation of the gas turbine plant, temperatures which are typically in the order of about 1300 to 1500 degrees Celsius arise in the combustion chamber, which forms the hot gas path between burner and gas turbine. For thermal shielding of the hot gas path enclosing components and support structures therefore appropriate Brennkammeraus ¬ garments, for example in the form of heat shields, is used.
Solche Hitzeschilde können dabei sowohl metallisch als auch keramisch ausgeführt werden. Bei Gasturbinenanlagen werden aufgrund der agressiven Heißgase keramische Materialien be- vorzugt, die beispielsweise mittels eines Gießprozesses her¬ gestellt werden. Im Verlauf des Gießprozesses können aber in der Gießmasse Lufteinschlüsse entstehen, die zu Fehlstellen (Lunker) im Grünling bzw. im fertig gebrannten Bauteil führen können. Diese Fehlstellen liegen dabei sowohl im Volumen als auch an der Oberfläche der Feuerfestkeramiken vor. Oberflächenfehler stellen aber gerade auf der Heißgasseite der Feuerfestkeramik das Hauptausschusskriterium im Rahmen der Qua- litätskontrolle dar, da diese die mechanischen Eigenschaften besonders beeinflussen. Durch die Lunker kann es zu einer Schwächung der mechanischen Strukturen und damit zu einer verstärkten Rissbildung in der Feuerfestkeramik kommen. Aufgabe der Erfindung ist es, ein Verfahren bereit zu stel¬ len, das diesen Nachteil vermeidet. Such heat shields can be carried out both metallic and ceramic. In gas turbine plants due to the aggressive hot gases ceramic materials vorzugt loading that are provided ¬ for example by a casting process ago. In the course of the casting process, however, air pockets can form in the casting compound, which lead to defects (blowholes) in the green body or in the finished component can. These defects are present both in volume and on the surface of the refractory ceramics. On the hot gas side of refractory ceramics, however, surface defects are the main criterion for quality control in the context of quality control, as these particularly affect the mechanical properties. Due to the voids, it can lead to a weakening of the mechanical structures and thus to increased cracking in the refractory ceramic. The object of the invention is to provide a method to stel ¬ len, which avoids this disadvantage.
Diese Aufgabe wird mit dem Verfahren des Anspruchs 1 gelöst welches die folgende Schritte umfasst: This object is achieved by the method of claim 1, which comprises the following steps:
- Einfüllen einer Gießmasse in eine Bauteilgießform für eine Feuerfestkeramik, Filling a casting compound into a component casting mold for a refractory ceramic,
- Verschließen der Gießform, so dass die Gießmasse nach dem Verschließen unter einem definierten statischen Druck steht, Closing the casting mold so that the casting compound, after sealing, is under a defined static pressure,
- gerichtetes Vibrieren der Gießform in Richtung (V) einer Oberflächenormalen (N) einer Oberfläche der herzustellenden- directed vibration of the mold in the direction (V) of a surface normal (N) of a surface of the produced
Feuerfestkeramik, an die besondere Qualitätsanforderungen für den Einsatz als Hitzeschild gestellt werden, Refractory ceramics to which special quality requirements for use as a heat shield are made,
- und anschließendes Entformen und Brennen des gegossenen Bauteils .  - And then demolding and firing of the cast component.
Dadurch, dass die Gießmasse nach dem Einbringen in die Gießform unter Aufrechterhaltung eines definierten statischen Drucks in Richtung der Oberflächennormalen qualitätskritischer Bauteilflächen gerichtet vibriert wird, lässt sich eine nahezu lunkerfreie Oberfläche erzielen. Eine Schwächung des keramischen Hitzeschildes, insbesondere der am stärksten be¬ anspruchten Heißgasseite aufgrund festigkeitsreduzierender Fehlstellen, wird so effektiv verhindert. Sollen weitere Oberflächen der Feuerfestkeramik ähnliche Qualitätsmerkmale aufweisen, muss der Vibrationsschritt in Rich¬ tung der Oberflächennormalen dieser Oberflächen jeweils entsprechend wiederholt werden. Ein Hitzeschild bestehend aus zumindest einer Feuerfestkera¬ mik die mit dem erfindungsgemäßen Verfahren hergestellt ist, ist dabei besonders robust und eine mit einem solchen Hitze- schild ausgerüstete Gasturbinenanlage kann sicher betrieben werden . The fact that the casting material is vibrated in direction of the surface normal quality critical component surfaces after introduction into the mold while maintaining a defined static pressure, a virtually void-free surface can be achieved. A weakening of the ceramic heat shield, in particular the most heavily loaded hot gas side due to strength-reducing defects, is thus effectively prevented. If further surfaces of the refractory ceramic have similar quality features, the vibration step in Rich ¬ tion of the surface normal of these surfaces must be repeated in each case accordingly. A heat shield consisting of at least one refractory ceramic manufactured by the method according to the invention is particularly robust and a gas turbine plant equipped with such a heat shield can be safely operated.
Die Erfindung soll nun anhand der in der Figur dargestellten Feuerfestkeramik K beispielhaft erläutert werden. Im Rahmen des Gießprozesses dieser Feuerfestkeramik kommt ein nicht nä¬ her gezeigter Gießformdeckel zum Einsatz, der beim Aufsetzen auf die Gießformschale in die darin befindliche Gießmasse eintaucht und die Gießmasse beim Schließen des Deckels zuneh¬ mend bis hin zum Gießformverschluss mit einem zuvor festge- legten statischen Druck beaufschlagt. Bei gegebener Deckelgeometrie stellt die Füllhöhe der Gießmasse den wesentlichen Prozessparameter dar, der den Masse-Verdrängungsgrad und da¬ mit den resultierenden statischen Druck bestimmt. Vorzugsweise kann bereits das Aufsetzen des Gießformdeckels unter Vib- ration erfolgen. Zum sicheren Gießformverschluss ist dieThe invention will now be explained by way of example with reference to the refractory ceramic K shown in the figure. As part of the casting process of this refractory ceramic, a non-nä ¬ forth shown mold cover is used, which dips when placed on the mold shell in the molding compound therein and the casting compound when closing the lid zuneh ¬ ing up to the mold closure with a previously defined static Pressure applied. For a given cover geometry, the filling level of the casting compound represents the essential process parameter, which determines the mass displacement degree and thus the resulting static pressure. Preferably, the placing of the mold cover can already be carried out with vibration. For secure mold closure is the
Gießform dann mit einer Spannvorrichtung zu versehen, mit der hohe Spannkräfte erzeugt werden können. Eine derartige Spann¬ vorrichtung stellen beispielsweise Kniehebelspanner dar. Vorzugsweise entspricht die Geometrie des Gießformverschlusses schon der eigentlichen Geometrie der zu erzeugenden Feuerfestkeramik K, so dass eine Nachbearbeitung der Bauteilflächen ganz entfallen kann und auch das Schleifen gegebenenfalls vorhandener Angussstege deutlich reduziert werden kann. Die verschlossene, unter statischem Druck stehende Gießform wird anschließend gerichtet vibriert. Mit der Vibrations¬ bzw. Krafteinleitungsrichtung V, die durch die Lage der Gießform relativ zur Vibrationsrichtung bestimmt wird, kann die Verteilung der Oberflächen- und Volumenfehler (Lunker) im Bauteil K gesteuert werden. Die Krafteinleitungsrichtung V ist dabei derart zu wählen, dass sie in Richtung der Oberflä¬ chennormalen N der qualitätskritischen Bauteilfläche - hier der Heißgasseite HS der Feuerfestkeramik - wirkt. Somit kann hier eine nahezu lunkerfreie Oberfläche der Heissgasseite HS der Feuerfestkeramik für Gasturbinenanlagen erreicht werden. To provide mold then with a clamping device, with the high clamping forces can be generated. Such a clamping ¬ device represent, for example, toggle clamps. Preferably, the geometry of the mold closure already corresponds to the actual geometry of the produced refractory ceramic K, so that a reworking of the component surfaces can be completely eliminated and also the grinding of any existing sprue webs can be significantly reduced. The sealed, static pressure mold is then vibrated directionally. With the vibration ¬ or force introduction direction V, which is determined by the position of the mold relative to the vibration direction, the distribution of surface and volume errors (voids) in the component K can be controlled. The force direction V is to be chosen such that it toward the Oberflä ¬ normals N of the quality-critical component area - acts - here the hot gas side HS of refractory ceramics. Thus, can Here, a virtually void-free surface of the hot gas side HS of the refractory ceramic for gas turbine plants can be achieved.
Sollen weitere Flächen - zum Beispiel die Seitenflächen SF - ähnlichen Qualitätsanforderungen wie der zuvor beschriebenen Heißgasseite HS unterzogen werden, so ist die gerichtete Vib¬ ration für diese Flächen in gleicher Weise zu wiederholen. Die Gießform wird dann nacheinander jeweils normal zu den qualitätskritischen Bauteilflächen gerichtet nachvibriert. If additional surfaces - for example, the side surfaces SF - similar quality requirements as the hot gas side described above are subjected to HS, the directed Vib ¬ ration for these areas is to be repeated in the same manner. The casting mold is then vibrated one after the other in a direction normal to the quality-critical component surfaces.
Die wesentlichen Prozessparameter für die gerichtete Vibration stellen die Vibrationsrichtung, -zeit, -frequenz und - amplitude sowie der durch den Formverschluss erzeugte stati¬ sche Druck dar. Insgesamt ergeben sich somit durch das erfin- dungsgemäße Verfahren folgende Vorteile: The essential process parameters for the directed vibration make the vibration direction, time, frequency and - amplitude and the stati ¬ specific pressure generated by the mold closure is Overall, there are therefore by the inventions dung process according to the following advantages:.
- Ausschussreduzierung durch Lunkervermeidung bzw. signifikante Reduzierung der Lunkerhäufigkeit auf den Hitzeschild¬ oberflächen; - Committee reduction by Lunkervermeidung or significant reduction of the heat shield Lunkerhäufigkeit ¬ surfaces;
- Erhöhung der passiven Sicherheit der keramischen Hitzeschilde durch Reduzierung der Fehlstellenanzahl und -große;- Increasing the passive safety of ceramic heat shields by reducing the number and size of defects;
- Reproduzierbarkeit des Herstellungsverfahrens wird erheb¬ lich verbessert; - Reproducibility of the manufacturing process is significantly ¬ improved;
- Automatisierbarkeit des Herstellungsprozesses;  - automation of the manufacturing process;
- Reduzierung der Stückkosten. - Reduction of unit costs.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Feuerfestkeramiken für den Einsatz als Hitzeschild im Heißgaspfad von Gasturbinenanla- gen, umfassend die Schritte: 1. A process for the production of refractory ceramics for use as a heat shield in the hot gas path of gas turbine plants, comprising the steps:
- Einfüllen einer Gießmasse in eine Bauteilgießform für die Feuerfestkeramik,  Filling a casting compound into a component casting mold for the refractory ceramic,
- Verschließen der Gießform, so dass die Gießmasse nach dem Verschließen unter einem definierten statischen Druck steht, - gerichtetes Vibrieren der Gießform in Richtung (V) einer Oberflächenormalen (N) einer Oberfläche der herzustellenden Feuerfestkeramik, an die besondere Qualitätsanforderungen für den Einsatz als Hitzeschild gestellt werden,  - Closing of the mold, so that the casting material is after closing under a defined static pressure, - directed vibration of the mold in the direction (V) of a surface normal (N) of a surface of the produced ceramic refractory to the particular quality requirements for use as a heat shield become,
- und anschließendes Entformen und Brennen des gegossenen Bauteils.  - And then demolding and firing of the cast component.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , d a s s d a d u r c h e s e n c i n e s, d a s s
die Oberfläche an die besondere Qualitätsanforderungen ge- stellt wird, die Heißgasseite (HS) der Feuerfestkeramik (K) ist . the surface is put to the special quality requirements, the hot gas side (HS) of the refractory ceramic (K) is.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t , d a s s d a d u r c h e s e n c i n e s, d a s s
der Schritt des gerichteten Vibrierens für weitere Oberflä¬ chen der herzustellenden Feuerfestkeramik wiederholt wird. the step of vibrating directed for further Oberflä ¬ surfaces of the manufactured fire-resistant ceramic is repeated.
4. Hitzeschild für eine Gasturbinenanlage, bestehend aus zu¬ mindest einer Feuerfestkeramik die mit dem Verfahren nach ei- nem der Ansprüche 1 bis 3 hergestellt ist. 4. heat shield for a gas turbine plant, consisting of at least ¬ a refractory ceramic produced by the method according to one of claims 1 to 3.
EP12748202.4A 2011-08-31 2012-08-14 Process for producing refractory ceramics for gas turbine plants Withdrawn EP2750844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16001473.4A EP3120982A3 (en) 2011-08-31 2012-08-14 Method for producing fire-retardant ceramics for gas turbine plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011081847A DE102011081847A1 (en) 2011-08-31 2011-08-31 Process for producing refractory ceramics for gas turbine installations
PCT/EP2012/065846 WO2013029980A1 (en) 2011-08-31 2012-08-14 Process for producing refractory ceramics for gas turbine plants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP16001473.4A Division EP3120982A3 (en) 2011-08-31 2012-08-14 Method for producing fire-retardant ceramics for gas turbine plants

Publications (1)

Publication Number Publication Date
EP2750844A1 true EP2750844A1 (en) 2014-07-09

Family

ID=46690500

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12748202.4A Withdrawn EP2750844A1 (en) 2011-08-31 2012-08-14 Process for producing refractory ceramics for gas turbine plants
EP16001473.4A Withdrawn EP3120982A3 (en) 2011-08-31 2012-08-14 Method for producing fire-retardant ceramics for gas turbine plants

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16001473.4A Withdrawn EP3120982A3 (en) 2011-08-31 2012-08-14 Method for producing fire-retardant ceramics for gas turbine plants

Country Status (5)

Country Link
US (1) US20140165573A1 (en)
EP (2) EP2750844A1 (en)
DE (1) DE102011081847A1 (en)
RU (1) RU2014112056A (en)
WO (1) WO2013029980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484506A (en) * 2022-01-27 2022-05-13 西安鑫垚陶瓷复合材料有限公司 Shaping mold for ceramic matrix composite single-head flame tube and preparation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105128139A (en) * 2015-09-30 2015-12-09 佛山市新鹏工业服务有限公司 Vibration mold for pressing ceramic tile

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE563358C (en) * 1930-01-28 1932-11-04 Heinrich Koppers Akt Ges Shaking machine for the production of bricks for the manufacture of refractory bricks
FR2261865A1 (en) * 1974-02-25 1975-09-19 Inst P Rabot Ogneup Vibratory press for semi-dry ceramic materials - has vibrating two part lower die operated at controlled press. ratio to upper die
EP2168935A1 (en) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Material compound for producing a fire-retardant material and its application and fire-retardant moulding body and method for its manufacture

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB380432A (en) * 1930-04-16 1932-09-13 Elisabeth Lux Improvements in or relating to moulding for the manufacture of refractory masses
US1944989A (en) * 1930-08-11 1934-01-30 Koppers Co Delaware Method and apparatus for making ceramic shapes
US2959900A (en) * 1956-10-12 1960-11-15 S G Leoffler Packaging finely divided materials
DE1252835B (en) * 1964-05-21 1967-10-26 Farbwerke Hoechst Aktiengesellschaft vormals Meister Lucius &. Brüning, Frankfurt/M Use of condensed aluminum phosphates to harden water glass cement
DE1758927B1 (en) * 1968-09-04 1970-12-17 Vaw Ver Aluminium Werke Ag Shaking device for the production of high density carbon electrodes for the aluminum industry
US3650783A (en) * 1969-05-13 1972-03-21 Du Pont Trivalent metal phosphate coated colloidal silica molding powders
US3547670A (en) * 1969-05-28 1970-12-15 Fmc Corp Metal oxide-phosphoric acid coatings
US3634286A (en) * 1969-07-09 1972-01-11 Du Pont Stable homogeneous suspension of silicaphosphate composition and method of preparation
JPS4927515Y1 (en) * 1970-03-31 1974-07-25
US3708317A (en) * 1970-12-07 1973-01-02 Koninklijke Hoogovens En Staal Metallurgical furnace lining and method of production
GB1365287A (en) * 1970-12-11 1974-08-29 Ici Ltd Graphite compositions
US3801704A (en) * 1971-03-15 1974-04-02 Teikoku Kako Co Ltd Aluminum phosphate and a producing method therefor
JPS5338283B2 (en) * 1972-05-19 1978-10-14
US3944193A (en) * 1972-08-26 1976-03-16 Nippon Steel Corporation Method and apparatus for forming by vibration a refractory lining of a container for a molten metal
US4150999A (en) * 1974-08-12 1979-04-24 Denki Kagaku Kogyo Kabushiki Kaisha Method for manufacture of ferrosilicon nitride
US4035124A (en) * 1975-01-27 1977-07-12 Old Fort International, Inc. Block molding machine
JPS583998B2 (en) * 1975-02-15 1983-01-24 ニホンルツボ カブシキガイシヤ Futei Keitai Kazai
US4171227A (en) * 1976-11-24 1979-10-16 Pq Corporation Alumina-silica binder for coating compositions
FR2550953B1 (en) * 1977-04-12 1987-02-20 Commissariat Energie Atomique PROCESS FOR PRODUCING PERMEABLE MINERAL MEMBRANES
US4238177A (en) * 1978-04-24 1980-12-09 Crile Eugene E Molding machine with vibration isolation
US4235580A (en) * 1978-06-01 1980-11-25 Besser Company Noise suppression structure for block making machinery
JPS5844052B2 (en) * 1979-04-13 1983-09-30 新日本製鐵株式会社 Method of manufacturing fireproof blocks
US4244682A (en) * 1979-09-20 1981-01-13 Willingham John H Portable concrete molding apparatus
US4517037A (en) * 1981-11-02 1985-05-14 Aluminum Company Of America Refractory composition comprising nitride filler and colloidal sol binder
JPS5927749A (en) * 1982-08-06 1984-02-14 Hitachi Ltd Production of casting mold for precision casting
US4510253A (en) * 1983-05-26 1985-04-09 Combustion Engineering, Inc. Aluminum resistant ceramic fiber composition
JPS60171104A (en) * 1984-02-15 1985-09-04 品川白煉瓦株式会社 Hydraulic press for molding fire brick with vibrator
US4828495A (en) * 1984-04-03 1989-05-09 Denpac Corp. Sintered alloy dental prosthetic devices and method
US4803025A (en) * 1984-04-23 1989-02-07 Swiss Aluminium Ltd. Ceramic foam
AT379335B (en) * 1984-05-10 1985-12-27 Voest Alpine Ag FURNISHING ON A CONTINUOUS CASTING SYSTEM WITH AN OSCILLATING CONTINUOUS CHOCOLATE SUSPENDED OR SUPPORTED ON A FIXED POST
DE3445559C1 (en) * 1984-12-14 1986-08-14 Martin & Pagenstecher GmbH, 5000 Köln Refractory, thixotropic vibration mass as well as method and device for the vibration delivery of metallurgical vessels with this mass
US4966538A (en) * 1988-06-01 1990-10-30 Buehler, Ltd. Mounting press
US5147834A (en) * 1989-08-15 1992-09-15 Magneco/Metrel, Inc. Gunning composition
US5147830A (en) * 1989-10-23 1992-09-15 Magneco/Metrel, Inc. Composition and method for manufacturing steel-containment equipment
US5064787A (en) * 1989-11-20 1991-11-12 Magneco/Metrel, Inc. Ramming compositions
US5397110A (en) * 1993-02-08 1995-03-14 North American Refractories Company Refractory brick and method of making and using same
US5418198A (en) * 1993-08-23 1995-05-23 Magneco/Metrel, Inc. Pelletizable gunning composition
US5422323A (en) * 1994-04-15 1995-06-06 Magneco/Metrel, Inc. Nonhazardous pumpable refractory insulating composition
US5494267A (en) * 1994-07-26 1996-02-27 Magneco/Metrel, Inc. Pumpable casting composition and method of use
GB9617010D0 (en) * 1996-08-13 1996-09-25 Shaw Richard D Improved refractory binder
EP1741531A1 (en) * 2005-07-07 2007-01-10 Siemens Aktiengesellschaft Mould for the production of a ceramic heat shield elements
US7628951B1 (en) * 2005-10-21 2009-12-08 Ceramatec, Inc. Process for making ceramic insulation
US9315426B2 (en) * 2010-05-20 2016-04-19 Comanche Tecnologies, LLC Coatings for refractory substrates
KR101321944B1 (en) * 2012-03-30 2013-11-04 한국과학기술연구원 Cement-free High Strength Unshaped Refractories

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE563358C (en) * 1930-01-28 1932-11-04 Heinrich Koppers Akt Ges Shaking machine for the production of bricks for the manufacture of refractory bricks
FR2261865A1 (en) * 1974-02-25 1975-09-19 Inst P Rabot Ogneup Vibratory press for semi-dry ceramic materials - has vibrating two part lower die operated at controlled press. ratio to upper die
EP2168935A1 (en) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Material compound for producing a fire-retardant material and its application and fire-retardant moulding body and method for its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013029980A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484506A (en) * 2022-01-27 2022-05-13 西安鑫垚陶瓷复合材料有限公司 Shaping mold for ceramic matrix composite single-head flame tube and preparation method

Also Published As

Publication number Publication date
DE102011081847A1 (en) 2013-02-28
EP3120982A2 (en) 2017-01-25
RU2014112056A (en) 2015-10-10
EP3120982A3 (en) 2017-03-08
WO2013029980A1 (en) 2013-03-07
US20140165573A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
EP2099582B1 (en) Device and method for the repair or production of blade tips of blades of a gas turbine, in particular of an aircraft engine
DE102012206125A1 (en) Process for the production of low-pressure turbine blades made of TiAl
WO2016087140A1 (en) Method for producing a rotor blade, and blade obtained by such a method
EP2826959B1 (en) Insulating element for a casing of an aircraft engine
WO2009141152A1 (en) Method and device for producing a workpiece, particularly a shaping tool or a part of a shaping tool
EP2001621A2 (en) Method for production of a honeycomb seal
EP2750844A1 (en) Process for producing refractory ceramics for gas turbine plants
DE102007054232A1 (en) Method of producing composite structures with mounting flanges
DE102009049695A1 (en) Method for producing a rotor of a turbocharger
DE60117891T2 (en) Manufacturing method of composite with ceramic matrix
DE4343547C1 (en) Method for the production of machine components from inorganic casting material
DE102015216321A1 (en) Method for producing a piston
DE102019126740A1 (en) TURBINE NOZZLE CASE MADE OF CERAMIC MATRIX COMPOSITE AND ASSEMBLY PROCESS
DE112016000230T5 (en) Method for producing a turbine wheel
DE2916211C2 (en) Process for making a foundry mold
WO2014146997A1 (en) Additive method, in particular for producing a coating, device for performing the method, coating, component production method, and component
WO2021094026A1 (en) Method for the layer-by-layer additive manufacturing of a composite material
DE102019214667A1 (en) Component with an area to be cooled and means for the additive manufacture of the same
DE102018204493A1 (en) Method of repairing turbine blades
WO2010023034A1 (en) Gas turbine arrangement having a porous housing and method for the production thereof
EP2628816A1 (en) Method for applying a heat insulation layer
DE102007006020A1 (en) Method for casting a solid fuel propellant
WO2019020668A1 (en) Fiber-reinforced component and manufacturing process therefor
WO2021083440A1 (en) Process for producing a component from an sic/sic fibre composite material
RU2061594C1 (en) Method for manufacture of nozzle insert

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150512

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161116