EP2624954B1 - Method for washing a microfluid cavity - Google Patents

Method for washing a microfluid cavity Download PDF

Info

Publication number
EP2624954B1
EP2624954B1 EP11764212.4A EP11764212A EP2624954B1 EP 2624954 B1 EP2624954 B1 EP 2624954B1 EP 11764212 A EP11764212 A EP 11764212A EP 2624954 B1 EP2624954 B1 EP 2624954B1
Authority
EP
European Patent Office
Prior art keywords
cavity
liquid
gas
chamber
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11764212.4A
Other languages
German (de)
French (fr)
Other versions
EP2624954A1 (en
Inventor
Wolfgang Stoeters
Ying Yu
Silke Knoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Microparts GmbH
Original Assignee
Boehringer Ingelheim Microparts GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Microparts GmbH filed Critical Boehringer Ingelheim Microparts GmbH
Priority to EP11764212.4A priority Critical patent/EP2624954B1/en
Publication of EP2624954A1 publication Critical patent/EP2624954A1/en
Application granted granted Critical
Publication of EP2624954B1 publication Critical patent/EP2624954B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L13/00Cleaning or rinsing apparatus
    • B01L13/02Cleaning or rinsing apparatus for receptacle or instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/141Preventing contamination, tampering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling
    • Y10T137/0419Fluid cleaning or flushing
    • Y10T137/0424Liquid cleaning or flushing

Definitions

  • the invention relates to a microfluidic component: according to claim 1 for washing a cavity in the microfluidic component.
  • a basic task of this technology is the detection of biological molecules such as DNA (deoxyribonucleic acid) or RNA (ribonucleic acid), proteins, polypeptides, etc.
  • biological molecules such as DNA (deoxyribonucleic acid) or RNA (ribonucleic acid), proteins, polypeptides, etc.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • proteins proteins
  • polypeptides etc.
  • molecules in which genetic information is encoded are of particular interest. Their detection, for example in a blood sample from a patient, enables pathogens to be detected, which makes it easier for the doctor to make a diagnosis.
  • microfluidic components or microfluidic cartridges are increasingly used.
  • Microfluidic cartridges are used in a variety of ways in the form of single-use tests, with so-called lateral flow cartridges being used as a rule, the components of which have length and width measurements that are a few millimeters to centimeters.
  • an analysis fluid to be tested e.g. blood, urine or saliva
  • a cartridge equipped with a biosensor The sample is added to the cartridge before or after the cartridge is inserted into an analysis device.
  • the analyte is added in an opening in the cartridge, with the liquid being fed through microchannels to corresponding sample preparation chambers and sample examination chambers.
  • micro is intended to imply that the channels and / or cavities (chambers) have a dimension on the micrometer scale at least in one geometrical direction of extent, ie. H. the dimensions in at least one dimension are less than one millimeter.
  • microfluidic is understood to mean that a pressure-induced and / or capillary liquid flow occurs through and in the microchannels and / or microcavities.
  • microfluidic component is understood to mean a component which has at least such microchannels or microcavities for the storage and transport of liquids or fluids and gases.
  • microfluidic cartridge is understood to mean a device (possibly consisting of several microfluidic components) for the analysis of liquids.
  • microfluidic cartridges The detection of low concentrations of biological and inorganic substances in biological samples is often difficult.
  • the tests (assays) for this type of detection in microfluidic cartridges are usually associated with several process steps, which include the binding of a primary antibody, multiple washing steps, the binding of a second antibody, further washing steps, and (depending on the type of detection system ) If necessary, also include enzymatic and washing measures.
  • microfluidic cartridges The number of steps that are usually required when using such microfluidic cartridges to obtain a desired, specific signal are time-consuming and labor-intensive.
  • the need for modern microfluidic cartridges aims to shorten the measurement time between the application of the sample liquid and ultimately the appearance of the measured value. This time is lengthened by frequent washing steps, which, however, are mostly desirable and necessary in order to increase the sensitivity and reduce background values.
  • a liquid previously introduced into the chamber for example reaction liquid
  • a washing liquid introduced into the chamber immediately thereafter.
  • a quantity of washing liquid is passed through the chamber, the liquid to be washed from the chamber mixing with the washing liquid (diffusion) and being removed from the chamber with the washing liquid.
  • washing process in a microfluidic system usually takes place in the form of a laminar flow with no significant turbulent component, the liquid to be washed away is not sufficiently captured by the washing liquid, especially in the corner areas of chambers. This leaves residues in the chamber. This usually requires a multiple repetition of washing steps, which, however, is counterproductive in terms of achieving the shortest possible measurement time. This also drives demand Washing liquid and thus also the space required for reservoir and waste increase, which is undesirable in a volume-minimized microfluidic system.
  • the US 2008/0069739 A1 describes a software control for chemical process systems in which internal elements are automatically cleaned with solvents or drying gases, which means that devices can be reused.
  • One focus here is on flexible, re-configurable, reusable multi-purpose "lab-on-a-chip" systems that can be reconfigured using software.
  • Schematically controllable valve subsystems are discussed, by means of which reactants can be selected and directed to controlled reaction chambers, whereby the reaction chambers and transport lines can be cleaned of solvents and gases by pumping through them. For example, valve complexes with several inlets (e.g. for two sample liquids / reactants, liquid solvent and gas) and one outlet are presented.
  • valves in such a complex are, for example, two-way valves and are formed by microvalve structures.
  • selected reactants, cleaning solvents and gas for drying are released from the outlet of the valve complex.
  • gas can be used both for the final drying and for a "clearing" between the passage of a reactant and a flushing solvent.
  • the US 2007/0207063 A1 shows a device for controlling a fluid sequence running into (and out of) an integrated work area.
  • the device comprises a base plate on which a first fluid channel with an inlet and an outlet is arranged.
  • a plurality of valve elements are arranged in the channel in order to divide it into several segments.
  • the segments for their part are connected to injection tanks and the valve elements to venting tanks, these tanks being "open-type" in contrast to the duct and valves, ie having a side that is open at the top.
  • the individual working fluids are each injected into an inlet tank connected to the inlet and the injection tanks and flow by capillary force to the valve elements, which form a pressure barrier.
  • the injection tanks and the ventilation tanks are closed and the pressure barriers of the valves are overcome by pressure at the inlet tank or by negative pressure at the outlet, excess air trapped in the duct is pressed into the ventilation tanks and the flow of the fluid sequence in the duct into or through the work area is started.
  • the US 2004/0063217 A1 shows a fluidic miniature cassette made of plastic, which contains a reaction chamber with a multiplicity of immobilized species, a capillary channel and a pump structure with an external actuator.
  • Various reservoirs one for washing liquid, one for rinsing air, one for solution and one for an antibody conjugate
  • the pump structure so that the contents can be pumped from the connected reservoir into the reaction chamber.
  • the US 2008/038839 A1 shows a method of sequentially feeding liquid or gaseous fluids (reagents, solvents, reactants) to a chemical, biological or biochemical process or a reaction site (specific example: immunoassay method).
  • Rinsing liquids can be used intermittently to remove unwanted reactant residues or to prepare the reaction site.
  • Different fluids are stored in the same vessel, a third fluid separating a first from a second fluid.
  • a tube (or tube) is given, which sequentially contains a reagent, an air cushion, a rinsing liquid, a further air cushion and a second rinsing liquid, the respective fluids regionally depending on the size and material of the tube or are arranged one behind the other like a plug and the air cushions prevent the liquids from contacting one another.
  • a vessel with plug-like fluid sections is fluidically connected to a reaction site (for example a microfluidic immunoassay) and the fluids are pressed to the reaction site by means of a pump, syringe or other pressure source or drawn to the reaction site by means of negative pressure.
  • the invention is based on the object of providing a microfluidic component for washing a cavity in the microfluidic component.
  • a gas is supplied to the cavity before the washing liquid is supplied.
  • This “prewashing” makes it possible to significantly reduce the need for washing liquid to be subsequently supplied, which is necessary in order to bring about a desired reduction in the residual concentration of the liquid to be washed out in the cavity.
  • the need for washing liquid can therefore be reduced and, under certain circumstances, a reduction in the washing time or washing steps is also possible.
  • the gas is passed through the cavity in the form of a bubble, that is to say with a defined volume.
  • This enables the method to be implemented in a microfluidic component or a microfluidic cartridge even without an external gas connection, so that, for example, the gas bubble with a defined volume can be provided in a cavity of the microfluidic component itself.
  • the gas bubble has a volume which is smaller than the volume of the cavity.
  • the volume should still be large enough for efficient washing.
  • the gas bubble spreads continuously when it is introduced into the cavity to be washed by means of excess pressure and immediately becomes so wide that it touches the side walls of the cavity. It can thus displace a large part of the liquid to be washed out, located in the cavity, through an outlet opening to be provided in the cavity. Subsequent washing liquid in turn displaces the gas bubble in the direction of the outlet opening.
  • the gas bubble works like a barrier layer between the first liquid to be washed out and the subsequent washing liquid. Finally, the gas bubble is pressed completely out of the cavity by the washing liquid.
  • the washing liquid can easily absorb any remaining, small residual portion of liquid to be washed out by diffusion and carry it out of the cavity as it is transported further. Under certain circumstances, a single washing step is sufficient to achieve a desired residual concentration.
  • the invention would also like to provide a microfluidic component for carrying out the washing process.
  • the invention is based on a microfluidic component containing at least one first cavity which is filled with a liquid for washing at least one second cavity and means for establishing a fluidic connection between the at least one first and the at least one second cavity.
  • At least one further cavity which is filled with a gas, is now arranged between the first and the second cavity, viewed in the direction of flow of the liquid.
  • the washing liquid flows in the direction of the cavity containing the gas and, if necessary, only pushes the gas bubble into the cavity to be washed after releasing a corresponding fluidic connection (for example by means of corresponding valves) .
  • the at least one further cavity filled with gas has a volume which is smaller than the volume of the at least one second cavity to be washed. This is because it has been shown that a significantly smaller gas volume than the volume of the cavity to be washed is already sufficient to achieve the desired effect.
  • At least one valve is connected upstream and at least one valve is connected downstream of the gas-filled cavity. In this way, undesired gas or liquid flows can be excluded. It is very advantageous if the valves can be controlled. As a result, the flow of the liquid or gas can be controlled even better, which among other things can also reduce the risk of undesired bubble or foam formation. Control can preferably be carried out by means of electrical signals or pulses.
  • the cavity to be washed in such a way that it has a first section in the direction of flow in which its cross section continuously expands and a second section in which the cross section of the cavity tapers again continuously.
  • a section with a constant cross section is then expediently arranged between these sections with a changing cross section.
  • the first section should expediently be arranged in the area of the inlet opening and the second section in the area of the outlet opening, viewed in the direction of flow.
  • a controllable valve can expediently be provided for releasing or interrupting a fluidic connection.
  • Air is expediently used as the gas here, too, and the ambient air can be used as a further gas reservoir.
  • a section of a microfluidic component 1 can be seen.
  • the microfluidic functional group 90 comprises a first, preferably circular, chamber 10 filled with washing liquid F2.
  • a second, approximately rectangular chamber 20 can be seen, which is filled with a liquid F1.
  • the liquid F1 has triggered a specific detection reaction in the chamber 20. Some of the biomolecules contained in F1 are bound in the chamber 20. The remainder of F1 is now to be washed out of the chamber 20 with the washing liquid F2.
  • PCR polymerase chain reaction
  • air instead of air, other gases, for example nitrogen or the like, can of course also be used.
  • the chambers 10, 20 and 30 are fluidly connected to one another by means of microchannels 40, with a preferably electrically controllable valve 50a or 50b being provided between the chambers 10 and 30 or 30 and 20, with which the fluidic connection can be released or interrupted .
  • microchannel 80 is provided with which the fluidic connection from the chamber 20 to other, not shown microfluidic functional elements, e.g. a waste area can be produced.
  • the air-filled chamber 30 is connected to a microchannel 60.
  • the microchannel 60 establishes a fluid connection between the chamber 30 and a further gas reservoir.
  • the fluidic connection can be interrupted or released by means of a preferably electrically controllable valve 70.
  • the mentioned gas reservoir itself can be realized by one or more further cavities or chambers (not shown).
  • a film, preferably bonded to the component 1, for covering or sealing the aforementioned chambers and channels is not shown or numbered.
  • the component 1 itself is a plastic plate, which is preferably manufactured by injection molding.
  • the chamber 10 in the application example is now subjected to a pressure of approximately 0.4 bar to 0.8 bar. This is preferably done by means of suitable actuators of a microfluidic cartridge into which the component 1 is installed (not shown).
  • the valves 50a and 50b are activated, which thus release the fluidic connection between the chambers 10, 20 and 30.
  • the washing liquid F2 is now pressed in the flow direction S into the chamber 30 and also pushes the air L located in the chamber 30 in front of it in the flow direction S, in the direction of the chamber 20 first the air L is pressed in in the form of a defined air bubble.
  • a large part of the liquid F1 located in the chamber 20 is already displaced by the air L, so that the washing liquid F2 following the air bubble L only contains the remaining liquid F1 must remove from the chamber 20.
  • valve 50a is closed again for this purpose.
  • the valve 70 is then opened and a fluidic connection between the chamber 30 and the air reservoir mentioned is released.
  • the chamber 30 can be filled with air L again, for example by a pump.
  • valve 70 is closed, valve 50a is opened again and pressure is built up on chamber 10, as already described. If necessary, the size and shape of the chamber 10 can be varied as required.
  • Several chambers 10 are also conceivable, each of which is assigned to a washing step.
  • FIG. 2 Another embodiment 1 'of a microfluidic component according to the invention is now shown in principle.
  • the microfluidic component 1 ′ has a plurality of microfluidic functional groups 90 (as in FIG Fig. 1 described).
  • several further microchannels 80 are also provided. For example, they can be connected to a shared waste area.
  • This embodiment 1 'can serve, for example, to combine the reaction and washing steps to be carried out in the functional groups 90, to cascade them or to run several assays at the same time.
  • FIG. 3 two possible geometries of the chamber 20 to be washed are shown, although other geometries are of course also conceivable.
  • the chamber geometry according to Figure 3b represents according to the geometry Fig. 3a represents an improvement in terms of washing efficiency and can expediently be combined with the method according to the invention.
  • FIG. 3a it can be seen that the chamber 20 as in FIG Fig. 1 shown, is formed. It thus has an approximately rectangular plan in plan view, the inlet (microchannel 40) and the outlet (microchannel 80) also being recognizable. The chamber 20 is already penetrated by washing liquid F2 in the flow direction S here.
  • the diagonal arrangement of the inlet and outlet (40 and 80) in the direction of flow S can improve the washing efficiency somewhat, but significant residues of liquid F1 are unavoidable in the corner areas not assigned to the inlet or outlet, since this method of washing diagonally leaves out the opposite corners.
  • a chamber 20 ′ can be seen therein, which has an inlet opening 21 and an outlet opening 22 in the direction of flow S.
  • the chamber geometry is thereby optimized with regard to the flow course of the washing liquid F2. Nevertheless, certain residues of liquid F1 to be washed away in the corner areas are unavoidable here as well.
  • FIG. 4 now shows in detail how the process leads to a significant improvement in washing efficiency:
  • the chamber 20 ' is initially filled with the liquid F1 to be washed away ( Figure 4a ).
  • the air bubble L previously driven by the washing liquid F2 is first pressed into the chamber 20 ', specifically in the area of the inlet opening 21 ( Figure 4b ), until the entire air bubble L has been pushed into the chamber 20 '( Figure 4c ). It can be seen that the air bubble L spreads outward very quickly in the direction of the side walls of the chamber 20 ′ and forms contact areas 26 with them.
  • the washing liquid F2 following the air bubble L penetrates into the chamber 20 '( Figure 4d ). Due to the air bubble L or the contact areas 26, there is on the one hand a very good displacement of the liquid F1 in the direction of the outlet opening 22 and, on the other hand, a very good separation between the liquid F1 and the subsequent liquid F2.
  • the size of the air bubble L in no way has to correspond to the volume of the chamber 20 '. It should only be ensured that the defined amount of air L in the chamber 30 is so large that an air bubble L can be generated which is so large that they form the mentioned contact areas 26 with the chamber 20 'and thus quasi as a barrier layer between the liquid F1 and the subsequent liquid F2 can serve.
  • good results could be achieved with a chamber geometry of the chamber 20 'of approximately 32 mm 2 in plan, combined with a height of a few hundred ⁇ m at volume flows of approximately 4 ⁇ l / sec. Volume flows from 2 ⁇ l / sec to around 10 ⁇ l / sec could be achieved.
  • a pressure of approximately 0.4 bar has proven to be extremely useful as the initial pressure for triggering the washing process, although significantly higher pressures of up to approximately 0.8 bar have also been used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

Die Erfindung betrifft ein mikrofluidisches Bauteil: gemäß Anspruch 1 zum Waschen einer Kavität im mikrofluidischen Bauteil.The invention relates to a microfluidic component: according to claim 1 for washing a cavity in the microfluidic component.

In den letzten Jahren hat die Bio- und Gentechnologie enorm an Bedeutung gewonnen. Eine Grundaufgabe dieser Technologie ist der Nachweis von biologischen Molekülen wie DNA (Desoxyribonukleinsäure) oder RNA (Ribonukleinsäure), Proteinen, Polypeptiden, etc. Dabei sind für viele medizinische Anwendungen insbesondere Moleküle, in denen Erbgutinformationen codiert sind, von besonderem Interesse. Durch ihren Nachweis, beispielsweise in einer Blutprobe eines Patienten, können unter anderem Krankheitserreger nachgewiesen werden, wodurch dem Arzt die Stellung einer Diagnose erleichtert wird.In recent years, biotechnology and genetic engineering have grown in importance. A basic task of this technology is the detection of biological molecules such as DNA (deoxyribonucleic acid) or RNA (ribonucleic acid), proteins, polypeptides, etc. For many medical applications, molecules in which genetic information is encoded are of particular interest. Their detection, for example in a blood sample from a patient, enables pathogens to be detected, which makes it easier for the doctor to make a diagnosis.

In der Bio- und Gentechnologie finden dabei zunehmend mikrofluidische Bauteile bzw. mikrofluidische Cartridges Anwendung.In biotechnology and genetic engineering, microfluidic components or microfluidic cartridges are increasingly used.

Mikrofluidische Cartridges werden vielfältig in Form von Einmaltests eingesetzt, wobei in der Regel so genannte Lateral Flow Cartridges Verwendung finden, deren Bauteile Längen- und Breitenmessungen aufweisen, die einige Millimeter bis Zentimeter betragen.Microfluidic cartridges are used in a variety of ways in the form of single-use tests, with so-called lateral flow cartridges being used as a rule, the components of which have length and width measurements that are a few millimeters to centimeters.

Zur Durchführung von Tests wird einer mit einem Biosensor versehenen Cartridge eine zu testende Analyseflüssigkeit (z. B. Blut, Urin oder Speichel) zugeführt. Die Probenzugabe zur Cartridge erfolgt vor oder nach dem Einsetzen der Cartridge in ein Analysegerät. Die Zugabe des Analyten erfolgt in einer Öffnung der Cartridge, wobei die Flüssigkeit durch Mikrokanäle entsprechenden Probeaufbereitungskammern und Probeuntersuchungskammern zugeführt wird.To carry out tests, an analysis fluid to be tested (e.g. blood, urine or saliva) is fed to a cartridge equipped with a biosensor. The sample is added to the cartridge before or after the cartridge is inserted into an analysis device. The analyte is added in an opening in the cartridge, with the liquid being fed through microchannels to corresponding sample preparation chambers and sample examination chambers.

Der Begriff "Mikro" soll implizieren, dass die Kanäle und/oder Kavitäten (Kammern) zumindest in einer geometrischen Ausdehnungsrichtung eine Dimension im Mikrometermaßstab aufweisen, d. h. die Abmaße in mindestens einer Dimension weniger als einen Millimeter betragen.The term "micro" is intended to imply that the channels and / or cavities (chambers) have a dimension on the micrometer scale at least in one geometrical direction of extent, ie. H. the dimensions in at least one dimension are less than one millimeter.

Unter dem Begriff "mikrofluidisch" wird verstanden, dass ein druckinduzierter und/oder kapillarer Flüssigkeitsfluss durch und in den Mikrokanälen und/oder Mikrokavitäten erfolgt.The term “microfluidic” is understood to mean that a pressure-induced and / or capillary liquid flow occurs through and in the microchannels and / or microcavities.

Unter dem Begriff "mikrofluidisches Bauteil" wird ein Bauteil verstanden, welches wenigstens derartige Mikrokanäle bzw. Mikrokavitäten für die Speicherung und den Transport von Flüssigkeiten bzw. Fluiden und Gasen aufweist.The term “microfluidic component” is understood to mean a component which has at least such microchannels or microcavities for the storage and transport of liquids or fluids and gases.

Unter dem Begriff "mikrofluidische Cartridge" wird eine (ggf. aus mehreren mikrofluidischen Bauteilen bestehende) Vorrichtung für die Analyse von Flüssigkeiten verstanden.The term “microfluidic cartridge” is understood to mean a device (possibly consisting of several microfluidic components) for the analysis of liquids.

Der Nachweis von geringen Konzentrationen biologischer und anorganischer Substanzen in biologischen Proben ist häufig schwierig. Die Tests (Assays) für diese Art von Nachweis in mikrofluidischen Cartridges sind in der Regel mit mehreren Verfahrensschritten verbunden, die das Binden eines primären Antikörpers, mehrfache Waschschritte, das Binden eines zweiten Antikörpers, weitere Waschschritte, sowie (in Abhängigkeit von der Art des Nachweissystems) ggf. zusätzlich enzymatische und Waschmaßnahmen einschließen.The detection of low concentrations of biological and inorganic substances in biological samples is often difficult. The tests (assays) for this type of detection in microfluidic cartridges are usually associated with several process steps, which include the binding of a primary antibody, multiple washing steps, the binding of a second antibody, further washing steps, and (depending on the type of detection system ) If necessary, also include enzymatic and washing measures.

Die Anzahl an Schritten, die üblicherweise bei der Verwendung von derartigen mikrofluidischen Cartridges zur Erlangung eines gewünschten, spezifischen Signals benötigt werden, sind zeitaufwändig und arbeitsintensiv. Der Bedarf bei modernen mikrofluidischen Cartridges zielt jedoch auf eine Verkürzung in der Messzeit zwischen Aufgabe der Probenflüssigkeit und letztendlich dem Erscheinen des Messwertes ab. Verlängert wird diese Zeit durch häufig durchzuführende Waschschritte, die jedoch zumeist erwünscht und notwendig sind, um die Sensitivität zu erhöhen und Hintergrundwerte zu verringern.The number of steps that are usually required when using such microfluidic cartridges to obtain a desired, specific signal are time-consuming and labor-intensive. The need for modern microfluidic cartridges, however, aims to shorten the measurement time between the application of the sample liquid and ultimately the appearance of the measured value. This time is lengthened by frequent washing steps, which, however, are mostly desirable and necessary in order to increase the sensitivity and reduce background values.

Bei einem Waschschritt einer Kammer wird üblicherweise eine in die Kammer zuvor eingebrachte Flüssigkeit (beispielsweise Reaktionsflüssigkeit) durch eine direkt darauf folgend in die Kammer eingebrachte Waschflüssigkeit herausgewaschen. Konkret wird eine Menge an Waschflüssigkeit durch die Kammer geleitet, wobei sich die aus der Kammer zu waschende Flüssigkeit mit der Waschflüssigkeit vermischt (Diffusion) und mit der Waschflüssigkeit aus der Kammer entfernt wird.In a washing step of a chamber, a liquid previously introduced into the chamber (for example reaction liquid) is usually washed out by a washing liquid introduced into the chamber immediately thereafter. Specifically, a quantity of washing liquid is passed through the chamber, the liquid to be washed from the chamber mixing with the washing liquid (diffusion) and being removed from the chamber with the washing liquid.

Da der Waschprozess in einem mikrofluidischen System in der Regel in Form einer laminaren Strömung ohne nennenswerten turbulenten Anteil abläuft, wird insbesondere in den Eckbereichen von Kammern die wegzuwaschende Flüssigkeit von der Waschflüssigkeit nicht ausreichend erfasst. Dadurch verbleiben Rückstände in der Kammer. Dies erfordert zumeist eine mehrfache Wiederholung von Waschschritten, was jedoch hinsichtlich der Erzielung einer möglichst kurzen Messzeit kontraproduktiv ist. Zudem treibt dies den Bedarf an Waschflüssigkeit und damit auch den Platzbedarf für Reservoir und Waste in die Höhe, was in einem volumenminimierten mikrofluidischen System unerwünscht ist.Since the washing process in a microfluidic system usually takes place in the form of a laminar flow with no significant turbulent component, the liquid to be washed away is not sufficiently captured by the washing liquid, especially in the corner areas of chambers. This leaves residues in the chamber. This usually requires a multiple repetition of washing steps, which, however, is counterproductive in terms of achieving the shortest possible measurement time. This also drives demand Washing liquid and thus also the space required for reservoir and waste increase, which is undesirable in a volume-minimized microfluidic system.

Aus der DE 697 37 857 T2 beispielsweise geht hervor, dass die Notwendigkeit von mehreren Waschschritten aus dem Stand der Technik bekannt ist und als zeitaufwändig und arbeitsintensiv angesehen wird.From the DE 697 37 857 T2 for example, it can be seen that the need for multiple washing steps is known in the art and is considered to be time consuming and labor intensive.

Auch der DE 601 31 662 T2 ist zu entnehmen, dass Waschschritte zwar häufig notwendig sind, jedoch die Messzeit bei mikrofluidischen Cartridges verlängern.Also the DE 601 31 662 T2 it can be seen that washing steps are often necessary, but extend the measurement time with microfluidic cartridges.

Die US 2008/0069739 A1 beschreibt eine Software-Kontrolle für chemische Prozess-Systeme, bei denen automatisch interne Elemente mit Lösemitteln bzw. Trocknungsgasen gereinigt werden, wodurch eine Wiederverwendbarkeit von Geräten erzielt wird. Ein Augenmerk ist hierbei auf flexibel mittels Software rekonfigurierbare, wiederverwertbare Vielzweck-"Lab-on-a-Chip"-Systeme gerichtet. Schematisch werden kontrollierbare Ventil-Teilsysteme diskutiert, mittels derer Reaktanten ausgewählt und zu kontrollierten Reaktionskammern geleitet werden können, wobei die Reaktionskammern und Transportleitungen mittels Durchpumpen von Lösemitteln und Gasen gereinigt werden können. Es werden beispielsweise Ventilkomplexe mit mehreren Eingängen (z.B. für zwei Probeflüssigkeiten / Reaktanten, flüssiges Lösemittel und Gas) und einem Auslass vorgestellt. Die Ventile in einem solchen Komplex sind beispielsweise Zweiwegeventile und durch Mikroventilstrukturen gebildet. Mittels energetischer Ansteuerung der Ventile werden selektiert Reaktanten, säuberndes Lösemittel und Gas zum Trocknen aus dem Auslass des Ventilkomplexes entlassen. Hierbei kann Gas sowohl zum abschließenden Trocknen als auch zu einem "Clearing" zwischen Durchleitung eines Reaktanten und eines spülenden Lösemittels eingesetzt werden.The US 2008/0069739 A1 describes a software control for chemical process systems in which internal elements are automatically cleaned with solvents or drying gases, which means that devices can be reused. One focus here is on flexible, re-configurable, reusable multi-purpose "lab-on-a-chip" systems that can be reconfigured using software. Schematically controllable valve subsystems are discussed, by means of which reactants can be selected and directed to controlled reaction chambers, whereby the reaction chambers and transport lines can be cleaned of solvents and gases by pumping through them. For example, valve complexes with several inlets (e.g. for two sample liquids / reactants, liquid solvent and gas) and one outlet are presented. The valves in such a complex are, for example, two-way valves and are formed by microvalve structures. By energetic control of the valves, selected reactants, cleaning solvents and gas for drying are released from the outlet of the valve complex. Here, gas can be used both for the final drying and for a "clearing" between the passage of a reactant and a flushing solvent.

Die US 2007/0207063 A1 zeigt eine Vorrichtung zur Kontrolle einer in einen integrierten Arbeitsbereich hinein- (und aus diesem heraus-) laufenden Fluidsequenz. Die Vorrichtung umfasst eine Basisplatte, auf der ein erster Fluidkanal mit einem Einlass und einem Auslass angeordnet ist. Eine Vielzahl von Ventilelementen ist im Kanal angeordnet, um ihn in mehrere Segmente zu zerteilen. Die Segmente ihrerseits sind mit Injektionstanks und die Ventileelemente mit Entlüftungstanks verbunden, wobei diese Tanks im Gegensatz zu Kanal und Ventilen "open-type" sind, d.h. eine oben offene Seite aufweisen. Die individuellen Arbeitsfluide werden jeweils in einen mit dem Einlass verbundenen Einlasstank und die Injektionstanks injiziert und strömen von Kapillarkraft getrieben zu den Ventilelementen, die eine Druckbarriere bilden. Mittels eines Dichtungsmechanismus werden die Injektionstanks und die Entlüftungstanks verschlossen und durch Druck am Einlasstank oder durch Unterdruck am Auslass werden die Druckbarrieren der Ventile überwunden, überschüssige, im Kanal eingeschlossene Luft in die Entlüftungstanks gedrückt und die Strömung der Fluidsequenz im Kanal in den bzw. durch den Arbeitsbereich in Gang gesetzt.The US 2007/0207063 A1 shows a device for controlling a fluid sequence running into (and out of) an integrated work area. The device comprises a base plate on which a first fluid channel with an inlet and an outlet is arranged. A plurality of valve elements are arranged in the channel in order to divide it into several segments. The segments for their part are connected to injection tanks and the valve elements to venting tanks, these tanks being "open-type" in contrast to the duct and valves, ie having a side that is open at the top. The individual working fluids are each injected into an inlet tank connected to the inlet and the injection tanks and flow by capillary force to the valve elements, which form a pressure barrier. The injection tanks and the ventilation tanks are closed and the pressure barriers of the valves are overcome by pressure at the inlet tank or by negative pressure at the outlet, excess air trapped in the duct is pressed into the ventilation tanks and the flow of the fluid sequence in the duct into or through the work area is started.

Die US 2004/0063217 A1 zeigt eine fluidische Miniatur-Kassette aus Plastik, die eine Reaktionskammer mit einer Vielzahl von immobilisierten Spezies, einen Kapillarkanal und eine Pumpstruktur mit externem Aktuator beinhaltet. Verschiedene Reservoire (eines für Waschflüssigkeit, eines für Spülluft, eines für Lösung und eines für ein Antibody-Konjugat) sind mit der Pumpstruktur verbunden, so dass der Inhalt aus dem jeweils verbundenem Reservoir in die Reaktionskammer gepumpt werden kann.The US 2004/0063217 A1 shows a fluidic miniature cassette made of plastic, which contains a reaction chamber with a multiplicity of immobilized species, a capillary channel and a pump structure with an external actuator. Various reservoirs (one for washing liquid, one for rinsing air, one for solution and one for an antibody conjugate) are connected to the pump structure, so that the contents can be pumped from the connected reservoir into the reaction chamber.

Die US 2008/038839 A1 zeigt eine Methode flüssige oder gasförmige Fluide (Reagentien, Lösemittel, Reaktanten) sequentiell einem chemischen, biologischen oder biochemischen Prozess bzw. einem Reaktionsort zuzuführen (konkretes Beispiel: Immunoassay-Methode). Hierbei können intermittierend Spülflüssigkeiten zum Einsatz kommen, mit denen unerwünschte Rückstände von Reaktanten beseitigt oder der Reaktionsort vorbereitet werden. Unterschiedliche Fluide werden dabei im selben Gefäß bevorratet, wobei ein drittes Fluid ein erstes von einem zweiten Fluid trennt. Als Beispiel für ein solches Gefäß wird ein Rohr (bzw. Röhrchen) angegeben, das sequentiell aufeinanderfolgend eine Reagenz, ein Luftpolster, eine Spülflüssigkeit, ein weiteres Luftpolster und eine zweite Spülflüssigkeit beinhaltet, wobei in Abhängigkeit von Größe und Material des Rohrs die jeweiligen Fluide bereichsweise bzw. stopfenartig hintereinander angeordnet sind und die Luftpolster einen Kontakt der Flüssigkeiten zueinander verhindern. Ein solches Gefäß mit stopfenartigen Fluidaschnitten wird fluidisch mit einem Reaktionsort (z.B. einem mikrofluidischen Immunoassay) verbunden und die Fluide werden beispielsweise mittels einer Pumpe, Spritze oder einer anderen Druckquelle zum Reaktionsort gedrückt oder mittels Unterdruck zum Reaktionsort gezogen.The US 2008/038839 A1 shows a method of sequentially feeding liquid or gaseous fluids (reagents, solvents, reactants) to a chemical, biological or biochemical process or a reaction site (specific example: immunoassay method). Rinsing liquids can be used intermittently to remove unwanted reactant residues or to prepare the reaction site. Different fluids are stored in the same vessel, a third fluid separating a first from a second fluid. As an example of such a vessel, a tube (or tube) is given, which sequentially contains a reagent, an air cushion, a rinsing liquid, a further air cushion and a second rinsing liquid, the respective fluids regionally depending on the size and material of the tube or are arranged one behind the other like a plug and the air cushions prevent the liquids from contacting one another. Such a vessel with plug-like fluid sections is fluidically connected to a reaction site (for example a microfluidic immunoassay) and the fluids are pressed to the reaction site by means of a pump, syringe or other pressure source or drawn to the reaction site by means of negative pressure.

Der Erfindung liegt die Aufgabe zu Grunde, ein mikrofluidisches Bauteil zum Waschen einer Kavität im mikrofluidischen Bauteil bereitzustellen.The invention is based on the object of providing a microfluidic component for washing a cavity in the microfluidic component.

Erfindungsgemäß ist nun vorgesehen, dass der Kavität vor Zuführung der Waschflüssigkeit ein Gas zugeführt wird. Durch diese "Vorwaschung" ist es möglich, dass der Bedarf an nachfolgend zuzuführender Waschflüssigkeit, die notwendig ist, um eine jeweils gewünschte Verminderung der Restkonzentration der auszuwaschenden Flüssigkeit in der Kavität herbeizuführen, deutlich gesenkt werden kann. Der Bedarf an Waschflüssigkeit kann also verringert werden und unter Umständen ist auch eine Reduzierung der Waschzeit bzw. von Waschritten möglich.According to the invention it is now provided that a gas is supplied to the cavity before the washing liquid is supplied. This “prewashing” makes it possible to significantly reduce the need for washing liquid to be subsequently supplied, which is necessary in order to bring about a desired reduction in the residual concentration of the liquid to be washed out in the cavity. The need for washing liquid can therefore be reduced and, under certain circumstances, a reduction in the washing time or washing steps is also possible.

Hierbei ist es sehr zweckmäßig, wenn das Gas in Form einer Blase, also mit definiertem Volumen durch die Kavität geleitet wird. Dies ermöglicht eine Verwirklichung des Verfahrens in einem mikrofluidischen Bauteil bzw. einer mikrofluidischen Cartridge auch ohne einen externen Gasanschluss, so dass beispielsweise die Gasblase mit definiertem Volumen in einer Kavität des mikrofluidischen Bauteils selbst vorgesehen sein kann.It is very useful here if the gas is passed through the cavity in the form of a bubble, that is to say with a defined volume. This enables the method to be implemented in a microfluidic component or a microfluidic cartridge even without an external gas connection, so that, for example, the gas bubble with a defined volume can be provided in a cavity of the microfluidic component itself.

Im Hinblick auf die notwendige Reduzierung von Platz- und Materialbedarf ist es sehr zweckmäßig, wenn dabei die Gasblase ein Volumen aufweist, welches kleiner ist als das Volumen der Kavität. Selbstverständlich ist das Volumen dabei dennoch ausreichend groß für ein effizientes Waschen zu wählen.With regard to the necessary reduction of space and material requirements, it is very useful if the gas bubble has a volume which is smaller than the volume of the cavity. Of course, the volume should still be large enough for efficient washing.

Zweckmäßigerweise wird daher als Volumen der Gasblase in etwa 40 % bis 60 %, vorzugsweise in etwa 50 % des Volumens der auszuwaschenden Kavität gewählt. Dies reduziert den Bedarf an zu bevorratendem Gas erheblich, reicht dennoch vollkommen aus, um die gewünschte Funktionalität bzw. Wirkung zu erzielen.It is therefore expedient to select approximately 40% to 60%, preferably approximately 50% of the volume of the cavity to be washed out as the volume of the gas bubble. This significantly reduces the need for gas to be stored, but is still completely sufficient to achieve the desired functionality or effect.

Die Gasblase breitet sich nämlich beim Einleiten in die zu waschende Kavität mittels Überdruck kontinuierlich aus und wird sofort so breit, dass sie die Seitenwände der Kavität berührt. Somit kann sie einen Großteil der in der Kavität befindlichen, auszuwaschenden Flüssigkeit durch eine in der Kavität vorzusehende Ausgangsöffnung hindurch verdrängen. Nachfolgende Waschflüssigkeit wiederum verdrängt die Gasblase ebenfalls in Richtung der Ausgangsöffnung. Die Gasblase funktioniert so quasi wie eine Sperrschicht zwischen der ersten, auszuwaschenden Flüssigkeit und der nachfolgenden Waschflüssigkeit. Schließlich wird die Gasblase vollständig von der Waschflüssigkeit aus der Kavität herausgedrückt.The gas bubble spreads continuously when it is introduced into the cavity to be washed by means of excess pressure and immediately becomes so wide that it touches the side walls of the cavity. It can thus displace a large part of the liquid to be washed out, located in the cavity, through an outlet opening to be provided in the cavity. Subsequent washing liquid in turn displaces the gas bubble in the direction of the outlet opening. The gas bubble works like a barrier layer between the first liquid to be washed out and the subsequent washing liquid. Finally, the gas bubble is pressed completely out of the cavity by the washing liquid.

Dadurch, dass die auszuwaschende Flüssigkeit bereits durch die Gasblase zu einem sehr hohen Prozentsatz aus der Kavität verdrängt wurde, kann die Waschflüssigkeit einen gegebenenfalls noch verbleibenden, geringen Restanteil an auszuwaschender Flüssigkeit durch Diffusion gut aufnehmen und bei Weitertransport aus der Kavität mit hinaustragen. Unter Umständen ist somit bereits ein einziger Waschschritt zur Erzielung einer gewünschten Restkonzentration ausreichend.Because a very high percentage of the liquid to be washed out has already been displaced from the cavity by the gas bubble, the washing liquid can easily absorb any remaining, small residual portion of liquid to be washed out by diffusion and carry it out of the cavity as it is transported further. Under certain circumstances, a single washing step is sufficient to achieve a desired residual concentration.

Obwohl selbstverständlich viele Gase (wie beispielsweise Stickstoff oder Edelgase) infrage kommen, ist Luft als einzusetzendes Gas sehr zweckmäßig, weil es kostengünstig und technisch einfach bereitzustellen ist.Although, of course, many gases (such as nitrogen or noble gases) are possible, air is very useful as a gas to be used because it is inexpensive and technically simple to provide.

Unter Umständen kann es zweckmäßig sein, wenn die Zuführung von Gas bzw. Luft und anschließender Flüssigkeit zum Waschen mehrmals wiederholt wird.Under certain circumstances it can be useful if the supply of gas or air and subsequent liquid for washing is repeated several times.

Wie bereits erwähnt, möchte die Erfindung auch ein mikrofluidisches Bauteil zur Durchführung des Waschverfahrens bereitstellen.As already mentioned, the invention would also like to provide a microfluidic component for carrying out the washing process.

Hierbei geht die Erfindung aus von einem mikrofluidischen Bauteil, enthaltend wenigstens eine erste Kavität, welche mit einer Flüssigkeit zum Waschen wenigstens einer zweiten Kavität gefüllt ist und Mittel zur Herstellung einer fluidischen Verbindung zwischen der wenigstens einen ersten und der wenigstens einen zweiten Kavität.The invention is based on a microfluidic component containing at least one first cavity which is filled with a liquid for washing at least one second cavity and means for establishing a fluidic connection between the at least one first and the at least one second cavity.

Erfindungsgemäß ist nun in Strömungsrichtung der Flüssigkeit gesehen wenigstens eine weitere Kavität zwischen der ersten und der zweiten Kavität angeordnet, welche mit einem Gas befüllt ist.According to the invention, at least one further cavity, which is filled with a gas, is now arranged between the first and the second cavity, viewed in the direction of flow of the liquid.

Wird nun die die Waschflüssigkeit enthaltende Kavität mit einem Druck beaufschlagt so strömt die Waschflüssigkeit in Richtung der das Gas enthaltenden Kavität und drückt ggf. erst nach Freigabe einer entsprechenden fluidischen Verbindung (beispielsweise mittels entsprechender Ventile) die Gasblase vor sich her, in die auszuwaschende Kavität hinein.If the cavity containing the washing liquid is now pressurized, the washing liquid flows in the direction of the cavity containing the gas and, if necessary, only pushes the gas bubble into the cavity to be washed after releasing a corresponding fluidic connection (for example by means of corresponding valves) .

Zur Reduzierung des Platzbedarfs für die vorzuhaltende Kavität bzw. zur Reduzierung des Gasbedarfs ist es dabei sehr zweckmäßig, wenn die wenigstens eine weitere, mit Gas befüllte Kavität ein Volumen aufweist, welches kleiner ist, als das Volumen der wenigstens einen zweiten, zu waschenden Kavität. Denn es hat sich gezeigt, dass auch ein deutlich kleineres Gasvolumen als das Volumen der zu waschenden Kavität bereits ausreicht, um die gewünschte Wirkung zu erzielen.To reduce the space requirement for the cavity to be kept or to reduce the gas requirement, it is very useful if the at least one further cavity filled with gas has a volume which is smaller than the volume of the at least one second cavity to be washed. This is because it has been shown that a significantly smaller gas volume than the volume of the cavity to be washed is already sufficient to achieve the desired effect.

Es hat sich dabei als sehr vorteilhaft erwiesen, wenn in Strömungsrichtung der Flüssigkeit gesehen der mit Gas befüllten Kavität wenigstens jeweils ein Ventil vor- und wenigstens ein Ventil nachgeschaltet ist. Hierdurch können unerwünschte Gas- bzw. Flüssigkeitsströmungen ausgeschlossen werden. Dabei ist es sehr vorteilhaft, wenn die Ventile ansteuerbar sind. Hierdurch kann die Strömung der Flüssigkeit bzw. vom Gas noch besser kontrolliert werden, wodurch unter anderem auch die Gefahr unerwünschter Blasen- bzw. Schaumbildung verringert werden kann. Eine Ansteuerung lässt sich vorzugsweise mittels elektrischer Signale bzw. Impulse durchführen.It has proven to be very advantageous if, viewed in the direction of flow of the liquid, at least one valve is connected upstream and at least one valve is connected downstream of the gas-filled cavity. In this way, undesired gas or liquid flows can be excluded. It is very advantageous if the valves can be controlled. As a result, the flow of the liquid or gas can be controlled even better, which among other things can also reduce the risk of undesired bubble or foam formation. Control can preferably be carried out by means of electrical signals or pulses.

Zur Erhöhung der Wascheffizienz ist es ferner denkbar, die zu waschende Kavität derart auszugestalten, dass diese in Strömungsrichtung einen ersten Abschnitt aufweist, in dem sich ihr Querschnitt kontinuierlich erweitert und einen zweiten Abschnitt, in dem sich der Querschnitt der Kavität wieder kontinuierlich verjüngt. Zwischen diesen Abschnitten mit sich veränderndem Querschnitt ist dann zweckmäßigerweise ein Abschnitt mit konstantem Querschnitt angeordnet. Dabei sollten zweckmäßigerweise der erste Abschnitt in Strömungsrichtung gesehen im Bereich der Eingangsöffnung und der zweite Abschnitt im Bereich der Ausgangsöffnung angeordnet sein.To increase the washing efficiency, it is also conceivable to design the cavity to be washed in such a way that it has a first section in the direction of flow in which its cross section continuously expands and a second section in which the cross section of the cavity tapers again continuously. A section with a constant cross section is then expediently arranged between these sections with a changing cross section. The first section should expediently be arranged in the area of the inlet opening and the second section in the area of the outlet opening, viewed in the direction of flow.

Es können Anwendungsfälle auftreten, in denen es vorteilhaft ist, wenn die mit Gas befüllte Kavität mit wenigstens einem weiteren Gasreservoir fluidisch verbindbar ist. Auch hier kann zur Freigabe bzw. Unterbrechung einer fluidischen Verbindung zweckmäßigerweise ein ansteuerbares Ventil vorgesehen sein.There can be applications in which it is advantageous if the cavity filled with gas can be fluidically connected to at least one further gas reservoir. Here too, a controllable valve can expediently be provided for releasing or interrupting a fluidic connection.

Auf diese Weise ist es möglich, mit dem mikrofluidischen Bauteil bzw. der mikrofluidischen Cartridge die beschriebenen Schritte (Einleitung einer Gasblase in die zu waschende Kavität - Herausdrücken der Gasblase durch nachfolgende Waschflüssigkeit) bei Bedarf mehrmals zu wiederholen.In this way it is possible to repeat the steps described (introduction of a gas bubble into the cavity to be washed - pressing out the gas bubble by subsequent washing liquid) several times with the microfluidic component or the microfluidic cartridge, if necessary.

Zweckmäßigerweise wird auch hier als Gas Luft verwendet, wobei die Umgebungsluft als weiteres Gasreservoir Verwendung finden kann.Air is expediently used as the gas here, too, and the ambient air can be used as a further gas reservoir.

Weitere Vorteile und Ausgestaltungen der Erfindung werden anhand von Ausführungsbeispielen deutlich, was mit Hilfe der beiliegenden Figuren näher erläutert werden soll. Dabei bedeuten

Fig. 1
eine prinziphafte Draufsicht auf einen Teil eines mikrofluidischen Bauteils gemäß einer ersten Ausführungsform,
Fig. 2
eine prinziphafte Draufsicht auf einen Teil eines mikrofluidischen Bauteils gemäß einer zweiten Ausführungsform,
Fig. 3a
eine prinziphafte Einzeldarstellung einer Kavität, welche gewaschen wird, in einer ersten Ausführungsform,
Fig.3b
eine prinziphafte Einzeldarstellung einer Kavität, welche mit einer Waschflüssigkeit gewaschen wird, in einer zweiten Ausführungsform,
Fig. 4
eine prinziphafte Darstellung des Verfahrens am Beispiel einer Kavität gemäß Fig. 3b.
Further advantages and refinements of the invention become clear on the basis of exemplary embodiments, which will be explained in more detail with the aid of the accompanying figures. Mean
Fig. 1
a basic plan view of part of a microfluidic component according to a first embodiment,
Fig. 2
a basic plan view of part of a microfluidic component according to a second embodiment,
Fig. 3a
a basic individual illustration of a cavity which is washed, in a first embodiment,
Fig.3b
a basic individual representation of a cavity which is washed with a washing liquid, in a second embodiment,
Fig. 4
a basic illustration of the method using the example of a cavity according to Figure 3b .

In Fig. 1 ist ein Ausschnitt eines mikrofluidischen Bauteils1 ersichtlich. Konkret sind mehrere mikrofluidische Funktionselemente ersichtlich, welche der Darstellung halber einer mikrofluidischen Funktionsgruppe 90 (gestrichelt umrandet) zugeordnet werden sollen. Die mikrofluidische Funktionsgruppe 90 umfasst eine erste, mit Waschflüssigkeit F2 gefüllte, vorzugsweise kreisrunde Kammer 10. Weiterhin ist eine zweite, in etwa rechteckförmige Kammer 20 ersichtlich, welche mit einer Flüssigkeit F1 gefüllt ist.In Fig. 1 a section of a microfluidic component 1 can be seen. In concrete terms, several microfluidic functional elements can be seen which, for the sake of illustration, have one microfluidic function group 90 (outlined by dashed lines) are to be assigned. The microfluidic functional group 90 comprises a first, preferably circular, chamber 10 filled with washing liquid F2. Furthermore, a second, approximately rectangular chamber 20 can be seen, which is filled with a liquid F1.

Die Flüssigkeit F1 hat in der Kammer 20 eine bestimmte Nachweisreaktion ausgelöst. Ein Teil der in F1 enthaltenen Biomoleküle ist in der Kammer 20 gebunden. Nun soll der Rest von F1 mit der Waschflüssigkeit F2 aus der Kammer 20 herausgewaschen werden. Die Kammer 20 kann bspw. eine PCR-Kammer (PCR= Polymerase Kettenreaktion) sein. Die Art der in der Kammer 20 durch die Flüssigkeit F1 hervorgerufenen Nachweisreaktion ist jedoch für das Verständnis der Erfindung nicht weiter von Belang und braucht daher nicht weiter erläutert zu werden.The liquid F1 has triggered a specific detection reaction in the chamber 20. Some of the biomolecules contained in F1 are bound in the chamber 20. The remainder of F1 is now to be washed out of the chamber 20 with the washing liquid F2. The chamber 20 can be, for example, a PCR chamber (PCR = polymerase chain reaction). The type of detection reaction caused in the chamber 20 by the liquid F1 is, however, of no further importance for understanding the invention and therefore does not need to be explained further.

Zwischen der Kammer 10 und der Kammer 20 ist eine weitere Kammer 30 angeordnet, welche im Ausführungsbeispiel mit Luft L gefüllt ist. Statt Luft können selbstverständlich auch andere Gase, beispielsweise Stickstoff oder Ähnliches Verwendung finden. Die Kammern 10, 20 und 30 sind mittels Mikrokanälen 40 fluidisch miteinander verbunden, wobei zwischen den Kammern 10 und 30 bzw. 30 und 20 jeweils ein vorzugsweise elektrisch ansteuerbares Ventil 50a bzw. 50b vorgesehen ist, mit dem die fluidische Verbindung freigebbar bzw. unterbrechbar ist.A further chamber 30, which is filled with air L in the exemplary embodiment, is arranged between the chamber 10 and the chamber 20. Instead of air, other gases, for example nitrogen or the like, can of course also be used. The chambers 10, 20 and 30 are fluidly connected to one another by means of microchannels 40, with a preferably electrically controllable valve 50a or 50b being provided between the chambers 10 and 30 or 30 and 20, with which the fluidic connection can be released or interrupted .

Weiterhin ist ein weiterführender Mikrokanal 80 vorgesehen, mit dem die fluidische Verbindung von der Kammer 20 zu anderen, nicht näher dargestellten mikrofluidischen Funktionselementen, z.B. einem Waste-Bereich herstellbar ist.Furthermore, a further microchannel 80 is provided with which the fluidic connection from the chamber 20 to other, not shown microfluidic functional elements, e.g. a waste area can be produced.

Aus der Fig. 1 ist auch ersichtlich, dass die mit Luft gefüllte Kammer 30 mit einem Mikrokanal 60 verbunden ist. Der Mikrokanal 60 stellt eine fluidische Verbindung der Kammer 30 zu einem weiteren Gasreservoir her. Auch hier kann die fluidische Verbindung mittels eines vorzugsweise elektrisch ansteuerbaren Ventils 70 unterbrochen bzw. freigegeben werden. Das erwähnte Gasreservoir selbst kann durch ein oder mehrere weitere Kavitäten bzw. Kammern (nicht dargestellt) realisiert werden.From the Fig. 1 it can also be seen that the air-filled chamber 30 is connected to a microchannel 60. The microchannel 60 establishes a fluid connection between the chamber 30 and a further gas reservoir. Here, too, the fluidic connection can be interrupted or released by means of a preferably electrically controllable valve 70. The mentioned gas reservoir itself can be realized by one or more further cavities or chambers (not shown).

Bei Verwendung von Luft in der Kammer 30 bietet es sich an, auch das über dem Mikrokanal 60 zugängliche Gasreservoir mit Luft zu befüllen bzw. über den Mikrokanal 60 lediglich einen Zugang zur Umgebungsluft bzw. zu einer Luftpumpe (nicht dargestellt) zu schaffen.When using air in the chamber 30, it is advisable to also fill the gas reservoir accessible via the microchannel 60 with air or merely to provide access to the ambient air or to an air pump (not shown) via the microchannel 60.

Nicht näher dargestellt bzw. beziffert ist eine mit dem Bauteil 1 vorzugsweise durch Klebung verbundene Folie zur Deckelung bzw. Abdichtung der erwähnten Kammern und Kanäle. Das Bauteil 1 selbst ist eine Kunststoffplatte, die vorzugsweise im Spritzgussverfahren hergestellt ist.A film, preferably bonded to the component 1, for covering or sealing the aforementioned chambers and channels is not shown or numbered. The component 1 itself is a plastic plate, which is preferably manufactured by injection molding.

Zur Auslösung eines Waschvorgangs wird nun die Kammer 10 im Anwendungsbeispiel mit einem Druck von in etwa 0,4 bar bis 0,8 bar beaufschlagt. Dies erfolgt vorzugsweise mittels geeigneter Aktoren einer mikrofluidischen Cartridge, in die das Bauteil 1 verbaut ist (nicht dargestellt).To initiate a washing process, the chamber 10 in the application example is now subjected to a pressure of approximately 0.4 bar to 0.8 bar. This is preferably done by means of suitable actuators of a microfluidic cartridge into which the component 1 is installed (not shown).

Gleichzeitig mit der Druckbeaufschlagung erfolgt eine Ansteuerung der Ventile 50a und 50b, welche somit die fluidische Verbindung zwischen den Kammern 10, 20 und 30 freigeben. Durch den Druckaufbau wird nun die Waschflüssigkeit F2 in Strömungsrichtung S in die Kammer 30 hineingedrückt und drückt die in der Kammer 30 befindliche Luft L ebenfalls in Strömungsrichtung S vor sich her, in Richtung der Kammer 20. In die Kammer 20 wird somit vor der Waschflüssigkeit F2 zunächst die Luft L in Form einer definierten Luftblase hineingedrückt. Dies führt zu einer sehr effizienten "Vorwaschung" der Kammer 20. Konkret wird bereits durch die Luft L ein Großteil der in der Kammer 20 befindlichen Flüssigkeit F1 bereits verdrängt, so dass die auf die Luftblase L folgende Waschflüssigkeit F2 lediglich die verbleibenden Reste an Flüssigkeit F1 aus der Kammer 20 entfernen muss.At the same time as the application of pressure, the valves 50a and 50b are activated, which thus release the fluidic connection between the chambers 10, 20 and 30. As a result of the pressure build-up, the washing liquid F2 is now pressed in the flow direction S into the chamber 30 and also pushes the air L located in the chamber 30 in front of it in the flow direction S, in the direction of the chamber 20 first the air L is pressed in in the form of a defined air bubble. This leads to a very efficient "prewashing" of the chamber 20. Specifically, a large part of the liquid F1 located in the chamber 20 is already displaced by the air L, so that the washing liquid F2 following the air bubble L only contains the remaining liquid F1 must remove from the chamber 20.

Zumindest kann auf diese Weise der Bedarf an vorzuhaltender Waschflüssigkeit F2, welcher zur Erzeugung einer geforderten, in der Kammer 20 maximal zu verbleibenden Restmenge an Flüssigkeit F1 nötig ist, deutlich reduziert werden.In this way, at least the requirement for washing liquid F2 to be kept available, which is necessary for generating a required residual amount of liquid F1 that is to remain in the chamber 20 as a maximum, can be significantly reduced.

Sollte ein einmaliger Waschvorgang nicht ausreichend sein, so ist denkbar, den geschilderten Waschvorgang in gewünschter Anzahl zu wiederholen. Das Ventil 50a wird hierzu wieder geschlossen. Alsdann wird das Ventil 70 geöffnet und eine fluidische Verbindung zwischen der Kammer 30 zum erwähnten Luftreservoir freigegeben.If a single washing process is not sufficient, it is conceivable to repeat the described washing process in the desired number. The valve 50a is closed again for this purpose. The valve 70 is then opened and a fluidic connection between the chamber 30 and the air reservoir mentioned is released.

Auf diese Weise kann die Kammer 30 wieder mit Luft L gefüllt werden, z.B. durch eine Pumpe. Nach Schließen des Ventils 70 erfolgt wieder ein Öffnen des Ventils 50a und ein Druckaufbau auf die Kammer 10, wie bereits beschrieben. Gegebenenfalls kann die Kammer 10 in ihrer Größe und Form bedarfsweise variiert werden. Auch sind mehrere Kammern 10 denkbar, welche jeweils einem Waschschritt zugeordnet werden.In this way, the chamber 30 can be filled with air L again, for example by a pump. After valve 70 is closed, valve 50a is opened again and pressure is built up on chamber 10, as already described. If necessary, the size and shape of the chamber 10 can be varied as required. Several chambers 10 are also conceivable, each of which is assigned to a washing step.

Der Waschvorgang in Kammer 20 wird weiter unten in Verbindung mit der Fig. 4 noch näher erläutert.The washing process in chamber 20 is described below in connection with FIG Fig. 4 explained in more detail.

In Fig. 2 ist nun eine weitere Ausführungsform 1' eines erfindungsgemäßen mikrofluidischen Bauteils prinziphaft dargestellt. Im Unterschied zur Ausführung gemäß Fig. 1 weist das mikrofluidische Bauteil 1' mehrere mikrofluidische Funktionsgruppen 90 (wie in der Fig. 1 beschrieben) auf. Entsprechend sind auch mehrere weiterführende Mikrokanäle 80 vorgesehen. Sie können bspw. an einen gemeinsamen Waste-Bereich angeschlossen werden.In Fig. 2 Another embodiment 1 'of a microfluidic component according to the invention is now shown in principle. In contrast to the execution according to Fig. 1 If the microfluidic component 1 ′ has a plurality of microfluidic functional groups 90 (as in FIG Fig. 1 described). Correspondingly, several further microchannels 80 are also provided. For example, they can be connected to a shared waste area.

Diese Ausführungsform 1' kann bspw. dazu dienen, die in den Funktionsgruppen 90 durchzuführenden Reaktions- und Waschschritte miteinander zu kombinieren, zu kaskadieren bzw. mehrere Assays gleichzeitig laufen zu lassen..This embodiment 1 'can serve, for example, to combine the reaction and washing steps to be carried out in the functional groups 90, to cascade them or to run several assays at the same time.

Nunmehr werden in Fig. 3 zwei mögliche Geometrien der zu waschenden Kammer 20 dargestellt, wobei natürlich auch andere Geometrien denkbar sind. Die Kammergeometrie gemäß Fig. 3b stellt gegenüber der Geometrie gemäß Fig. 3a eine Verbesserung im Sinne der Wascheffizienz dar und kann zweckmäßigerweise mit dem erfindungsgemäßen Verfahren kombiniert werden.Now in Fig. 3 two possible geometries of the chamber 20 to be washed are shown, although other geometries are of course also conceivable. The chamber geometry according to Figure 3b represents according to the geometry Fig. 3a represents an improvement in terms of washing efficiency and can expediently be combined with the method according to the invention.

In Fig. 3a ist ersichtlich, dass die Kammer 20 wie in Fig. 1 dargestellt, ausgebildet ist. Sie weist also in der Draufsicht einen in etwa rechteckigen Grundriss auf, wobei auch der Einlass (Mikrokanal 40) sowie der Auslass (Mikrokanal 80) erkennbar sind. Die Kammer 20 ist hier in Strömungsrichtung S bereits von Waschflüssigkeit F2 durchdrungen.In Fig. 3a it can be seen that the chamber 20 as in FIG Fig. 1 shown, is formed. It thus has an approximately rectangular plan in plan view, the inlet (microchannel 40) and the outlet (microchannel 80) also being recognizable. The chamber 20 is already penetrated by washing liquid F2 in the flow direction S here.

Durch die diagonale Anordnung von Ein- und Auslass (40 und 80) in Strömungsrichtung S kann zwar die Effizienz in der Waschung etwas gebessert werden, es sind jedoch hierbei in den nicht dem Ein- bzw. Auslass zugeordneten Eckbereichen nennenswerte Rückstände an Flüssigkeit F1 unvermeidbar, da diese Methode des diagonalen Waschens die entgegengesetzten Ecken auslässt.The diagonal arrangement of the inlet and outlet (40 and 80) in the direction of flow S can improve the washing efficiency somewhat, but significant residues of liquid F1 are unavoidable in the corner areas not assigned to the inlet or outlet, since this method of washing diagonally leaves out the opposite corners.

Eine Verbesserung der Wascheffizienz allein durch eine Andersgestaltung der Kammergeometrie ist in Fig. 3b dargestellt.An improvement in washing efficiency simply by redesigning the chamber geometry is in Figure 3b shown.

Darin ist eine Kammer 20' ersichtlich, welche in Strömungsrichtung S eine Eingangsöffnung 21 und eine Ausgangsöffnung 22 aufweist. An die Eingangsöffnung 21 schließt sich ein erster Abschnitt 23 mit sich kontinuierlich erweiterndem Querschnitt der Kammer 20' an. Konkret laufen in diesem Abschnitt 23 in der Draufsicht die gegenüberliegenden Wände der Kammer 20' V-förmig auseinander. An den Abschnitt 23 schließt sich ein Abschnitt 24 mit konstantem Querschnitt der Kammer 20' an. Hierbei verlaufen die gegenüberliegenden Wände der Kammer 20' also in etwa parallel. An den Abschnitt 24 wiederum schließt sich ein Abschnitt 25 an, in dem sich der Querschnitt der Kammer 20' kontinuierlich verkleinert. Die gegenüberliegenden Wände der Kammer 20' laufen hier in Richtung der Ausgangsöffnung 22 V-förmig aufeinander zu.A chamber 20 ′ can be seen therein, which has an inlet opening 21 and an outlet opening 22 in the direction of flow S. A first section 23 with a continuously widening cross section of the chamber 20 'adjoins the inlet opening 21. Concrete In this section 23, in plan view, the opposite walls of the chamber 20 ′ diverge in a V-shape. The section 23 is followed by a section 24 with a constant cross section of the chamber 20 '. The opposing walls of the chamber 20 ′ here run approximately parallel. The section 24 is in turn adjoined by a section 25 in which the cross section of the chamber 20 'is continuously reduced. The opposite walls of the chamber 20 'run towards one another in the direction of the outlet opening 22 in a V-shape.

Die Kammergeometrie wird hierdurch hinsichtlich des Strömungsverlaufs der Waschflüssigkeit F2 optimiert. Trotzdem sind auch hier gewisse Rückstände an wegzuwaschender Flüssigkeit F1 in den Eckbereichen unvermeidbar.The chamber geometry is thereby optimized with regard to the flow course of the washing liquid F2. Nevertheless, certain residues of liquid F1 to be washed away in the corner areas are unavoidable here as well.

Fig. 4 zeigt nunmehr im Detail, wie das Verfahren zu einer deutlichen Verbesserung der Wascheffizienz führt:
So ist die Kammer 20' zunächst mit der wegzuwaschenden Flüssigkeit F1 gefüllt (Fig. 4a). Nach Einleitung des Waschvorgangs (wie oben beschrieben) wird zunächst die durch die Waschflüssigkeit F2 vorhergetriebene Luftblase L in die Kammer 20', und zwar im Bereich der Eingangsöffnung 21 hineingedrückt (Fig. 4b), so lange, bis die gesamte Luftblase L in die Kammer 20' hineingedrückt wurde (Fig. 4c). Dabei ist ersichtlich, dass die Luftblase L sich sehr schnell nach außen in Richtung der Seitenwände der Kammer 20' ausbreitet und mit diesen Kontaktbereiche 26 bildet.
Fig. 4 now shows in detail how the process leads to a significant improvement in washing efficiency:
The chamber 20 'is initially filled with the liquid F1 to be washed away ( Figure 4a ). After the washing process has been initiated (as described above), the air bubble L previously driven by the washing liquid F2 is first pressed into the chamber 20 ', specifically in the area of the inlet opening 21 ( Figure 4b ), until the entire air bubble L has been pushed into the chamber 20 '( Figure 4c ). It can be seen that the air bubble L spreads outward very quickly in the direction of the side walls of the chamber 20 ′ and forms contact areas 26 with them.

Bei weiterem Fortschreiten des Waschvorgangs dringt die der Luftblase L nachfolgende Waschflüssigkeit F2 in die Kammer 20' ein (Fig. 4d). Bedingt durch die Luftblase L bzw. die Kontaktbereiche 26 kommt es einerseits zu einer sehr guten Verdrängung der Flüssigkeit F1 in Richtung der Ausgangsöffnung 22, andererseits auch zu eine sehr guten Trennung zwischen der Flüssigkeit F1 und der nachfolgenden Flüssigkeit F2.As the washing process continues, the washing liquid F2 following the air bubble L penetrates into the chamber 20 '( Figure 4d ). Due to the air bubble L or the contact areas 26, there is on the one hand a very good displacement of the liquid F1 in the direction of the outlet opening 22 and, on the other hand, a very good separation between the liquid F1 and the subsequent liquid F2.

Zwischen der Flüssigkeit F1 und der nachfolgenden Flüssigkeit F2 kommt es also im Wesentlichen nicht zu einer Diffusion, mit Ausnahme gegebenenfalls in Strömungsrichtung S gesehen hinter den Kontaktbereichen 26 noch verbleibender (äußerst geringer) Restmengen an Flüssigkeit F1.There is therefore essentially no diffusion between the liquid F1 and the subsequent liquid F2, with the exception, if appropriate, of residual amounts of liquid F1 still remaining (extremely small) behind the contact areas 26, viewed in the direction of flow S.

Insbesondere an den Fig. 4d und 4e ist ersichtlich, dass die Größe der Luftblase L keineswegs dem Volumen der Kammer 20' entsprechen muss. Es sollte lediglich sichergestellt sein, dass die definierte Menge an Luft L in der Kammer 30 so groß ist, dass eine Luftblase L erzeugt werden kann, die so groß ist, dass sie mit der Kammer 20' die erwähnten Kontaktbereiche 26 bilden und somit quasi als Sperrschicht zwischen der Flüssigkeit F1 und der nachfolgenden Flüssigkeit F2 dienen kann.In particular to the Figures 4d and 4e it can be seen that the size of the air bubble L in no way has to correspond to the volume of the chamber 20 '. It should only be ensured that the defined amount of air L in the chamber 30 is so large that an air bubble L can be generated which is so large that they form the mentioned contact areas 26 with the chamber 20 'and thus quasi as a barrier layer between the liquid F1 and the subsequent liquid F2 can serve.

In Fig. 4e ist ersichtlich, dass die Luftblase L, welche wiederum von der nachfolgenden Flüssigkeit F2 in Richtung der Ausgangsöffnung 22 verdrängt wurde, die Flüssigkeit F1 zu einem sehr hohen Prozentsatz aus der Kammer 20' verdrängt hat.In Figure 4e it can be seen that the air bubble L, which in turn has been displaced by the subsequent liquid F2 in the direction of the outlet opening 22, has displaced a very high percentage of the liquid F1 from the chamber 20 '.

Den Figuren 4f und 4g ist zu entnehmen, dass die Luftblase L von der nachfolgenden Flüssigkeit F2 in die Ausgangsöffnung 22 hineingedrückt wird und sich schließlich in der Kammer 20' nur noch die Flüssigkeit F2 befindet. Mit der Waschflüssigkeit F2 muss dann ggf. lediglich nur ein äußerst geringer Rest an in der Kammer 20' verbliebener, wegzuwaschender Flüssigkeit F1 mit der Waschflüssigkeit F2 diffundieren.
Dies führt dazu, dass der Bedarf an Waschflüssigkeit F2, welcher notwendig ist, um eine geforderte Restkonzentration an Flüssigkeit F1 in der Kammer 20' zu erzielen, deutlich gesenkt werden kann. Die erzeugbaren, geringen Restkonzentrationen an Flüssigkeit F1 können also durch die einströmende Waschflüssigkeit F2 innerhalb kurzer Zeit herausgespült werden.
The Figures 4f and 4g it can be seen that the air bubble L is pressed into the outlet opening 22 by the subsequent liquid F2 and finally only the liquid F2 is located in the chamber 20 '. With the washing liquid F2, only an extremely small residue of the liquid F1 remaining in the chamber 20 'to be washed away then has to diffuse with the washing liquid F2.
As a result, the requirement for washing liquid F2, which is necessary in order to achieve the required residual concentration of liquid F1 in the chamber 20 ', can be significantly reduced. The low residual concentrations of liquid F1 that can be generated can therefore be flushed out within a short time by the washing liquid F2 flowing in.

Im vorliegenden Ausführungsbeispiel konnten bei einer Kammergeometrie der Kammer 20' von etwa 32 mm2 im Grundriss, verbunden mit einer Höhe von einigen hundert µm bei Volumenströmen von etwa 4 µl/sec gute Ergebnisse erzielt werden. Dabei waren Volumenströme von 2 µl/sec bis etwa 10 µl/sec realisierbar. Als Initialdruck zur Auslösung des Waschvorgangs hat sich ein Druck von etwa 0,4 bar als äußerst zweckmäßig erwiesen, wobei jedoch auch deutlich höhere Drücke bis etwa 0,8 bar Anwendung fanden.In the present exemplary embodiment, good results could be achieved with a chamber geometry of the chamber 20 'of approximately 32 mm 2 in plan, combined with a height of a few hundred μm at volume flows of approximately 4 μl / sec. Volume flows from 2 µl / sec to around 10 µl / sec could be achieved. A pressure of approximately 0.4 bar has proven to be extremely useful as the initial pressure for triggering the washing process, although significantly higher pressures of up to approximately 0.8 bar have also been used.

BezugszeichenlisteList of reference symbols

1, 1'1, 1 '
Mikrofluidisches BauteilMicrofluidic component
1010
erste Kammer zur Aufnahme von Waschflüssigkeitfirst chamber for receiving washing liquid
20, 20'20, 20 '
zweite Kammer mit weg zu waschender Flüssigkeitsecond chamber with liquid to be washed away
2121st
EingangsöffnungEntrance opening
2222nd
AusgangsöffnungExit opening
2323
erster Abschnitt mit sich erweiterndem Querschnitt der Kammerfirst section with widening cross-section of the chamber
2424
Abschnitt mit konstantem Querschnitt der KammerSection with constant cross section of the chamber
2525th
zweiter Abschnitt mit sich verringerndem Querschnitt der Kammersecond section with a decreasing cross section of the chamber
2626th
seitliche Kontaktbereiche der Luftblase mit der Wandung der zweiten Kammerlateral contact areas of the air bubble with the wall of the second chamber
3030th
weitere Kammer zur Aufnahme von Luftanother chamber for the intake of air
4040
MikrokanäleMicrochannels
50a, b50a, b
ansteuerbare Ventilecontrollable valves
6060
MikrokanalMicrochannel
7070
ansteuerbares Ventilcontrollable valve
8080
MikrokanalMicrochannel
9090
mikrofluidische Funktionsgruppemicrofluidic functional group
F1F1
weg zu waschende Flüssigkeitliquid to be washed away
F2F2
WaschflüssigkeitWashing liquid
LL.
Luft bzw. LuftblaseAir or air bubble
SS.
StrömungsrichtungDirection of flow

Claims (6)

  1. Microfluidic component (1, 1'), containing at least one first cavity (10), which is filled with a liquid (F2) for washing at least one second cavity (20, 20'), and means (40, 50a, 50b) for providing a fluidic connection between the at least one first (10) and the at least one second cavity (20, 20'), wherein, viewed in the direction of flow (S) of the liquid (F2), at least one further cavity (30) is arranged between the first (10) and the second cavity (20, 20'), cavity (30) being filled with a gas (L),
    wherein the cavity (20') to be washed comprises, in the direction of flow (S), a first section (23) in which the cross-section of the cavity (20') widens out continuously and a second section (25) in which the cross-section of the cavity (20') tapers continuously and wherein a section (24) of constant cross-section is arranged between the sections (23 and 25) of varying cross-section and
    wherein the at least one further cavity (30) filled with gas (L) has a volume that is smaller than the volume of the at least one second cavity (20, 20') to be washed,
    characterised
    in that a pressure can be applied to the first cavity (10) so that the liquid (F2) for washing the second cavity (20,20') flows in the direction of the cavity (30) containing the gas and pushes the gas as a gas bubble along in front of it, into the cavity (20') that is to be washed, wherein the gas bubble is so large that, when pushed into the cavity (20') that is to be washed, it can form, in the section (24) of constant cross-section, contact regions (26) with the side walls of the cavity (20') that is to be washed, and
    in that, viewed in the direction of flow (S) of the liquid (F2), at least one valve (50a) is connected upstream of the cavity (30) filled with gas (L) and at least one valve (50b) is connected downstream of the cavity (30) filled with gas (L), wherein the valves (50a, 50b) are actuatable.
  2. Microfluidic component (1, 1') according to claim 1, characterised in that the cavity (30) filled with gas (L) is fluidically connectable to at least one further gas reservoir.
  3. Microfluidic component (1, 1') according to claim 2, characterised in that the fluidic connection can be provided by an actuatable valve (70).
  4. Microfluidic component (1, 1') according to one of claims 1 to 3, characterised in that the gas (L) is air.
  5. Microfluidic component (1, 1') according to one of claims 1 to 4, characterised in that the volume of the gas bubble is about 40 % to 60 % of the volume of the cavity (20, 20') that is to be washed.
  6. Microfluidic component (1, 1') according to one of claims 1 to 5, characterised in that a liquid which is to be washed out is contained in the second cavity (20, 20').
EP11764212.4A 2010-10-07 2011-10-04 Method for washing a microfluid cavity Active EP2624954B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11764212.4A EP2624954B1 (en) 2010-10-07 2011-10-04 Method for washing a microfluid cavity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10186833 2010-10-07
PCT/EP2011/067341 WO2012045754A1 (en) 2010-10-07 2011-10-04 Method for washing a microfluidic cavity
EP11764212.4A EP2624954B1 (en) 2010-10-07 2011-10-04 Method for washing a microfluid cavity

Publications (2)

Publication Number Publication Date
EP2624954A1 EP2624954A1 (en) 2013-08-14
EP2624954B1 true EP2624954B1 (en) 2020-08-26

Family

ID=43754900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11764212.4A Active EP2624954B1 (en) 2010-10-07 2011-10-04 Method for washing a microfluid cavity

Country Status (6)

Country Link
US (1) US9089883B2 (en)
EP (1) EP2624954B1 (en)
JP (1) JP6015659B2 (en)
DK (1) DK2624954T3 (en)
ES (1) ES2821373T3 (en)
WO (1) WO2012045754A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6240785B2 (en) * 2013-12-20 2017-11-29 スリーエム イノベイティブ プロパティズ カンパニー System and method for sample concentration and detection
US20190329240A1 (en) * 2016-02-17 2019-10-31 Hitachi High-Technologies Corporation Analysis Apparatus
US10046322B1 (en) 2018-03-22 2018-08-14 Talis Biomedical Corporation Reaction well for assay device
US11008627B2 (en) 2019-08-15 2021-05-18 Talis Biomedical Corporation Diagnostic system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207063A1 (en) * 2006-03-01 2007-09-06 Instrument Technology Research Center National Applied Research Laboratories Device for controlling fluid sequence

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623770B2 (en) * 1986-01-31 1994-03-30 日本電子株式会社 Cleaning method of reaction tube in automatic chemical analyzer
US8349602B1 (en) 1996-04-19 2013-01-08 Xenogen Corporation Biodetectors targeted to specific ligands
US6345642B1 (en) * 1999-02-19 2002-02-12 Applied Materials, Inc. Method and apparatus for removing processing liquid from a processing liquid path
JP2000271471A (en) * 1999-03-24 2000-10-03 Nippon M K S Kk Liquid source supplying system and its washing method and vaporizer
GB2358791A (en) * 2000-02-04 2001-08-08 Versar Inc Method composition and apparatus for cleaning internal surfaces of oxygen converters and cylinders
GB2361282A (en) * 2000-04-12 2001-10-17 Versar Inc Methods, composition and apparatus for cleaning pipes using a fluorocarbon solvent and fluorinated surfactant
GB2365526B (en) 2000-07-31 2003-12-03 Cambridge Life Sciences Assay apparatus for measuring the amount of an analyte in a biological or environmental sample
TW590982B (en) * 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
JP2005037368A (en) * 2003-05-12 2005-02-10 Yokogawa Electric Corp Cartridge for chemical reaction, its manufacturing method, and driving system for cartridge for chemical reaction
US8030057B2 (en) 2004-01-26 2011-10-04 President And Fellows Of Harvard College Fluid delivery system and method
JP4698613B2 (en) * 2004-01-26 2011-06-08 プレジデント アンド フェロウズ オブ ハーバード カレッジ Fluid delivery system and method
US20050249641A1 (en) * 2004-04-08 2005-11-10 Boehringer Ingelheim Microparts Gmbh Microstructured platform and method for manipulating a liquid
JP2006272268A (en) * 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd Method of cleaning microchemical device
JP4720419B2 (en) * 2005-10-11 2011-07-13 株式会社島津製作所 Separation buffer solution filling apparatus for microchip and microchip processing apparatus having the same
JP2007326181A (en) * 2006-06-08 2007-12-20 Fuji Xerox Co Ltd Cleaning method of micro-passage
US8594848B2 (en) 2006-11-28 2013-11-26 Lester F. Ludwig Reconfigurable chemical process systems
US8226774B2 (en) * 2008-09-30 2012-07-24 Princeton Trade & Technology, Inc. Method for cleaning passageways such an endoscope channels using flow of liquid and gas
US20100143194A1 (en) * 2008-12-08 2010-06-10 Electronics And Telecommunications Research Institute Microfluidic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207063A1 (en) * 2006-03-01 2007-09-06 Instrument Technology Research Center National Applied Research Laboratories Device for controlling fluid sequence

Also Published As

Publication number Publication date
US20140150890A1 (en) 2014-06-05
JP2013539044A (en) 2013-10-17
ES2821373T3 (en) 2021-04-26
WO2012045754A1 (en) 2012-04-12
DK2624954T3 (en) 2020-11-23
US9089883B2 (en) 2015-07-28
JP6015659B2 (en) 2016-10-26
EP2624954A1 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
EP1846160B1 (en) Novel microfluidic sample holder
DE112011102770B4 (en) Microfluidic unit with auxiliary and side channels
DE60207708T2 (en) Microfluidic systems for combining discrete fluid volumes
EP3227023B1 (en) Method for producing drops
EP1160573A2 (en) Microtitre plate and coupled multiple pipettor
EP2308589B1 (en) Microfluid structure
EP2624954B1 (en) Method for washing a microfluid cavity
DE102012206042B4 (en) Method and device for targeted process control in a microfluidic processor with integrated active elements
DE60201017T2 (en) MICRO-CHANNEL DEVICE AND METHOD
WO2018086897A1 (en) Microfluidic device and method for analysing nucleic acids
EP1843833B1 (en) Method and device for dosing and mixing small amounts of liquid, apparatus and use
EP1161995B1 (en) Method and apparatus for absorbing a medium into a capillary device
WO2013072110A1 (en) Microfluidic filter element for separating sample components from a biological sample fluid
DE102009001257A1 (en) Apparatus and method for handling liquids
EP2729251B1 (en) Microfluid structure with cavities
EP3740313B1 (en) Method for providing a solution of the substance in a microfluidic device
EP2525225B1 (en) Device and method for examining differentiation of cells
DE102009001261A1 (en) Apparatus and method for performing multiple parallel PCR reactions in the flow-through process
EP2486313B1 (en) Microfluidic structure and method for positioning a fluid volume in a microfluidic system
DE102008004139B3 (en) Liquid moving device for moving liquid back and forth over sensor surface of analytic sensor utilized in bio analytics field, has channel designed in such manner that counter pressure difference opposite to pressure difference is produced
WO2016062457A1 (en) Microfluidic system and method for analyzing a sample solution and method for producing a microfluidic system for analyzing a sample solution
WO2020064332A1 (en) Microfluidic system, analysis apparatus for analyzing a sample and method for handling a fluid volume
DE102014200467A1 (en) Microfluidic system and method for analyzing a sample of biological material
WO2023280698A1 (en) Microfluidic device and method for operating a microfluidic device
DE102022202864A1 (en) Microfluidic device and method for operating a microfluidic device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160901

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200716

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016877

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1305848

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201119

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2821373

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016877

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

26N No opposition filed

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1305848

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 13

Ref country code: FR

Payment date: 20231025

Year of fee payment: 13

Ref country code: DK

Payment date: 20231024

Year of fee payment: 13

Ref country code: DE

Payment date: 20231020

Year of fee payment: 13