EP2732547A1 - Procédé pour commander des harmoniques et des résonances dans un inverseur - Google Patents

Procédé pour commander des harmoniques et des résonances dans un inverseur

Info

Publication number
EP2732547A1
EP2732547A1 EP12732630.4A EP12732630A EP2732547A1 EP 2732547 A1 EP2732547 A1 EP 2732547A1 EP 12732630 A EP12732630 A EP 12732630A EP 2732547 A1 EP2732547 A1 EP 2732547A1
Authority
EP
European Patent Office
Prior art keywords
inverter
voltage vector
voltage
frequency information
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12732630.4A
Other languages
German (de)
English (en)
Other versions
EP2732547B1 (fr
Inventor
Tobias Geyer
Georgios Papafotiou
Silvia Mastellone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to EP12732630.4A priority Critical patent/EP2732547B1/fr
Publication of EP2732547A1 publication Critical patent/EP2732547A1/fr
Application granted granted Critical
Publication of EP2732547B1 publication Critical patent/EP2732547B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/30Direct torque control [DTC] or field acceleration method [FAM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0421Multiprocessor system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control
    • H02P21/30Direct torque control [DTC] or field acceleration method [FAM]

Definitions

  • the invention relates to the field of high power inverters.
  • the invention relates to a method and a program element for controlling an inverter, a computer-readable medium, a controller of an inverter and an inverter.
  • Electrical inverters may be used for transforming an input voltage into an output AC voltage.
  • the AC voltage from an electrical grid may be transformed into a variable AC voltage supplied to an electrical drive or another AC voltage to be supplied to another electrical grid.
  • the inverter For generating the usual multi-phase output voltage, the inverter comprises a plurality of semiconductor switches, for example thyristors or IGCTs, which may be controlled by an electronic controller of the inverter.
  • semiconductor switches for example thyristors or IGCTs, which may be controlled by an electronic controller of the inverter.
  • DTC direct torque control
  • the torque and the flux of the electrical drive may be controlled by estimating the actual torque and the actual flux form measured voltages and currents that are output from the inverter, and selecting a switching state for the switches of the inverter in such a way that the actual flux and actual torque move towards a reference flux and a reference torque, when the switching state is applied to the inverter switches.
  • DTC Dynamic Direct Torque Control
  • possible voltage vector sequences may be considered that comprise a sequence of voltage vectors. For each possible switching sequences or voltage vector sequence, the switching losses are estimated and the first switching state of the switching sequence is applied to the motor.
  • a harmonic filter for example an LC filter
  • Such a filter may smooth out the effects of irregular switching actions of DTC, which may lower the harmonic distortion of the motor currents.
  • the introduction of the harmonic filter may render drive quantities, like flux and torque, not directly controllable.
  • it is no longer possible to directly and rapidly manipulate the stator flux by the application of a specific voltage vector since what is applied to the motor terminals is the voltage of the capacitor of the LC filter, which features much slower dynamics, and is not immediately affected by the applied voltage vector.
  • one solution is to modify the control problem and target the control of certain inverter (instead of motor) variables.
  • the notions of the inverter flux and inverter torque are introduced; the first being the integral over time of the inverter voltage, and the second expressing the interaction of the inverter flux and the inverter currents.
  • These two variables are different from the actual corresponding motor flux and torque (especially during transients) but their average values at steady state are the same.
  • Those virtual notions are the electric equivalent of the motor torque and flux though they do not correspond to physical quantities.
  • the advantage of introducing and working with such quantities is that they can be directly and quickly manipulated by the application of the proper voltage vector.
  • the mechanical load is generally connected via a rotational shaft with the drive.
  • the inertia of the mechanical load is often very large and the shaft is fairly long and stiff.
  • Such applications include large compressor trains, which are typically found in the oil and gas industry.
  • the electrical machine acts only as a starter and helper motor, while the majority of the power is provided by a gas turbine that is also connected to the shaft.
  • the mechanical system formed by the load, gas turbine, electrical machine and shaft exhibits distinctive torsional resonant modes. The natural frequencies of these torsional modes range from a few Hz to up to several hundred Hz.
  • the amplification factor (the so called Q factor) is often 40 and more.
  • the inverter of medium voltage drives typically employs a low switching frequency giving rise to pronounced torque harmonics. If such a torque harmonic coincides with a natural frequency of the mechanical system large mechanical torsional vibrations can occur.
  • This issue of mechanical resonances may be directly related to the former problem with electrical resonances, in the sense that the same damping principles can be employed.
  • the main difference is that the mechanical resonances typically have a lower natural frequency than the electrical phenomena.
  • a first aspect of the invention relates to a method for controlling the harmonics and resonances in an inverter.
  • the inverter may be a three-phase, three-level inverter for driving an electrical motor.
  • the electrical system may be a high or medium voltage system.
  • the method may be part of a on the Model Predictive Direct Torque Control (MPDTC) algorithm, in particular for the control of a three-phase induction motor comprising a three- level dc-link inverter with an output LC filter.
  • MPDTC Model Predictive Direct Torque Control
  • the method may be adapted for controlling an inverter for an electrical system.
  • inverter torque predictions of the MPDTC algorithm are filtered and added to the compensation term of the reference torque.
  • This compensation enables to reduce the harmonic distortion at low speed while preserving the achieved losses reduction in all the operating range. For example, harmonic distortion that is present in the torque at low speeds (10% and 20%) may be handled in this way.
  • predicted possible voltage vector sequences of the MPDTC algorithm are discarded, when the predicted harmonic distortion is above a predefined value.
  • the voltage vector sequences that produce minimal harmonics may be chosen and the other voltage vector sequences may be discarded.
  • the embodiments as described in the above and in the following for damping harmonics are based on using the MPDTC predictions to extract information about the frequency content that is about to be introduced into the electrical system by the actions of the control algorithm.
  • These embodiments may not have to replace standard state-of-the art active damping, but may act as additional compensation to handle the harmonic distortion that the standard compensation cannot address.
  • these embodiments may not interfere with the performance of MPDTC in terms of switching losses reductions.
  • the method comprises the step of (a) determining of possible voltage vector sequences that may be generated by the inverter by switching switches of the inverter and that may be supplied to the electrical system.
  • MPDTC with a discrete-time algorithm possible time sequences of switching states may be determined, which may be applied to the inverter switches in the future. Since two different switching states may result in the same output phase voltages, i.e. the same voltage vector, more general, possible voltage vector sequences may be considered that comprise a time sequence of voltage vectors.
  • a voltage vector may comprise three voltage values. Usually, a voltage vector sequence is determined over a time horizon of 2 or three steps (i.e. time instants).
  • the method comprises the step of (b) determining of candidate sequences from the possible voltage vector sequences by estimating system response data for each voltage vector sequence and by keeping voltage vector sequences with admissible system response data.
  • the system response data may comprise the inverter torque, the inverter flux and neutral point potentials. In particular, trajectories of these values may be estimated over the horizon.
  • a system response data may be estimated by estimating a trajectory of a system response value from a possible voltage vector sequence, for example a torque or flux trajectory.
  • a possible voltage vector sequence may admissible, if the corresponding estimated trajectory is lying within bounds or the estimated trajectory approaches the bounds that are based on a reference value.
  • the system response value may comprises a predicted torque, a predicted flux, and/or a predicted neutral point potential of the inverter and the reference value comprises a reference torque, a reference flux and/or a reference neutral point potential.
  • the method comprises the step of (c) determining a cost value for each candidate sequence, wherein the cost value is based on predicted switching losses of the inverter when switched with the candidate sequence.
  • the method comprises the step of (d) applying a first voltage vector of a candidate sequence with the lowest cost value to the inverter. Not the whole sequence but only the first element may be applied to the inverter.
  • the method comprises the steps of (e) extracting frequency information from predicted data, the predicted data comprising data of at least one of the possible voltage vector sequence and/or system response data.
  • the frequency information may comprise data about the 6 th harmonic distortion of the inverter torque.
  • the at least one of the possible voltage vector sequences may be in particular all possible voltage vector sequences, at least one and / or all candidate sequences and / or the candidate sequence with the lowest cost value.
  • the method comprises the steps of (f) damping harmonic distortion of the electrical system by reintroducing the extracted frequency information into a control loop of the inverter.
  • the extracted frequency information may be used to discard specific voltage vector sequences and/or to alter reference values that are used for determining, if a voltage vector sequence is admissible or not.
  • a harmonic distortion of a phase voltage is determined by extracting frequency information from voltage values associated with a voltage vector sequence.
  • the voltage values may comprise voltage values of past sampling times and of future sampling times.
  • phase voltage differences are calculated and filtered to calculate a value, which contains frequency information about a frequency band or range of a sequence of phase voltage differences.
  • step (f) is executed by discarding the voltage vector sequence, when the harmonic distortion (i.e. the value) of the phase voltage leaves predefined bounds.
  • a harmonic distortion of a predicted torque is determined
  • a reference torque is modified with the harmonic distortion of the torque
  • admissible system response data is determined with bounds based on the reference torque.
  • a correction value may be added to the original reference for obtaining a modified reference torque.
  • the reference value may be determined by applying a filter to the torque trajectory corresponding to the voltage vector sequence which first element is applied to the inverter.
  • a harmonic distortion is determined from the predicted data by applying a digital filter to the predicted data for extracting frequency information.
  • Formulas for a digital filter are given with respect to the description of Fig. 2.
  • the digital filter may be a high-pass or band-pass filter, which may be adjusted by coefficients in the formulas.
  • a sliding discrete Fourier transformation may be applied to the predicted data for extracting frequency information.
  • a specific frequency component of the predicted data may be extracted very efficiently.
  • the frequency information being extracted in step (e) at least contains the frequency information of the harmonic distortion which is to be damped.
  • a further aspect of the invention relates to program element or computer program for controlling an inverter, which when being executed by at least one processor is adapted for executing the steps of the method as described in the above and in the following.
  • a further aspect of the invention relates to a computer-readable medium, in which such a program element is stored.
  • a computer-readable medium may be a floppy disk, a hard disk, an USB (Universal Serial Bus) storage device, a RAM (Random Access Memory), a ROM (Read Only memory), a FLASH and an EPROM (Erasable Programmable Read Only Memory).
  • a computer readable medium may also be a data communication network, e.g. the Internet, which allows downloading a program code.
  • a further aspect of the invention relates to a controller for controlling an inverter.
  • the controller is adapted for executing the method as described in the above and in the following.
  • the controller may be an FPGA.
  • a further aspect of the invention relates to an inverter for supplying a load with an AC voltage.
  • the inverter may comprise an inverter circuit with switches, the inverter circuit being adapted for generating an AC output voltage for at least one phase, a filter circuit interconnected between the inverter circuit and the load, and a controller for controlling the switches.
  • the controller is adapted for executing the method as described in the above and in the following, thus being adapted for compensating harmonic distortion of the AC voltage. It has to be understood that features of the method as described in the above and in the following may be features of the program element, the controller and the inverter as described in the above and in the following and vice versa.
  • FIG.1 schematically shows an inverter according to an embodiment of the invention.
  • Fig. 2 shows a flow diagram with an MPDTC algorithm according to an embodiment of the invention.
  • Fig. 1 shows an inverter 10 with an inverter unit 12 with three inverter legs 14.
  • the inverter legs 14 are connected parallel to a DC link 16 and are adapted to transform a DC voltage from the DC link 16 into a phase 20 of the variable output voltage of the inverter 10.
  • Each inverter leg 14 is adapted to connect the output phase 20 with the positive or negative voltage in the DC link or the neutral voltage in the neutral point 18.
  • the inverter 10 comprises further a controller 26 which is adapted to control the switches 28 in the inverter legs 14 and to measure the currents and voltages in the output phases 20 and the neutral point potential in the neutral point 18.
  • the MPDTC control algorithm is implemented, for example on a FPGA.
  • the inverter 10 may be an ACS6000 or ACS1000 designed by ABB.
  • Fig. 2 shows a flow diagram with an MPDTC algorithm that may be implemented in the controller 10.
  • the data of the state vector x and of the output vector y are the system response data.
  • the discrete time version of the dynamical model is implemented and the signals i inv , v c , T inv , ⁇ , istat, v n are represented as discrete function depending on discrete time steps k, i.e. iinv(k), v c (k), T inv (k), W inv (k), i sta t(k), v felicit(k ⁇ where k is an integer number
  • the controller 26 Given the current state x(k), the last voltage vector u(k - 1), the bounds on the controlled variables, and using the discrete-time model of the DTC drive, the controller 26 computes at time-instant k the voltage vector u(k) according to the following procedure.
  • step SI 2 the actual inverter flux ⁇ and the actual inverter torque T are determined from an inverter model and the actual voltages and currents measured in the inverter 10.
  • step S14 for the possible voltage vector sequences U'(k), the system response is calculated.
  • step SI 6 the candidate sequences U'(k) with i e l c cl are determined.
  • the candidate sequences are those possible voltage vector sequences that have output trajectories T(k) that are either feasible at the end of the horizon or pointing in the proper direction for all time-steps within the horizon.
  • Feasibility means that the trajectory of the controlled variable ⁇ inv , T inv , v shelf lies within its corresponding bounds at time-step k to k+Nn- Pointing in the proper direction means that the trajectory of the controlled variable W inv , T inv , v cartridge is not necessarily feasible, but the degree of the violation is decreasing for all time-steps within the prediction horizon, which means for the time steps k to k+Nn- In other words, the trajectory is pointing towards the bounds.
  • the bounds of the controlled variables W inv , T inv , vure depend on the corresponding reference values re f, T re f, , which are supplied to the controller 10, for example by a speed measurement of the drive 10, or which may be preset, for example, for a drive with constant speed.
  • step S 16 needs to hold component wise, i.e. for all three controlled variables W im> , T inv , v sacrifice.
  • the inverter torque T inv is feasible
  • the inverter flux W inv points in the proper direction
  • the neutral point potential v cache is feasible.
  • step S I 8 for the candidate sequences, the output trajectories Y'(k) are extrapolated in excess of the horizon.
  • Y'(k) are extrapolated from time- instant k+2 on linearly using the samples at k+1 and k+2.
  • the extrapolation could also be non-linear.
  • the number of the extrapolation time-steps is derived when the first of the three output variables W inv , T inv , v sacrifice leaves the feasible region in between of the corresponding upper and lower bound. In this way for each candidate sequence U'(k), the time step k at which at least one of controlled variables is not feasible any longer. From the time step k, the number of extrapolation time-steps n i e l c before the next predicted switching can be determined.
  • step S20 for each candidate sequence the cost are calculated that approximates the average switching losses by the number of switch transitions weighted with respect to each semiconductor switch and the current through it over the number of time-steps in each of the i candidate sequence can be applied before switching again.
  • the number of time-stepsij can be interpreted as a time-varying horizon.
  • the sequence U'fk) with the minimum cost is chosen.
  • step S22 the first voltage vector u'(k) of the chosen sequence lf(k) is applied to the inverter switches.
  • the algorithm starts again.
  • the control algorithm may be supplemented in the following ways. The following embodiments are described with respect to the damping of the 6 th harmonic; however they may be also applied to damping of low-frequency mechanical resonances or in general to all kinds of harmonic distortions.
  • the first embodiment directly tackles the 6 th harmonic in the torque.
  • the predictions of the inverter torque T inv (k) (T(k) in Fig. 2) provide possible time-evolutions that the system can follow, depending on the selection of the optimal vector u(k) by MPDTC.
  • t v6 (k) ⁇ a t T inv (k) + b r inv6 (k - l - i)
  • a bj are the filter coefficients which define the frequency band of the filter, , i.e. the range in which a frequency is not or nearly not damped by the filter.
  • N is the length of the filtered signal.
  • the filter coefficients may be chosen such that the upper bound of the frequency band is higher than the frequencies the discrete time algorithm can resolve.
  • the value or signal jnv6 (k) contains the information about the undesired harmonics that will be produced in the torque T Jnv (k) by the chosen input vector u(k).
  • the corresponding signal jnv6 (k) describing the harmonic content that the controller's actions will be introducing to the torque, is added to the reference of the inverter torque re f(k), to produce the new or altered reference torque:
  • T' re k T re k) + f inv6 (k)
  • Introducing the filter may also improve the harmonic content at higher speeds, but in some cases may decrease the performances in terms of losses, due to the introduction of excessive oscillations in the hysteresis bounds.
  • a band-pass filter may be considered.
  • the frequency band of the filter may be set to comprise the 6 th harmonic of the inverter torque, i.e. the frequency of the drive.
  • the result in such a case is the elimination of the harmonics problem at low speed, but for this case the filter may need to be tuned separately for each specific speed, which may be impractical for a drive with variable speed.
  • the first embodiment is based on the idea of predicting the harmonics that will be introduced in the torque T inv (k) by the selected switching signal u(k) and compensate the reference signal T ref to cancel out such harmonics.
  • the voltage vector sequences lf(k) that produce minimal harmonics are chosen.
  • the second embodiment addresses the problem at its source, by constraining the voltage vector sequences lf(k) to avoid the 5th and 7th harmonic in the switching phase voltages.
  • a phase voltage difference sequence v'(k) is calculated from a possible voltage vector sequence lf(k) and a frequency information value v ⁇ f j is extracted from the phase voltage difference sequence.
  • the harmonic distortion of the electrical system is damped by keeping those voltage vector sequences lf(k) which frequency information value v 1 57 (k) is within predefined bounds.
  • a high pass filter or a band pass filter may be used.
  • the spectral information may also be obtained by using a Sliding Discrete Fourier Transformation (SDFT).
  • SDFT Sliding Discrete Fourier Transformation
  • the SDFT's main advantage may be its computational efficiency and simple implementation.
  • N is usually the length of the filtered signal.
  • x(k) ⁇ x(k - N + l), x (k - N + 2), ... , x(k - l), x(k) ⁇
  • x(k) may be the inverter torque T(k) or the phase voltage difference v'(k).
  • NT S could be, for example, equal to the length of one fundamental period.
  • X(k) ⁇ Xo(k), X ⁇ (k), ... , X N . 2 (k), X (k) ⁇
  • the Goertzel algorithm can be used to compute isolated X n (k).
  • the windowed sequences x(k-l) and x(k) substantially contain the same elements.
  • the information computed at the previous time-step k-1 can be used to drastically reduce the computational effort at time-step k.
  • the SDFT requires a constant number of operations to compute a successive DFT, namely two real additions and a complex multiplication. Note that this computation assumes that the DFT of the previous time-step is available.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention porte sur un procédé basé sur l'algorithme MPDTC pour commander un inverseur d'un système électrique, selon lequel procédé les harmoniques et les résistances dans l'inverseur sont atténuées par extraction d'informations de fréquence à partir de données prédites de l'algorithme MPDTC et par atténuation de distorsion harmonique du système électrique par réintroduction des informations de fréquence extraites dans une boucle de commande de l'inverseur.
EP12732630.4A 2011-07-15 2012-06-29 Procédé de contrôle des harmoniques et des résonnances dans un onduleur Not-in-force EP2732547B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12732630.4A EP2732547B1 (fr) 2011-07-15 2012-06-29 Procédé de contrôle des harmoniques et des résonnances dans un onduleur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11174123A EP2546979A1 (fr) 2011-07-15 2011-07-15 Procédé de contrôle des harmoniques et des résonnances dans un onduleur
EP12732630.4A EP2732547B1 (fr) 2011-07-15 2012-06-29 Procédé de contrôle des harmoniques et des résonnances dans un onduleur
PCT/EP2012/062706 WO2013010778A1 (fr) 2011-07-15 2012-06-29 Procédé pour commander des harmoniques et des résonances dans un inverseur

Publications (2)

Publication Number Publication Date
EP2732547A1 true EP2732547A1 (fr) 2014-05-21
EP2732547B1 EP2732547B1 (fr) 2016-10-26

Family

ID=46458506

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11174123A Withdrawn EP2546979A1 (fr) 2011-07-15 2011-07-15 Procédé de contrôle des harmoniques et des résonnances dans un onduleur
EP12732630.4A Not-in-force EP2732547B1 (fr) 2011-07-15 2012-06-29 Procédé de contrôle des harmoniques et des résonnances dans un onduleur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11174123A Withdrawn EP2546979A1 (fr) 2011-07-15 2011-07-15 Procédé de contrôle des harmoniques et des résonnances dans un onduleur

Country Status (4)

Country Link
US (1) US9385585B2 (fr)
EP (2) EP2546979A1 (fr)
BR (1) BR112014000972A2 (fr)
WO (1) WO2013010778A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140285124A1 (en) * 2013-03-12 2014-09-25 Universiteit Gent Control method and device therefor
EP2897280B1 (fr) * 2014-01-16 2018-11-14 ABB Schweiz AG Procédé et dispositif d'estimation de la puissance et/ou de courant d'onduleur
CN103973192B (zh) * 2014-04-25 2016-08-17 中国矿业大学 一种六相异步电机dtc系统的优化方法
WO2016184491A1 (fr) 2015-05-18 2016-11-24 Abb Technology Ltd Procédé et dispositif d'amortissement d'harmoniques de tension dans un convertisseur de puissance multi-niveau
CN105071677B (zh) * 2015-08-28 2017-05-10 山东大学 用于两电平三相并网逆变器的电流预测控制方法
ES2632890B1 (es) * 2016-03-15 2018-06-27 Gamesa Innovation & Technology S.L. Un sistema de conversión de energía trifásica de media tensión para aplicaciones de lazo cerrado
DE102016106472A1 (de) * 2016-04-08 2017-10-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Regeln einer Leistungselektronik
CN106326653A (zh) * 2016-08-23 2017-01-11 国网北京市电力公司 用于预测电流的数据处理方法和装置
EP3309955A1 (fr) * 2016-10-11 2018-04-18 Siemens Aktiengesellschaft Fonctionnement d'un convertisseur destiné à coupler une machine électrique conçue pour un fonctionnement en tension alternative à un réseau de tension alternative
CN107070269B (zh) * 2017-02-14 2019-11-26 中南大学 一种三相四线逆变器的控制方法及系统
CN107040181B (zh) * 2017-03-14 2020-06-05 中南大学 一种三电平变流器的直接转矩控制方法与装置
US10731907B2 (en) 2017-06-12 2020-08-04 Lennox Industries, Inc. Controlling systems with motor drives using pulse width modulation
US10581342B2 (en) 2017-07-10 2020-03-03 General Electric Company Three-level two-stage decoupled active NPC converter
CN109617481A (zh) * 2018-12-25 2019-04-12 南京越博电驱动系统有限公司 一种永磁同步电机预测转矩控制方法
CN110112913B (zh) * 2019-05-29 2021-02-12 哈尔滨工程大学 一种基于Fal函数滤波器的直流变换器模型预测控制方法
US11119457B2 (en) * 2019-06-26 2021-09-14 King Fahd University Of Petroleum And Minerals Method for controlling electric drive system and electric drive system
CN110212801B (zh) * 2019-07-04 2021-05-28 烟台大学 一种anpc三电平逆变器及其模型预测控制方法
CN110266228B (zh) * 2019-07-05 2021-03-23 长安大学 基于bp神经网络的表面式永磁同步电机模型预测控制方法
CN110350837B (zh) * 2019-07-08 2021-03-30 长安大学 一种精简备选有限状态集模型预测直接转矩控制方法
CN112448606A (zh) * 2019-08-29 2021-03-05 南京理工大学 带阻感负载三电平逆变器的改进模型预测控制方法
CN111162714A (zh) * 2020-01-03 2020-05-15 湖南大学 考虑参数失配的多相储能永磁电机鲁棒预测转矩控制方法、系统及介质
CN112583315B (zh) * 2020-11-27 2022-05-17 江苏科技大学 一种三电平永磁同步电动机三矢量模型预测转矩控制方法
CN112821831A (zh) * 2021-02-08 2021-05-18 北方工业大学 永磁同步电机的控制方法、装置及电机控制器
CN112821816B (zh) * 2021-02-23 2022-07-22 大连海事大学 基于npc型三电平逆变器pmsm模型预测电流控制方法
CN114337204B (zh) * 2021-12-02 2024-01-30 北京科技大学顺德创新学院 一种具有低开关频率特性的预测控制指定谐波抑制开关策略

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648705A (en) * 1995-09-05 1997-07-15 Ford Motor Company Motor vehicle alternator and methods of operation
DE102004016464A1 (de) * 2004-03-31 2005-11-03 Alstom Technology Ltd Verfahren zur Berechnung und Beurteilung des Frequenzspektrums eines Matrix-Konverters
DE502004009328D1 (de) * 2004-12-10 2009-05-20 Abb Research Ltd Verfahren zum Betrieb einer rotierenden elektrischen Maschine
TWI346441B (en) * 2006-11-10 2011-08-01 Delta Electronics Inc Three-level ac generating circuit and control method thereof
US7649758B2 (en) * 2006-11-30 2010-01-19 Eaton Corporation Power supply apparatus, methods and computer program products using D-Q domain based synchronization techniques
US8116105B2 (en) * 2008-02-07 2012-02-14 American Power Conversion Corporation Systems and methods for uninterruptible power supply control
JP4858597B2 (ja) * 2008-11-28 2012-01-18 株式会社デンソー 回転機の制御装置及びその製造方法
DK2478632T3 (en) * 2009-09-15 2017-10-23 Abb Research Ltd ADDING A THIRD HARMONIC COMPONENT TO A BASIC REFERENCE WAVE FORM
US8228695B2 (en) * 2009-11-16 2012-07-24 General Electric Company Multilevel converter operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013010778A1 *

Also Published As

Publication number Publication date
EP2546979A1 (fr) 2013-01-16
WO2013010778A1 (fr) 2013-01-24
US20140126252A1 (en) 2014-05-08
US9385585B2 (en) 2016-07-05
EP2732547B1 (fr) 2016-10-26
BR112014000972A2 (pt) 2017-02-21

Similar Documents

Publication Publication Date Title
EP2732547B1 (fr) Procédé de contrôle des harmoniques et des résonnances dans un onduleur
CA2926825C (fr) Procede de commande pour un convertisseur electrique equipe d'un filtre passe-bas
Habibullah et al. Predictive torque control of induction motor sensorless drive fed by a 3L-NPC inverter
Xue et al. Finite-control-set model predictive control for three-level NPC inverter-fed PMSM drives with $ LC $ filter
EP2891241B1 (fr) Commande de schéma prédictif de modèle d'impulsions rapides
JP5982901B2 (ja) 電動機の制御装置及び電動機の制御方法
US20180054112A1 (en) Model predictive damping of oscillations in an electrical converter system
JP2008529464A (ja) Lclフィルタを備えるコンバータ回路の動作の方法及び装置
JP5589556B2 (ja) 回転機の制御装置
CN109217776A (zh) 一种电机的加热方法、装置及变频器
Burtscher et al. Deadlock avoidance in model predictive direct torque control
WO2016202623A1 (fr) Contrôle prédictif de modèle fpga
CN109067303B (zh) 一种电机的加热方法、装置及变频器
Kley et al. Performance evaluation of model predictive direct torque control
Hokayem et al. Active damping for model predictive pulse pattern control
EP4084322A1 (fr) Procédé de commande de compresseur
Urrejola et al. Direct torque control of an 3L-NPC inverter-fed induction machine: A model predictive approach
EP3832867B1 (fr) Stabilisation de tension de liaison cc à gain adaptatif
Shi et al. Performance evaluation of current control strategies in LCL-filtered high-power converters with low pulse ratios
US20120013199A1 (en) Method for operation of a converter circuit and apparatus for carrying out the method
Jabbarnejad et al. Model-free predictive combined control for three-phase grid-connected voltage source converters
JP2019083624A (ja) 電動機駆動装置
CN111279602B (zh) 功率转换装置
Zhou et al. Control Techniques
Alsofyani et al. Improving start-up operation of sensorless DTC of induction machines using simple flux regulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160513

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 840665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012024584

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 840665

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012024584

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012024584

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026