EP2741980A1 - Stetigförderer zum transport von schwerem schütt- oder stückgut - Google Patents

Stetigförderer zum transport von schwerem schütt- oder stückgut

Info

Publication number
EP2741980A1
EP2741980A1 EP12719677.2A EP12719677A EP2741980A1 EP 2741980 A1 EP2741980 A1 EP 2741980A1 EP 12719677 A EP12719677 A EP 12719677A EP 2741980 A1 EP2741980 A1 EP 2741980A1
Authority
EP
European Patent Office
Prior art keywords
synchronous motor
continuous conveyor
drive
conveyor according
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP12719677.2A
Other languages
German (de)
English (en)
French (fr)
Inventor
Sepp Lachenmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Global Mining Europe GmbH
Original Assignee
Powertrans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertrans SA filed Critical Powertrans SA
Priority to EP12719677.2A priority Critical patent/EP2741980A1/de
Publication of EP2741980A1 publication Critical patent/EP2741980A1/de
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/24Gearing between driving motor and belt- or chain-engaging elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G23/00Driving gear for endless conveyors; Belt- or chain-tensioning arrangements
    • B65G23/22Arrangements or mountings of driving motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • B65G39/10Arrangements of rollers
    • B65G39/12Arrangements of rollers mounted on framework
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/1004Structural association with clutches, brakes, gears, pulleys or mechanical starters with pulleys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the invention relates to continuous conveyors, which are used for the transport of large quantities of bulk material such as sand, stone or ore and for the transport of heavy cargo, for example in mining, over or underground mining or loading and unloading of ships, silos, etc.
  • the bulk or general cargo is charged in a loading station on the transport traction means and transported to a dispensing or transfer station.
  • a typical example of a continuous conveyor is a conveyor belt for the removal of crushed ore.
  • the conveyor belt runs on support rollers which are mounted in an elongated support structure made of steel profiles.
  • the drive station comprises, in addition to one or more drive shafts, at least one electric motor, which is usually designed as an asynchronous motor and runs at a relatively high rotational speed, for example 1500 rpm.
  • the continuous conveyor may also comprise a plurality of drive stations, for example two head stations and one or more intermediate stations, each drive station having one or two electric motors and a corresponding number of drive rollers.
  • Faults during transport are passed as shock loads on the drive roller on the output shaft of the transmission and transmitted from there into the drive motor.
  • the transport traction means can suddenly come to a standstill for a short time. Rotor of the engine, shafts and gears of the transmission and the coupled drive roller but move because of the large inertia of the entire drive system on, at least until an automatic shutdown or decoupling of the engine takes place when certain forces are exceeded. This can lead to strong mechanical stresses in the gearbox, engine and transport traction means, as a result of which the traction means is damaged, e.g. tears.
  • an overload clutch is often installed in the prior art between the drive roller and the reduction gear which automatically opens when predetermined loads are exceeded above the normal operating loads, thus separating the electric drive from the drive roller.
  • the invention is based on the finding that the large mass inertia of conventional drive systems is responsible for the fact that the transport traction means is rapidly mechanically overloaded in the event of a malfunction, and that therefore the reduction of the mass inertia of the drive system must be a developmental goal.
  • the object is achieved according to the characterizing part of the first claim, characterized in that instead of a high-speed electric motor with flanged multistage reduction gear, a permanently excited high-pole synchronous motor is used, whose speed is at most 15 times as high as the working speed of the drive shaft he delivers a torque of at least 30 kNm.
  • a slow-running electric motor with high torque makes a complex multi-stage reduction gear superfluous.
  • the acting on the drive roller mass moment of inertia of the drive is thereby reduced to less than 20% of the moment of inertia of a conventional drive.
  • the kinetic energy of the drive system is considerably smaller due to the much lower engine speed. In the event of a malfunction during the transport of bulk or piece goods, the relatively light drive unit reacts faster.
  • the driving force of the motor can be reduced or turned off before unacceptably high forces are introduced via the drive roller in the traction means.
  • the occurring impact torque is significantly lower, whereby the load on the mechanical components is significantly reduced.
  • a deformation or even a crack of the transport traction means is thus practically impossible, an overload clutch unnecessary.
  • the electric motor can drive the drive roller of the transport traction device directly.
  • the engine speed corresponds to the working speed of the drive shaft.
  • a reduction gear is thus completely unnecessary, the mass moment of inertia of the drive is reduced to a minimum.
  • the mass moment of inertia can be reduced by a factor of 10 compared to a conventional drive with a high-speed asynchronous motor and an intermediate reduction gearbox.
  • the efficiency of a drive system with torque motor is about 5% greater. This means lower energy consumption and lower cooling capacity. Rotor cooling is not required for torque motors.
  • the synchronous motors with a large number of pole pairs used here are, in principle, large hollow shaft servomotors optimized for high torques.
  • Rotary direct drives or torque motors have hitherto been used primarily in production machines, such as Laser cutting machines, milling and grinding machines or extruders used, but not in heavy carriers.
  • the rated speed of the synchronous motor is preferably between 5 and 100 revolutions per minute, in particular between 20 U / min and 50 U / min, when the motor drives the drive shaft directly.
  • the output torque is preferably between 50 and 800 kilonewtons, in particular 100 kNm to 500 kNm.
  • Such slow-running synchronous motors with such high torque allow only the direct drive of the transport traction means.
  • the power output of the drive is preferably between 50 and 2000 kilowatts, in particular 100 kW to 1000 kW.
  • the preferred rated speed is higher by a factor of 2 to 10, depending on the reduction ratio, and the torque output by the motor is preferably about half lower. Even in this case, a significant reduction of the moment of inertia results by at least a factor of 5 in comparison to conventional drives.
  • the drive with synchronous motor and single-stage reduction gear has significantly fewer moving parts compared to conventional gearboxes. This means higher system reliability.
  • High-pole synchronous motors or rotary direct drives can be controlled quickly and precisely by means of a frequency converter. Thanks to the use of variable-speed drives, considerable system advantages can be achieved compared to conventional solutions without speed control. Due to the speed and torque control, the conveying process can be fundamentally optimized. This includes monitoring and limiting the speed and torque of the synchronous motor as well as the performance data of the synchronous motor
  • the load can be fixed and thus a smooth and gentle operation of the ascending conveyor can be achieved.
  • the number of pole pairs is preferably between 6 and 50, in particular around 10.
  • FIG. 1 shows a conveyor belt for heavy bulk material, schematically, in an i o horizontal section
  • Figure 2 shows the conveyor belt of Figure 1, schematically, in plan view.
  • FIG. 3 shows the electric motor of the conveyor belt according to FIG.
  • FIG. 5 shows a block diagram of a continuous conveyor with rotary direct-injection
  • Figure 6 is a block diagram of a continuous conveyor with slow-running
  • a conveyor belt is shown schematically in Fig. 1.
  • Whose endless conveyor belt 1 runs between a drive roller 2 and a guide roller 3 in a circle.
  • a heavy bulk material 4 such as ore or broken rock, abandoned and transported substantially horizontally, in the figure from left to right.
  • Support rollers 5 are arranged, which support the weight of the conveyor belt 1 and the bulk material 4.
  • the conveyor belt is driven by a low-speed, high-poled synchronous motor 6 with high torque.
  • the synchronous motor 6 drives the drive roller 2 of the conveyor belt directly, i. without intermediate mechanical gearbox, on.
  • the working speed of the drive roller 2 is about 40 revolutions per minute, so that the synchronous motor 6 has a rated speed of 40 U / min.
  • the synchronous motor 6 outputs a torque in the region of 300 kilonewtons.
  • a second synchronous motor of the same type can be coupled to the drive roller 2. If for reasons of space, the length of the synchronous motor 6 is limited, and a single-stage 15 reduction gear between the drive roller 2 and synchronous motor 6 may be provided, which reduces the speed of the synchronous motor 6, for example by a factor of 5.
  • the synchronous motor 6 is about 20 times as long as it is wide.
  • the segmented design modular synchronous motor 6 has a housing jacket 7, which extends between two end-side end plates 8a and 8b.
  • the bearing plates 8a, 8b are the bearings 9a, 9b for the rotor shaft 10, on which the rotor 1 1 sits.
  • the rotor 1 1 carries a plurality of magnetic poles 12.
  • Drive of the conveyor belt 1 are connected by a permanently excited high-pole synchronous motor with high torque.
  • An electronic frequency converter 14 is connected to the 3-phase AC power supply and generates a changeable in amplitude and frequency AC voltage, which is given to the stator 6 of the Synchronmo- sector 6.
  • the rotating alternating field drives the rotor.
  • the total mass moment of inertia of the drive which essentially consists of the mass moment of inertia M m of the synchronous motor 6, the mass moment of inertia M t of the conveyor belt 1 together with the drive roller 2 and the mass moment of inertia M u of the deflection roller 3. Since the synchronous mode
  • 20 tems is about 10 times smaller than with conventional drives.
  • the spring and damping characteristics of the powertrain are also significantly better.
  • the drive system which in principle comprises only the synchronous motor 6 and the drive roller 2, is capable of torsional vibration due to the mechanical elasticities 25 both in the axial and in the radial direction.
  • the spring stiffness F M of the elasticities on the motor side comprises the torsional stiffness of the motor shaft of the synchronous motor 6 and the axial spring rigidity.
  • the friction damping in the bearings and the damping in the air gap by magnetic reversal are characterized by the damping D m . at
  • the drive system for the conveyor belt 1 shown in Fig. 6 differs from the drive of FIG. 5 only by the interposition of a single-stage reduction gear 15 between the synchronous motor 6 and drive roller 2 of the conveyor belt 1.
  • the synchronous 5 motor 6 no longer necessarily run at the same speed as the drive roller 2.
  • the io reduction gear 15 can be executed.
  • the additional mass moment of inertia M g for the reduction gear 15 increases the total inertia of the drive by two to three times, which is still five to ten times smaller than in conventional drives.
  • the motor-side spring stiffness F m is increased by the additional spring stiffness F g of the transmission-side elasticities.
  • the torsion spring stiffness flows in

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Rollers For Roller Conveyors For Transfer (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Structure Of Belt Conveyors (AREA)
  • Control Of Conveyors (AREA)
EP12719677.2A 2011-08-10 2012-05-03 Stetigförderer zum transport von schwerem schütt- oder stückgut Ceased EP2741980A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12719677.2A EP2741980A1 (de) 2011-08-10 2012-05-03 Stetigförderer zum transport von schwerem schütt- oder stückgut

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11177042 2011-08-10
EP12719677.2A EP2741980A1 (de) 2011-08-10 2012-05-03 Stetigförderer zum transport von schwerem schütt- oder stückgut
PCT/EP2012/058117 WO2013020725A1 (de) 2011-08-10 2012-05-03 Stetigförderer zum transport von schwerem schütt- oder stückgut

Publications (1)

Publication Number Publication Date
EP2741980A1 true EP2741980A1 (de) 2014-06-18

Family

ID=46046179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12719677.2A Ceased EP2741980A1 (de) 2011-08-10 2012-05-03 Stetigförderer zum transport von schwerem schütt- oder stückgut

Country Status (7)

Country Link
US (2) US9527670B2 (ru)
EP (1) EP2741980A1 (ru)
CN (1) CN103906691A (ru)
AU (1) AU2012292578B2 (ru)
EA (1) EA028453B1 (ru)
UA (1) UA109733C2 (ru)
WO (1) WO2013020725A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA109733C2 (uk) * 2011-08-10 2015-09-25 Транспортер безперервної дії для транспортування важких сипучих матеріалів або штучних матеріалів
EP2907775A1 (en) * 2014-02-14 2015-08-19 ABB Technology AG Mining conveyor belt drive system
CN104074942B (zh) * 2014-06-23 2016-08-24 苏州博众精工科技有限公司 一种龙门伺服同步驱动及双丝杆单驱动机构
CN107600908A (zh) * 2017-10-23 2018-01-19 惠州市齐力光电科技有限公司 一种用于led灯上料或下料的传送装置
US10947051B2 (en) * 2018-01-23 2021-03-16 Stephenson Technologies Inc. Conveyor system assembly
RU183372U1 (ru) * 2018-04-19 2018-09-19 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр угля и углехимии Сибирского отделения Российской академии наук" (ФИЦ УУХ СО РАН) Привод конвейера
EP3629469A1 (de) 2018-09-28 2020-04-01 Siemens Aktiengesellschaft Gurtfördereinrichtung sowie verfahren zum anhalten eines gurtes einer gurtfördereinrichtung
CN110134059A (zh) * 2019-05-29 2019-08-16 盐城工学院 一种新型输送链同步控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201280334Y (zh) * 2008-08-08 2009-07-29 阳泉华鑫采矿运输设备修造有限公司 胶带输送机
FR2944164A1 (fr) * 2009-04-01 2010-10-08 Alstom Transport Sa Moteur electrique ameliore.
EP2562102A1 (de) * 2011-08-23 2013-02-27 Siemens Aktiengesellschaft Bandförderanlage, Verfahren zu deren Betrieb sowie deren Verwendung

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728445A (en) * 1954-03-31 1955-12-27 Lewis C Erickson Heavy duty conveyor belt drive
US2728455A (en) 1954-09-23 1955-12-27 Elbert F Greiner Grading machine for shrimps
JPS49117918A (ru) * 1973-03-19 1974-11-11
US4463841A (en) * 1981-07-17 1984-08-07 Force Control Industries, Inc. Multiple speed drive system
US4530174A (en) * 1984-08-07 1985-07-23 John Barryman Reynolds Drive for elevating mechanism
JP2788359B2 (ja) * 1991-05-21 1998-08-20 住友重機械工業株式会社 可変速ギヤドモータ及びその系列
US5677587A (en) * 1993-01-19 1997-10-14 Kabushiki Kaisha Sankyo Seiki Seisakusho Small motor having drive magnet with magnetization pattern for biasing rotor shaft
US5422525A (en) * 1994-06-30 1995-06-06 Sundstrand Corporation Switched reluctance machine having unbalance forces compensation coils
EP0872007A2 (en) * 1994-11-21 1998-10-21 Stridsberg Innovation Ab An electric motor layout
WO2003008307A1 (en) * 2001-07-18 2003-01-30 Acm Engineering S.P.A. Motor roller
US7431676B2 (en) * 2002-11-25 2008-10-07 Delbert Tesar Self-contained rotary actuator
TWI272757B (en) * 2003-11-20 2007-02-01 Sumitomo Heavy Industries Motor built-in cylinder
JP2005176588A (ja) * 2003-11-20 2005-06-30 Sumitomo Heavy Ind Ltd モータ内蔵ローラ
JP2005253167A (ja) * 2004-03-03 2005-09-15 Hitachi Ltd 車両駆動装置及びそれを用いた電動4輪駆動車両
FI123502B (fi) * 2005-09-09 2013-06-14 Kone Corp Liukukäytävä ja menetelmä liukukäytävän toiminnan ohjaamiseksi
JP4745857B2 (ja) * 2006-02-20 2011-08-10 三菱電機株式会社 電気機械
CA2671353C (en) * 2006-08-04 2014-04-22 Direct Drive Pcp Inc. A motor direct drive rod ground screw pump device
DE102006049779A1 (de) * 2006-10-21 2008-05-21 Deere & Company, Moline Überladewagen
US7681843B2 (en) 2007-05-24 2010-03-23 Cambridge Silversmiths Ltd., Inc. Display and retaining clip
NO328284B1 (no) * 2008-03-26 2010-01-25 Nat Oilwell Norway As Fremgangsmate for a redusere forskyvningsmomenteffekter i en elektrisk permanentmagnet maskin
US8040007B2 (en) * 2008-07-28 2011-10-18 Direct Drive Systems, Inc. Rotor for electric machine having a sleeve with segmented layers
CN201254382Y (zh) * 2008-08-29 2009-06-10 隋舒杰 低速大转矩无齿轮永磁同步电动滚筒
CN101713473B (zh) * 2009-12-29 2011-05-25 河北工业大学 利用永磁同步电机进行阀门微步调节的装置及其实现方法
NO331965B1 (no) * 2010-09-29 2012-05-14 Rolls Royce Marine As Elektrisk permanentmagnetmotor
JP5418467B2 (ja) * 2010-11-02 2014-02-19 株式会社安川電機 回転電機
US8456115B2 (en) * 2011-02-23 2013-06-04 Deere & Company Method and system for controlling an electric motor with variable switching frequency at variable operating speeds
TWI558066B (zh) * 2011-06-10 2016-11-11 艾克西弗洛克斯控股私營有限公司 電機
UA109733C2 (uk) * 2011-08-10 2015-09-25 Транспортер безперервної дії для транспортування важких сипучих матеріалів або штучних матеріалів
US9919875B2 (en) * 2011-08-11 2018-03-20 Mol Belting Systems, Inc. Motorized drum shell arrangement
WO2013036738A1 (en) * 2011-09-07 2013-03-14 Wilkins Stephen P Gear reduction assembly and winch including gear reduction assembly
DE102012021049A1 (de) * 2011-10-31 2013-05-02 Asmo Co., Ltd. Rotor und Motor
EP2664563A1 (en) * 2012-05-16 2013-11-20 ABB Technology AG Motor drive of a gearless belt conveyor drive system
US9325263B1 (en) * 2014-11-05 2016-04-26 Stmicroelectronics S.R.L. Sensorless rotor angle detection circuit and method for a permanent magnet synchronous machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201280334Y (zh) * 2008-08-08 2009-07-29 阳泉华鑫采矿运输设备修造有限公司 胶带输送机
FR2944164A1 (fr) * 2009-04-01 2010-10-08 Alstom Transport Sa Moteur electrique ameliore.
EP2562102A1 (de) * 2011-08-23 2013-02-27 Siemens Aktiengesellschaft Bandförderanlage, Verfahren zu deren Betrieb sowie deren Verwendung

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Advanced Drive System Saves up to 20% Energy", 22 August 2011 (2011-08-22), Germany, pages 1 - 12, XP055076615, Retrieved from the Internet <URL:-> [retrieved on 20130827], DOI: A19199-E273-B198-X-7600 *
GMBH THYSSENKRUPP FÖRDERTECHNIK: "Gearless Conveyor Drives", 31 August 2011 (2011-08-31), XP055358957, Retrieved from the Internet <URL:http://thyssenkrupprobins.com/Publications/Brochures/pdf files/1028-Gearless Drive_brochure.pdf> [retrieved on 20170327] *
See also references of WO2013020725A1 *
SIEMENS: "Press Presse Press Presse Industry Sector Industry Solutions Division", 10 December 2010 (2010-12-10), XP055359212, Retrieved from the Internet <URL:http://www.siemens.com/press/pool/de/pressemitteilungen/2010/industry_solutions/IIS201012700e.pdf> [retrieved on 20170327] *

Also Published As

Publication number Publication date
US9527670B2 (en) 2016-12-27
EA028453B1 (ru) 2017-11-30
AU2012292578B2 (en) 2017-03-09
EA201400209A1 (ru) 2014-09-30
AU2012292578A1 (en) 2014-02-27
US20170022013A1 (en) 2017-01-26
CN103906691A (zh) 2014-07-02
UA109733C2 (uk) 2015-09-25
US10589936B2 (en) 2020-03-17
WO2013020725A1 (de) 2013-02-14
US20140151197A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
WO2013020725A1 (de) Stetigförderer zum transport von schwerem schütt- oder stückgut
EP2116722B1 (de) Positionierung eines Rotors einer Windenergieanlage
US10458214B2 (en) Oil pumping apparatus without a speed reducer
DE102008045202B4 (de) Koaxialstarter für eine Brennkraftmaschine
EP2457663B1 (de) Getriebemotor eines Mühlenantriebssystems
AT516038B1 (de) Antriebsstrang
EP2678254B1 (de) Vorrichtung für eine gurtförderanlage mit einem getriebelosen antrieb für eine antriebstrommel der gurtförderanlage
DE102015219014A1 (de) Windkraftanlage
DE29903942U1 (de) Trommelmotor mit Getriebe
EP1048603A1 (de) Schräganordnung eines Seilaufzugsantriebes
EP2285614A1 (de) Vorrichtung zur erzeugung und übertragung eines antriebsdrehmoments
WO2015044009A1 (de) Aufbereitungsmaschine und aufbereitungsanlage
EP3491271B1 (de) Antriebsvorrichutng und verfahren zur drehzahllimitierung
EP3771682A1 (de) Aufzug mit riemen-zugmittel
WO2018019613A1 (de) Antriebsvorrichtung mit überlagerungsgetriebe
EP3280038A1 (de) Antriebsvorrichtung
WO2006005295A1 (de) Antriebseinheit für eine webmaschine und webmaschine mit einer solchen antriebseinheit
DE202024104077U1 (de) Kompaktes Antriebssystem für ein Förderband
DE102022109725A1 (de) Modulare Antriebsmaschine für einen Aufzug
EP1547961A1 (de) Antrieb für Aufzüge
DE102018102906A1 (de) Antriebsvorrichtung mit Wirbelstrombremse
DE2303250C3 (de) Vorrichtung zum Belastungsausgleich einer aus mindestens zwei Antriebsgruppen bestehenden Antriebseinheit einer Arbeitsmaschine, insbeondere Bergbaumaschine
EP4331727A1 (de) Materialverarbeitungseinrichtung, insbesondere brechanlage
DE102017103696A1 (de) Antriebsvorrichtung mit Überlagerungsgetriebe
DD273821B5 (de) Verfahren zum anfahren und regeln von synchronmotoren an bandantrieben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CATERPILLAR GLOBAL MINING EUROPE GMBH

17Q First examination report despatched

Effective date: 20160617

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20171211