EP2729251B1 - Microfluid structure with cavities - Google Patents

Microfluid structure with cavities Download PDF

Info

Publication number
EP2729251B1
EP2729251B1 EP12732642.9A EP12732642A EP2729251B1 EP 2729251 B1 EP2729251 B1 EP 2729251B1 EP 12732642 A EP12732642 A EP 12732642A EP 2729251 B1 EP2729251 B1 EP 2729251B1
Authority
EP
European Patent Office
Prior art keywords
cavity
region
liquid
indentation
microfluidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12732642.9A
Other languages
German (de)
French (fr)
Other versions
EP2729251A1 (en
Inventor
Dirk Kurowski
Oliver Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Microparts GmbH
Original Assignee
Boehringer Ingelheim Microparts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Microparts GmbH filed Critical Boehringer Ingelheim Microparts GmbH
Priority to EP12732642.9A priority Critical patent/EP2729251B1/en
Publication of EP2729251A1 publication Critical patent/EP2729251A1/en
Application granted granted Critical
Publication of EP2729251B1 publication Critical patent/EP2729251B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0642Filling fluids into wells by specific techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation

Definitions

  • the invention relates to a microfluidic structure, comprising at least one cavity with at least one inlet opening and at least one outlet opening, wherein the cavity can be filled with a liquid or flowed through by a liquid and within the cavity at least one element is provided which the liquid in the flow within the cavity stops at least temporarily and / or at least partially deflects.
  • Microfluidic structures are components of microfluidic platforms or microfluidic components and essentially comprise cavities and / or channels in which sample liquids to be examined or manipulated can be taken up and transported by suitable means (for example capillary forces, generated pressure differences) to correspondingly provided reaction sites ,
  • the present invention encompasses microfluidic platforms such as, for example, sample carriers, test strips, biosensors, or the like, which may serve to perform individual tests or measurements.
  • biological fluids eg blood, urine or saliva
  • pathogens eg blood, urine or saliva
  • cholesterol blood fat
  • corresponding detection reactions or entire reaction cascades take place on the microfluidic platforms.
  • the biological sample liquid is transported to the appropriate reaction site or the reaction sites by suitable means.
  • a transport of the sample liquid can take place, for example, by means of passive capillary forces (by means of appropriate capillary systems or microchannels) or else by means of an active actuator.
  • active actuators syringe or diaphragm pumps are used, for example, which can be located outside of the microfluidic platform or on this and build up within a micro-fluidic structure consisting of micro channels and micro cavities in particular a corresponding pressure.
  • microfluidic platforms have a sample task on the order of a few millimeters to give up a sample liquid amount on the order of a few microliters, the sample liquid (for example, blood) must be transported via a micro-channel or via a micro-channel system to corresponding cavities, in which, for example chemical reactants are in dried form.
  • sample liquid for example, blood
  • a disadvantage of this structure is that volume actually consumed within the cavity is consumed by the web-like elements.
  • a microfluidic structure or a microfluidic platform for air bubble free filling known. Concretely, there is provided a cavity, with an inlet opening and an outlet opening. In the area of the inlet opening, the Cavity microstructure elements in the form of columns on. This area forms a site with increased capillary force. Due to the increased capillary force, first a complete and air bubble-free wetting of the entrance area of the cavity with sample liquid takes place. Only then is a wetting of the outlet opening facing part of the cavity.
  • EP 0 153 110 A2 shows a microfluidic structure with ribs.
  • a ramp is provided in the cavity, which raises the level of the cavity floor to the level of the outlet opening.
  • Such an arrangement is unsatisfactory for the filling of large, in particular (transverse to the inflow or throughflow direction of the liquid) wide and irregularly shaped cavities.
  • the invention is therefore based on the object to improve a microfluidic structure according to the preamble of claim 1 such that an improved, in particular substantially air bubble-free filling, in particular of large cavities is made possible. This object is achieved with the characterizing features of claim 1.
  • Advantageous developments of the invention can be taken from the subclaims.
  • the invention is therefore based on a microfluidic structure, comprising at least one cavity having at least one inlet opening and at least one outlet opening, wherein the cavity can be filled with a liquid or flowed through by a liquid and within the cavity at least one element is provided, which at the liquid whose flow within the cavity at least temporarily stops and / or at least partially deflects.
  • the at least one element is formed by a depression formed in a wall of the cavity, which has at least one first region at which the liquid is stopped and / or at least partially deflected at least temporarily and at least one second region at which the liquid preferably flows into the depression.
  • the liquid runs immediately upon reaching the second region, that is, without a significant stop into the depression and pulls from a certain filling level the well also in the first area of the well first stopped liquid into the recess.
  • the liquid in the cavity can be controlled so that the cavity is filled evenly and substantially free of air bubbles.
  • This is also possible with large, in particular wide and irregularly shaped cavities which, for example, have a filling volume of the order of magnitude of about 10 ⁇ l to 10 ml.
  • said wall of the cavity may be, for example, a bottom of the cavity. But there are also any other walls of the cavity conceivable.
  • the second region is formed by a ramp-like transition, which, starting from a bottom level of the cavity, passes over to a bottom level of the depression.
  • This ramp-like transition ensures in a simple manner that the sample liquid at this point runs into the depression without a stop and fills it.
  • the ramp-like transition starting from a boundary edge of the recess with a bottom plane of the cavity forms an angle of about 10 degrees to 60 degrees, more preferably of about 45 degrees.
  • the second region could also be formed by a "smooth" transition, for example by a convex or concave rounding.
  • a notch-like structure (seen in plan view of the depression) is conceivable.
  • the first region is expediently formed by a boundary edge of the depression on which the converging, forming the boundary edge Walls occupy an angle which is less than 120 degrees, preferably approximately between 95 degrees and 70 degrees, more preferably at about 90 degrees.
  • the first region forms a capillary stop in a very reliable manner, at which the inflowing liquid is first stopped or deflected.
  • the at least one recess is elongated, wherein the at least one first region facing an inflowing liquid and the at least one second region of an inflowing liquid is remote.
  • the inflowing liquid can be controlled such that it initially reaches the first area, is stopped there, deflected and preferably reaches the second area (without a noteworthy stop) into the depression and fills it.
  • the recess may be formed in plan view, for example, approximately rectangular. But it can also be different in plan view, for example, be arcuate. This may be expedient, for example, if the cavity to be filled is likewise curved in its longitudinal extension.
  • a further advantageous embodiment of the inventive idea provides that a plurality of depressions are provided, which are arranged starting from side walls of the cavity, mutually.
  • the at least one first region extends approximately over the entire length of one longitudinal side of the at least one depression and the at least one second region only over a portion of the length of another longitudinal face.
  • the invention also relates to a microfluidic platform with at least one microfluidic structure according to at least one of claims 1 to 7.
  • a microfluidic platform can be produced inexpensively and meets high demands on a process-reliable, in particular air bubble-free filling of the existing cavities.
  • the microfluidic structure 1 comprises a cavity 10, which has a filling volume of about 15 ⁇ l.
  • the cavity 10 is unevenly shaped and provided with an inlet opening 11, which connects the cavity 10 with a filling channel 16.
  • the filling channel 16 itself may be connected to an unspecified numbering filling opening (for example, a sample task area).
  • the cavity 10 is provided with an outlet opening 12 which, for example, releases the fluidic connection to a ventilation channel 17.
  • a capillary stop 24 is also provided in the usual way.
  • the cavity 10 may be connected via an outlet opening to a further microchannel 18 (indicated by dashed lines) if a liquid is to be transported through the cavity 10, for example into a further cavity (not shown).
  • the cavity 10 is a comparatively large cavity having dimensions of about 12 mm in width, 36 mm in length and about 1.5 mm in depth.
  • Each recess 13 has in plan view approximately a rectangular appearance with a length L and a width B.
  • the recesses 13, starting from longitudinal sides of the cavity 10, are mutually arranged.
  • each depression 13 has a first region 14 which faces an inflowing liquid F (cf. Fig. 4 ) and at which the inflowing liquid F is at least temporarily stopped and / or at least partially deflected.
  • each depression 13 is provided with a second region 15, at which an incoming liquid F runs into the depression 13 without stopping.
  • the cavity 10 is closed by a cover 21 (for example, a glued foil) and has a bottom 19.
  • a cover 21 for example, a glued foil
  • Each recess 13 has a bottom 20.
  • the first region 14 (capillary stop) is formed by a boundary edge 22 of the recess 13, at which the converging, the boundary edge 22 forming walls occupy an angle ⁇ , which is 90 degrees. Deviating from the embodiment, of course, other angles are conceivable, which may be greater or less than 90 degrees.
  • the second region 15 is formed by a ramp-like transition R, which, starting from the bottom level 19 of the cavity 10, to a bottom level 20 of the recess 13 passes.
  • the ramp-like transition R starting from a boundary edge 23 of the recess 13 with the bottom plane 19 of the cavity 10 forms an angle ⁇ of approximately 45 degrees. Again, angles greater or less than 45 degrees are conceivable.
  • the second area 15 does not necessarily have to be formed by a ramp-like transition, but other configurations are also conceivable. So is in Fig. 3 indicated that the second area, for example, by a “smooth" transition, such as by a concave (15 ") or convex (15"') rounding can be formed.
  • the liquid F is first stopped at the first region 14 or the boundary edge 22 and deflected ( Fig. 4b ).
  • the liquid F continues to the first region 14 of the second recess 13 and thereby also to the second region 15 of the first recess 13, whereby the liquid F via the second region 15, the first recess 13 fills (see dashed lines indicated arrow in FIG Fig. 4c ).
  • the liquid F is then stopped and deflected again at the first region 14 of the second depression 13 and a complete filling of the cavity 10 takes place, first leaving the second depression 13 (see FIG Fig. 4d ).
  • the second depression 13 is also filled via the second region 15 (ramp-like transition R).
  • the liquid front of the liquid F now extends to the first region 14 of the last depression 13 (FIG. Fig. 4e ).
  • the liquid F is again initially stopped and deflected until it subsequently reaches the second region 15 of the last depression 13 and, starting there, fills it.
  • the filling process extends to the capillary stop 24 in the region of the outlet opening 12 and essentially takes place without air inclusions (air bubbles) (cf. Fig. 4f ).
  • the second region 15 does not extend over the entire length L of a depression 13, but only constitutes part of this length. Furthermore, the region 15 also assumes a width which is significantly smaller than the width B of the entire depression 13. In particular, the width of the region 15 is preferably less than half the width B of the depression 13. This makes it possible, with sufficient filling function Area 15 well exploit the volume of the recess 13.
  • the regions 15 are positioned on the longitudinal sides of the depressions 13 facing away from the inflowing liquid F, it is also conceivable to provide such regions at least partially on the transverse sides of the depressions 13 (cf. dashed lines 15 'in FIG Fig. 1 ). It is also conceivable to provide several such areas at one depression (see also paragraphs 43 in FIG Fig. 6 ).
  • a second embodiment 3 for a microfluidic structure of a microfluidic component 4 is shown.
  • the microfluidic structure 3 comprises a cavity 30, with Each recess 31 is in turn equipped with a first region 32 in the form of a stop edge (capillary stop), which faces the flow direction S of an inflowing liquid.
  • a second region 33 in the form of a ramp is again provided on the longitudinal side of the depression 31 facing away from an inflowing liquid, the region 33 extending over an entire length L of the depression 31.
  • the width of the region 33 is in turn only about a maximum of half a width B of the recess 31.
  • a meandering flow of an incoming liquid is modeled by the mutual arrangement of the recesses 31.
  • a microfluidic structure 5 can be seen on a microfluidic component 6, which (in contrast to the preceding exemplary embodiments) has a curved cavity 40 viewed in the inflow direction S of a liquid.
  • each recess 41 has a longitudinal extent L and extends over this length L curved. Furthermore, it can be seen that each depression 41 is in turn provided with a first region 42 in the form of a stop edge (comparable to region 14 of the first embodiment) and on the longitudinal side facing away from an inflowing liquid, each having two regions 43 in the form of a ramp (comparable to FIG the area 15 in the first embodiment).
  • a microfluidic structure 7 of a microfluidic component 8 can be seen, in which, within a cavity 50 unlike the embodiments according to the invention, no depressions, but webs 51 are attached.
  • the webs 51 starting from longitudinal sides of the cavity 50, are mutually arranged and intended to meander a flow of an inflowing liquid (not shown) and thus enable a largely bubble-free filling of the cavity 50.
  • the webs 51 extend from a bottom 53 of the cavity 50 starting up to a cavity 50 upwards final cover 52 zoom.

Description

Die Erfindung betrifft eine mikrofluidische Struktur, umfassend wenigstens eine Kavität mit wenigstens einer Einlassöffnung und wenigstens einer Auslassöffnung, wobei die Kavität mit einer Flüssigkeit befüllbar oder von einer solchen durchströmbar ist und innerhalb der Kavität wenigstens ein Element vorgesehen ist, welches die Flüssigkeit bei deren Strömung innerhalb der Kavität zumindest zeitweise abstoppt und/oder zumindest bereichsweise umlenkt.The invention relates to a microfluidic structure, comprising at least one cavity with at least one inlet opening and at least one outlet opening, wherein the cavity can be filled with a liquid or flowed through by a liquid and within the cavity at least one element is provided which the liquid in the flow within the cavity stops at least temporarily and / or at least partially deflects.

Mikrofluidische Strukturen sind Bestandteile von mikrofluidischen Plattformen bzw. mikrofluidischen Bauteilen und umfassen im Wesentlichen Kavitäten und/oder Kanäle, in denen zu untersuchende oder zu manipulierende Probenflüssigkeiten aufgenommen werden und durch geeignete Mittel (bspw. Kapillarkräfte, erzeugte Druckunterschiede) zu entsprechend vorgesehenen Reaktionsorten transportiert werden können.Microfluidic structures are components of microfluidic platforms or microfluidic components and essentially comprise cavities and / or channels in which sample liquids to be examined or manipulated can be taken up and transported by suitable means (for example capillary forces, generated pressure differences) to correspondingly provided reaction sites ,

Inbesondere werden von der vorliegenden Erfindung mikrofluidische Plattformen wie beispielsweise Probenträger, Teststreifen, Biosensoren oder dergleichen umfasst, welche zur Durchführung einzelner Tests oder Messungen dienen können. Beispielsweise können biologische Flüssigkeiten (z. B. Blut, Urin oder Speichel) zum einen auf Krankheitserreger, Unverträglichkeiten und zum anderen aber auch auf ihr Gehalt beispielsweise Glukose (Blutzucker) oder Cholesterol (Blutfett) untersucht werden. Dazu finden auf den mikrofluidischen Plattformen entsprechende Nachweisreaktionen oder ganze Reaktionskaskaden statt.In particular, the present invention encompasses microfluidic platforms such as, for example, sample carriers, test strips, biosensors, or the like, which may serve to perform individual tests or measurements. For example, biological fluids (eg blood, urine or saliva) can be examined for pathogens, incompatibilities and also for their content, for example glucose (blood sugar) or cholesterol (blood fat). For this purpose, corresponding detection reactions or entire reaction cascades take place on the microfluidic platforms.

Hierfür ist es erforderlich, dass die biologische Probenflüssigkeit zu dem dafür vorgesehenen Reaktionsort bzw. den Reaktionsorten mit geeigneten Mitteln transportiert wird. Ein solcher Transport der Probenflüssigkeit kann beispielsweise mittels passiver Kapillarkräfte (durch entsprechende Kapillarsysteme bzw. Mikrokanäle) erfolgen oder auch mittels einer aktiven Aktorik. Als aktive Aktorik werden beispielsweise Spritzen- oder Membranpumpen verwendet, die sich außerhalb der mikrofluidischen Plattform oder auch auf dieser befinden können und innerhalb einer mit insbesondere aus Mikrokanälen und Mikrokavitäten bestehenden mikrofluidischen Struktur einen entsprechenden Druck aufbauen.For this purpose, it is necessary that the biological sample liquid is transported to the appropriate reaction site or the reaction sites by suitable means. Such a transport of the sample liquid can take place, for example, by means of passive capillary forces (by means of appropriate capillary systems or microchannels) or else by means of an active actuator. As active actuators syringe or diaphragm pumps are used, for example, which can be located outside of the microfluidic platform or on this and build up within a micro-fluidic structure consisting of micro channels and micro cavities in particular a corresponding pressure.

Im Allgemeinen weisen mikrofluidische Plattformen einen Probenaufgabenbereich in der Größenordnung von wenigen Millimetern zur Aufgabe einer Probenflüssigkeitsmenge in der Größenordnung von einigen Mikrolitern auf, wobei die Probenflüssigkeit (beispielsweise Blut) über einen Mikrokanal bzw. über ein Mikrokanalsystem zu entsprechenden Kavitäten transportiert werden muss, in denen beispielsweise chemische Reaktionsstoffe in getrockneter Form vorliegen.In general, microfluidic platforms have a sample task on the order of a few millimeters to give up a sample liquid amount on the order of a few microliters, the sample liquid (for example, blood) must be transported via a micro-channel or via a micro-channel system to corresponding cavities, in which, for example chemical reactants are in dried form.

Damit eine Probenflüssigkeit mit den Reaktionsstoffen in einer Kavität eine einwandfreie Nachweisreaktion vollführen kann, ist eine möglichst gleichmäßige und vollständige Befüllung einer solchen Kavität erforderlich.In order for a sample liquid to be able to perform a satisfactory detection reaction with the reactants in a cavity, the most uniform and complete possible filling of such a cavity is required.

Bei der Befüllung von großen, insbesondere breiten und ungleichmäßig geformten Kavitäten, beispielsweise mit Längen- und/oder Breitendimensionen von jeweils mehreren Millimetern und einem daraus resultierenden Volumenbereich von beispielsweise 10 µl bis etwa 10 ml, besteht das Problem, dass sich die Kavität nicht gleichmäßig füllt und sich so Lufteinschlüsse bzw. Luftblasen in der Kavität bilden können. Dadurch steht nicht das komplette Volumen der Kavität für die Probenflüssigkeit zur Verfügung. In einer solchen Kavität beispielsweise aufbewahrte Trockensubstanzen werden so nicht ausreichend aufgelöst und es kann zu Klumpenbildung kommen, wodurch eine gewünschte Nachweisreaktion beeinträchtigt werden kann.When filling large, in particular wide and irregularly shaped cavities, for example with length and / or width dimensions of several millimeters and a resulting volume range of, for example, 10 .mu.l to about 10 ml, there is the problem that the cavity does not fill evenly and so air bubbles or air bubbles can form in the cavity. As a result, the entire volume of the cavity for the sample liquid is not available. In such a cavity, for example, stored dry substances are not sufficiently dissolved and it can lead to lump formation, whereby a desired detection reaction can be impaired.

Nach dem Stand der Technik wird hier dadurch Abhilfe geboten, indem man in der Kavität stegartige Elemente derart anordnet, dass die Flüssigkeit in der Kavität eine mäanderförmige Strömungsrichtung vollführen muss.According to the prior art, this is remedied by arranging web-like elements in the cavity such that the liquid in the cavity has to perform a meandering flow direction.

Ein Nachteil dieser Struktur ist jedoch, dass durch die stegartigen Elemente eigentlich benötigtes Volumen innerhalb der Kavität verbraucht wird.A disadvantage of this structure, however, is that volume actually consumed within the cavity is consumed by the web-like elements.

Zum Ausgleich muss daher mehr Fläche auf der mikrofluidischen Plattform bzw. dem mikrofluidischen Bauteil zur Verfügung gestellt werden. Dies soll insbesondere für mikrofluidische Plattformen wegen der damit verbundenen Zunahme der Herstellkosten vermieden werden.To compensate, therefore, more area must be provided on the microfluidic platform or the microfluidic component. This should be avoided in particular for microfluidic platforms because of the associated increase in manufacturing costs.

Aus der DE 103 60 220 A1 ist eine mikrofluidische Struktur bzw. eine mikrofluidische Plattform zur luftblasenfreien Befüllung bekannt. Konkret ist dort eine Kavität vorgesehen, mit einer Einlassöffnung und einer Auslassöffnung. Im Bereich der Einlassöffnung weist die Kavität Mikrostrukturelemente in Form von Säulen auf. Dieser Bereich bildet eine Stelle mit erhöhter Kapillarkraft. Durch die erhöhte Kapillarkraft erfolgt zunächst eine vollständige und luftblasenfreie Benetzung des Eingangsbereichs der Kavität mit Probenflüssigkeit. Erst danach erfolgt eine Benetzung des der Auslassöffnung zugewandten Teils der Kavität. EP 0 153 110 A2 zeigt eine mikrofluidische Struktur mit Rippen. Um dabei den Flüssigkeitstransport zu beschleunigen, ist in der Kavität eine Rampe vorgesehen, die das Niveau des Kavitätenbodens auf das Niveau der Auslassöffnung anhebt.
Eine solche Anordnung ist zur Befüllung von großen, insbesondere (quer zur Einström- bzw. Durchströmrichtung der Flüssigkeit) breiten und ungleichmäßig geformten Kavitäten nicht zufrieden stellend.
Der Erfindung liegt daher die Aufgabe zu Grunde, eine mikrofluidische Struktur gemäß dem Oberbegriff von Anspruch 1 derart zu verbessern, dass eine verbesserte, insbesondere im Wesentlichen luftblasenfreie Befüllung, insbesondere von großen Kavitäten ermöglicht wird. Diese Aufgabe wird mit den kennzeichnenden Merkmalen von Anspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen entnehmbar.
Die Erfindung geht daher aus von einer mikrofluidischen Struktur, umfassend wenigstens eine Kavität mit wenigstens einer Einlassöffnung und wenigstens einer Auslassöffnung, wobei die Kavität mit einer Flüssigkeit befüllbar oder von einer solchen durchströmbar ist und innerhalb der Kavität wenigstens ein Element vorgesehen ist, welches die Flüssigkeit bei deren Strömung innerhalb der Kavität zumindest zeitweise abstoppt und/oder zumindest bereichsweise umlenkt.
Erfindungsgemäß ist vorgesehen, dass das wenigstens eine Element durch eine in eine Wandung der Kavität eingebrachte Vertiefung gebildet ist, welche wenigstens einen ersten Bereich aufweist, an dem die Flüssigkeit zumindest zeitweise gestoppt und/oder zumindest bereichsweise umgelenkt wird und zumindest einen zweiten Bereich, an dem die Flüssigkeit bevorzugt in die Vertiefung hineinläuft.
Dabei läuft die Flüssigkeit bei Erreichen des zweiten Bereiches sofort, also ohne einen nennenswerten Stopp in die Vertiefung hinein und zieht ab einem bestimmten Befüllstand der Vertiefung auch noch die im ersten Bereich der Vertiefung zunächst abgestoppte Flüssigkeit mit in die Vertiefung hinein.
From the DE 103 60 220 A1 is a microfluidic structure or a microfluidic platform for air bubble free filling known. Concretely, there is provided a cavity, with an inlet opening and an outlet opening. In the area of the inlet opening, the Cavity microstructure elements in the form of columns on. This area forms a site with increased capillary force. Due to the increased capillary force, first a complete and air bubble-free wetting of the entrance area of the cavity with sample liquid takes place. Only then is a wetting of the outlet opening facing part of the cavity. EP 0 153 110 A2 shows a microfluidic structure with ribs. In order to accelerate the liquid transport, a ramp is provided in the cavity, which raises the level of the cavity floor to the level of the outlet opening.
Such an arrangement is unsatisfactory for the filling of large, in particular (transverse to the inflow or throughflow direction of the liquid) wide and irregularly shaped cavities.
The invention is therefore based on the object to improve a microfluidic structure according to the preamble of claim 1 such that an improved, in particular substantially air bubble-free filling, in particular of large cavities is made possible. This object is achieved with the characterizing features of claim 1. Advantageous developments of the invention can be taken from the subclaims.
The invention is therefore based on a microfluidic structure, comprising at least one cavity having at least one inlet opening and at least one outlet opening, wherein the cavity can be filled with a liquid or flowed through by a liquid and within the cavity at least one element is provided, which at the liquid whose flow within the cavity at least temporarily stops and / or at least partially deflects.
According to the invention, it is provided that the at least one element is formed by a depression formed in a wall of the cavity, which has at least one first region at which the liquid is stopped and / or at least partially deflected at least temporarily and at least one second region at which the liquid preferably flows into the depression.
In this case, the liquid runs immediately upon reaching the second region, that is, without a significant stop into the depression and pulls from a certain filling level the well also in the first area of the well first stopped liquid into the recess.

Auf diese Weise kann die Flüssigkeit in der Kavität derart gesteuert werden, dass die Kavität gleichmäßig und im Wesentlichen luftblasenfrei gefüllt wird. Dies ist auch bei großen, insbesondere breiten und ungleichmäßig geformten Kavitäten möglich, welche beispielsweise ein Befüllvolumen in der Größenordnung von etwa 10 µl bis 10 ml aufweisen.In this way, the liquid in the cavity can be controlled so that the cavity is filled evenly and substantially free of air bubbles. This is also possible with large, in particular wide and irregularly shaped cavities which, for example, have a filling volume of the order of magnitude of about 10 μl to 10 ml.

Anzumerken ist, dass die genannte Wandung der Kavität beispielsweise ein Boden der Kavität sein kann. Es sind aber auch beliebige andere Wandungen der Kavität denkbar. So kann die Wandung, bei geeigneter Ausbildung eines die Kavität abschließenden Deckels, beispielsweise auch durch diesen selbst gebildet sein. Auch eine Kombination dieser beiden Möglichkeiten ist zum Beispiel möglich.It should be noted that said wall of the cavity may be, for example, a bottom of the cavity. But there are also any other walls of the cavity conceivable. Thus, the wall, with a suitable design of the cavity-closing lid, for example, be formed by this itself. A combination of these two options is possible, for example.

Nach einer Weiterbildung der Erfindung ist vorgesehen, dass der zweite Bereich durch einen rampenartigen Übergang gebildet ist, der, von einem Bodenniveau der Kavität ausgehend, bis auf ein Bodenniveau der Vertiefung übergeht.According to a development of the invention, it is provided that the second region is formed by a ramp-like transition, which, starting from a bottom level of the cavity, passes over to a bottom level of the depression.

Durch diesen rampenartigen Übergang wird auf einfache Weise sichergestellt, dass die Probenflüssigkeit an dieser Stelle ohne einen Stopp in die Vertiefung hineinläuft und diese befüllt.This ramp-like transition ensures in a simple manner that the sample liquid at this point runs into the depression without a stop and fills it.

Dabei hat es sich als vorteilhaft erwiesen, dass der rampenartige Übergang, ausgehend von einer Begrenzungskante der Vertiefung mit einer Bodenebene der Kavität einen Winkel von etwa 10 Grad bis 60 Grad, besonders bevorzugt von in etwa 45 Grad bildet. In Versuchen hat sich gezeigt, dass mit der Wahl derartiger geometrischer Parameter ein gewolltes Strömungsverhalten der Flüssigkeit am besten realisierbar ist.It has proven to be advantageous that the ramp-like transition, starting from a boundary edge of the recess with a bottom plane of the cavity forms an angle of about 10 degrees to 60 degrees, more preferably of about 45 degrees. Experiments have shown that with the choice of such geometric parameters a desired flow behavior of the liquid is best realized.

Allerdings wären statt rampenartiger Ausgestaltung auch andere Ausgestaltungen des zweiten Bereichs denkbar. So könnte der zweite Bereich auch durch einen "sanften" Übergang gebildet sein, bspw. durch eine konvexe oder konkave Verrundung. Auch eine (in Draufsicht auf die Vertiefung gesehen) kerbenartige Struktur ist vorstellbar.However, instead of a ramp-like design, other embodiments of the second area would also be conceivable. Thus, the second region could also be formed by a "smooth" transition, for example by a convex or concave rounding. Also, a notch-like structure (seen in plan view of the depression) is conceivable.

Der erste Bereich wird hingegen zweckmäßigerweise durch eine Begrenzungskante der Vertiefung gebildet, an der die zusammenlaufenden, die Begrenzungskante bildenden Wandungen einen Winkel einnehmen, der kleiner als 120 Grad, bevorzugt in etwa zwischen 95 Grad und 70 Grad, besonders bevorzugt bei etwa 90 Grad liegt.By contrast, the first region is expediently formed by a boundary edge of the depression on which the converging, forming the boundary edge Walls occupy an angle which is less than 120 degrees, preferably approximately between 95 degrees and 70 degrees, more preferably at about 90 degrees.

Auf diese Weise bildet der erste Bereich auf sehr zuverlässige Weise einen Kapillarstopp, an dem die einströmende Flüssigkeit zunächst gestoppt bzw. umgelenkt wird.In this way, the first region forms a capillary stop in a very reliable manner, at which the inflowing liquid is first stopped or deflected.

Es hat sich in Versuchen ferner als sehr vorteilhaft erwiesen, wenn die wenigstens eine Vertiefung länglich ausgebildet ist, wobei der wenigstens eine erste Bereich einer einströmenden Flüssigkeit zugewandt und der wenigstens eine zweite Bereich einer einströmenden Flüssigkeit abgewandt ist. So kann die einströmende Flüssigkeit derart gesteuert werden, dass diese zunächst den ersten Bereich erreicht, dort abgestoppt, umgelenkt wird und bei Erreichen des zweiten Bereiches dort bevorzugt (ohne einen nennenswerten Stopp) in die Vertiefung hinein läuft und diese befüllt. Bei einer entsprechenden Anordnung mehrerer Vertiefungen miteinander kann die gewünschte Flüssigkeitssteuerung der konkreten Länge einer Kavität angepasst werden.It has also proved to be very advantageous in experiments, if the at least one recess is elongated, wherein the at least one first region facing an inflowing liquid and the at least one second region of an inflowing liquid is remote. Thus, the inflowing liquid can be controlled such that it initially reaches the first area, is stopped there, deflected and preferably reaches the second area (without a noteworthy stop) into the depression and fills it. With a corresponding arrangement of several recesses with each other, the desired fluid control of the specific length of a cavity can be adjusted.

Die Vertiefung kann in der Draufsicht beispielsweise in etwa rechteckförmig ausgebildet sein. Sie kann aber auch in der Draufsicht andersförmig, beispielsweise bogenförmig ausgebildet sein. Dies kann beispielsweise dann zweckmäßig sein, wenn die zu befüllende Kavität in ihrer Längserstreckung ebenfalls bogenförmig ausgebildet ist.The recess may be formed in plan view, for example, approximately rectangular. But it can also be different in plan view, for example, be arcuate. This may be expedient, for example, if the cavity to be filled is likewise curved in its longitudinal extension.

Eine weitere zweckmäßige Ausbildung des Erfindungsgedankens sieht vor, dass mehrere Vertiefungen vorgesehen sind, die von Seitenwänden der Kavität ausgehend, wechselseitig angeordnet sind.A further advantageous embodiment of the inventive idea provides that a plurality of depressions are provided, which are arranged starting from side walls of the cavity, mutually.

Auf diese Weise ist es möglich, mit den Vertiefungen in der zu befüllenden Kavität einen mäanderförmigen Strömungsverlauf der Flüssigkeit nachzubilden.In this way it is possible to emulate a meandering flow pattern of the liquid with the wells in the cavity to be filled.

Es hat sich zudem als vorteilhaft erwiesen, wenn sich der wenigstens eine erste Bereich in etwa über die gesamte Länge einer Längsseite der wenigstens einen Vertiefung erstreckt und der wenigstens eine zweite Bereich lediglich über einen Teil der Länge einer anderen Längsseite.It has also proved to be advantageous if the at least one first region extends approximately over the entire length of one longitudinal side of the at least one depression and the at least one second region only over a portion of the length of another longitudinal face.

Hierdurch ist es möglich, zum einen einen Kapillarstopp auf breiter Front sicherzustellen und zum anderen dennoch einen zeitlich verzögerten Einlauf der Flüssigkeit in die Vertiefung, wobei zusätzliches Volumen an der Stelle gewonnen werden kann, wo der zweite Bereich nicht ausgebildet ist.This makes it possible, on the one hand to ensure a capillary stop on a wide front and, on the other hand, a time-delayed inlet of the liquid into the depression, wherein additional volume can be obtained at the location where the second area is not formed.

Die Erfindung betrifft aber auch eine mikrofluidische Plattform mit wenigstens einer mikrofluidischen Struktur nach wenigstens einem der Ansprüche 1 bis 7. Eine derart ausgebildete mikrofluidische Plattform kann kostengünstig hergestellt werden und genügt hohen Ansprüchen an eine prozesssichere, insbesondere luftblasenfreien Befüllung der vorhandenen Kavitäten.However, the invention also relates to a microfluidic platform with at least one microfluidic structure according to at least one of claims 1 to 7. Such a microfluidic platform can be produced inexpensively and meets high demands on a process-reliable, in particular air bubble-free filling of the existing cavities.

Weitere Vorteile und Ausgestaltungen der Erfindung werden anhand von Ausführungsbeispielen deutlich, was mit Hilfe der beiliegenden Figuren näher erläutert werden soll. Dabei bedeuten

Fig. 1
eine mikrofluidische Struktur gemäß einem ersten, bevorzugten Ausführungsbeispiel in einer Draufsicht, prinziphaft dargestellt,
Fig. 2
eine Schnittdarstellung der mikrofluidischen Struktur gemäß Schnittverlauf II in Fig. 1,
Fig. 3
eine Detaildarstellung III aus Fig. 2,
Fig. 4a bis 4f
unterschiedliche Befüllstadien der mikrofluidischen Struktur gemäß Fig. 1 mi einer Flüssigkeit,
Fig. 5
eine mikrofluidische Struktur in einer Draufsicht gemäß einem zweiten Ausführungsbeispiel, prinziphaft dargestellt,
Fig. 6
eine mikrofluidische Struktur in einer Draufsicht gemäß einem dritten Ausführungsbeispiel, prinziphaft dargestellt,
Fig. 7
eine mikrofluidische Struktur gemäß dem Stand der Technik und
Fig. 8
eine Schnittdarstellung gemäß Schnittverlauf VIII aus Fig. 7.
Further advantages and embodiments of the invention will become apparent from embodiments, which will be explained in more detail with the aid of the accompanying figures. Mean
Fig. 1
a microfluidic structure according to a first preferred embodiment in a plan view, shown in principle,
Fig. 2
a sectional view of the microfluidic structure according to section line II in Fig. 1 .
Fig. 3
a detail III from Fig. 2 .
Fig. 4a to 4f
different filling stages of the microfluidic structure according to Fig. 1 with a liquid,
Fig. 5
a microfluidic structure in a plan view according to a second embodiment, shown in principle,
Fig. 6
a microfluidic structure in a plan view according to a third embodiment, shown in principle,
Fig. 7
a microfluidic structure according to the prior art and
Fig. 8
a sectional view according to section line VIII from Fig. 7 ,

Zunächst wird auf die Fig. 1 bis 3 Bezug genommen.First, on the Fig. 1 to 3 Referenced.

In diesen Figuren ist eine in einem mikrofluidischen Bauteil 2 eingebrachte mikrofluidische Struktur 1 ersichtlich. Die mikrofluidische Struktur 1 umfasst eine Kavität 10, welche ein Befüllvolumen von etwa 15 µl aufweist. Die Kavität 10 ist ungleichmäßig geformt und mit einer Einlassöffnung 11 versehen, welche die Kavität 10 mit einem Befüllkanal 16 verbindet. Der Befüllkanal 16 selbst kann mit einer nicht näher bezifferten Befüllöffnung (beispielsweise einem Probenaufgabenbereich) verbunden sein.These figures show a microfluidic structure 1 introduced in a microfluidic component 2. The microfluidic structure 1 comprises a cavity 10, which has a filling volume of about 15 μl. The cavity 10 is unevenly shaped and provided with an inlet opening 11, which connects the cavity 10 with a filling channel 16. The filling channel 16 itself may be connected to an unspecified numbering filling opening (for example, a sample task area).

Auf der anderen Seite ist die Kavität 10 mit einer Auslassöffnung 12 versehen, welche beispielsweise die fluidische Verbindung zu einem Entlüftungskanal 17 freigibt. Im Bereich der Auslassöffnung 12 ist zudem in üblicher Weise ein Kapillarstopp 24 vorgesehen.On the other side, the cavity 10 is provided with an outlet opening 12 which, for example, releases the fluidic connection to a ventilation channel 17. In the region of the outlet opening 12, a capillary stop 24 is also provided in the usual way.

Zusätzlich oder alternativ kann die Kavität 10 über eine Auslassöffnung mit einem weiteren Mikrokanal 18 verbunden sein (gestrichelt angedeutet), wenn eine Flüssigkeit durch die Kavität 10 beispielsweise in eine weitere Kavität transportiert werden soll (nicht dargestellt).Additionally or alternatively, the cavity 10 may be connected via an outlet opening to a further microchannel 18 (indicated by dashed lines) if a liquid is to be transported through the cavity 10, for example into a further cavity (not shown).

Die Kavität 10 ist eine vergleichsweise große Kavität mit Abmessungen von etwa 12 mm in der Breite, 36 mm in der Länge und etwa 1,5 mm in der Tiefe.The cavity 10 is a comparatively large cavity having dimensions of about 12 mm in width, 36 mm in length and about 1.5 mm in depth.

Ferner ist zu erkennen, dass innerhalb der Kavität 10 drei Vertiefungen 13 angeordnet sind. Jede Vertiefung 13 hat in der Draufsicht dabei in etwa ein rechteckförmiges Aussehen mit einer Länge L und einer Breite B. Dabei sind die Vertiefungen 13, ausgehend von Längsseiten der Kavität 10, wechselseitig angeordnet.Furthermore, it can be seen that within the cavity 10 three recesses 13 are arranged. Each recess 13 has in plan view approximately a rectangular appearance with a length L and a width B. The recesses 13, starting from longitudinal sides of the cavity 10, are mutually arranged.

Es ist ersichtlich, dass jede Vertiefung 13 einen ersten Bereich 14 aufweist, welcher einer einströmenden Flüssigkeit F zugewandt ist (vergleiche Fig. 4) und an dem die einströmende Flüssigkeit F zumindest zeitweise gestoppt und/oder zumindest bereichsweise umgelenkt wird.It can be seen that each depression 13 has a first region 14 which faces an inflowing liquid F (cf. Fig. 4 ) and at which the inflowing liquid F is at least temporarily stopped and / or at least partially deflected.

Ferner ist jede Vertiefung 13 mit einem zweiten Bereich 15 versehen, an dem eine einlaufende Flüssigkeit F ohne einen Stopp in die Vertiefung 13 hineinläuft.Furthermore, each depression 13 is provided with a second region 15, at which an incoming liquid F runs into the depression 13 without stopping.

Die Kavität 10 ist dabei durch einen Deckel 21 (beispielsweise eine aufgeklebte Folie) abgeschlossen und weist einen Boden 19 auf. Jede Vertiefung 13 weist einen Boden 20 auf.The cavity 10 is closed by a cover 21 (for example, a glued foil) and has a bottom 19. Each recess 13 has a bottom 20.

Insbesondere aus der Detaildarstellung gemäß Fig. 3 ist erkennbar, dass der erste Bereich 14 (Kapillarstopp) durch eine Begrenzungskante 22 der Vertiefung 13 gebildet ist, an der die zusammenlaufenden, die Begrenzungskante 22 bildenden Wandungen einen Winkel β einnehmen, der 90 Grad ist. Abweichend vom Ausführungsbeispiel sind natürlich auch andere Winkel denkbar, die größer oder kleiner 90 Grad sein können.In particular, from the detailed representation according to Fig. 3 It can be seen that the first region 14 (capillary stop) is formed by a boundary edge 22 of the recess 13, at which the converging, the boundary edge 22 forming walls occupy an angle β, which is 90 degrees. Deviating from the embodiment, of course, other angles are conceivable, which may be greater or less than 90 degrees.

Ferner ist ersichtlich, dass der zweite Bereich 15 durch einen rampenartigen Übergang R gebildet ist, der, vom Bodenniveau 19 der Kavität 10 ausgehend, bis auf ein Bodenniveau 20 der Vertiefung 13 übergeht.Furthermore, it can be seen that the second region 15 is formed by a ramp-like transition R, which, starting from the bottom level 19 of the cavity 10, to a bottom level 20 of the recess 13 passes.

Insbesondere ist erkennbar, dass der rampenartige Übergang R, ausgehend von einer Begrenzungskante 23 der Vertiefung 13 mit der Bodenebene 19 der Kavität 10 einen Winkel α von in etwa 45 Grad bildet. Auch hier sind Winkel größer oder kleiner 45 Grad denkbar.In particular, it can be seen that the ramp-like transition R, starting from a boundary edge 23 of the recess 13 with the bottom plane 19 of the cavity 10 forms an angle α of approximately 45 degrees. Again, angles greater or less than 45 degrees are conceivable.

Angemerkt sei, dass der zweite Bereich 15 nicht unbedingt durch einen rampenartigen Übergang gebildet sein muss, sondern auch andere Ausgestaltungen denkbar sind. So ist in Fig. 3 angedeutet, dass der zweite Bereich bspw. auch durch einen "sanften" Übergang, etwa durch eine konkave (15") oder konvexe (15"') Rundung, gebildet sein kann.It should be noted that the second area 15 does not necessarily have to be formed by a ramp-like transition, but other configurations are also conceivable. So is in Fig. 3 indicated that the second area, for example, by a "smooth" transition, such as by a concave (15 ") or convex (15"') rounding can be formed.

Anhand der Fig. 4a bis 4f wird nun beschrieben, wie eine in die Kavität 10 einströmende Flüssigkeit F durch die Vertiefungen 13 in ihrem Strömungsverlauf gesteuert wird:
So strömt die einströmende Flüssigkeit F zunächst auf die Erste der Kavitäten 13 mit einer Strömungsrichtung S zu (Fig. 4a).
Based on Fig. 4a to 4f It will now be described how a liquid F flowing into the cavity 10 is controlled by the depressions 13 in its flow path:
Thus, the inflowing liquid F first flows toward the first of the cavities 13 with a flow direction S ( Fig. 4a ).

Dabei wird die Flüssigkeit F zunächst an dem ersten Bereich 14 bzw. der Begrenzungskante 22 gestoppt und umgelenkt (Fig. 4b).In this case, the liquid F is first stopped at the first region 14 or the boundary edge 22 and deflected ( Fig. 4b ).

Die Flüssigkeit F gelangt weiter bis zum ersten Bereich 14 der zweiten Vertiefung 13 und dabei auch bis zum zweiten Bereich 15 der ersten Vertiefung 13, wodurch die Flüssigkeit F über den zweiten Bereich 15 die erste Vertiefung 13 befüllt (vergleiche gestrichelt angedeuteter Pfeil in Fig. 4c).The liquid F continues to the first region 14 of the second recess 13 and thereby also to the second region 15 of the first recess 13, whereby the liquid F via the second region 15, the first recess 13 fills (see dashed lines indicated arrow in FIG Fig. 4c ).

Die Flüssigkeit F wird nun an dem ersten Bereich 14 der zweiten Vertiefung 13 wiederum gestoppt und umgelenkt und es erfolgt eine komplette Befüllung der Kavität 10 zunächst unter Freilassung der zweiten Vertiefung 13 (vergleiche Fig. 4d).The liquid F is then stopped and deflected again at the first region 14 of the second depression 13 and a complete filling of the cavity 10 takes place, first leaving the second depression 13 (see FIG Fig. 4d ).

Sobald die Flüssigkeit F auch den zweiten Bereich 15 der zweiten Vertiefung 13 erreicht, wird auch über den zweiten Bereich 15 (rampenartiger Übergang R) die zweite Vertiefung 13 befüllt. Die Flüssigkeitsfront der Flüssigkeit F reicht nun bis zum ersten Bereich 14 der letzten Vertiefung 13 (Fig. 4e).As soon as the liquid F also reaches the second region 15 of the second depression 13, the second depression 13 is also filled via the second region 15 (ramp-like transition R). The liquid front of the liquid F now extends to the first region 14 of the last depression 13 (FIG. Fig. 4e ).

An dem ersten Bereich 14 wird die Flüssigkeit F wiederum zunächst abgestoppt und umgelenkt, bis sie anschließend zum zweiten Bereich 15 der letzten Vertiefung 13 gelangt und von dort ausgehend, diese befüllt.At the first region 14, the liquid F is again initially stopped and deflected until it subsequently reaches the second region 15 of the last depression 13 and, starting there, fills it.

Der Befüllvorgang reicht bis zum Kapillarstopp 24 im Bereich der Auslassöffnung 12 und geht im Wesentlichen ohne Lufteinschlüsse (Luftblasen) vonstatten (vergleiche Fig. 4f).The filling process extends to the capillary stop 24 in the region of the outlet opening 12 and essentially takes place without air inclusions (air bubbles) (cf. Fig. 4f ).

Durch die wechselseitige Anordnung der Vertiefungen 13 erfolgt eine im Wesentlichen mäanderförmige Steuerung der Flüssigkeit F durch die Kavität 10.Due to the mutual arrangement of the depressions 13, a meandering control of the liquid F takes place through the cavity 10.

Es ist an den Fig. 1 bis 4 ersichtlich, dass sich der zweite Bereich 15 nicht über die gesamte Länge L einer Vertiefung 13 erstreckt, sondern nur einen Teil dieser Länge ausmacht. Ferner nimmt der Bereich 15 auch eine Breite ein, welche deutlich geringer ist als die Breite B der gesamten Vertiefung 13. Insbesondere ist die Breite des Bereichs 15 bevorzugt kleiner als die Hälfte der Breite B der Vertiefung 13. Hierdurch ist es möglich, bei ausreichender Befüllfunktion des Bereichs 15 das Volumen der Vertiefung 13 gut auszunutzen.It is at the Fig. 1 to 4 it can be seen that the second region 15 does not extend over the entire length L of a depression 13, but only constitutes part of this length. Furthermore, the region 15 also assumes a width which is significantly smaller than the width B of the entire depression 13. In particular, the width of the region 15 is preferably less than half the width B of the depression 13. This makes it possible, with sufficient filling function Area 15 well exploit the volume of the recess 13.

Abweichend vom gezeigten Ausführungsbeispiel, bei dem die Bereiche 15 an der der einströmenden Flüssigkeit F abgewandten Längsseiten der Vertiefungen 13 positioniert sind, ist jedoch auch denkbar, derartige Bereiche zumindest teilweise an den Querseiten der Vertiefungen 13 vorzusehen (vergleiche gestrichelt angedeutet 15' in Fig. 1). Es ist auch denkbar, mehrere derartiger Bereiche an einer Vertiefung vorzusehen (vergleiche auch Ziffern 43 in Fig. 6).Notwithstanding the embodiment shown, in which the regions 15 are positioned on the longitudinal sides of the depressions 13 facing away from the inflowing liquid F, it is also conceivable to provide such regions at least partially on the transverse sides of the depressions 13 (cf. dashed lines 15 'in FIG Fig. 1 ). It is also conceivable to provide several such areas at one depression (see also paragraphs 43 in FIG Fig. 6 ).

In Fig. 5 ist nun ein zweites Ausführungsbeispiel 3 für eine mikrofluidische Struktur eines mikrofluidischen Bauteils 4 dargestellt. Im Unterschied zu der mikrofluidischen Struktur 1 gemäß den Fig. 1 bis 4, umfasst die mikrofluidische Struktur 3 eine Kavität 30, mit geringfügig anders ausgebildeten Vertiefungen 31. Jede Vertiefung 31 ist wiederum mit einem ersten Bereich 32 in Form einer Stoppkante (Kapillarstopp) ausgestattet, welche der Strömungsrichtung S einer einströmenden Flüssigkeit zugewandt ist. Auf der einer einströmenden Flüssigkeit abgewandten Längsseite der Vertiefung 31 ist wiederum ein zweiter Bereich 33 in Form einer Rampe vorgesehen, wobei sich der Bereich 33 über eine gesamte Länge L der Vertiefung 31 erstreckt. Die Breite des Bereichs 33 beträgt wiederum in etwa nur maximal die Hälfte einer Breite B der Vertiefung 31. Auch bei diesem Ausführungsbeispiel wird durch die wechselseitige Anordnung der Vertiefungen 31 ein mäanderförmiger Fluss einer einströmenden Flüssigkeit nachgebildet.In Fig. 5 Now, a second embodiment 3 for a microfluidic structure of a microfluidic component 4 is shown. In contrast to the microfluidic structure 1 according to the Fig. 1 to 4 , The microfluidic structure 3 comprises a cavity 30, with Each recess 31 is in turn equipped with a first region 32 in the form of a stop edge (capillary stop), which faces the flow direction S of an inflowing liquid. A second region 33 in the form of a ramp is again provided on the longitudinal side of the depression 31 facing away from an inflowing liquid, the region 33 extending over an entire length L of the depression 31. The width of the region 33 is in turn only about a maximum of half a width B of the recess 31. Also in this embodiment, a meandering flow of an incoming liquid is modeled by the mutual arrangement of the recesses 31.

Bezugnehmend auf die Fig. 6 wird nunmehr ein drittes Ausführungsbeispiel der Erfindung beschrieben. Dort ist eine mikrofluidische Struktur 5 auf einem mikrofluidischen Bauteil 6 ersichtlich, die (im Unterschied zu den vorausgehenden Ausführungsbeispielen) eine in Einströmrichtung S einer Flüssigkeit gesehen gekrümmte Kavität 40 aufweist.Referring to the Fig. 6 Now, a third embodiment of the invention will be described. There, a microfluidic structure 5 can be seen on a microfluidic component 6, which (in contrast to the preceding exemplary embodiments) has a curved cavity 40 viewed in the inflow direction S of a liquid.

In der Kavität 40 sind sieben Vertiefungen 41 vorgesehen, wobei jede Vertiefung 41 eine Längserstreckung L aufweist und über diese Länge L gekrümmt verläuft. Des Weiteren ist ersichtlich, dass jede Vertiefung 41 wiederum mit einem ersten Bereich 42 in Form einer Stoppkante (vergleichbar mit Bereich 14 des ersten Ausführungsbeispiels) versehen ist und an der einer einströmenden Flüssigkeit abgewandten Längsseite mit jeweils zwei Bereichen 43 in Form einer Rampe (vergleichbar mit dem Bereich 15 im ersten Ausführungsbeispiel).In the cavity 40 seven recesses 41 are provided, each recess 41 has a longitudinal extent L and extends over this length L curved. Furthermore, it can be seen that each depression 41 is in turn provided with a first region 42 in the form of a stop edge (comparable to region 14 of the first embodiment) and on the longitudinal side facing away from an inflowing liquid, each having two regions 43 in the form of a ramp (comparable to FIG the area 15 in the first embodiment).

Eine einströmende Flüssigkeit wird nun zunächst an den Bereichen 42 gestoppt und umgelenkt werden und nach Erreichen der Bereiche 43 mit dem Befüllvorgang einer jeden Vertiefung 41 beginnen, bis die Flüssigkeit komplett bis zur nächsten Vertiefung 41 weiterläuft. Es ist somit also auch eine schrittweise Befüllung der Kavität 40 ohne nennenswerte Lufteinschlüsse möglich.An inflowing liquid will now be stopped and deflected first at the regions 42 and, after reaching the regions 43, begin the filling process of each depression 41 until the liquid continues to run completely up to the next depression 41. Thus, it is thus also a gradual filling of the cavity 40 without appreciable air pockets possible.

Schließlich soll bezugnehmend auf die Fig. 7 und 8 nochmals kurz auf den Stand der Technik eingegangen werden.Finally, referring to the FIGS. 7 and 8 briefly again on the state of the art will be discussed.

In diesen Figuren ist eine mikrofluidische Struktur 7 eines mikrofluidischen Bauteils 8 ersichtlich, bei der innerhalb einer Kavität 50 im Unterschied zu den Ausführungsbeispielen gemäß der Erfindung keine Vertiefungen, sondern Stege 51 angebracht sind. Die Stege 51 sind, ausgehend von Längsseiten der Kavität 50, wechselseitig angeordnet und sollen einen mäanderförmigen Durchfluss einer einströmenden Flüssigkeit (nicht dargestellt) und damit eine weitgehend luftblasenfreie Befüllung der Kavität 50 ermöglichen. Die Stege 51 reichen von einem Boden 53 der Kavität 50 ausgehend bis an einen die Kavität 50 nach oben hin abschließenden Deckel 52 heran.In these figures, a microfluidic structure 7 of a microfluidic component 8 can be seen, in which, within a cavity 50 unlike the embodiments according to the invention, no depressions, but webs 51 are attached. The webs 51, starting from longitudinal sides of the cavity 50, are mutually arranged and intended to meander a flow of an inflowing liquid (not shown) and thus enable a largely bubble-free filling of the cavity 50. The webs 51 extend from a bottom 53 of the cavity 50 starting up to a cavity 50 upwards final cover 52 zoom.

Es ist ohne weiteres ersichtlich, dass durch die eingebrachten Stege 51 das Nutzvolumen der Kavität 50 deutlich eingeschränkt wird.It is readily apparent that the useful volume of the cavity 50 is significantly limited by the introduced webs 51.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
mikrofluidische Strukturmicrofluidic structure
22
mikrofluidisches Bauteilmicrofluidic component
33
mikrofluidische Strukturmicrofluidic structure
44
mikrofluidisches Bauteilmicrofluidic component
55
mikrofluidische Strukturmicrofluidic structure
66
mikrofluidisches Bauteilmicrofluidic component
77
mikrofluidische Strukturmicrofluidic structure
88th
mikrofluidisches Bauteilmicrofluidic component
1010
Kavitätcavity
1111
Einlassöffnunginlet port
1212
Auslassöffnungoutlet
1313
Vertiefungdeepening
1414
erster Bereich der Vertiefung (Stoppkante)first area of the depression (stop edge)
1515
zweiter Bereich der Vertiefung (Rampe)second area of the depression (ramp)
15'15 '
alternativ ausgebildeter zweiter Bereichalternatively trained second area
15"15 "
alternativ ausgebildeter zweiter Bereich (konkave Rundung)alternatively formed second area (concave rounding)
15"'15 " '
alternativ ausgebildeter zweiter Bereich (konvexe Rundung)alternatively formed second area (convex rounding)
1616
Befüllkanalfilling channel
1717
Entlüftungskanalvent channel
1818
weiterer Mikrokanalanother microchannel
1919
Boden der KavitätBottom of the cavity
2020
Boden der VertiefungBottom of the depression
2121
Deckelcover
2222
Begrenzungskante der VertiefungBounding edge of the depression
2323
Begrenzungskante der VertiefungBounding edge of the depression
2424
Kapillarstopcapillary
3030
Kavitätcavity
3131
Vertiefungdeepening
3232
erster Bereich der Vertiefung (Stoppkante)first area of the depression (stop edge)
3333
zweiter Bereich der Vertiefung (Rampe)second area of the depression (ramp)
4040
Kavitätcavity
4141
Vertiefungdeepening
4242
erster Bereich der Vertiefung (Stoppkante)first area of the depression (stop edge)
4343
zweiter Bereich der Vertiefung (Rampe)second area of the depression (ramp)
5050
Kavitätcavity
5151
Stegweb
5252
Deckelcover
5353
Boden der VertiefungBottom of the depression
αα
Winkelangle
ββ
Winkelangle
BB
Breite der VertiefungWidth of the recess
FF
Flüssigkeitliquid
LL
Längserstreckung der VertiefungLongitudinal extension of the depression
RR
rampenartiger Übergangsbereichramp-like transition area
SS
Strömungsrichtung einer einströmenden FlüssigkeitFlow direction of an inflowing liquid

Claims (6)

  1. Microfluidic structure (1, 3, 5) comprising at least one cavity (10, 30, 40) with at least one inlet opening (11) and at least one outlet opening (12), wherein the cavity (10, 30, 40) is fillable with a fluid (F) or a fluid can flow through said cavity and an element (13, 31, 41) is provided inside the cavity (10, 30, 40) which at least temporarily stops and at least in sections deflects the fluid (F) upon its flow (S) inside the cavity (10, 30, 40), characterised in that the at least one element (13, 31, 41) is formed by an indentation (13, 31, 41) introduced into a wall (19) of the cavity (10, 30, 40), the indentation (13, 31, 41) having at least one first region (14, 32, 42) which is formed by a boundary edge (22) of the indentation (13), at which the converging walls forming the boundary edge (22) form an angle (β) which is smaller than 120°, particularly preferably approximately 90°, and the first region (14, 32, 42) forms a capillary stop at which the fluid (F) is at least temporarily stopped and is deflected at least in sections and the at least one element (13, 31, 41) has at least one second region (15, 15', 15", 15"', 33, 43) which is formed by a ramp-like transition (R) which, proceeding from a ground level (19) of the cavity (10), merges up to a ground level (20) of the indentation (13), at which the fluid (F) runs into the indentation (13, 31, 41).
  2. Microfluidic structure (1, 3, 5) according to claim 1, characterised in that the ramp-like transition (R), proceeding from a boundary edge (23) of the indentation (13), forms an angle (α) of approximately 10° to 60°, particularly preferably approximately 45°, with the ground level (19) of the cavity (10).
  3. Microfluidic structure (1, 3, 5) according to any one of the preceding claims 1 or 2, characterised in that the at least one indentation (13, 31, 41) is formed longitudinally, wherein the at least one first region (14, 32, 42) is facing an inflowing fluid (F) and the at least one second region (15, 33, 43) is facing away from an inflowing fluid (F).
  4. Microfluidic structure (1, 3) according to any one of the preceding claims 1 to 3, characterised in that a plurality of indentations (13, 31, 41) are provided which, proceeding from side walls of the cavity (10, 30, 40), are arranged alternatingly.
  5. Microfluidic structure (1, 5) according to any one of the preceding claims 1 to 4, characterised in that the at least one first region (14, 32, 42) extends approximately over the entire length (L) of a longitudinal side of the at least one indentation (13, 31, 41) and the at least one second region (15, 33, 43) only extends over a part of the length (L) of another longitudinal side.
  6. Microfluidic platform (2, 4, 6) with at least one microfluidic structure (1, 3, 5) according to at least one of claims 1 to 5.
EP12732642.9A 2011-07-05 2012-07-02 Microfluid structure with cavities Active EP2729251B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12732642.9A EP2729251B1 (en) 2011-07-05 2012-07-02 Microfluid structure with cavities

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11172775 2011-07-05
EP12732642.9A EP2729251B1 (en) 2011-07-05 2012-07-02 Microfluid structure with cavities
PCT/EP2012/062863 WO2013004673A1 (en) 2011-07-05 2012-07-02 Microfluidic structure having recesses

Publications (2)

Publication Number Publication Date
EP2729251A1 EP2729251A1 (en) 2014-05-14
EP2729251B1 true EP2729251B1 (en) 2018-11-14

Family

ID=44773214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12732642.9A Active EP2729251B1 (en) 2011-07-05 2012-07-02 Microfluid structure with cavities

Country Status (4)

Country Link
US (2) US20140227148A1 (en)
EP (1) EP2729251B1 (en)
JP (1) JP6098020B2 (en)
WO (1) WO2013004673A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6240785B2 (en) * 2013-12-20 2017-11-29 スリーエム イノベイティブ プロパティズ カンパニー System and method for sample concentration and detection
CN107073760B (en) * 2014-05-30 2020-09-29 专一展览公司 Thermosetting in-mold finishing film
TWI499637B (en) * 2014-06-20 2015-09-11 Ind Tech Res Inst Foam body and light emitting device with thereof
GB201617869D0 (en) 2016-10-21 2016-12-07 Blacktrace Holdings Limited A microfluidic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271119A (en) * 1979-07-23 1981-06-02 Eastman Kodak Company Capillary transport device having connected transport zones
US4618476A (en) 1984-02-10 1986-10-21 Eastman Kodak Company Capillary transport device having speed and meniscus control means
DE10313201A1 (en) * 2003-03-21 2004-10-07 Steag Microparts Gmbh Microstructured separator and microfluidic process for separating liquid components from a liquid containing particles
DE10360220A1 (en) 2003-12-20 2005-07-21 Steag Microparts Gmbh Fine structure arrangement in fluid ejection system, has predetermined region in transitional zone between inlet and discharge ports, at which capillary force is maximum
DE102004027422A1 (en) * 2004-06-04 2005-12-29 Boehringer Ingelheim Microparts Gmbh Device for receiving blood and separating blood components
EP1616619A1 (en) * 2004-07-17 2006-01-18 Tecan Trading AG Device and method to influence air bubbles in a hybridizaion chamber
ATE503578T1 (en) * 2005-01-27 2011-04-15 Boehringer Ingelheim Micropart USE OF A DEVICE FOR EXAMINING SAMPLE FLUID
DE102005017653A1 (en) * 2005-04-15 2006-10-19 Boehringer Ingelheim Microparts Gmbh Device and method to control liquid flow has two sections of channel whereby liquid flows from one to the other and can be held at first section using capillary stop and said stop can be bypassed if wished by moving sections
JP4685611B2 (en) * 2005-12-02 2011-05-18 株式会社エンプラス Microfluidic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140227148A1 (en) 2014-08-14
WO2013004673A1 (en) 2013-01-10
US9409171B2 (en) 2016-08-09
JP6098020B2 (en) 2017-03-22
JP2014521056A (en) 2014-08-25
US20150251182A1 (en) 2015-09-10
EP2729251A1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
EP1440732B1 (en) Microfluidic configuration for dosing liquids
EP1441131B1 (en) Use of a microfluidic switch to temporarily stop a flow of liquid
EP2632591B1 (en) Microfluidic element for analysis of a sample liquid
EP3052233B1 (en) Device and method for aliquoting a liquid
DE102012202775B4 (en) FLUIDIKMODUL, DEVICE AND METHOD FOR PUMPING A LIQUID
EP2308589B1 (en) Microfluid structure
WO1999046045A1 (en) Sample support
EP2679307A1 (en) Microstorage device, in particular for integration into a microfluid flow cell
EP2576065A1 (en) Flow cell with cavity and diaphragm
EP2729251B1 (en) Microfluid structure with cavities
DE102011078770B4 (en) Microfluidic device, microfluidic system and method of transporting fluids
EP2308597B1 (en) Micro-fluidic structure and method for measuring and/or positioning a liquid volume
EP2406495B1 (en) Pump having a filter arrangement
EP2552586B1 (en) Component of a biosensor and method for producing same
WO2010040748A1 (en) Device and method for handling liquids
EP2624954B1 (en) Method for washing a microfluid cavity
EP2522427B1 (en) Micro-fluid device and method for manufacturing the same
EP2754495A2 (en) Microfluidic channel system with bubble capture device and method for the removal of gas bubbles
WO2012041479A1 (en) Microfluidic chip comprising several cylinder-piston arrangements
EP2688670B1 (en) Fluidic system for bubbble-free filling of a microfluidic filter chamber
DE102009045403B4 (en) Device for separating gas and liquid and uses thereof
DE102008004139B3 (en) Liquid moving device for moving liquid back and forth over sensor surface of analytic sensor utilized in bio analytics field, has channel designed in such manner that counter pressure difference opposite to pressure difference is produced

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180803

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1064183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013820

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190215

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013820

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1064183

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120702

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220720

Year of fee payment: 11

Ref country code: DE

Payment date: 20220620

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220720

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012013820

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230702