EP2743356B1 - Verfahren zur steigerung der ausbeute bei der lactoseherstellung (i) - Google Patents
Verfahren zur steigerung der ausbeute bei der lactoseherstellung (i) Download PDFInfo
- Publication number
- EP2743356B1 EP2743356B1 EP12196712.9A EP12196712A EP2743356B1 EP 2743356 B1 EP2743356 B1 EP 2743356B1 EP 12196712 A EP12196712 A EP 12196712A EP 2743356 B1 EP2743356 B1 EP 2743356B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lactose
- solution
- temperature
- alpha
- cooled down
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 title claims description 58
- 239000008101 lactose Substances 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000002708 enhancing effect Effects 0.000 title 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 78
- 239000013078 crystal Substances 0.000 claims description 28
- 239000012452 mother liquor Substances 0.000 claims description 24
- 229930195727 α-lactose Natural products 0.000 claims description 21
- 239000005862 Whey Substances 0.000 claims description 8
- 102000007544 Whey Proteins Human genes 0.000 claims description 8
- 108010046377 Whey Proteins Proteins 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 238000005115 demineralization Methods 0.000 claims description 6
- 102000004169 proteins and genes Human genes 0.000 claims description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 45
- 238000000108 ultra-filtration Methods 0.000 description 15
- 238000001816 cooling Methods 0.000 description 11
- 239000012466 permeate Substances 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 159000000007 calcium salts Chemical class 0.000 description 5
- 230000002328 demineralizing effect Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000001728 nano-filtration Methods 0.000 description 4
- GUBGYTABKSRVRQ-DCSYEGIMSA-N Beta-Lactose Chemical compound OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-DCSYEGIMSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229930195724 β-lactose Natural products 0.000 description 3
- WQZGKKKJIJFFOK-SVZMEOIVSA-N (+)-Galactose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-SVZMEOIVSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008141 laxative Substances 0.000 description 1
- 230000002475 laxative effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000019605 sweet taste sensations Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K5/00—Lactose
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13B—PRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
- C13B20/00—Purification of sugar juices
- C13B20/16—Purification of sugar juices by physical means, e.g. osmosis or filtration
Definitions
- the invention is in the field of the dairy industry and relates to an improved process for the production of lactose.
- Lactose belongs to the group of disaccharides and consists of the two molecules D-galactose and D-glucose, which are linked by a ⁇ -1,4-glycosidic bond.
- Lactose is a crystalline, colorless substance with a sweet taste; depending on the concentration, the sweetening power is between 25 and 60% of that of sucrose. Lactose is an important component of milk and has a variety of nutritional benefits. So it serves the metabolism as an energy source, supports calcium absorption, inhibits the formation of putrefactive bacteria in the intestine and is at least taken in large quantities, laxative. In food technology, it is mainly used for the production of lactic acid and as a texturizer for frozen foods. Because it gives food a creamy taste, it is a widely used additive.
- Lactose is a by-product in the production of protein powders.
- whey is usually freed by ultrafiltration of proteins, which are then subjected to spray drying.
- a currently customary process for the production of lactose is described, for example, in the international patent application WO 2002 050089 A1 (Food Science Australia).
- the permeate obtained in the ultrafiltration of the whey is concentrated by reverse osmosis (RO) or nanofiltration (NF).
- RO reverse osmosis
- NF nanofiltration
- the concentrate thus obtained is demineralized in two steps, ie first mixed with an alkaline earth salt, usually an aqueous calcium chloride solution, wherein the minerals are precipitated as calcium phosphate.
- an alkaline earth salt usually an aqueous calcium chloride solution
- the solubility of the calcium salts is further reduced by the addition of lower alcohols and further phosphate precipitated.
- the separation of the salts is then carried out with the aid of suitable filtration devices, such as membranes, separators or the like. Subsequently, the purified lactose solution is subjected to vacuum distillation and adjusted to a solids content of about 65% by weight.
- the patent US 4,202,909 describes a process for the production of lactose, in which one first subjects whey to ultrafiltration, subjects the UF permeate to demineralization, concentrates the permeate, and then separates the lactose from the mother liquor. In particular, it is described that the mother liquor can then be demineralized and worked up again in order to obtain a further amount of lactose. Similar content is also the GB 1575089 B in which a process for the production of lactose is described in Example 1, in which first subjected to ultrafiltration of whey, the UF permeate subjected to a demineralization, the permeate concentrated and then separates the lactose from the mother liquor.
- the mother liquor which contains about 90% by weight of lactose in the dry mass
- the mother liquor is conveyed downstream of the evaporator into the crystallization tank. This is heated to fill to keep the lactose in solution. Above 93.5 ° C pure beta-lactose is present. Upon cooling, however, this converts quantitatively into alpha-lactose. However, this is not a sharp phase transition, because initially a metastable phase is run through, from which then precipitate the alpha-lactose crystals. On further cooling, the saturation curve is usually followed so that the crystals have sufficient time to grow.
- the liquor After the start of the crystallization process is cooled to a temperature of 30 to 40 ° C, the liquor for 1 to 3 h at this temperature and then allowed to continue to 10 ° C cooled.
- the total cooling time is about 20 h.
- the stirring also leads to crystal breakage in the decanter, which in turn produces material that can not be separated due to its small particle diameter. In this way, a further 20% of the lactose are lost, so that the mother race finally contains 35 to 40% lactose, which must be worked up again at great expense in order to arrive at an acceptable yield in the overall consideration of the process.
- the object of the present invention was to improve existing processes for lactose production to this effect and to limit the residual amount of alpha-lactose, which is lost after crystallization with the mother liquor, to a maximum of 20 wt .-%.
- Lactose solutions which come into consideration for the purposes of the process according to the invention as starting materials for the recovery of the alpha-lactose crystals, are generally obtained starting from whey.
- whey is first split into a protein-rich and a lactose-rich fraction.
- the preferred separation method for this purpose is ultrafiltration (UF), in which the UF retentate is further processed to obtain proteins and the UF permeate is used for the recovery of the lactose.
- UF ultrafiltration
- the UF retentate contains about 20% by weight of dry matter and about 2% by weight of lactose, and the ash content is about 1% by weight.
- the UF permeate which is further processed to produce the lactose, however, has a dry matter content of about 4.5 to 5.5 wt .-%, wherein the content of lactose at about 4.1 to 4.6 and the ash content at is about 0.3 to 0.5.
- the UF permeate is concentrated to provide a dry matter content of about 10 to 30% by weight, corresponding to 10 to 30 ° Brix. This is preferably done either by reverse osmosis (RO) or nanofiltration (NF).
- RO reverse osmosis
- NF nanofiltration
- the UF permeate has - optionally after concentration - a content of minerals in the order of 1 to 2 wt .-% to.
- the solutions are first adjusted to an approximately neutral pH in the range from 6 to 8 by the addition of bases, and the minerals which are essentially soluble Phosphates are added with such an amount of a solution of a water-soluble calcium salt that low-soluble calcium salts are precipitated.
- an aqueous preparation of calcium chloride and alkali metal hydroxide or calcium hydroxide is used.
- other alkali or alkaline earth bases, such as KOH may be used to adjust the pH.
- the nature of the precipitation salt is not critical in itself, it can be, for example, barium precipitate.
- the use of calcium salts has the advantage that the precipitant is inexpensive and the salts have a very low solubility product, ie the precipitation is substantially complete.
- the demineralization is carried out in stirred tanks, wherein it has proved to be advantageous to set a temperature in the range of about 50 to 90 and preferably of about 80 ° C.
- the precipitation time is typically about 20 to 120, and preferably about 30 to 45 minutes, which are only indicative, since lower temperatures require longer reaction times and vice versa.
- the salts are separated, for example in separators, which exploit the greater specific gravity of the precipitated particles. But it is also possible to carry out the separation, for example by membrane filter in the context of a further ultrafiltration in the range 5 to 150 kDa, preferably 10 to 50 kDa.
- the purified stream now typically contains about 15 to 20, preferably about 17.5 weight percent lactose, while the ash content has already been reduced to about 0.8.
- a second demineralization stage can now follow, in which the amount of lower alcohols, in particular of ethanol, is added to the prepurified stream in order to further reduce the solubility product of the calcium salts still present. In this way, if necessary, a further amount of salts can be precipitated and separated as described above.
- the demineralized lactose-rich stream is concentrated once more after leaving the separators, corresponding to a solids content substantially identical to the lactose content of about 50 to 70% by weight 40 to 50 ° Brix - sets.
- This is preferably done by a vacuum evaporation in which the product is dehydrated to preferably about 65 wt .-% and, if appropriate, alcohol is separated from the Demineralmaschineseck.
- the aqueous lactose solutions thus obtained can now be used in the crystallization stage.
- a lactose solution which is obtainable as described above and has about 60 to 95 and preferably about 85 to 90% by weight of lactose in dry matter, is pumped into a preheated crystallization tank.
- the mother liquor may be adjusted to a temperature above 93.5 ° C prior to filling the tank to prevent the formation of alpha-lactose; however, this is not mandatory. It can also be mother liquors where the conversion of beta-alpha-lactose has already begun.
- the solution is then at 62 to 67 and preferably about 63 to 65 ° C. cooled.
- it is sufficient to have the hot lactose solution simply adapted to the starting temperature of the crystallization tank, which is usually the case within 1 to 2 hours.
- the lactose solution is continuously cooled at a rate of about 1 to 5 ° K / h to 20 to 30 and preferably about 23 to 26 ° C and held there for about 0.5 to 5 and preferably about 1 to 3 hours.
- metastable phases are repeatedly passed, in which also beta-lactose is stable or alpha-lactose is converted back into beta-lactose.
- New crystal nuclei are formed again, which on further cooling hardly have any chances to reach a sufficient size to be separated in the decanter. Therefore, in the next step, the solution is again gently heated, namely to about 35 to 40 and preferably about 36 to 38 ° C. At this temperature, the solution is again left for about 0.5 to 5 hours and especially for about 1 to 3 hours. The heating takes place again at a speed of about 1 to 5 ° K / h.
- the seeds are brought back into solution and now have the opportunity to grow on the larger crystals.
- the solution is then cooled at a rate of about 1 to 3 ° K / h to about 10 ° C, preferably 5 to 10 ° C and held at this temperature for about 12 to 15 hours, so that the alpha-lactose crystals sufficient time have to leave.
- the lactose crystals are separated from the mother liquor, which is preferably carried out by means of decanters work according to the centrifugal principle. In principle, however, any other component with the aid of which solid / liquid separation is possible is also suitable for this step. These include, for example, separators that work with membranes.
- the lactose crystals, to which mother liquor still adheres, are subsequently gently dried, for which band dryers, in particular, have proved suitable.
- a further subject of the present patent application relates to a mother liquor with an alpha-lactose content of about 15 to 20 wt .-%, which is obtainable by the process according to the invention.
- a lactose mother liquor having a content of 89.5% by weight in the dry mass was placed at a temperature of about 95 ° C. in a preheated crystallization tank, there at a rate of about 3 ° K / h within about 1 h Cooled to 65 ° C and held for one hour before the solution was again cooled at a rate of about 3 ° K / h in about 1 h at 25 ° C. There, the solution was kept at the temperature for a further 3 h and then cooled at a rate of 1 ° K / h within 1 h to 10 ° C.
- the solution was held at this temperature for about 15 hours, the precipitated alpha-lactose crystals separated in a decanter and freed of adherent moisture on a belt dryer.
- the remaining mother liquor had a residual content of 34.7 wt .-% lactose.
- the temperature / time profile is in illustration 1 played.
- the lactose mother liquor from Comparative Example C1 was added at a temperature of about 95 ° C in a preheated crystallization tank, where it cooled at a rate of about 3 ° K / h within about 1 h to 65 ° C held there for about an hour, before the solution was again cooled at a rate of about 3 ° K / h to 25 ° C within about 1 h. There the solution was kept at the temperature for a further 3 hours and then reheated to 37 ° C. at a rate of about 3 ° K / h. The solution was kept at this temperature for a further 3 hours and then cooled at a rate of 1 ° K / h within 1 h to 10 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Saccharide Compounds (AREA)
- Dairy Products (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12196712.9A EP2743356B1 (de) | 2012-12-12 | 2012-12-12 | Verfahren zur steigerung der ausbeute bei der lactoseherstellung (i) |
DK12196712.9T DK2743356T3 (en) | 2012-12-12 | 2012-12-12 | Method for improving yield in the manufacture of lactose (I) |
CN201310681584.9A CN103864857B (zh) | 2012-12-12 | 2013-12-12 | 提高乳糖生产的产量的方法 |
US14/103,967 US9476105B2 (en) | 2012-12-12 | 2013-12-12 | Method for increasing the yield in lactose production (I) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12196712.9A EP2743356B1 (de) | 2012-12-12 | 2012-12-12 | Verfahren zur steigerung der ausbeute bei der lactoseherstellung (i) |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2743356A1 EP2743356A1 (de) | 2014-06-18 |
EP2743356B1 true EP2743356B1 (de) | 2016-03-09 |
Family
ID=47355873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12196712.9A Active EP2743356B1 (de) | 2012-12-12 | 2012-12-12 | Verfahren zur steigerung der ausbeute bei der lactoseherstellung (i) |
Country Status (4)
Country | Link |
---|---|
US (1) | US9476105B2 (zh) |
EP (1) | EP2743356B1 (zh) |
CN (1) | CN103864857B (zh) |
DK (1) | DK2743356T3 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180249726A1 (en) * | 2017-03-03 | 2018-09-06 | Dmk Deutsches Milchkontor Gmbh | Process for producing a milk product free of lactose |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1483190A (en) * | 1973-11-02 | 1977-08-17 | Shell Int Research | Purification of diphenylolpropane |
US4202909A (en) | 1976-11-22 | 1980-05-13 | Patent Technology, Inc. | Treatment of whey |
CA1077472A (en) | 1976-11-22 | 1980-05-13 | Harold T. Pederson (Jr.) | Process for the treatment of whey and whey permeate and products resulting therefrom |
US4316749A (en) * | 1980-10-07 | 1982-02-23 | Stauffer Chemical Company | Production of USP quality lactose |
FI78504C (fi) * | 1987-10-14 | 1989-08-10 | Valio Meijerien | Foerfarande foer tillvaratagande av laktos ur vassla. |
DE4113836A1 (de) * | 1990-07-04 | 1992-01-09 | Kali Chemie Ag | Verfahren zur suessmolkenpermeataufarbeitung |
AUPR217700A0 (en) | 2000-12-19 | 2001-01-25 | Food Science Australia | Methods for purification of lactose |
CN101239996B (zh) * | 2008-01-04 | 2010-10-27 | 华南理工大学 | 一种高剪切力微晶乳糖制备方法 |
US9315533B2 (en) * | 2010-10-07 | 2016-04-19 | Fonterra Co-Operative Group Limited | Lactose crystallisation |
DK2767596T3 (en) * | 2013-02-16 | 2016-05-23 | Dmk Deutsches Milchkontor Gmbh | A process for increasing the yield in the production of lactose (III) |
-
2012
- 2012-12-12 DK DK12196712.9T patent/DK2743356T3/en active
- 2012-12-12 EP EP12196712.9A patent/EP2743356B1/de active Active
-
2013
- 2013-12-12 US US14/103,967 patent/US9476105B2/en active Active
- 2013-12-12 CN CN201310681584.9A patent/CN103864857B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN103864857B (zh) | 2018-10-19 |
CN103864857A (zh) | 2014-06-18 |
DK2743356T3 (en) | 2016-06-20 |
EP2743356A1 (de) | 2014-06-18 |
US20140174434A1 (en) | 2014-06-26 |
US9476105B2 (en) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0627490B1 (de) | Verfahren zur Herstellung von langkettigem Inulin | |
DE2822000A1 (de) | Verfahren zur entmineralisierung von milchserum | |
EP2796051A1 (de) | Quarkgrundmasse mit verbesserten Geschmackseigenschaften | |
DE202015009329U1 (de) | Anlage zur Erzeugung eines Laktose-Kristallisats | |
KR100954217B1 (ko) | 유기산을 이용한 l-아라비노스 함유 추출액의 제조 방법 | |
EP2743356B1 (de) | Verfahren zur steigerung der ausbeute bei der lactoseherstellung (i) | |
EP2617727B1 (de) | Verfahren zur Ausbeuteverbesserung bei der Gewinnung von im Wesentlichen mineralstofffreier Lactose aus Molke | |
EP1113861B1 (de) | Verfahren zur gewinnung von festen stoffen aus lösungen | |
EP2757162B1 (de) | Verfahren zur Steigerung der Ausbeute bei der Lactoseherstellung (II) | |
CN111205339A (zh) | 浓缩乳糖液及其制备方法 | |
EP2767596B1 (de) | Verfahren zur Steigerung der Ausbeute bei der Lactoseherstellung (III) | |
EP2946669B1 (de) | Milchpulver mit verbesserten sensorischen Eigenschaften | |
EP3225114B1 (de) | Verfahren zur herstellung demineralisierte molkepulver | |
Singh et al. | α‐Lactose monohydrate from ultrafiltered whey permeate in one‐step crystallization using ethanol‐water mixtures | |
EP0113898A2 (de) | Instantisiertes, enzymatisch hydrolysiertes Molke-Pulver, Verfahren zu seiner Herstellung und seine Verwendung | |
CN103664611B (zh) | 一种从中果咖啡的种子中提取绿原酸的方法 | |
EP2962574B1 (de) | Verfahren zur Herstellung von keimarmen Milchprodukten | |
EP3845070A1 (de) | Demineralisiertes milchpulver | |
EP2044845B1 (de) | Verfahren zur Aufarbeitung von Melasse | |
CH712980A2 (de) | Verfahren zur Herstellung von Pektin aus pflanzlichen Rohstoffen. | |
WO2014044512A1 (de) | Verfahren umfassend eine kontinuierliche kristallisation von isomaltulose | |
DE102015104053A1 (de) | Verfahren zur Herstellung von Eiweißpulver | |
DE2509516A1 (de) | Verfahren zur gewinnung von protein mit verbesserter loesungsklarheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
R17P | Request for examination filed (corrected) |
Effective date: 20141223 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150706 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 779594 Country of ref document: AT Kind code of ref document: T Effective date: 20160315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012006213 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160614 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160610 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160609 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160709 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160711 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012006213 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161212 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20161231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20181121 Year of fee payment: 7 Ref country code: IE Payment date: 20181214 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 779594 Country of ref document: AT Kind code of ref document: T Effective date: 20171212 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20181219 Year of fee payment: 7 Ref country code: FR Payment date: 20181218 Year of fee payment: 7 Ref country code: GB Payment date: 20181219 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171212 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191212 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191212 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20221220 Year of fee payment: 11 Ref country code: DK Payment date: 20221221 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231214 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20231231 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20240101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240101 |