EP2522427B1 - Micro-fluid device and method for manufacturing the same - Google Patents

Micro-fluid device and method for manufacturing the same Download PDF

Info

Publication number
EP2522427B1
EP2522427B1 EP12179918.3A EP12179918A EP2522427B1 EP 2522427 B1 EP2522427 B1 EP 2522427B1 EP 12179918 A EP12179918 A EP 12179918A EP 2522427 B1 EP2522427 B1 EP 2522427B1
Authority
EP
European Patent Office
Prior art keywords
film
component
channel structures
opening
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12179918.3A
Other languages
German (de)
French (fr)
Other versions
EP2522427A1 (en
Inventor
Jörg Nestler
Thomas Otto
Thomas Gessner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Technische Universitaet Chemnitz
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Technische Universitaet Chemnitz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Technische Universitaet Chemnitz filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2522427A1 publication Critical patent/EP2522427A1/en
Application granted granted Critical
Publication of EP2522427B1 publication Critical patent/EP2522427B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502723Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves

Definitions

  • the present invention relates to microfluidic devices and methods of making same.
  • Microfluidic devices are used in many fields of technology, such as e.g. for diagnostic applications.
  • Microfluidic systems often consist, among other components, of one part, which is manufactured for example by means of injection molding. In this part, for example, there are channels or reservoirs.
  • injection molding technology has the advantage that very large quantities can be manufactured here at low cost. However, this is associated with high initial costs, so that a later design change is no longer readily possible.
  • a portion of such a microfluidic system may include a portion defined with its channel and reservoir system. It would be desirable to design such a system so that it would be customizable to the particular application or combination of sensors. The manufacturer costs should also remain low.
  • the US 2002 / 0187072A1 refers to multilayer microfluidic splitters.
  • a common fluid inlet fluidly communicates with a branching channel network, which evenly distributes a fluid flow to a plurality of outlets.
  • Uniform splitting is provided by maintaining substantially equal fluidic impedance across all branch channels.
  • Substantially equal fluidic impedance may be provided by maintaining a substantially equal flow path length between the common inlet and each of the outlets.
  • the WO 02/083310 A2 refers to microfluidic devices capable of measuring fluid flow. Devices and methods for stem branch measurement of fluid stoppers in which one or more branch channels of a defined volume of mass fluid are measured are described. In addition, measuring at least one separate plug is described by selecting the delivery conditions of a first and a second fluid to a microfluidic channel.
  • the first fluid may be a liquid and the second fluid may be a gas. Reduced area channel segments are provided to assist in measuring one or more separate fluid plugs.
  • a microfluidic volume is measured by filling a microfluidic chamber with fluid, sealing an inlet channel, and then extracting the fluid.
  • the document EP 1 205 670 A2 provides a distribution plate for liquids and / or gases, which consists of at least one layer, wherein in the layer or layers, a plurality of first elongated channels having a first geometric configuration formed in a first direction substantially, and also a plurality of second elongated channels is formed with a second geometric configuration substantially in a second direction.
  • Such layers in particular if they have very small dimensions and accordingly miniaturized trained channels have been prefabricated in a simple manner and cost-saving, for example made of plastic by means of molding or injection molding in large numbers and stored. If necessary, in such a layer in a simple manner by means of suitable holes in spaces between juxtaposed channels at least a first and second channel are connected to each other, with appropriate requirements can be considered by the proper use of the distributor plate in an equally simple manner.
  • the US 2002/0112961 A1 refers to multilayer microfluidic devices with folded channels and densely positioned microfluidic structures. Desired microfluidic structures which, when cut in a single device layer, would be subject to deformation may be formed from multiple non-deforming layers. Channel segments of each geometry, defined in separate layers, communicate to form continuous flow paths, which in turn form the desired microfluidic structures. Any number of device layers can be used to fabricate the microfluidic structures as desired.
  • the US 2005/0266582 shows a microfluidic system for performing chemical or biological or biochemical reactions.
  • the US 2002/0187074 shows a modular microfluidic system for performing fluidic operations, such as filtering, regulating, pressure adjusting, mixing, measuring, reacting, heating or cooling.
  • the US 2008/0262213 shows methods and systems for editing polynucleotides.
  • the object of the present invention is thus to provide a microfluidic device and a method for producing such microfluidic devices, so that low production costs can be achieved even with a high degree of design flexibility or a better relationship between production costs on the one hand and design flexibility on the other hand is achieved.
  • microfluidic device according to claim 1 and a method of manufacturing according to claim 11.
  • One finding of the present invention is that it has recognized that a foil having an opening therein can be used inexpensively for at least one component in which channel structures are formed that at least partially form a respective component surface of the at least one component are open to individualize to a respective one of a plurality of channel structure combinations.
  • the manufacturing costs for the microfluidic devices can thus be kept low, since a plurality of such at least one component, which are identical to one another, can be used to produce different microfluidic devices which differ in the connection combination of the channel structures.
  • a self-adhesive film can be used as the film, which makes the process of assembling the microfluidic device very simple
  • the channel structures are also formed in a (common) microfluidic device so as to at least partially open in the component surface of the one component, wherein the film covers the component surface of this component such that a first and a second channel structure extend laterally along the component Component surface and within the opening in the film leading path interconnected While a third channel structure is not adjacent to the opening and is at least partially closed by the film on the component surface.
  • a different microfluid device could be formed by a film covering the component surface of another identical component such that, for example, the third channel structure with one of the first or the second channel structure over a laterally along the component surface and within the opening of the last-mentioned film path connected to each other. Both microfluidic devices thus differ in the connection of the channel structures, although an identically shaped component is the basis.
  • the production costs are therefore lower, in particular because the underlying at least one component can be manufactured in large quantities in injection molding.
  • the opening on the side opposite the component is closed by a porous membrane, so that gas such as e.g. Air introduced when introducing liquids, e.g. Analytes or samples in which channel structures is displaced, can escape through the porous membrane, although the liquids are safely retained in the fluid structures.
  • gas such as e.g. Air introduced when introducing liquids, e.g. Analytes or samples in which channel structures is displaced, can escape through the porous membrane, although the liquids are safely retained in the fluid structures.
  • Fig. 1 shows the top view of a comparative example of a component with a channel structure.
  • the component is, for example, an injection molded part and, as in the embodiments described below, the reference numeral 10 is used for the component.
  • Fig. 1 shows the top view of a component surface 12 of the component 10.
  • the outer shape of the component 10 is substantially cuboid but other shapes would also be conceivable, such as parallelepiped, cylindrical or the like.
  • the component surface 12 as shown in FIG Fig. 1 is visible to one of the main sides of the component 10, and is also planar, but simply curved component surfaces would also be conceivable, for example.
  • the embodiments described below will not be discussed in more detail, but the just made statements with respect to the component 10 also apply to the embodiments described below.
  • a channel structure is formed in the component 10. It includes channels 14 and chambers 16a, 16b, 16c and 16d, of which the chambers 16b and 16d may serve as sensor sites, for example, where different sensors can perform different measurements in the respective chamber, while the chambers 16a and 16c, for example may be reservoirs or sources of fluids, such as analytes or samples.
  • the channels 14 and 16a-16d are formed in the surface of the component in the form of recesses, with a cover component covering these recesses on the component surface 12, as a result of which the inside in FIG Fig. 1 formed fluid structure, according to which the channels 14 are branched into several sections.
  • a channel section 14a-14d leads from a respective chamber 16a-16d to a common connecting section 14e.
  • the section 14e connects nodes at which the sections 14a, 14c and 14e or 14b, 14d and 14e meet.
  • Fig. 2a to 2d show the four possible combinations, according to which one of the reservoirs 16a and 16c is connected to one of the sensor sites 16b and 16d. As can be seen, only three of the channel sections would actually be needed. To realize the four different variants Fig. 2a - 2d Thus, either four different components 10 would have to be produced, or else the idea on which the exemplary embodiments described below are based is used.
  • the channels located in the same, no direct connection by means of channels to the flexible chambers for the sensor sites or sources. Rather, the connection, so the channel or channels, is interrupted at one or more points.
  • the injection molded part is then provided with a foil which has one or more openings or recesses which (in each case) form a kind of bridge between the separate channel structures, such as channel ends thereof, at the interruptions.
  • Fig. 3 shows an embodiment of a microfluidic device according to an embodiment of the present invention.
  • the microfluidic device of Fig. 3 is generally indicated with 20. It comprises a component 22, in which or in which channel structures 24a, 24b and 24c are formed which are at least partially open to a component surface 26 of the component 22.
  • the component 22 may be an injection molded part.
  • the channel structures are completely open to the component surface 26 of the component, ie they are formed in the form of depressions or recesses in the component surface 26.
  • After assembly they are at least partially covered by a film 28 of the microfluidic device 20.
  • the recesses 24a-24c include trenches 30a-30c and shafts 32a-32c which together with the film 28 form channels or chambers.
  • the component 22 of Fig. 3 formed in the form of a substrate or as a flat cuboid and the channel structures 24a - 24c all open on one main side, namely the top of the component 22.
  • the component 22 can in principle take any shape and of course as well the component surface 26.
  • channel structures 24a-24c are laterally spaced from each other. This means that the channel structures 24a-24c have no fluidic connection to one another within the component 22.
  • the fluidic connection between a subset of the channel structures 24a-24c is first produced by the film 28, as will be discussed in more detail below, wherein the subset each of the set of channel structures 24a-24c may correspond.
  • Fig. 3 there are four possibilities for channel structure connection combinations.
  • the component 22 can be an injection-molded part. It can thus be produced inexpensively in large quantities. Preferably, the component 22 is inherently stable and requires no further carrier. A flexible design would also be possible. Exemplary materials for component 22 include polycarbonate (PC), polymethylmethacrylate (PMMA), cycloolefin polymer (COP), and cycloolefin copolymer (COC).
  • PC polycarbonate
  • PMMA polymethylmethacrylate
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film is preferably designed flexibly.
  • Material and film thickness or thickness may vary.
  • the film thickness is less than or equal to 1 mm or even less than or equal to 0.5 mm.
  • the material of the film 28 may be plastic, but other materials such as e.g. Metal.
  • the film 28 comprises an opening 34, ie a recess which extends over the entire thickness of the film 28, ie from a front side of the film 28 to a rear side thereof.
  • the film 28 is not yet shown in the assembled state.
  • the film 28 In the assembled state, the film 28 is on the component surface 26, as indicated by dotted lines 36.
  • the opening 34 connects the channel structures 24a and 24c. As indicated by dashed lines 38, it accomplishes this by providing in the assembled state, the channels 30a and 30c covered.
  • the channel structure 24b is closed by the film 28 on the component surface 26, so that it is not in particular fluidly connected via the opening 34 with the other two channel structures 24a and 24b.
  • the opening 34 in the film 28 thus implements one of the four channel structure connection combinations already mentioned above, wherein Fig. 7 another film 28 'is shown with a different opening 34', which leads to another of the four possible combinations in which the channel structures 24a and 24b are interconnected by the opening 34 'in the assembled state covering the trenches 30a and 30b but laterally separated from the channel structure 24c. It is readily apparent how films could look for the other two possible combinations.
  • Fig. 3 What in Fig. 3 is not shown, that the opening 34 in the film 28 and the therein of the channel structure 24a to the channel structure 24c and vice versa leading path on a side facing away from the component surface 26 is closed with a lid.
  • the lid can, as it later regarding the Fig. 4 to 5b can be a porous membrane, but can also, as it regards Fig. 6 is shown, another component, ie, a further injection molded part, in which possibly even one or more or more channel structures are formed.
  • the film is glued to the component surface 26, for example. It is advantageous if the component surface 26, as in Fig. 3 shown, flat or at least only slightly curved so that no wrinkles form during application. Corners or edges could also be present in the surface.
  • the film 28 may in particular be a self-adhesive film. So if the microfluidic device of Fig. 3 is produced, then it is sufficient for joining of the component and the film to apply the film 28 on the component surface 26, as for example, by rolling and / or pressing, with the self-adhesive side facing the component surface.
  • the self-adhesive film is, for example, an adhesive tape.
  • the film 28 may also be a self-adhesive film on both sides, such as adhesive tape provided on both sides with an adhesive layer.
  • An otherwise gluing the lid on the film 28 is also possible.
  • the components could also be clamped with a clamping device such as an extra frame which presses the film 28 against the surface 26.
  • An adhesive or an adhesive layer between the components could also be an attachment by means of melting, such as the film material 28, to the surface 26, are used.
  • the adhesive which adjoins the channel structures and, in particular, the fluid located therein may be chosen such that the abutment for the respective application is not critical. The same applies regardless of the presence or absence of the self-adhesive property also for the material of the film.
  • Fig. 3 in many respects is merely exemplary with respect to the design of the channel structures 24a-24c in the component 22. It has already been pointed out that the channel structures 24a-24c are merely exemplary in FIG Fig. 3 have only depressions. Rather, the channel structures 24a-24c could also be partially buried formed in the interior of the component 22, ie parts that are not first closed by the film 28 on the component surface 26. Furthermore, the channel structures 24a - 24c may also have holes or passages to an opposite side of the component 22.
  • Such a passage is exemplified by a dotted line in FIG Fig. 3 indicated at 40 in the bottom of the duct 32a.
  • This passage could, for example, serve as an outlet or inlet for a liquid if the channel structure 24a is to serve as a source of fluids or as an outlet.
  • the opening 40 could also be provided so that a sensor attachable to the underside of the component 22 can come into contact with the liquid in the chamber 32a to make a sensor measurement, such as electrochemical, potentiometric, amperometric, optical Measurement, a gravimetric or the like.
  • a sensor could already be installed prior to delivery of the microfluidic device 20 in the course of production or only be mounted after delivery to the customer.
  • the microfluidic device 20 it is possible for the microfluidic device 20 to be a disposable product, whereas the sensor is used multiple times.
  • the number of channel structures here is only three by way of example and may be more.
  • Fig. 4 now shows a side sectional view of the microfluidic device of Fig. 3 , As can be seen, the opening 34 in the film 28 is closed by a lid on a side opposite the component surface 26, the lid being a porous membrane 42.
  • the porous membrane 34 allows outgassing of excess air.
  • the porous membrane 42 may in particular consist of a material or have a surface which faces the opening 34 in the film 28, which with Water forms a contact angle greater than 90 ° or is water-repellent. Of course, the material could also be formed to additionally or alternatively form a contact angle greater than 90 ° with other materials.
  • the film 28 is made thin.
  • the porous membrane in addition to the reduction in size, it offers an advantage when the film is made thinner: due to the reduced in this region in contrast to the channel structures flow cross-section in the region between the membrane 42 and surface 26, locally increases the pressure , which promotes the outgassing through the membrane 42.
  • the flow area of the flow path in the area of the opening 34 is smaller than the average cross section of the channels of the channel structures (i.e., excluding the chambers), e.g. less than 80% or even less than 50% of the latter.
  • Fig. 3 shows that the film 28, the surface 26 over the whole or a part covered so that the channel structures 24a - 24c, as far as the opening to the surface 26 is concerned, are completely covered, this is not absolutely necessary.
  • the porous membrane 42 can be over the entire surface of the film 28 formed across or be attached to her, but it is of course also possible that it protrudes only slightly beyond the edge of the opening 34.
  • the film 20 may also have further openings 44.
  • aperture 44 is aligned with chamber 32c in the assembled condition.
  • Fig. 5a It is shown that the resulting upward opening can be used as an example to displace liquid contained in the chamber 32c therefrom. As in the example of Fig. 5a can be seen, this is a deformable membrane 46 provided to cover the opening 44 on a side facing away from the surface 26 of the film 28.
  • An actuator 48 is provided to urge the membrane into the opening 44 and the chamber 32c, respectively.
  • the actuator could be configured differently, such as by means of a piezoelectric element or the like, is in Fig.
  • a variant is shown, according to which the actuator 48 is mounted on a side facing away from the component 22 to the film 28 or the deformable membrane 46, so that on a side facing away from the opening 44 of the deformable membrane 46, a sealed chamber 50 is formed containing a substance, such as water, which is chemically converted from a liquid to a gaseous state by electrolysis by means of electrodes 52 located in the chamber 50, whereby the resulting density reduction and expansion is a force on the deformable membrane 46 exerts, which then bulges into the opening 44 and chamber 32 c inside and displaces liquid there.
  • the deformable membrane 46 is, for example, a flexible membrane that tends to return to its original state. As it is in Fig.
  • the actuator may be formed by a multilayer arrangement of multiple layers 54a and 54b, such as a multilayer board, such as a spacer layer 54b having a recess for the chamber 50 and a layer 54a having the electrodes 52 the spacer layer 54b is located between the layer 54a and the substrate 22.
  • a multilayer board such as a spacer layer 54b having a recess for the chamber 50 and a layer 54a having the electrodes 52 the spacer layer 54b is located between the layer 54a and the substrate 22.
  • Fig. 3 is indicated with a dashed line 56 that it is possible that the flexible membrane 46 and / or the multilayer assembly 54 is laterally located on one side only, whereas the other side of the line 56 is covered by the porous membrane 42.
  • Fig. 5b shows one to Fig. 5a alternative example.
  • the film 28 already has a sufficiently high ductility to be pressed by the actuator 48 in the direction of the chamber 32c in order to displace the liquid content located in the chamber 32c.
  • the opening 44 may be missing and the actuator 48 may be mounted directly on the film 28 on a side facing away from the component 22 thereof.
  • Fig. 6 shows an unclaimed alternative already mentioned above Fig. 3 , according to which a further component 56 is used as cover.
  • Fig. 6 shows Fig. 6 in that it is possible that the channel structures 24a-24c of a microfluidic device according to examples are not all provided in a single component 22, but that they are formed distributed in a plurality of components.
  • Fig. 6 shows by way of example therefore a modified component 22 ', which differs from the one Fig. 3 characterized in that the channel structure 24c in the component 22'mVM. Rather, this channel structure 24c is in the assembled state as shown in FIG Fig.
  • FIG. 6 is shown, mirror image of its original position in the component 22 'relative to the plane of the film 28 formed in the component 56, in a component surface 58 thereof, with which the component 56 to the component 22' opposite side of the film 28 added is.
  • the component 56 has, for example, the same dimensions as the component 42 ', that is, for example, also substrate-like or cuboid.
  • the opening 34 in the film 28 thus connects channel structures in different components 22 'and 56 respectively, namely the channel 30a with the channel 30c in the component 56.
  • FIG Fig. 6 Similar advantages with respect to the channel structure connection combinations can be achieved, as is the case in the exemplary embodiment of FIG Fig. 3 and 7, respectively, but with reference to FIG Fig. 4 has been described, the embodiment according to Fig. 3 offers the possibility of using a porous membrane, with the associated benefits in terms of outgassing, etc.
  • the channel structures 24a-24c which were to be combined in a combination manner, each had a trench 30a-30c which, at least over a section 60 (FIG. Fig. 7 ) parallel to one another, ie such that at least one channel runs parallel to another channel.
  • the individual channels project more or less into the section 60 from the two sides along the channel propagation direction 62.
  • This configuration allows elongated apertures in the film 28 having a longitudinal direction 64 transverse to the straight span direction 62 to more or less selectively interconnect the channel structures. The location of these openings 34 in the directions 62 and 64 and the length of the direction 64 of these openings then determines which channel structures are interconnected.
  • FIG. 8 An embodiment of a component 22 having five channel structures 24a-24e, each also having a trench 30a-30e extending across a portion 60 along the component surface 26, is parallel to one another, such that a plurality of channel structure combination options exist by forming an aperture 34 of the film over the component surface 26 is varied with a longitudinal direction 64 transverse to the trench extension direction 62 within the region 60 in position and length of the opening 34, as referenced in FIG Fig. 7 has been described.
  • Fig. 9a - 9d show four different combinations. Black arrows in the figures indicate channel structures which are interconnected via the respective opening 34. White arrows were used for channel structures that are kept separate from the connected channel structures.
  • trenches 30c and 30d it may be useful to collinearly guide some of the trenches of the channel structures, here trenches 30c and 30d, from opposite directions into region 60, with a gap 66 therebetween, with which they extend in the extension direction 62 from one another are spaced, wherein the gap 66 in the direction 62 is sufficiently large, for example, to accommodate the width of one of the elongated openings 34.
  • Fig. 9a - 9d Now show different layers of the opening 34 in the film 28. The openings 34 of Fig. 9a - 9d always connects three of the channel structures together, as shown in the figures.
  • Fig. 10 shows a to the embodiment of Fig. 8 - 9d similar embodiment of a microfluidic device. While in Fig. 10 the state is shown in which the film and a porous membrane are not mounted as a lid, show the Fig. 11 and 12 each state with foil, but without membrane or both.
  • Fig. 13 shows a sectional view in which the opening 34 can be seen in the film.
  • the embodiment of Fig. 10 - 13 corresponds to the embodiment of the Fig. 3 in the example / execution according to Fig. 4 and Fig. 5a and thus also shows an example such as a restriction of the lateral expansion area for the porous membrane 42 as indicated by the dashed line 56 in FIG Fig. 3 may also have been visualized.
  • Fig. 10 shows a to the embodiment of Fig. 8 - 9d similar embodiment of a microfluidic device. While in Fig. 10 the state is shown in which the film and a porous membrane are not mounted as a lid, show the Fig. 11 and
  • the film 28 extends over the entire surface on the upper side 26 of the component 22.
  • the porous membrane 42 extends only laterally in the interior of the recess in the multilayer arrangement of the actuator 48.
  • the actual actuator locations of the actuator 46 are in Fig. 10 - 13 not shown, but can for example like in Fig. 5a be designed shown.
  • a one-sided adhesive film can be used as the film, and the use of a double-sided adhesive film can be particularly advantageous.
  • a lid may be provided to close a channel open at this point.
  • This cover can also be designed in the form of a foil, as has been described above.
  • the lid can be limited laterally to the recess. He closes the recess from above.
  • the lid does not have to be completely closed here.
  • the lid may be formed by a porous membrane. This allows escape of possibly unwanted and possibly present in the duct system gas bubbles.
  • the porous membrane may also be formed of a material which is not wetted by the liquid. If the liquid is a water-based liquid, a membrane with a surface or a material with a low surface energy is particularly suitable here. Examples include fluoropolymers, such as PTFE, PVDF, etc.
  • the easy combinability of configurable fluidic connections and bubble trap represents a further advantage of some embodiments described above, since this only three parts are needed, namely the fixed component with channel system or reservoirs, the structured film and the cover membrane.
  • a liquid source which is not required to be separated.
  • a fixed microfluidic part such as e.g. one of the components 22 of the embodiments described above, contains a plurality of reservoirs, for a particular application, however, only a part thereof is needed. If, in such a case, all reservoirs were connected to each other by channels, then liquid could compress the air in these reservoirs and thus flow in the direction of these empty (because not required) reservoirs.
  • the problem can be solved in that the reservoirs are just not directly connected to the channel system, but, as described above, are first connected to each other via a "bridge" in the form of a recess with a film.
  • a "bridge" in the form of a recess with a film.
  • the chambers 32a, 32d and 32e are reservoirs and the chambers 32c and 32b are sensor sites, i. H. Places where sensors are positioned or can be positioned.
  • the above-mentioned reservoirs can also be provided with pumps.
  • Such pumps can be operated by electrolysis, as previously described.
  • the electrolysis thereby generates a gas, namely in the above-mentioned chamber 50, and deforms a membrane, namely the deformable membrane 46, which is adjacent to the respective reservoir is located.
  • the membrane can then warp into this reservoir and displace the fluid contained therein.
  • the liquid pumped from a reservoir by means of the electrolysis pump could be introduced into the empty (instead of outward / waste) container. air-shrouded) reservoir flow.
  • the only alternative to the above "separation" of the reservoir by means of suitable placement and design of the film according to the above embodiments would be only in the filling of the unused reservoirs, but this meant an additional material and manufacturing costs.
  • the membrane 46 which in this case is preferably not a porous membrane, but rather preferably a membrane which deforms plastically, for example, can be temporarily or permanently connected to two or more channels upon impact with a pressure in the direction of the fixed part or component 22 interrupt.
  • Fig. 14 shows such an alternative.
  • the deformable membrane 46 is used, above which in turn is an actuator 48.
  • the cross-section of the lateral path 70 through the opening 34 in the film 28 may be at least reduced or the path interrupted. Narrowing in the cross-section of the path 70 may often be sufficient.
  • Fig. 15 shows a further alternative to the embodiment of Fig. 14 ,
  • the component 22 "to the component of Fig. 3 formed differently, namely in that the area of the surface 26 between the channels 30a and 30c is lowered in the region of the opening 34 by a depth which is smaller than a depth of the trenches 30a - 30c, so that the flow resistance can be adjusted, which results when the membrane 46 is pressed and when the membrane 46 is not depressed.
  • an increase may be present.
  • FIGS. 14 and 15 achieve a valve effect.
  • Such a step may, for example, be done after filling a reservoir to close it.
  • the membrane 46 again dissolves from the component 22 or 22 "and the liquid can leave the reservoir in the channel system by means of the path 70 in the channel system.
  • the application of the membrane 46 with a pressure in the direction of the component 22 can also be used as an active valve, if, for example, directly or indirectly the Pressure of a gas pressure generated by the electrolysis is.
  • the interruption between the channels or the channel or the reservoir need not be complete, but may also be formed as a recess, which is, however, preferably shallower than the subsequent channel, as with reference to FIG Fig. 15 has been shown, ie by means of a flat portion in a channel of the channel structures.
  • Such a depression does not necessarily have to be present between separate channel structures in the sense of the channel structures 24a-24e of the preceding exemplary embodiments.
  • Such a depression in the trenches can also be present in the above-mentioned trenches 30a-30c within a single channel structure in order, as mentioned, to control the flow from a corresponding reservoir or into a corresponding reservoir.
  • microfluidic devices in which it was possible to form different microfluidic devices based on a fixed microfluidic part that is identical for all. It was possible, for example by two sensors and two fluid sources each one to connect via a bridge with the channel system and another liquid source. This was, for example, in the embodiments after Fig. 9a and 9d the case where unfilled arrows indicate that no liquid can flow here.
  • the above embodiments also show implementation variants, with a porous membrane as a bubble trap. Valves for closing, z. B. a reservoir may be present, as has been described above.
  • the above embodiments thus also describe a microfluidic system which has at least one part with fixed channel structures, wherein at least two channel structures in the stationary part initially have no connection to one another, the connection is instead produced by a foil which at least partially covers the channel structures, an opening connecting at least two of the unconnected channel structures in the stationary part.
  • Two channel structures not connected to one another in the stationary part can each lead to an alternatively populated position.
  • the microfluidic system may be designed such that two channel structures which are not connected to one another in the stationary part come from a different fluid source or reservoir.
  • non-interconnected channel structures there are at least four non-interconnected channel structures in the stationary part, three each of which can be connected by a recess in a foil to select one of two alternative sensor regions or two alternative liquid sources and to another liquid source connect.
  • at least five non-interconnected channel structures are present in the fixed part, of which three by means of a Recess may be connected in a film, wherein a solid fluid source is connected to one of two alternative sensor areas and one of two alternative fluid sources.
  • the film may be an adhesive tape, wherein the adhesive tape may in turn be an adhesive tape provided with an adhesive layer on both sides.
  • the recess in the film is closed with a lid. This lid has a porous membrane.
  • the material of this membrane may be made of a material or be coated with selbigem that forms a contact angle greater than 90 ° with the channel system liquid to be transported.
  • the porous membrane may be made of a water-repellent material, wherein the water-repellent material may also be a fluorine-containing polymer.
  • a membrane On the side facing away from the fixed part of the film, a membrane may be located, which can be at least partially pressed into the recess of the film by applying pressure. In this case, the necessary pressure for the deformation by electrolysis of water or at least partially water-containing liquid can be caused.
  • the above exemplary embodiments have shown a microfluid device with at least one component 22, in which or in which channel structures 24a are formed, which are at least partially open to a respective component surface 26 of the at least one component 22; and a film 28 having an opening 24; 34 ', via which at least a first and a second of the channel structures 24a, 24c; 24a, 24b are interconnected, and the at least one third of the channel structures at 24b; 24c of the respective component surface 26 at least partially closes, so that it does not over the opening 34; 34 'is connected to the first and second channel structure.
  • the first to third channel structure can be formed in the same component and at least partially open in the component surface thereof, the film covering the component surface of the same component such that the first and second channel structure extend laterally along the component surface of the same component and inside the opening in the film leading path are connected to each other, while the third channel structure is not adjacent to the opening.
  • the path leading within the opening 24 in the film can be closed on one side of the component 26 facing away from the same component 22 with a lid or with another of the at least one component.
  • the path leading through the opening in the film on a side remote from the component surface of the same component is closed by a deformable membrane as a cover.
  • the path leading through the opening 34 in the film 28 is on a side facing away from the component surface 26 of the same component 22 a porous membrane 42 is closed as a lid.
  • a porous membrane 42 is closed as a lid.
  • the path leading through the opening in the film on a side facing away from the component surface of the same component can be closed with a deformable membrane as a lid.
  • the microfluid device may further include an actuator for urging the deformable membrane into the opening.
  • the first to third channel structures 24a may have depressions in the component surface of the same component, which are at least partially covered by the film.
  • the recesses may include trenches 30a and / or wells 32a to form channels or chambers together with the foil.
  • the film is deformable, and the microfluid device further comprises an actuator for pressing the film into a recess of the at least one component on the respective component surface in which the recess is formed, wherein the recess is part of the channel structures.
  • the film 28 may be a self-adhesive film.
  • the film 28 may also be a self-adhesive film on both sides.
  • An actuator 48 may be configured to generate a force necessary for pressing by electrolysis of water or at least partially water-containing liquid.

Description

Die vorliegende Erfindung bezieht sich auf Mikrofluidvorrichtungen und Verfahren zum Herstellen derselben.The present invention relates to microfluidic devices and methods of making same.

Mikrofluidvorrichtungen bzw. mikrofluidische Systeme werden in vielen Bereichen der Technik verwendet, wie z.B. für diagnostische Anwendungen. Mikrofluidische Systeme bestehen häufig neben anderen Komponenten aus einem Teil, welches beispielsweise mittels Spitzguss gefertigt ist. In diesem Teil befinden sich beispielsweise Kanäle oder Reservoire. Die Fertigung in Spritzgusstechnologie besitzt den Vorteil, dass hier sehr große Stückzahlen zu geringen Kosten gefertigt werden können. Allerdings ist dies mit hohen Initialkosten verbunden, so dass ein späterer Designwechsel nicht mehr ohne weiteres möglich ist.Microfluidic devices are used in many fields of technology, such as e.g. for diagnostic applications. Microfluidic systems often consist, among other components, of one part, which is manufactured for example by means of injection molding. In this part, for example, there are channels or reservoirs. The production in injection molding technology has the advantage that very large quantities can be manufactured here at low cost. However, this is associated with high initial costs, so that a later design change is no longer readily possible.

Häufig ist es jedoch einerseits notwendig, wie z.B. aus wirtschaftlichen Gründen oder weil in der dafür eingesetzten Technologie bessere Oberflächenqualitäten erreicht werden können, wie beschrieben, ein in seinen Strukturen nicht mehr veränderliches Teil zu verwenden, gleichzeitig jedoch eine Flexibilität bezüglich des späteren Flüssigkeitstransportes zu gewährleisten. Beispielsweise kann es sinnvoll sein, ein einziges Spritzgussteil zu verwenden, bei dem wahlweise Sensoren miteinander kombiniert werden können, die sich in ihren Abmessungen und ihrer Position am Spritzgussteil unterscheiden. Auch kann es sich als notwendig erweisen, je nach Einsatzzweck unterschiedliche "Quellen" für eine Flüssigkeit vorzusehen. In diesem Fall möchte man trotz des feststehenden Teils, wie z.B. Spritzgussteils, anhand anderer konstruktiver Elemente am (Mikro)-Fluidsystem bestimmte Kanalabschnitte abtrennen und andere hinzu "schalten".Often, however, it is necessary on the one hand, such as for economic reasons or because better surface qualities can be achieved in the technology used for this purpose, as described, to use a part which is no longer changeable in its structures, but at the same time to ensure flexibility with regard to the subsequent liquid transport. For example, it may be useful to use a single injection molded part, in which optionally sensors can be combined with each other, which differ in their dimensions and their position on the injection molded part. It may also prove necessary to provide different "sources" for a liquid depending on the application. In this case, despite the fixed part, e.g. Injection molded part, on the basis of other constructive elements on the (micro) -luidsystem seperate certain channel sections and other "switch".

Wie erwähnt, kann ein Teil eines solchen mikrofluidischen Systems ein Teil enthalten, welches mit seinem Kanal und Reservoirsystem festgelegt ist. Wünschenswert wäre es, ein solches System so zu gestalten, dass es auf die jeweilige Applikation bzw. Kombination von Sensoren individualisierbar wäre. Die Herstellerkosten sollen ebenfalls niedrig bleiben.As noted, a portion of such a microfluidic system may include a portion defined with its channel and reservoir system. It would be desirable to design such a system so that it would be customizable to the particular application or combination of sensors. The manufacturer costs should also remain low.

Die US 2002/0187072A1 bezieht sich auf mehrschichtige mikrofluidische Aufteilungsvorrichtungen. Ein gemeinsamer Fluideinlass kommuniziert fluidisch mit einem Verzweigungskanalnetzwerk, das einen Fluidfluss gleichmäßig zu einer Mehrzahl von Auslässen verteilt. Gleichmäßiges Aufteilen wird bereitgestellt durch Beibehalten einer im wesentlichen gleichen fluidischen Impedanz über alle Zweigkanäle. Eine im wesentlichen gleiche fluidische Impedanz kann bereitgestellt werden durch Beibehalten einer im wesentlichen gleichen Flussweglänge zwischen dem gemeinsamen Einlass und jedem der Auslässe. Die Verwendung mehrerer Vorrichtungsschichten ermöglicht die Herstellung einer solchen Vorrichtung ohne geometrisch komplexe Kanalstrukuren, hohe Merkmalsdichte und zweidimensionale Auslassarrays.The US 2002 / 0187072A1 refers to multilayer microfluidic splitters. A common fluid inlet fluidly communicates with a branching channel network, which evenly distributes a fluid flow to a plurality of outlets. Uniform splitting is provided by maintaining substantially equal fluidic impedance across all branch channels. Substantially equal fluidic impedance may be provided by maintaining a substantially equal flow path length between the common inlet and each of the outlets. The use of multiple device layers enables fabrication of such a device without geometrically complex channel structures, high feature density, and two-dimensional outlet arrays.

Die WO 02/083310 A2 bezieht sich auf mikrofluidische Vorrichtungen, die in der Lage sind, Fluidfluss zu messen. Vorrichtungen und Verfahren für Stamm-Zweig-Messen von Fluidstöpseln, in denen ein oder mehrere Zweigkanäle eines definierten Volumens von einem Massenfluid gemessen werden, sind beschrieben. Außerdem wird das Messen von zumindest einem getrennten Stöpsel beschrieben durch Auswählen der Zufuhrbedingungen eines ersten und eines zweiten Fluids zu einem mikrofluidischen Kanal. Das erste Fluid kann eine Flüssigkeit sein und das zweite Fluid ein Gas. Kanalsegmente mit reduzierter Fläche sind vorgesehen, um das Messen eines oder mehrerer getrennter Fluidstöpsel zu unterstützen. Bei einem anderen Aspekt wird ein mikrofluidisches Volumen gemessen durch Füllen einer mikrofluidischen Kammer mit Fluid, Abdichten eines Einlasskanals und dann Extrahieren des Fluids.The WO 02/083310 A2 refers to microfluidic devices capable of measuring fluid flow. Devices and methods for stem branch measurement of fluid stoppers in which one or more branch channels of a defined volume of mass fluid are measured are described. In addition, measuring at least one separate plug is described by selecting the delivery conditions of a first and a second fluid to a microfluidic channel. The first fluid may be a liquid and the second fluid may be a gas. Reduced area channel segments are provided to assist in measuring one or more separate fluid plugs. In another aspect, a microfluidic volume is measured by filling a microfluidic chamber with fluid, sealing an inlet channel, and then extracting the fluid.

Das Dokument EP 1 205 670 A2 stellt eine Verteilerplatte für Flüssigkeiten und/oder Gase bereit, die aus wenigstens einer Schicht besteht, wobei in der Schicht oder den Schichten eine Vielzahl von ersten länglichen Kanälen mit einer ersten geometrischen Ausbildung im wesentlichen in einer ersten Richtung ausgebildet ist, und außerdem eine Vielzahl von zweiten länglichen Kanälen mit einer zweiten geometrischen Ausbildung im wesentlichen in einer zweiten Richtung ausgebildet ist. Derartige Schichten können insbesondere wenn sie sehr kleine Abmessungen haben und dementsprechend miniaturisiert ausgebildete Kanäle haben auf einfache Art und Weise und kostensparend beispielsweise aus Kunststoff mittels Abformung oder Spritzguß in großer Stückzahl vorgefertigt werden und gelagert werden. Im Bedarfsfall kann in einer derartigen Schicht auf einfache Weise mittels geeigneter Bohrungen in Zwischenräume zwischen nebeneinander angeordneter Kanäle mindestens ein erster und zweiter Kanal miteinander verbunden werden, wobei entsprechende Vorgaben durch den bestimmungsgemäßen Einsatz der Verteilerplatte auf ebenso einfache Weise berücksichtigt werden können.The document EP 1 205 670 A2 provides a distribution plate for liquids and / or gases, which consists of at least one layer, wherein in the layer or layers, a plurality of first elongated channels having a first geometric configuration formed in a first direction substantially, and also a plurality of second elongated channels is formed with a second geometric configuration substantially in a second direction. Such layers, in particular if they have very small dimensions and accordingly miniaturized trained channels have been prefabricated in a simple manner and cost-saving, for example made of plastic by means of molding or injection molding in large numbers and stored. If necessary, in such a layer in a simple manner by means of suitable holes in spaces between juxtaposed channels at least a first and second channel are connected to each other, with appropriate requirements can be considered by the proper use of the distributor plate in an equally simple manner.

Die US 2002/0112961 A1 bezieht sich auf mehrschichtige mikrofluidische Vorrichtungen mit gefalteten Kanälen und dicht positionierten mikrofluidischen Strukturen. Gewünschte mikrofluidische Strukturen, die, wenn sie in einer einzelnen Vorrichtungsschicht geschnitten werden, Deformationen ausgesetzt wären, können aus mehreren nicht-deformierenden Schichten erzeugt werden. Kanalsegmente jeder Geometrie, die in getrennten Schichten definiert sind, kommunizieren, um kontinuierliche Flusswege zu bilden, die wiederum die gewünschten mikrofluidischen Strukturen bilden. Jede Anzahl von Vorrichtungsschichten kann verwendet werden, um die mikrofluidischen Strukturen wie gewünscht herzustellen.The US 2002/0112961 A1 refers to multilayer microfluidic devices with folded channels and densely positioned microfluidic structures. Desired microfluidic structures which, when cut in a single device layer, would be subject to deformation may be formed from multiple non-deforming layers. Channel segments of each geometry, defined in separate layers, communicate to form continuous flow paths, which in turn form the desired microfluidic structures. Any number of device layers can be used to fabricate the microfluidic structures as desired.

Die US 2005/0266582 zeigt ein Mikrofluidiksystem zur Durchführung von chemischen oder biologischen oder biochemischen Reaktionen.The US 2005/0266582 shows a microfluidic system for performing chemical or biological or biochemical reactions.

Die US 2002/0187074 zeigt ein modulares Mikrofluidiksystem zur Durchführung von Fluidikoperationen, wie z.B. Filtern, Regulieren, Druckanpassung, Mischen, Messen, Reagieren, Heizen oder Kühlen.The US 2002/0187074 shows a modular microfluidic system for performing fluidic operations, such as filtering, regulating, pressure adjusting, mixing, measuring, reacting, heating or cooling.

Die US 2008/0262213 zeigt Methoden und Systeme zum Bearbeiten von Polynukleotiden.The US 2008/0262213 shows methods and systems for editing polynucleotides.

Die Aufgabe der vorliegenden Erfindung besteht folglich darin, eine Mikrofluidvorrichtung sowie ein Verfahren zum Herstellen solcher Mikrofluidvorrichtungen zu schaffen, so dass niedrige Herstellungskosten auch bei einem hohen Grad an Designflexibilität erzielbar sind bzw. ein besseres Verhältnis zwischen Herstellungskosten auf der einen und Designflexibilität auf der anderen Seite erzielt wird.The object of the present invention is thus to provide a microfluidic device and a method for producing such microfluidic devices, so that low production costs can be achieved even with a high degree of design flexibility or a better relationship between production costs on the one hand and design flexibility on the other hand is achieved.

Diese Aufgabe wird durch eine Mikrofluidvorrichtung gemäß Anspruch 1 und ein Verfahren zum Herstellen gemäß Anspruch 11 gelöst.This object is achieved by a microfluidic device according to claim 1 and a method of manufacturing according to claim 11.

Eine Erkenntnis der vorliegenden Erfindung besteht darin, erkannt zu haben, dass eine Folie mit einer Öffnung darin dazu verwendet werden kann, preisgünstig zumindest ein Bauteil, in dem bzw. in denen Kanalstrukturen gebildet sind, die zumindest teilweise zu einer jeweiligen Bauteiloberfläche des zumindest einen Bauteils offen sind, zu einer jeweiligen aus einer Mehrzahl von Kanalstrukturkombinationen zu individualisieren. Die Herstellungskosten für die Mikrofluidvorrichtungen können somit gering gehalten werden, da eine Vielzahl von einem solchen zumindest einen Bauteil, die zueinander identisch sind, verwendet werden können, um unterschiedliche Mikrofluidvorrichtungen herzustellen, die sich in der Verbindungskombination der Kanalstrukturen unterscheiden.One finding of the present invention is that it has recognized that a foil having an opening therein can be used inexpensively for at least one component in which channel structures are formed that at least partially form a respective component surface of the at least one component are open to individualize to a respective one of a plurality of channel structure combinations. The manufacturing costs for the microfluidic devices can thus be kept low, since a plurality of such at least one component, which are identical to one another, can be used to produce different microfluidic devices which differ in the connection combination of the channel structures.

Gemäß Ausführungsbeispielen kann als Folie eine selbstklebende Folie verwendet werden, was den Vorgang des Zusammenfügens der Mikrofluidvorrichtung sehr einfach gestalten lässtAccording to embodiments, a self-adhesive film can be used as the film, which makes the process of assembling the microfluidic device very simple

Gemäß Ausführungsbeispielen sind die Kanalstrukturen zudem in einer (gemeinsamen) Mikrofluidvorrichtung gebildet, um sich in der Bauteiloberfläche des einen Bauteils jeweils zumindest teilweise zu öffnen, wobei die Folie die Bauteiloberfläche dieses Bauteils so bedeckt, dass eine erste und eine zweite Kanalstruktur über eine lateral entlang der Bauteiloberfläche und innerhalb der Öffnung in der Folie führenden Pfad miteinander verbunden sind, während eine dritte Kanalstruktur nicht an die Öffnung angrenzt und von der Folie an der Bauteiloberfläche zumindest teilweise verschlossen wird. Mit dem gleichen Bauteil könnte eine unterschiedliche Mikrofluidvorrichtung gebildet werden, indem eine Folie die Bauteiloberfläche eines weiteren identischen Bauteils so bedeckt, dass beispielsweise die dritte Kanalstruktur mit einer der ersten oder der zweiten Kanalstruktur über eine lateral entlang der Bauteiloberfläche und innerhalb der Öffnung letztgenannter Folie führenden Pfads miteinander verbunden sind. Beide Mikrofluidvorrichtungen unterscheiden sich also in der Verbindung der Kanalstrukturen, obwohl ein identisch geformtes Bauteil zugrunde liegt.According to exemplary embodiments, the channel structures are also formed in a (common) microfluidic device so as to at least partially open in the component surface of the one component, wherein the film covers the component surface of this component such that a first and a second channel structure extend laterally along the component Component surface and within the opening in the film leading path interconnected While a third channel structure is not adjacent to the opening and is at least partially closed by the film on the component surface. With the same component, a different microfluid device could be formed by a film covering the component surface of another identical component such that, for example, the third channel structure with one of the first or the second channel structure over a laterally along the component surface and within the opening of the last-mentioned film path connected to each other. Both microfluidic devices thus differ in the connection of the channel structures, although an identically shaped component is the basis.

Die Herstellungskosten sind also insbesondere auch deshalb senkbar, weil das zugrundeliegende zumindest eine Bauteil in großen Stückzahlen in Spritzguss gefertigt werden kann.The production costs are therefore lower, in particular because the underlying at least one component can be manufactured in large quantities in injection molding.

Unter den letztgenannten Ausführungsbeispielen mit lateralem Verbindungspfad zwischen Kanalstrukturen innerhalb der Öffnung in der Folie sind bei den Ausführungsbeispielen die Öffnung auf der dem Bauteil gegenüberliegenden Seite von einer porösen Membran verschlossen, so dass Gas, wie z.B. Luft, die beim Einbringen von Flüssigkeiten, wie z.B. Analyten oder Proben, in den Kanalstrukturen verdrängt wird, über die poröse Membran entweichen kann, wiewohl die Flüssigkeiten sicher in den Fluidstrukturen zurückgehalten werden.In the latter embodiments with lateral communication path between channel structures within the opening in the foil, in the embodiments, the opening on the side opposite the component is closed by a porous membrane, so that gas such as e.g. Air introduced when introducing liquids, e.g. Analytes or samples in which channel structures is displaced, can escape through the porous membrane, although the liquids are safely retained in the fluid structures.

Weitere bevorzugte Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche.Further preferred embodiments are the subject of the dependent claims.

Nachfolgend werden bezugnehmend auf die Zeichnungen bevorzugte Ausführungsbeispiele der vorliegenden Anmeldung detailliert beschrieben, worunter

Fig. 1
eine schematische Draufsicht auf ein Bauteil zeigt, wie es für eine Mikrofluidvorrichtung gemäß einem Vergleichsbeispiel verwendet werden könnte;
Fig. 2a-d
schematische Draufsichten auf das Bauteil von Fig. 1 zur Veranschaulichung von vier verschiedenen exemplarischen Zielverbindungskombinationen zwischen den Kanalstrukturen und dem Bauteil;
Fig. 3
eine Raumansicht einer Mikrofluidvorrichtung gemäß einem Ausführungsbeispiel mit noch nicht angefügter Folie und ohne Deckel;
Fig. 4
eine Seitenschnittansicht der Mikrofluidvorrichtung von Fig. 3 entlang einer Schnittebene, die durch die Öffnung in der Folie verläuft;
Fig. 5a
und 5b Seitenschnittansichten der Mikrofluidvorrichtung von Fig. 3 entlang einer Schnittebene, die durch eine Kammer der Kanalstrukturen verläuft gemäß zweier unterschiedlicher Beispiele;
Fig. 6
eine Seitenschnittansicht einer Mikrofluidvorrichtung, die durch die Öffnung in der Folie verläuft, gemäß einem zur Fig. 3 alternativen Beispiel;
Fig. 7
eine Raumansicht einer Mikrofluidvorrichtung mit einem Bauteil, das zu demjenigen von Fig. 3 identisch ist, jedoch mit einer unterschiedlichen Folie zur Erzielung einer anderen Kanalstrukturverbindungskombination;
Fig. 8
eine Draufsicht auf die Bauteiloberfläche eines Bauteils, das als Grundlage für verschiedene unterschiedliche Mikrofluidvorrichtungen dienen kann, gemäß einem Ausführungsbeispiel;
Fig. 9a
bis 9d Aussichten auf die Mikrofluidvorrichtung von Fig. 8 mit eingezeichneter Öffnung der Folie, die die Bauteiloberfläche bedeckt, für vier unterschiedliche Kanalstrukturverbindungskombinationen gemäß einem Ausführungsbeispiel;
Fig. 10
eine Teilraumansicht auf eine Mikrofluidvorrichtung gemäß einem Ausführungsbeispiel mit ausgeblendeter Folie und darüber befindlicher Membran als Deckel;
Fig. 11
eine Teilraumansicht auf die Mikrofluidvorrichtung von Fig. 10 aus gleicher Perspektive, allerdings mit lediglich ausgeblendeter Membran und vorhandener Folie;
Fig. 12
Teilraumansicht auf die Mikrofluidvorrichtung von Fig. 10 und Fig. 11 mit Folie und Membran;
Fig. 13
Teilraumschnittansicht der Mikrofluidvorrichtung gemäß der Fig. 10 bis 12, wobei die Schnittebene durch die Kanalstruktur verbindende Öffnung in der Folie verläuft;
Fig. 14
eine Seitenschnittansicht einer Mikrofluidvorrichtung entlang einer Schnittebene, die durch die Öffnung in der Folie verläuft, gemäß einem alternativen Ausführungsbeispiel; und
Fig. 15
eine Seitenschnittansicht einer Mikrofluidvorrichtung entlang einer Schnittebene, die durch einen flachen Abschnitt eines Kanals einer Kanalstruktur verläuft gemäß einem alternativen Ausführungsbeispiel.
Hereinafter, referring to the drawings, preferred embodiments of the present application will be described in detail
Fig. 1
a schematic plan view of a component, as could be used for a microfluidic device according to a comparative example;
Fig. 2a-d
schematic plan views of the component of Fig. 1 to illustrate four different exemplary target connection combinations between the channel structures and the component;
Fig. 3
a perspective view of a microfluidic device according to an embodiment with not yet attached foil and without cover;
Fig. 4
a side sectional view of the microfluidic device of Fig. 3 along a cutting plane passing through the opening in the film;
Fig. 5a
and FIG. 5b are side sectional views of the microfluidic device of FIG Fig. 3 along a sectional plane passing through a chamber of the channel structures according to two different examples;
Fig. 6
a side sectional view of a microfluidic device, which passes through the opening in the film, according to a Fig. 3 alternative example;
Fig. 7
a space view of a microfluidic device with a component that to that of Fig. 3 is identical, but with a different film to achieve a different channel structure combination;
Fig. 8
a plan view of the component surface of a component, which may serve as a basis for various different microfluidic devices, according to an embodiment;
Fig. 9a
to 9d prospects for the microfluidic device of Fig. 8 with a marked opening of the film which covers the component surface, for four different channel structure connection combinations according to an embodiment;
Fig. 10
a partial space view of a microfluidic device according to an embodiment with hidden film and befindlichem membrane as a lid;
Fig. 11
a partial space view of the microfluidic device of Fig. 10 from the same perspective, but with only blanked membrane and existing film;
Fig. 12
Partial view of the microfluidic device of Fig. 10 and Fig. 11 with foil and membrane;
Fig. 13
Subspace sectional view of the microfluidic device according to the 10 to 12 wherein the sectional plane extends through the channel structure connecting opening in the film;
Fig. 14
a side sectional view of a microfluidic device along a cutting plane which passes through the opening in the film, according to an alternative embodiment; and
Fig. 15
a side sectional view of a microfluidic device along a sectional plane passing through a flat portion of a channel of a channel structure according to an alternative embodiment.

Bevor im Folgenden detaillierte Ausführungsbeispiele der vorliegenden Anmeldung beschrieben werden, wird darauf hingewiesen, dass einander gleiche oder entsprechende Elemente in diesen Figuren mit den gleichen Bezugszeichen versehen sind, und dass eine wiederholte Beschreibung dieser Elemente und ihrer Funktion unterbleibt. Vielmehr sollen die Ausführungen zu diesen Elementen zu vorhergehenden Figuren auch auf die nachfolgenden Figuren übertragbar sein, soweit nicht in der jeweiligen Figur eigens auf Unterschiede hingewiesen wird.Before describing detailed embodiments of the present application in the following, it is pointed out that the same or corresponding one another Elements in these figures are provided with the same reference numerals, and that a repeated description of these elements and their function is omitted. Rather, the remarks on these elements to previous figures should also be transferable to the following figures, unless specifically indicated in the respective figure differences.

Fig. 1 zeigt die Draufsicht auf ein Vergleichsbeispiel für ein Bauteil mit einer Kanalstruktur. Bei dem Bauteil handelt es sich beispielsweise um ein Spritzgussteil und wie auch in den nachfolgend beschriebenen Ausführungsbeispielen wird für das Bauteil das Bezugszeichen 10 verwendet. Fig. 1 zeigt die Draufsicht auf eine Bauteiloberfläche 12 des Bauteils 10. In dem Fall von Fig. 1 ist die äußere Form des Bauteils 10 im Wesentlichen quaderförmig, aber andere Formen wären ebenfalls denkbar, wie parallelepipedförmig, zylinderförmig oder dergleichen. Dementsprechend handelt es sich bei der Bauteiloberfläche 12, wie sie in Fig. 1 sichtbar ist, um eine der Hauptseiten des Bauteils 10, und ist zudem eben, aber einfach gekrümmte Bauteiloberflächen wären beispielsweise ebenfalls denkbar. Auch in den nachfolgend beschriebenen Ausführungsbeispielen wird hierauf nicht mehr näher eingegangen, aber die soeben gemachten Ausführungen in Bezug auf das Bauteil 10 gelten auch für die nachfolgend beschriebenen Ausführungsbeispiele. Fig. 1 shows the top view of a comparative example of a component with a channel structure. The component is, for example, an injection molded part and, as in the embodiments described below, the reference numeral 10 is used for the component. Fig. 1 shows the top view of a component surface 12 of the component 10. In the case of Fig. 1 For example, the outer shape of the component 10 is substantially cuboid but other shapes would also be conceivable, such as parallelepiped, cylindrical or the like. Accordingly, the component surface 12 as shown in FIG Fig. 1 is visible to one of the main sides of the component 10, and is also planar, but simply curved component surfaces would also be conceivable, for example. Also in the embodiments described below will not be discussed in more detail, but the just made statements with respect to the component 10 also apply to the embodiments described below.

In dem Fall von Fig. 1 ist in dem Bauteil 10 eine Kanalstruktur gebildet. Sie umfasst Kanäle 14 und Kammern 16a, 16b, 16c und 16d, von denen die Kammern 16b und 16d beispielsweise als Sensorstätten dienen mögen, an denen unterschiedliche Sensoren unterschiedliche Messungen in der jeweiligen Kammer durchführen können, während es sich bei den Kammern 16a und 16c beispielsweise um Reservoire bzw. Quellen für Flüssigkeiten handeln kann, wie z.B. Analyte oder Proben.In the case of Fig. 1 a channel structure is formed in the component 10. It includes channels 14 and chambers 16a, 16b, 16c and 16d, of which the chambers 16b and 16d may serve as sensor sites, for example, where different sensors can perform different measurements in the respective chamber, while the chambers 16a and 16c, for example may be reservoirs or sources of fluids, such as analytes or samples.

Zum Verständnis der Prinzipien und Vorteile nachfolgend beschriebener Ausführungsbeispiele der vorliegenden Erfindung ist es nicht wesentlich wie das Bauteil 10 von Fig. 1 tatsächlich ausgeführt ist. Prinzipiell ist es möglich, dass die Kanäle 14 und 16a - 16d in der Bauteiloberfläche in Form von Vertiefungen gebildet sind, wobei ein Deckelbauteil diese Vertiefungen an der Bauteiloberfläche 12 abdeckt, wodurch sich im Innern die in Fig. 1 dargestellte Fluidstruktur ausbildet, nach welcher die Kanäle 14 in mehrere Abschnitte verzweigt sind. Jeweils ein Kanalabschnitt 14a - 14d führt von einer jeweiligen Kammer 16a - 16d zu einem gemeinsamen Verbindungsabschnitt 14e. Insbesondere verbindet der Abschnitt 14e Knotenpunkte, an denen sich die Abschnitte 14a, 14c und 14e bzw. 14b, 14d und 14e treffen.To understand the principles and advantages of embodiments of the present invention described below, it is not essential as the component 10 of Fig. 1 actually executed. In principle, it is possible for the channels 14 and 16a-16d to be formed in the surface of the component in the form of recesses, with a cover component covering these recesses on the component surface 12, as a result of which the inside in FIG Fig. 1 formed fluid structure, according to which the channels 14 are branched into several sections. In each case a channel section 14a-14d leads from a respective chamber 16a-16d to a common connecting section 14e. In particular, the section 14e connects nodes at which the sections 14a, 14c and 14e or 14b, 14d and 14e meet.

Aus verschiedenen Gründen kann es aber bei einigen Anwendungen wünschenswert sein, wenn einige der Kanalabschnitte 14a - 14d fehlten. Ein nicht benötigtes Reservoir kann beispielsweise dazu führen, dass Flüssigkeit, wie z.B. Analyt oder eine Probe, in Richtung dieses Reservoirs abzweigt. Dies könnte zu verschiedenen unerwünschten Nebeneffekten führen. Ähnliches gilt für die Sensorstätten 16b und 16d. In einigen Anwendungen mag es bevorzugt sein, wenn lediglich eine Sensorstätte von einem Reservoir erreicht wird. Die Fig. 2a bis 2d zeigen die vier Kombinationsmöglichkeiten, wonach eines der Reservoire 16a und 16c mit einem der Sensorstätten 16b und 16d verbunden ist. Wie es zu erkennen ist, würden eigentlich nur jeweils drei der Kanalabschnitte benötigt. Zur Realisierung der vier verschiedenen Varianten nach Fig. 2a - 2d müssten also entweder vier verschiedenen Bauteile 10 hergestellt werden, oder aber die Idee, die den nachfolgend beschriebenen Ausführungsbeispielen zugrunde liegt, wird verwendet.However, for some applications, it may be desirable in some applications if some of the channel sections 14a-14d were missing. For example, an unneeded reservoir may cause fluid, such as analyte or a sample, to branch toward that reservoir. This could lead to various unwanted side effects. The same applies to the sensor sites 16b and 16d. In some applications, it may be preferable if only one sensor site is reached from a reservoir. The Fig. 2a to 2d show the four possible combinations, according to which one of the reservoirs 16a and 16c is connected to one of the sensor sites 16b and 16d. As can be seen, only three of the channel sections would actually be needed. To realize the four different variants Fig. 2a - 2d Thus, either four different components 10 would have to be produced, or else the idea on which the exemplary embodiments described below are based is used.

In anderen Worten ausgedrückt, wäre es wünschenswert, im Laufe der Fertigung der Mikrofluidvorrichtung den Weg der Flüssigkeit in den Kanälen so näher zu bestimmen, dass beispielsweise die Flüssigkeit entweder nur zu dem einen Sensor 16b oder zu dem anderen Sensor 16d fließen kann, wobei gleiches für die Quellen 16a und 16c der Flüssigkeit gilt. Gemäß nachfolgend beschriebenen Ausführungsbeispielen besitzen im Vergleich zu dem Bauteil von Fig. 1 die in demselben befindlichen Kanäle keine direkte Verbindung mittels Kanälen zu den flexibel anzubindenden Kammern für die Sensorstätten oder Quellen. Vielmehr ist die Verbindung, also der Kanal oder die Kanäle, an ein oder mehreren Stellen unterbrochen. Das Spritzgussteil wird dann mit einer Folie versehen, welche eine oder mehrere Öffnungen bzw. Aussparungen aufweist, die (jeweils) eine Art Brücke zwischen den getrennten Kanalstrukturen, wie z.B. Kanalenden derselben, an den Unterbrechungen, bilden. Auf diese Weise kann mittels der Folie entschieden werden, welche der Kanalstrukturen bzw. Kanalenden miteinander verbunden werden. An dieser Stelle sei nur kurz darauf hingewiesen, dass nachfolgende Ausführungsbeispiele lediglich der Einfachheit halber und zum besseren Verständnis lediglich auf eine Verbindungsöffnung in der Folie eingehen, dass aber natürlich auch mehrere dieser Sorte vorhanden sein könnten.In other words, in the course of fabrication of the microfluidic device, it would be desirable to further define the path of the fluid in the channels so that, for example, the fluid can either flow only to one sensor 16b or to the other sensor 16d, with the same the sources 16a and 16c of the liquid apply. According to embodiments described below have in comparison to the component of Fig. 1 the channels located in the same, no direct connection by means of channels to the flexible chambers for the sensor sites or sources. Rather, the connection, so the channel or channels, is interrupted at one or more points. The injection molded part is then provided with a foil which has one or more openings or recesses which (in each case) form a kind of bridge between the separate channel structures, such as channel ends thereof, at the interruptions. In this way it can be decided by means of the film which of the channel structures or channel ends are connected to one another. At this point, it should be pointed out briefly that the following exemplary embodiments are merely for the sake of simplicity and for better understanding, only a connection opening in the film, but of course that several of these types could also be present.

Fig. 3 zeigt ein Ausführungsbeispiel für eine Mikrofluidvorrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Mikrofluidvorrichtung von Fig. 3 ist allgemein mit 20 angezeigt. Sie umfasst ein Bauteil 22, in dem bzw. in denen Kanalstrukturen 24a, 24b und 24c gebildet sind, die zumindest teilweise zu einer Bauteiloberfläche 26 des Bauteils 22 offen sind. Wie im Vorhergehenden erwähnt, kann es sich bei dem Bauteil 22 um ein Spritzgussteil handeln. In dem exemplarischen Fall von Fig. 3 sind die Kanalstrukturen vollständig zu der Bauteiloberfläche 26 des Bauteils offen, d.h. sie sind in Form von Vertiefungen bzw. Ausnehmungen in der Bauteiloberfläche 26 gebildet. Nach Zusammenbau werden sie von einer Folie 28 der Mikrofluidvorrichtung 20 zumindest teilweise abgedeckt. Gemäß dem Ausführungsbeispiel von Fig. 3 umfassen die Vertiefungen 24a - 24c Gräben 30a - 30c und Schächte 32a - 32c, die zusammen mit der Folie 28 Kanäle bzw. Kammern bilden. Fig. 3 shows an embodiment of a microfluidic device according to an embodiment of the present invention. The microfluidic device of Fig. 3 is generally indicated with 20. It comprises a component 22, in which or in which channel structures 24a, 24b and 24c are formed which are at least partially open to a component surface 26 of the component 22. As mentioned above, the component 22 may be an injection molded part. In the exemplary case of Fig. 3 the channel structures are completely open to the component surface 26 of the component, ie they are formed in the form of depressions or recesses in the component surface 26. After assembly they are at least partially covered by a film 28 of the microfluidic device 20. According to the embodiment of Fig. 3 The recesses 24a-24c include trenches 30a-30c and shafts 32a-32c which together with the film 28 form channels or chambers.

Wie es in Fig. 3 gezeigt ist, ist das Bauteil 22 von Fig. 3 in Form eines Substrats gebildet bzw. als ein flacher Quader und die Kanalstrukturen 24a - 24c öffnen sich alle an einer Hauptseite, nämlich der Oberseite, des Bauteils 22. Wie im Vorhergehenden aber bereits erwähnt, kann das Bauteil 22 prinzipiell jede Form annehmen und natürlich ebenso die Bauteiloberfläche 26.As it is in Fig. 3 is shown, the component 22 of Fig. 3 formed in the form of a substrate or as a flat cuboid and the channel structures 24a - 24c all open on one main side, namely the top of the component 22. As mentioned above, however, the component 22 can in principle take any shape and of course as well the component surface 26.

In dem Fall von Fig. 3 sind die Kanalstrukturen 24a - 24c zudem lateral voneinander beabstandet. Das bedeutet, die Kanalstrukturen 24a - 24c besitzen zueinander keine fluidische Verbindung innerhalb des Bauteils 22. Die fluidische Verbindung zwischen einer Teilmenge aus den Kanalstrukturen 24a - 24c wird erst durch die Folie 28 hergestellt, wie es im Folgenden noch näher erörtert wird, wobei die Teilmenge jeder der Menge von Kanalstrukturen 24a - 24c entsprechen kann. In dem Fall von Fig. 3 ergeben sich also vier Möglichkeiten für Kanalstrukturverbindungskombinationen.In the case of Fig. 3 In addition, the channel structures 24a-24c are laterally spaced from each other. This means that the channel structures 24a-24c have no fluidic connection to one another within the component 22. The fluidic connection between a subset of the channel structures 24a-24c is first produced by the film 28, as will be discussed in more detail below, wherein the subset each of the set of channel structures 24a-24c may correspond. In the case of Fig. 3 Thus, there are four possibilities for channel structure connection combinations.

Bei dem Bauteil 22 kann es sich, wie im Vorhergehenden erwähnt, um ein Spritzgussteil handeln. Es kann damit kostengünstig in großen Stückzahlen hergestellt werden. Bevorzugterweise ist das Bauteil 22 in sich stabil und benötigt keinen weiteren Träger. Eine flexible Ausgestaltung wäre aber ebenfalls möglich. Beispielhafte Materialien für das Bauteil 22 sind Polycarbonat (PC), Polymetylmetacrylat (PMMA), Cycloolefinpolymer (COP) und Cycloolefin-Copolymer (COC).As mentioned above, the component 22 can be an injection-molded part. It can thus be produced inexpensively in large quantities. Preferably, the component 22 is inherently stable and requires no further carrier. A flexible design would also be possible. Exemplary materials for component 22 include polycarbonate (PC), polymethylmethacrylate (PMMA), cycloolefin polymer (COP), and cycloolefin copolymer (COC).

Die Folie ist vorzugsweise flexibel ausgestaltet. Material und Folienstärke bzw. -dicke können variieren. Beispielsweise ist die Foliendicke kleiner oder gleich 1 mm oder sogar kleiner oder gleich 0,5 mm. Das Material der Folie 28 kann Kunststoff sein, wobei aber auch andere Materialien vorstellbar sind, wie z.B. Metall.The film is preferably designed flexibly. Material and film thickness or thickness may vary. For example, the film thickness is less than or equal to 1 mm or even less than or equal to 0.5 mm. The material of the film 28 may be plastic, but other materials such as e.g. Metal.

Die Folie 28 umfasst eine Öffnung 34, d.h. eine Aussparung, die sich über die gesamte Dicke der Folie 28 hinweg erstreckt, d.h. von einer Vorderseite der Folie 28 bis zu einer Rückseite derselben. In Fig. 3 ist die Folie 28 noch nicht in dem zusammengefügten Zustand dargestellt. In dem zusammengefügten Zustand befindet sich die Folie 28 auf der Bauteiloberfläche 26, wie es durch gepunktete Linien 36 angedeutet ist. In dem Fall von Fig. 2 verbindet die Öffnung 34 in dem zusammengefügten Zustand die Kanalstrukturen 24a und 24c. Wie es mit gestrichelten Linien 38 angedeutet ist, erreicht sie dies, indem sie in dem zusammengefügten Zustand die Kanäle 30a und 30c überdeckt. Die Kanalstruktur 24b hingegen wird von der Folie 28 an der Bauteiloberfläche 26 verschlossen, so dass dieselbe insbesondere nicht über die Öffnung 34 mit den anderen beiden Kanalstrukturen 24a und 24b fluidisch verbunden ist. Die Öffnung 34 in der Folie 28 realisiert somit eine der oben bereits erwähnten vier Kanalstrukturverbindungskombinationen, wobei in Fig. 7 eine andere Folie 28' mit einer anderen Öffnung 34' gezeigt ist, die zu einer anderen der vier Kombinationsmöglichkeiten führt, bei der nämlich die Kanalstrukturen 24a und 24b miteinander verbunden werden, indem die Öffnung 34' in dem zusammengefügten Zustand die Gräben 30a und 30b überdeckt, aber von der Kanalstruktur 24c lateral getrennt ist. Es ist ohne weiteres ersichtlich, wie Folien für die anderen beiden Kombinationsmöglichkeiten aussehen könnten.The film 28 comprises an opening 34, ie a recess which extends over the entire thickness of the film 28, ie from a front side of the film 28 to a rear side thereof. In Fig. 3 the film 28 is not yet shown in the assembled state. In the assembled state, the film 28 is on the component surface 26, as indicated by dotted lines 36. In the case of Fig. 2 In the assembled state, the opening 34 connects the channel structures 24a and 24c. As indicated by dashed lines 38, it accomplishes this by providing in the assembled state, the channels 30a and 30c covered. The channel structure 24b, however, is closed by the film 28 on the component surface 26, so that it is not in particular fluidly connected via the opening 34 with the other two channel structures 24a and 24b. The opening 34 in the film 28 thus implements one of the four channel structure connection combinations already mentioned above, wherein Fig. 7 another film 28 'is shown with a different opening 34', which leads to another of the four possible combinations in which the channel structures 24a and 24b are interconnected by the opening 34 'in the assembled state covering the trenches 30a and 30b but laterally separated from the channel structure 24c. It is readily apparent how films could look for the other two possible combinations.

Was in Fig. 3 nicht gezeigt ist, ist, dass die Öffnung 34 in der Folie 28 bzw. der darin von der Kanalstruktur 24a zu der Kanalstruktur 24c und umgekehrt führende Pfad auf einer der Bauteiloberfläche 26 abgewandten Seite mit einem Deckel verschlossen ist. Der Deckel kann, wie es später bezüglich der Fig. 4 bis 5b gezeigt wird, eine poröse Membran sein, kann aber auch, wie es bezüglich Fig. 6 gezeigt wird, ein weiteres Bauteil sein, d.h. ein weiteres Spritzgussteil, in welchem evtl. sogar einer oder mehrere oder weitere Kanalstrukturen gebildet sind.What in Fig. 3 is not shown, that the opening 34 in the film 28 and the therein of the channel structure 24a to the channel structure 24c and vice versa leading path on a side facing away from the component surface 26 is closed with a lid. The lid can, as it later regarding the Fig. 4 to 5b can be a porous membrane, but can also, as it regards Fig. 6 is shown, another component, ie, a further injection molded part, in which possibly even one or more or more channel structures are formed.

Die Folie ist beispielsweise auf die Bauteiloberfläche 26 geklebt. Es ist vorteilhaft, wenn die Bauteiloberfläche 26, wie in Fig. 3 gezeigt, eben oder zumindest nur einfach gekrümmt ist, damit sich beim Applizieren keine Falten bilden. Ecken bzw. Kanten könnten in der Oberfläche aber auch vorhanden sein. Bei der Folie 28 kann es sich insbesondere um eine selbstklebende Folie handeln. Wenn also die Mikrofluidvorrichtung von Fig. 3 hergestellt wird, dann reicht es zum Zusammenfügen von Bauteil und Folie aus, die Folie 28 auf die Bauteiloberfläche 26 aufzubringen, wie es z.B. durch Abrollen und/oder Andrücken, und zwar mit der selbstklebenden Seite der Bauteiloberfläche zugewandt. Bei der selbstklebenden Folie handelt es sich beispielsweise um ein Klebeband. Die Folie 28 kann auch eine beidseitig selbstklebende Folie, wie z.B. beidseitig mit einer Klebeschicht versehenes Klebeband, sein. In diesem Fall ist es möglich, auch den vorerwähnten Deckel auf der der Oberfläche 26 abgewandeten Seite der Folie 28 beim Zusammenfügen einfach dadurch zu befestigen, dass der jeweilige Deckel auf die der Oberfläche 26 abgewandeten Seite der Folie 28 einfach aufgebracht bzw. angedrückt wird. Ein anderweitiges Kleben des Deckels auf die Folie 28 ist dabei aber ebenfalls möglich. Vor allem existieren auch andere Möglichkeiten zur Fügung als die Komponenten 22, 28 und den Deckel miteinander zu verkleben. Die Komponenten könnten auch mit einer Klemmvorrichtung geklemmt werden, wie z.B. durch einen Extrarahmen, der die Folie 28 gegen die Oberfläche 26 presst. Anstelle eines Haftmittels bzw. einer Klebeschicht zwischen den Komponenten könnte auch eine Befestigung mittels Anschmelzens, wie z.B. des Folienmaterials 28, an die Oberfläche 26, verwendet werden. Thermokompressionsbonden wäre eine Möglichkeit. In dem Fall einer selbstklebenden Folie kann der Klebstoff, der an die Kanalstrukturen und vor allem das darin befindliche Fluid angrenzt, so gewählt sein, dass das Angrenzen für die jeweilige Anwendung unkritisch ist. Das gleiche gilt unabhängig von dem Vorliegen oder Nicht-Vorliegen der selbstklebenden Eigenschaft auch für das Material der Folie.The film is glued to the component surface 26, for example. It is advantageous if the component surface 26, as in Fig. 3 shown, flat or at least only slightly curved so that no wrinkles form during application. Corners or edges could also be present in the surface. The film 28 may in particular be a self-adhesive film. So if the microfluidic device of Fig. 3 is produced, then it is sufficient for joining of the component and the film to apply the film 28 on the component surface 26, as for example, by rolling and / or pressing, with the self-adhesive side facing the component surface. The self-adhesive film is, for example, an adhesive tape. The film 28 may also be a self-adhesive film on both sides, such as adhesive tape provided on both sides with an adhesive layer. In this case, it is also possible to fix the above-mentioned cover on the side of the film 28 facing away from the surface 26 during assembly simply by simply applying or pressing the respective cover onto the side of the film 28 facing away from the surface 26. An otherwise gluing the lid on the film 28 is also possible. Above all, there are other possibilities for joining than the components 22, 28 and glue the lid together. The components could also be clamped with a clamping device such as an extra frame which presses the film 28 against the surface 26. Instead of An adhesive or an adhesive layer between the components could also be an attachment by means of melting, such as the film material 28, to the surface 26, are used. Thermocompression bonding would be an option. In the case of a self-adhesive film, the adhesive which adjoins the channel structures and, in particular, the fluid located therein, may be chosen such that the abutment for the respective application is not critical. The same applies regardless of the presence or absence of the self-adhesive property also for the material of the film.

Bevor bezugnehmend auf Fig. 4 anhand eines Seitenschnitts eines zusammengefügten Zustands der Mikrofluidvorrichtung von Fig. 3 das Wesen der diesem Ausführungsbeispiel zugrundeliegende Idee noch näher erläutert wird, soll noch darauf hingewiesen werden, dass Fig. 3 in vielerlei Hinsicht lediglich exemplarisch ist in Bezug auf die Ausgestaltung der Kanalstrukturen 24a - 24c in dem Bauteil 22. Es ist bereits darauf hingewiesen worden, dass die Kanalstrukturen 24a - 24c lediglich exemplarisch in Fig. 3 ausschließlich Vertiefungen aufweisen. Die Kanalstrukturen 24a - 24c könnten vielmehr auch teilweise vergraben im Innern des Bauteils 22 gebildet sein, d.h. Teile aufweisen, die nicht erst durch die Folie 28 an der Bauteiloberfläche 26 verschlossen werden. Ferner können die Kanalstrukturen 24a - 24c auch Löcher bzw. Durchgänge zu einer gegenüberliegenden Seite des Bauteils 22 aufweisen. Ein solcher Durchgang ist exemplarisch mit einer gepunkteten Linie in Fig. 3 bei 40 in dem Boden des Schachts 32a angedeutet. Dieser Durchgang könnte beispielsweise als Auslass oder Einlass für eine Flüssigkeit dienen, wenn die Kanalstruktur 24a als Quelle für Flüssigkeiten dienen soll bzw. als Auslass. Allerdings könnte die Öffnung 40 auch dafür vorgesehen sein, damit ein an die Unterseite des Bauteils 22 anbringbarer Sensor in Kontakt mit der Flüssigkeit in der Kammer 32a geraten kann, um eine Sensormessung vornehmen zu können, wie z.B. eine elektrochemische, potentiometrische, amperometrische, eine optische Messung, eine gravimetrische oder dergleichen. Ein solcher Sensor könnte vor Auslieferung der Mikrofluidvorrichtung 20 im Zuge der Herstellung bereits angebracht werden oder erst nach Auslieferung beim Kunden montiert werden. Insbesondere ist es möglich, dass die Mikrofluidvorrichtung 20 ein Wegwerfprodukt darstellt, wohingegen der Sensor mehrmals verwendet wird. Auch die Anzahl der Kanalstrukturen beträgt hier lediglich exemplarisch nur drei und kann auch mehr sein.Before referring to Fig. 4 by a side section of an assembled state of the microfluidic device of FIG Fig. 3 the nature of the underlying this embodiment, the idea will be explained in more detail, it should be noted that Fig. 3 in many respects is merely exemplary with respect to the design of the channel structures 24a-24c in the component 22. It has already been pointed out that the channel structures 24a-24c are merely exemplary in FIG Fig. 3 have only depressions. Rather, the channel structures 24a-24c could also be partially buried formed in the interior of the component 22, ie parts that are not first closed by the film 28 on the component surface 26. Furthermore, the channel structures 24a - 24c may also have holes or passages to an opposite side of the component 22. Such a passage is exemplified by a dotted line in FIG Fig. 3 indicated at 40 in the bottom of the duct 32a. This passage could, for example, serve as an outlet or inlet for a liquid if the channel structure 24a is to serve as a source of fluids or as an outlet. However, the opening 40 could also be provided so that a sensor attachable to the underside of the component 22 can come into contact with the liquid in the chamber 32a to make a sensor measurement, such as electrochemical, potentiometric, amperometric, optical Measurement, a gravimetric or the like. Such a sensor could already be installed prior to delivery of the microfluidic device 20 in the course of production or only be mounted after delivery to the customer. In particular, it is possible for the microfluidic device 20 to be a disposable product, whereas the sensor is used multiple times. Also, the number of channel structures here is only three by way of example and may be more.

Fig. 4 zeigt nun eine Seitenschnittansicht der Mikrofluidvorrichtung von Fig. 3. Wie es zu sehen ist, wird die Öffnung 34 in der Folie 28 von einem Deckel auf einer der Bauteiloberfläche 26 gegenüberliegenden Seite geschlossen, wobei der Deckel eine poröse Membran 42 ist. Die poröse Membran 34 ermöglicht ein Ausgasen von Überschussluft. Die poröse Membran 42 kann insbesondere aus einem Material bestehen oder eine Oberfläche aufweisen, die der Öffnung 34 in der Folie 28 zugewandt ist, das mit Wasser einen Kontaktwinkel größer 90° bildet bzw. wasserabweisend ist. Natürlich könnte das Material auch so gebildet sein, dass es zusätzlich oder alternativ mit anderen Materialen einen Kontaktwinkel größer 90° bildet. Fig. 4 now shows a side sectional view of the microfluidic device of Fig. 3 , As can be seen, the opening 34 in the film 28 is closed by a lid on a side opposite the component surface 26, the lid being a porous membrane 42. The porous membrane 34 allows outgassing of excess air. The porous membrane 42 may in particular consist of a material or have a surface which faces the opening 34 in the film 28, which with Water forms a contact angle greater than 90 ° or is water-repellent. Of course, the material could also be formed to additionally or alternatively form a contact angle greater than 90 ° with other materials.

Wie im vorhergehenden erwähnt ist die Folie 28 dünn ausgestaltet. Im Zusammenhang mit der porösen Membran bietet es zusätzlich zu der Verringerung der Baugröße einen Vorteil, wenn die Folie dünner ausgestaltet ist: aufgrund des an dieser Stelle im Gegensatz zu den Kanalstrukturen verringerten Flussquerschnitts im Bereich zwischen Membran 42 und Oberfläche 26, erhöht sich lokal der Druck, was das Ausgasen über die Membran 42 fördert. So ist der Flussquerschnitt des Durchflusspfades im Bereich der Öffnung 34 kleiner als der durchschnittliche Querschnitt der Kanäle der Kanalstrukturen (d.h. exklusive der Kammern), wie z.B. kleiner als 80% oder sogar kleiner als 50% des letztgenannten. Zudem verhindert eine zu große Dicke der Folie 28 im Bereich der Öffnung 34, dass Gasblasen ohne Berührung der Membran 42 den Bereich der Öffnung 34 passieren können, sodass selbige einem Entweichen über die Membran 42 entgingen, oder anders ausgedrückt fördert eine geringere Dicke die Wahrscheinlichkeit, dass eine Gasblase die Membran berührt, was den Wirkungsgrad der Entgasung fördert.As mentioned above, the film 28 is made thin. In connection with the porous membrane, in addition to the reduction in size, it offers an advantage when the film is made thinner: due to the reduced in this region in contrast to the channel structures flow cross-section in the region between the membrane 42 and surface 26, locally increases the pressure , which promotes the outgassing through the membrane 42. Thus, the flow area of the flow path in the area of the opening 34 is smaller than the average cross section of the channels of the channel structures (i.e., excluding the chambers), e.g. less than 80% or even less than 50% of the latter. In addition, excessive thickness of the film 28 in the region of the opening 34 prevents gas bubbles from passing through the region of the opening 34 without touching the membrane 42, thus escaping escape through the membrane 42, or in other words, a smaller thickness promotes the likelihood of that a gas bubble touches the membrane, which promotes the efficiency of degassing.

Es soll noch darauf hingewiesen werden, dass, obwohl Fig. 3 zeigt, dass die Folie 28 die Oberfläche 26 ganzflächig bzw. zu einem Teil bedeckt, so dass die Kanalstrukturen 24a - 24c, soweit deren Öffnung zu deren Oberfläche 26 betroffen ist, vollständig abgedeckt werden, dies nicht unbedingt notwendig ist. Ähnliches gilt für die poröse Membran 42. Diese kann natürlich ganzflächig über die Folie 28 hinweg gebildet sein bzw. an ihr angefügt sein, aber es ist natürlich ebenfalls möglich, dass sie nur geringfügig über den Rand der Öffnung 34 hinausragt.It should be noted that, though Fig. 3 shows that the film 28, the surface 26 over the whole or a part covered so that the channel structures 24a - 24c, as far as the opening to the surface 26 is concerned, are completely covered, this is not absolutely necessary. The same applies to the porous membrane 42. Of course, this can be over the entire surface of the film 28 formed across or be attached to her, but it is of course also possible that it protrudes only slightly beyond the edge of the opening 34.

Wie es in Fig. 3 gezeigt ist, kann die Folie 20 auch weitere Öffnungen 44 aufweisen. Die in Fig. 3 exemplarisch gezeigte Öffnung 44 ist in dem zusammengefügten Zustand zu der Kammer 32c ausgerichtet. In Fig. 5a ist gezeigt, dass die so entstehende Öffnung nach oben exemplarisch dazu verwendet werden kann, sich in der Kammer 32c befindliche Flüssigkeit aus derselben zu verdrängen. Wie es in dem Beispiel von Fig. 5a zu sehen ist, ist hierzu eine verformbare Membran 46 dazu vorgesehen, die Öffnung 44 auf einer der Oberfläche 26 abgewandeten Seite der Folie 28 abzudecken. Ein Aktuator 48 ist vorgesehen, um die Membran in die Öffnung 44 bzw. die Kammer 32c zu drücken. Obwohl der Aktuator auch anderes ausgestaltet sein könnte, wie z.B. mittels eines Piezoelementes oder dergleichen, ist in Fig. 5a eine Variante dargestellt, wonach der Aktuator 48 an einer den Bauteil 22 abgewandten Seite so an die Folie 28 oder die verformbare Membran 46 montiert ist, so dass auf einer der Öffnung 44 abgewandeten Seite der verformbaren Membran 46 eine abgeschlossene Kammer 50 gebildet wird, in der sich eine Substanz, wie z.B. Wasser befindet, die durch Elektrolyse mittels in der Kammer 50 befindlichen Elektroden 52 chemisch von einem flüssigen in einen gasförmigen Zustand umgewandelt wird, wodurch die dadurch resultierende Dichteverringerung und Ausdehnung eine Kraft auf die verformbare Membran 46 ausübt, die sich daraufhin in die Öffnung 44 bzw. Kammer 32c hinein ausbeult und dort Flüssigkeit verdrängt. Die verformbare Membran 46 ist beispielsweise eine flexible Membran, die dazu tendiert, wieder ihren ursprünglichen Zustand einzunehmen. Wie es in Fig. 5a gezeigt ist, kann der Aktuator beispielsweise durch eine Mehrschichtanordnung aus mehreren Schichten 54a und 54b gebildet sein, wie zum Beispiel eine Mehrschichtplatine, und zwar beispielsweise mit einer Abstandshalterschicht 54b mit einer Aussparung für die Kammer 50 und einen die Elektroden 52 aufweisenden Schicht 54a, wobei sich die Abstandshalterschicht 54b zwischen der Schicht 54a und dem Substrat 22 befindet.As it is in Fig. 3 is shown, the film 20 may also have further openings 44. In the Fig. 3 By way of example, aperture 44 is aligned with chamber 32c in the assembled condition. In Fig. 5a It is shown that the resulting upward opening can be used as an example to displace liquid contained in the chamber 32c therefrom. As in the example of Fig. 5a can be seen, this is a deformable membrane 46 provided to cover the opening 44 on a side facing away from the surface 26 of the film 28. An actuator 48 is provided to urge the membrane into the opening 44 and the chamber 32c, respectively. Although the actuator could be configured differently, such as by means of a piezoelectric element or the like, is in Fig. 5a a variant is shown, according to which the actuator 48 is mounted on a side facing away from the component 22 to the film 28 or the deformable membrane 46, so that on a side facing away from the opening 44 of the deformable membrane 46, a sealed chamber 50 is formed containing a substance, such as water, which is chemically converted from a liquid to a gaseous state by electrolysis by means of electrodes 52 located in the chamber 50, whereby the resulting density reduction and expansion is a force on the deformable membrane 46 exerts, which then bulges into the opening 44 and chamber 32 c inside and displaces liquid there. The deformable membrane 46 is, for example, a flexible membrane that tends to return to its original state. As it is in Fig. 5a For example, the actuator may be formed by a multilayer arrangement of multiple layers 54a and 54b, such as a multilayer board, such as a spacer layer 54b having a recess for the chamber 50 and a layer 54a having the electrodes 52 the spacer layer 54b is located between the layer 54a and the substrate 22.

In Fig. 3 ist mit einer gestrichelten Linie 56 angedeutet, dass es möglich ist, dass sich die flexible Membran 46 und/oder die Mehrschichtanordnung 54 lateral nur auf einer Seite befindet, wohingegen die andere Seite der Linie 56 von der porösen Membran 42 bedeckt wird.In Fig. 3 is indicated with a dashed line 56 that it is possible that the flexible membrane 46 and / or the multilayer assembly 54 is laterally located on one side only, whereas the other side of the line 56 is covered by the porous membrane 42.

Fig. 5b zeigt ein zur Fig. 5a alternatives Beispiel. Bei dem Beispiel von Fig. 5b weist bereits die Folie 28 eine ausreichend hohe Verformbarkeit auf, um zur Verdrängung des in der Kammer 32c befindlichen Flüssigkeitsinhalts durch den Aktuator 48 in Richtung der Kammer 32c gedrückt zu werden. Gemäß dem Beispiel von Fig. 5b kann somit die Öffnung 44 fehlen und der Aktuator 48 direkt auf die Folie 28 auf einer dem Bauteil 22 abgewandten Seite derselben montiert sein. Fig. 5b shows one to Fig. 5a alternative example. In the example of Fig. 5b For example, the film 28 already has a sufficiently high ductility to be pressed by the actuator 48 in the direction of the chamber 32c in order to displace the liquid content located in the chamber 32c. According to the example of Fig. 5b Thus, the opening 44 may be missing and the actuator 48 may be mounted directly on the film 28 on a side facing away from the component 22 thereof.

Fig. 6 zeigt eine bereits im Vorhergehenden angesprochene nicht beanspruchte Alternative zu Fig. 3, wonach als Deckel ein weiteres Bauteil 56 verwendet wird. Insbesondere zeigt Fig. 6, dass es möglich ist, dass die Kanalstrukturen 24a-24c einer Mikrofluidvorrichtung gemäß Beispielen nicht etwa alle in einem einzigen Bauteil 22 vorgesehen sind, sondern das dieselben in mehren Bauteilen verteilt gebildet sind. Fig. 6 zeigt exemplarisch deshalb ein modifiziertes Bauteil 22', das sich von demjenigen aus Fig. 3 dadurch unterscheidet, dass die Kanalstruktur 24c in dem Bauteil 22'fehlt. Diese Kanalstruktur 24c ist vielmehr in dem zusammengefügten Zustand, wie er in Fig. 6 dargestellt ist, spiegelbildlich zu ihrer ursprünglichen Position im Bauteil 22'relativ zu der Ebene der Folie 28 in dem Bauteil 56 gebildet, und zwar in einer Bauteiloberfläche 58 desselben, mit welcher das Bauteil 56 an die dem Bauteil 22' abgewandte Seite der Folie 28 angefügt ist. Das Bauteil 56 besitzt beispielsweise die gleichen Abmessungen wie das Bauteil 42', d.h. ist beispielsweise ebenfalls substrat- beziehungsweise quaderförmig. Die Öffnung 34 in der Folie 28 verbindet somit Kanalstrukturen in unterschiedlichen Bauteilen 22'beziehungsweise 56, nämlich den Kanal 30a mit dem Kanal 30c in dem Bauteil 56. Bei dem Beispielvon Fig. 6 sind ähnliche Vorteile im Bezug auf die Kanalstrukturverbindungskombinationen erzielbar, wie es bei dem Ausführungsbeispiel von Fig. 3 beziehungsweise 7 der Fall war, wobei allerdings, wie es Bezug nehmend auf Fig. 4 beschrieben worden ist, die Ausgestaltung gemäß Fig. 3 die Möglichkeit der Verwendung einer porösen Membran bietet, mit den damit verbundenen Vorteilen im Bezug auf Ausgasung usw. Fig. 6 shows an unclaimed alternative already mentioned above Fig. 3 , according to which a further component 56 is used as cover. In particular shows Fig. 6 in that it is possible that the channel structures 24a-24c of a microfluidic device according to examples are not all provided in a single component 22, but that they are formed distributed in a plurality of components. Fig. 6 shows by way of example therefore a modified component 22 ', which differs from the one Fig. 3 characterized in that the channel structure 24c in the component 22'mehlt. Rather, this channel structure 24c is in the assembled state as shown in FIG Fig. 6 is shown, mirror image of its original position in the component 22 'relative to the plane of the film 28 formed in the component 56, in a component surface 58 thereof, with which the component 56 to the component 22' opposite side of the film 28 added is. The component 56 has, for example, the same dimensions as the component 42 ', that is, for example, also substrate-like or cuboid. The opening 34 in the film 28 thus connects channel structures in different components 22 'and 56 respectively, namely the channel 30a with the channel 30c in the component 56. In the example of FIG Fig. 6 Similar advantages with respect to the channel structure connection combinations can be achieved, as is the case in the exemplary embodiment of FIG Fig. 3 and 7, respectively, but with reference to FIG Fig. 4 has been described, the embodiment according to Fig. 3 offers the possibility of using a porous membrane, with the associated benefits in terms of outgassing, etc.

Bitte kurz zurückkehrend auf die Beschreibung der Fig. 1 und 2a - 2d, kann also eine Lösung des bezüglich dieser Fig. dargestellten Problems dadurch erzielt werden, dass eine Kombination aus einem Bauteil und einer Folie gemäß der Beispiele/Ausführungsbeispiele von Fig. 3 - 7 verwendet wird.Please return briefly to the description of the Fig. 1 and 2a - 2d Thus, a solution of the problem described with respect to this figure can be achieved by using a combination of a component and a foil according to the examples / embodiments of FIG Fig. 3 - 7 is used.

Es sollte darauf hingewiesen werden, dass bei den Beispielen/Ausführungsbeispielen von Fig. 3 - 7 die Kanalstrukturen 24a - 24c, die Kombinationsweise miteinander zu verbinden waren, jeweils einen Graben 30a - 30c aufwiesen, die zumindest über einen Abschnitt 60 (Fig. 7) parallel zueinander verliefen, d.h. derart, dass zumindest ein Kanal zu einem anderen Kanal parallel verläuft. Insbesondere verlaufen über die Länge 60 hinweg nicht alle Kanäle zueinander durchweg parallel. Die einzelnen Kanäle ragen von den zwei Seiten längs der Kanalausbreitungsrichtung 62 mehr oder weniger in den Abschnitt 60 hinein. Diese Konfiguration ermöglichte es, dass längliche Öffnungen in der Folie 28 mit einer Längsrichtung 64 quer zur geraden Erstreckungsrichtung 62 mehr oder weniger die Kanalstrukturen gezielt miteinander verbinden. Die Lage dieser Öffnungen 34 in den Richtungen 62 und 64 und die Länge der Richtung 64 dieser Öffnungen bestimmt dann, welche Kanalstrukturen miteinander verbunden werden.It should be noted that in the examples / embodiments of Fig. 3 - 7 the channel structures 24a-24c, which were to be combined in a combination manner, each had a trench 30a-30c which, at least over a section 60 (FIG. Fig. 7 ) parallel to one another, ie such that at least one channel runs parallel to another channel. In particular, over the length 60, not all channels run parallel to each other throughout. The individual channels project more or less into the section 60 from the two sides along the channel propagation direction 62. This configuration allows elongated apertures in the film 28 having a longitudinal direction 64 transverse to the straight span direction 62 to more or less selectively interconnect the channel structures. The location of these openings 34 in the directions 62 and 64 and the length of the direction 64 of these openings then determines which channel structures are interconnected.

Nachfolgend wird Bezug nehmend auf die Fig. 8 ein Ausführungsbeispiel für ein Bauteil 22 beschrieben, das fünf Kanalstrukturen 24a - 24e aufweist, die ebenfalls jeweils einen Graben 30a-30e aufweisen, die über einen Abschnitt 60 hinweg entlang der Bauteiloberfläche 26 parallel zueinander verlaufen, sodass eine Vielzahl von Kanalstrukturverbindungskombinationsmöglichkeiten bestehen, indem eine Öffnung 34 der Folie über der Bauteiloberfläche 26 mit einer Längsrichtung 64 quer zur Grabenerstreckungsrichtung 62 innerhalb des Bereichs 60 in Lage und Länge der Öffnung 34 variiert wird, wie es Bezug nehmend auf Fig. 7 beschrieben worden ist. Fig. 9a - 9d zeigen vier verschiedene Kombinationsmöglichkeiten. Schwarze Pfeile in den Figuren zeigen Kanalstrukturen an, die über die jeweilige Öffnung 34 miteinander verbunden sind. Weiße Pfeile wurden für Kanalstrukturen verwendet, die von den verbundenen Kanalstrukturen getrennt bleiben.Hereinafter, referring to the Fig. 8 An embodiment of a component 22 having five channel structures 24a-24e, each also having a trench 30a-30e extending across a portion 60 along the component surface 26, is parallel to one another, such that a plurality of channel structure combination options exist by forming an aperture 34 of the film over the component surface 26 is varied with a longitudinal direction 64 transverse to the trench extension direction 62 within the region 60 in position and length of the opening 34, as referenced in FIG Fig. 7 has been described. Fig. 9a - 9d show four different combinations. Black arrows in the figures indicate channel structures which are interconnected via the respective opening 34. White arrows were used for channel structures that are kept separate from the connected channel structures.

Wie es in Fig. 8 zu sehen ist, kann es sinnvoll sein, einige der Gräben der Kanalstrukturen, hier die Gräben 30c und 30d kollinear aus gegenüberliegenden Richtungen in den Bereich 60 zu führen, und zwar mit einer Lücke 66 zwischen den selben, mit welcher dieselben in der Erstreckungsrichtung 62 voneinander beabstandet sind, wobei die Lücke 66 in Richtung 62 ausreichend groß ist, um beispielsweise die Breite einer der länglichen Öffnungen 34 unterzubringen. Auf diese Weise ist es möglich, die Gräben 30a - 30e der Kanalstrukturen 24a-24e in Richtung 64 möglichst nah aneinander zu bringen, wenn es andererseits beispielsweise aus irgendwelchen Gründen nach keiner gewünschten Kanalstrukturverbindungsmöglichkeit notwendig sein soll, dass auch die Kanalstrukturen der kollinear aufeinander zulaufenden Gräben, hier die Kanalstrukturen 24c und 24b, miteinander verbunden sein sollen, wobei natürlich auch dies grundsätzlich möglich wäre, in dem eine breitere Öffnung 34 verwendet wird. Fig. 9a - 9d zeigen nun verschiedene Lagen der Öffnung 34 in der Folie 28. Die Öffnungen 34 der Fig. 9a - 9d verbindet immer jeweils drei der Kanalstrukturen miteinander, wie es in den Figuren gezeigt ist.As it is in Fig. 8 2, it may be useful to collinearly guide some of the trenches of the channel structures, here trenches 30c and 30d, from opposite directions into region 60, with a gap 66 therebetween, with which they extend in the extension direction 62 from one another are spaced, wherein the gap 66 in the direction 62 is sufficiently large, for example, to accommodate the width of one of the elongated openings 34. In this way, it is possible to bring the trenches 30a-30e of the channel structures 24a-24e as close together as possible in the direction 64, on the other hand, if, for example, for any reason, no desired channel structure connection possibility is necessary, that the channel structures of the collinear trenches converge Here, the channel structures 24c and 24b should be connected to each other, of course, this would also be possible in principle, in which a wider opening 34 is used. Fig. 9a - 9d Now show different layers of the opening 34 in the film 28. The openings 34 of Fig. 9a - 9d always connects three of the channel structures together, as shown in the figures.

Fig. 10 zeigt ein zu dem Ausführungsbeispiel von Fig. 8 - 9d ähnliches Ausführungsbeispiel einer Mikrofluidvorrichtung. Während in Fig. 10 der Zustand dargestellt ist, bei dem die Folie und eine poröse Membran als Deckel noch nicht montiert sind, zeigen die Fig. 11 und 12 jeweils den Zustand mit Folie, aber ohne Membran bzw. mit beidem. Fig. 13 zeigt eine Schnittdarstellung, in der die Öffnung 34 in der Folie zu sehen ist. Das Ausführungsbeispiel der Fig. 10 - 13 entspricht somit dem Ausführungsbeispiel der Fig. 3 in dem Beispiel / der Ausführung gemäß Fig. 4 und Fig. 5a und zeigt somit auch ein Beispiel, wie eine Beschränkung des lateralen Ausdehnungsbereichs für die poröse Membran 42, wie er durch die gestrichelte Linie 56 in Fig. 3 veranschaulicht worden ist, auch aussehen kann. Bei dem Ausführungsbeispiel von Fig. 10 - 13 erstreckt sich die Folie 28 wiederum ganzflächig auf der Oberseite 26 des Bauteils 22. Die poröse Membran 42 hingegen erstreckt sich lediglich lateral im Innern der Ausnehmung in der Mehrschichtanordnung des Aktuators 48. Die eigentlichen Aktuatororte des Aktuators 46 sind in Fig. 10 - 13 nicht gezeigt, aber können beispielsweise wie in Fig. 5a gezeigt gestaltet sein. Fig. 10 shows a to the embodiment of Fig. 8 - 9d similar embodiment of a microfluidic device. While in Fig. 10 the state is shown in which the film and a porous membrane are not mounted as a lid, show the Fig. 11 and 12 each state with foil, but without membrane or both. Fig. 13 shows a sectional view in which the opening 34 can be seen in the film. The embodiment of Fig. 10 - 13 corresponds to the embodiment of the Fig. 3 in the example / execution according to Fig. 4 and Fig. 5a and thus also shows an example such as a restriction of the lateral expansion area for the porous membrane 42 as indicated by the dashed line 56 in FIG Fig. 3 may also have been visualized. In the embodiment of Fig. 10 - 13 In turn, the film 28 extends over the entire surface on the upper side 26 of the component 22. The porous membrane 42, however, extends only laterally in the interior of the recess in the multilayer arrangement of the actuator 48. The actual actuator locations of the actuator 46 are in Fig. 10 - 13 not shown, but can for example like in Fig. 5a be designed shown.

Gemäß obigen Ausführungsbeispielen kann somit als Folie eine einseitige Klebefolie verwendet werden, wobei die Verwendung einer beidseitig klebenden Folie besonders vorteilhaft sein kann. An der Aussparungsstelle 34 der Folie 28 kann ein Deckel vorgesehen, um einen an dieser Stelle nach oben offenen Kanal zu schließen. Dieser Deckel kann, wie es im Vorhergehenden beschrieben worden ist, ebenfalls in Form einer Folie gestaltet sein. Der Deckel kann sich lateral auf die Aussparungsstelle beschränken. Er verschließt die Aussparungsstelle von oben. Gemäß den oben beschriebenen Ausführungsformen mit einer beidseitigen Klebefolie 28 kann an dieser Stelle der Deckel direkt aufgeklebt werden. Der Deckel muss hier jedoch nicht vollständig geschlossen sein. Wie es im Vorhergehenden beschrieben worden ist, kann der Deckel durch eine poröse Membran gebildet sein. Dies ermöglicht ein Entweichen von ggf. von unerwünschten und ggf. im Kanalsystem vorhandenen Gasblasen. Die poröse Membran kann zudem aus einem Material gebildet sein, welches von der Flüssigkeit nicht benetzt wird. Ist die Flüssigkeit eine wasserbasierte Flüssigkeit, so eignet sich hier besonders eine Membran mit einer Oberfläche oder aus einem Material mit niedriger Oberflächenenergie. Beispiele hierfür sind Fluorpolymere, wie z.B. PTFE, PVDF usw.Thus, according to the above embodiments, a one-sided adhesive film can be used as the film, and the use of a double-sided adhesive film can be particularly advantageous. At the recess 34 of the film 28, a lid may be provided to close a channel open at this point. This cover can also be designed in the form of a foil, as has been described above. The lid can be limited laterally to the recess. He closes the recess from above. According to the embodiments described above with a double-sided adhesive film 28 can be glued directly at this point the lid. However, the lid does not have to be completely closed here. As described above, the lid may be formed by a porous membrane. This allows escape of possibly unwanted and possibly present in the duct system gas bubbles. The porous membrane may also be formed of a material which is not wetted by the liquid. If the liquid is a water-based liquid, a membrane with a surface or a material with a low surface energy is particularly suitable here. Examples include fluoropolymers, such as PTFE, PVDF, etc.

Insbesondere die leichte Kombinierbarkeit aus konfigurierbaren fluidischen Verbindungen und Blasenfalle stellt einen weiteren Vorteil einiger oben beschriebener Ausführungsbeispiele dar, da hierfür nur drei Teile benötigt werden, nämlich das feststehende Bauteil mit Kanalsystem bzw. Reservoiren, die strukturierte Folie sowie die Deckelmembran.In particular, the easy combinability of configurable fluidic connections and bubble trap represents a further advantage of some embodiments described above, since this only three parts are needed, namely the fixed component with channel system or reservoirs, the structured film and the cover membrane.

Neben dem zuvor beschriebenen selektiven Verbinden von Kanälen kann auf die gezeigte Art und Weise, beispielsweise auch eine Flüssigkeitsquelle (Reservoir), welche nicht benötigt wird, abgetrennt werden. Das ist beispielsweise dann sinnvoll, wenn ein feststehendes mikrofluidisches Teil, wie z.B. eines der Bauteile 22 der oben beschriebenen Ausführungsbeispiele, eine Vielzahl von Reservoiren enthält, für eine bestimmte Anwendung jedoch nur ein Teil hierfür benötigt wird. Würden in einem solchen Fall alle Reservoire mittels Kanäle miteinander verbunden sein, so könnte Flüssigkeit die Luft in diesen Reservoiren komprimieren und so in Richtung dieser leeren (weil nicht benötigten) Reservoire fließen. Bei den oben genannten Ausführungsbeispielen kann das Problem dadurch gelöst werden, dass die Reservoire eben nicht direkt mit dem Kanalsystem verbunden sind, sondern, wie zuvor beschrieben, erst über eine "Brücke" in Form einer Aussparung mit einer Folie miteinander verbunden werden. Für Anwendungen, wo diese Verbindung nicht notwendig ist, wird eben die vor erwähnte Öffnung entsprechend so gestaltet, dass keine Anbindung entsteht.In addition to the selective connection of channels described above can be in the manner shown, for example, a liquid source (reservoir), which is not required to be separated. This is useful, for example, if a fixed microfluidic part, such as e.g. one of the components 22 of the embodiments described above, contains a plurality of reservoirs, for a particular application, however, only a part thereof is needed. If, in such a case, all reservoirs were connected to each other by channels, then liquid could compress the air in these reservoirs and thus flow in the direction of these empty (because not required) reservoirs. In the above embodiments, the problem can be solved in that the reservoirs are just not directly connected to the channel system, but, as described above, are first connected to each other via a "bridge" in the form of a recess with a film. For applications where this connection is not necessary, just the above-mentioned opening is designed accordingly so that no connection is created.

Bei den oben genannten Ausführungsbeispielen handelt es sich beispielsweise bei den Kammern 32a, 32d und 32e um Reservoire und bei den Kammern 32c und 32b um Sensorstätten, d. h. Orte, an denen Sensoren positioniert sind bzw. positionierbar sind.In the above embodiments, for example, the chambers 32a, 32d and 32e are reservoirs and the chambers 32c and 32b are sensor sites, i. H. Places where sensors are positioned or can be positioned.

Oben genannte Reservoire können auch mit Pumpen versehen sein. Solche Pumpen können mittels Elektrolyse betrieben werden, wie es Vorhergehenden auch beschrieben wurde. Die Elektrolyse erzeugt dabei ein Gas, nämlich in oben erwähnter Kammer 50, und verformt eine Membran, nämlich die verformbare Membran 46, die sich angrenzend zu dem jeweiligen Reservoir befindet. Die Membran kann sich dann in dieses Reservoir verwölben und das darin enthaltene Fluid verdrängen. Sind mehrere dieser Reservoire über ein gemeinsames Kanalsystem verbunden, welches letztlich in einem Auslass oder Abfallbehälter mündet, und enthielte eines der Reservoire anstatt einer Flüssigkeit Luft, so könnte die aus einem Reservoir mittels der Elektrolysepumpe gepumpte Flüssigkeit anstatt in Richtung Auslass/Abfallbehälter in das leere (luftgehüllte) Reservoir fließen. Die einzige Alternative zu obigen "Abtrennen" des Reservoirs mittels geeigneter Platzierung und Ausgestaltung der Folie gemäß obiger Ausführungsbeispiele bestünde lediglich im Füllen auch der nicht benutzten Reservoire, was jedoch einen zusätzlichen Material- und Fertigungsaufwand bedeutete.The above-mentioned reservoirs can also be provided with pumps. Such pumps can be operated by electrolysis, as previously described. The electrolysis thereby generates a gas, namely in the above-mentioned chamber 50, and deforms a membrane, namely the deformable membrane 46, which is adjacent to the respective reservoir is located. The membrane can then warp into this reservoir and displace the fluid contained therein. If several of these reservoirs are connected via a common channel system, which ultimately flows into an outlet or waste container, and one of the reservoirs contains air instead of a liquid, the liquid pumped from a reservoir by means of the electrolysis pump could be introduced into the empty (instead of outward / waste) container. air-shrouded) reservoir flow. The only alternative to the above "separation" of the reservoir by means of suitable placement and design of the film according to the above embodiments would be only in the filling of the unused reservoirs, but this meant an additional material and manufacturing costs.

Die Membran 46, die in diesem Fall, vorzugsweise keine poröse Membran ist, sondern vielmehr vorzugsweise eine sich beispielsweise plastisch verformende Membran, kann sich bei Aufschlagung in einem Druck in Richtung des feststehenden Teils bzw. des Bauteils 22 die Verbindung zwischen zwei Kanälen temporär oder dauerhaft unterbrechen. Fig. 14 zeigt eine solche Alternative. Als Deckel für die Öffnung 34 wird die verformbare Membran 46 verwendet, oberhalb welcher sich wiederum ein Aktuator 48 befindet. Der Querschnitt des lateralen Pfades 70 durch die Öffnung 34 in der Folie 28 kann zumindest reduziert werden oder der Pfad unterbrochen werden. Eine Einengung in dem Querschnitt des Pfades 70 kann häufig ausreichend sein.The membrane 46, which in this case is preferably not a porous membrane, but rather preferably a membrane which deforms plastically, for example, can be temporarily or permanently connected to two or more channels upon impact with a pressure in the direction of the fixed part or component 22 interrupt. Fig. 14 shows such an alternative. As a cover for the opening 34, the deformable membrane 46 is used, above which in turn is an actuator 48. The cross-section of the lateral path 70 through the opening 34 in the film 28 may be at least reduced or the path interrupted. Narrowing in the cross-section of the path 70 may often be sufficient.

Fig. 15 zeigt eine weitere Alternative zu dem Ausführungsbeispiel von Fig. 14. Nach dieser Alternative ist das Bauteil 22" zu dem Bauteil von Fig. 3 unterschiedlich gebildet, nämlich dadurch, dass der Bereich der Oberfläche 26 zwischen den Kanälen 30a und 30c in dem Bereich der Öffnung 34 um eine Tiefe abgesenkt ist, die kleiner ist als eine Tiefe der Gräben 30a - 30c, so dass der Flusswiderstand eingestellt werden kann, die sich bei gedrückter Membran 46 und bei nicht-gedrückter Membran 46 ergibt. Anstelle einer Absenkung des Bereiches der Oberfläche 26, wie in Fig. 15 gezeigt, kann natürlich auch eine Erhöhung vorhanden sein. Insgesamt lässt sich also durch die Ausführungen nach Fig. 14 und 15 eine Ventilwirkung erreichen. Ein solcher Schritt kann beispielsweise nach dem Befüllen eines Reservoirs geschehen, um dieses zu verschließen. Wird nun die Flüssigkeit im Reservoir, wie z. B. mittels der oben beschriebenen Elektrolysepumpen, mit einem ausreichend großen Druck beaufschlagt, so löst die Membran 46 wieder von dem Bauteil 22 bzw. 22" und die Flüssigkeit kann das Reservoir in das Kanalsystem vermittels des Pfades 70 in das Kanalsystem verlassen. Fig. 15 shows a further alternative to the embodiment of Fig. 14 , According to this alternative, the component 22 "to the component of Fig. 3 formed differently, namely in that the area of the surface 26 between the channels 30a and 30c is lowered in the region of the opening 34 by a depth which is smaller than a depth of the trenches 30a - 30c, so that the flow resistance can be adjusted, which results when the membrane 46 is pressed and when the membrane 46 is not depressed. Instead of lowering the area of the surface 26, as in FIG Fig. 15 shown, of course, an increase may be present. Overall, so can be through the comments FIGS. 14 and 15 achieve a valve effect. Such a step may, for example, be done after filling a reservoir to close it. Now, the liquid in the reservoir, such. B. by means of the electrolysis pumps described above, applied with a sufficiently large pressure, the membrane 46 again dissolves from the component 22 or 22 "and the liquid can leave the reservoir in the channel system by means of the path 70 in the channel system.

Das Beaufschlagen der Membran 46 mit einem Druck in Richtung des Bauteils 22 kann auch als aktives Ventil benutzt werden, wenn beispielsweise unmittelbar oder mittelbar der Druck eines mittels der Elektrolyse erzeugter Gasdruck ist. In diesem Fall muss die Unterbrechung zwischen den Kanälen oder dem Kanal oder dem Reservoir nicht vollständig sein, sondern kann ebenfalls als Vertiefung ausgebildet werden, die jedoch vorzugsweise flacher als der anschließende Kanal ist, wie es bezugnehmend auf Fig. 15 gezeigt worden ist, also mittels einer flachen Abschnitts in einem Kanal der Kanalstrukturen. Eine solche Vertiefung muss auch nicht unbedingt zwischen getrennten Kanalstrukturen im Sinne der Kanalstrukturen 24a - 24e vorhergehender Ausführungsbeispiele vorhanden sein. Eine solche Vertiefung bzw. flache Stelle in den Gräben kann auch den vor erwähnten Gräben 30a - 30c innerhalb einer einzelnen Kanalstruktur vorhanden sein, um eben, wie erwähnt, den Fluss von einem entsprechenden Reservoir oder in ein entsprechendes Reservoir zu steuern.The application of the membrane 46 with a pressure in the direction of the component 22 can also be used as an active valve, if, for example, directly or indirectly the Pressure of a gas pressure generated by the electrolysis is. In this case, the interruption between the channels or the channel or the reservoir need not be complete, but may also be formed as a recess, which is, however, preferably shallower than the subsequent channel, as with reference to FIG Fig. 15 has been shown, ie by means of a flat portion in a channel of the channel structures. Such a depression does not necessarily have to be present between separate channel structures in the sense of the channel structures 24a-24e of the preceding exemplary embodiments. Such a depression in the trenches can also be present in the above-mentioned trenches 30a-30c within a single channel structure in order, as mentioned, to control the flow from a corresponding reservoir or into a corresponding reservoir.

Obige Ausführungsbeispiele beschrieben somit Mikrofluidvorrichtungen, bei denen es möglich war, verschiedene Mikrofluidvorrichtungen auf Basis eines feststehenden mikrofluidischen Teils zu bilden, das für alle identisch ist. Dabei war es möglich, beispielsweise von zwei Sensoren und zwei Flüssigkeitsquellen je eine/n über eine Brücke mit dem Kanalsystem und einer weiteren Flüssigkeitsquelle zu verbinden. Das war beispielsweise bei den Ausgestaltungen nach Fig. 9a und 9d der Fall, wo ungefüllte Pfeile andeuten, dass hier keine Flüssigkeit fließen kann. Obige Ausführungsbeispiele zeigen auch Realisierungsvarianten, mit einer porösen Membran als Blasenfalle. Ventile zum Verschließen, z. B. eines Reservoirs können vorhanden sein, wie es im Vorhergehenden beschrieben worden ist.The above embodiments thus described microfluidic devices in which it was possible to form different microfluidic devices based on a fixed microfluidic part that is identical for all. It was possible, for example by two sensors and two fluid sources each one to connect via a bridge with the channel system and another liquid source. This was, for example, in the embodiments after Fig. 9a and 9d the case where unfilled arrows indicate that no liquid can flow here. The above embodiments also show implementation variants, with a porous membrane as a bubble trap. Valves for closing, z. B. a reservoir may be present, as has been described above.

Insbesondere beschrieben obige Ausführungsbeispiele somit auch ein mikrofluidisches System, das zumindest ein Teil mit festgelegten Kanalstrukturen aufweist, wobei zumindest zwei Kanalstrukturen im feststehenden Teil zunächst keine Verbindung miteinander aufweisen, die Verbindung stattdessen dadurch hergestellt wird, dass eine Folie, welche die Kanalstrukturen zumindest teilweise bedeckt, eine Öffnung aufweist, die mindestens zwei der nicht verbundenen Kanalstrukturen im feststehenden Teil miteinander verbindet. Zwei im feststehenden Teil nicht miteinander verbundene Kanalstrukturen können zu je einer alternativ bestückbaren Position führen. Ferner kann das mikrofluidische System so gestaltet sein, dass zwei im feststehenden Teil nicht miteinander verbundene Kanalstrukturen von einer anderen Flüssigkeitsquelle bzw. Reservoir kommen. Es ist ebenfalls möglich, dass sich im feststehenden Teil mindestens vier nicht miteinander verbundene Kanalstrukturen befinden, von denen je drei mittels einer Aussparung in einer Folie verbunden werden können, um entweder von zwei alternativen Sensorbereichen oder zwei alternativen Flüssigkeitsquellen eine auszuwählen und mit einer weiteren Flüssigkeitsquelle zu verbinden. Schließlich ist es aber ebenfalls möglich, dass im feststehenden Teil mindestens fünf nicht miteinander verbundene Kanalstrukturen vorhanden sind, von denen drei mittels einer Aussparung in einer Folie verbunden werden können, wobei eine feste Flüssigkeitsquelle mit einen von zwei alternativen Sensorbereichen sowie einer von zwei alternativen Flüssigkeitsquellen verbunden wird. Bei der Folie kann es sich um ein Klebeband handeln, wobei es sich bei dem Klebeband wiederum um ein auf beide Seiten mit einer Klebeschicht versehendes Klebeband handeln kann. Die Aussparung in der Folie ist mit einem Deckel verschlossen. Dieser Deckel weist eine poröse Membran auf. Das Material dieser Membran kann aus einem Material bestehen oder mit selbigem beschichtet sein, das mit dem Kanalsystem zu transportierenden Flüssigkeit einen Kontaktwinkel größer 90° bildet. Die poröse Membran kann aus einem wasserabweisenden Material bestehen, wobei es sich bei dem wasserabweisenden Material auch um ein Fluor enthaltendes Polymer handeln kann. Auf der vom feststehenden Teil abgewandten Seite der Folie kann sich eine Membran befinden, die durch Beaufschlagung mit einem Druck zumindest teilweise in die Aussparung der Folie gedrückt werden kann. Dabei kann der für die Verformung notwendige Druck durch Elektrolyse vom Wasser oder einer zumindest teilweise Wasser enthaltenden Flüssigkeit hervorgerufen werden.In particular, the above embodiments thus also describe a microfluidic system which has at least one part with fixed channel structures, wherein at least two channel structures in the stationary part initially have no connection to one another, the connection is instead produced by a foil which at least partially covers the channel structures, an opening connecting at least two of the unconnected channel structures in the stationary part. Two channel structures not connected to one another in the stationary part can each lead to an alternatively populated position. Furthermore, the microfluidic system may be designed such that two channel structures which are not connected to one another in the stationary part come from a different fluid source or reservoir. It is also possible that there are at least four non-interconnected channel structures in the stationary part, three each of which can be connected by a recess in a foil to select one of two alternative sensor regions or two alternative liquid sources and to another liquid source connect. Finally, it is also possible that at least five non-interconnected channel structures are present in the fixed part, of which three by means of a Recess may be connected in a film, wherein a solid fluid source is connected to one of two alternative sensor areas and one of two alternative fluid sources. The film may be an adhesive tape, wherein the adhesive tape may in turn be an adhesive tape provided with an adhesive layer on both sides. The recess in the film is closed with a lid. This lid has a porous membrane. The material of this membrane may be made of a material or be coated with selbigem that forms a contact angle greater than 90 ° with the channel system liquid to be transported. The porous membrane may be made of a water-repellent material, wherein the water-repellent material may also be a fluorine-containing polymer. On the side facing away from the fixed part of the film, a membrane may be located, which can be at least partially pressed into the recess of the film by applying pressure. In this case, the necessary pressure for the deformation by electrolysis of water or at least partially water-containing liquid can be caused.

Bei der Herstellen einer Vielzahl von unterschiedlichen Mikrofluidvorrichtungen ist es also gemäß obiger Ausführungsbeispiele möglich folgende Schritte zu verwenden: Bereitstellen einer Vielzahl von zumindest einem Bauteil, in dem bzw. in denen Kanalstrukturen gebildet sind, die zumindest teilweise zu einer jeweiligen Bauteiloberfläche des zumindest einen Bauteils offen sind, wobei die Vielzahl untereinander identisch ist; Bereitstellen einer Vielzahl von Folien, die eine Öffnung aufweisen; Fügen einer ersten Teilmenge der Vielzahl von zumindest einem Bauteil und einer ersten Teilmenge der Vielzahl von Folien, so dass über die Öffnung in der jeweiligen Folie zumindest eine erste und eine zweite der Kanalstrukturen miteinander verbunden sind, um erste Mikrofluidvorrichtungen zu bilden; und Fügen einer zweiten Teilmenge der Vielzahl von zumindest einem Bauteil und einer zweiten Teilmenge der Vielzahl von Folien, so dass über die Öffnung in der jeweiligen Folie zumindest eine dritte und eine vierte der Kanalstrukturen miteinander verbunden sind, um zweite Mikrofluidvorrichtungen zu bilden, wobei zumindest beim Fügen der ersten Vielzahl das Fügen so durchgeführt wird, dass die dritte und vierte Kanalstruktur nicht miteinander über die Folie verbunden sind, oder das Fügen der zweiten Vielzahl so durchgeführt wird, dass die erste und zweite Kanalstruktur nicht über die Folie miteinander verbunden werden, so dass sich die ersten und zweiten Mikrofluidvorrichtungen in der Verbindung der Kanalstrukturen unterscheiden.In the production of a plurality of different microfluid devices, it is thus possible according to the above embodiments to use the following steps: providing a plurality of at least one component in which channel structures are formed that are at least partially open to a respective component surface of the at least one component are, wherein the plurality are identical to each other; Providing a plurality of films having an opening; Joining a first subset of the plurality of at least one member and a first subset of the plurality of sheets so that at least a first and a second of the channel structures are interconnected via the opening in the respective sheet to form first microfluidic devices; and joining a second subset of the plurality of at least one component and a second subset of the plurality of films so that at least a third and a fourth of the channel structures are interconnected via the opening in the respective film to form second microfluidic devices, at least at Joining the first plurality, the joining is performed so that the third and fourth channel structure are not connected to each other via the film, or the joining of the second plurality is performed so that the first and second channel structure are not connected to each other via the film, so that the first and second microfluidic devices differ in the connection of the channel structures.

Bezugnehmend auf die vorhergehende Beschreibung wird nun darauf hingewiesen, dass zur Erzielung der unterschiedlichen Kanalstrukturverbindungsmöglichkeiten nicht unbedingt unterschiedliche Folien notwendig sind. Je nach gewünschter Kanalstruktur und Verbindungskombinationen, kann es auch ausreichend sein, zueinander identische Folien auf identische Bauteile aufzukleben, allerdings mit unterschiedlichen Positionen zueinander.Referring now to the foregoing description, it should be understood that different films are not necessarily required to achieve the different channel structure interconnect capabilities. Depending on the desired channel structure and connection combinations, It may also be sufficient to glue identical films to identical components, but with different positions to each other.

Obige Ausführungsbeispiele zeigten also unter anderem eine Mikrofluidvorrichtung mit zumindest einem Bauteil 22, in dem bzw. in denen Kanalstrukturen 24a gebildet sind, die zumindest teilweise zu einer jeweiligen Bauteiloberfläche 26 des zumindest einen Bauteils 22 offen sind; und einer Folie 28, die eine Öffnung 24; 34' aufweist, über die zumindest eine erste und eine zweite der Kanalstrukturen 24a, 24c; 24a, 24b miteinander verbunden sind, und die zumindest eine dritte der Kanalstrukturen an 24b; 24c der jeweiligen Bauteiloberfläche 26 zumindest teilweise verschließt, so dass dieselbe nicht über die Öffnung 34; 34' mit der ersten und zweiten Kanalstruktur verbunden ist. Die erste bis dritte Kanalstruktur können dabei in dem gleichen Bauteil gebildet sein und sich jeweils in der Bauteiloberfläche desselben zumindest teilweise öffnen, wobei die Folie die Bauteiloberfläche des gleichen Bauteils so bedeckt, dass die erste und zweite Kanalstruktur über einen lateral entlang der Bauteiloberfläche des gleichen Bauteils und innerhalb der Öffnung in der Folie führenden Pfad miteinander verbunden sind, während die dritte Kanalstruktur nicht an die Öffnung angrenzt. Der innerhalb der Öffnung 24 in der Folie führende Pfad kann auf einer der Bauteiloberfläche 26 des gleichen Bauteils 22 abgewandten Seite mit einem Deckel verschlossen sein oder mit einem weiteren des zumindest einen Bauteils. Der durch die Öffnung in der Folie führende Pfad auf einer der Bauteiloberfläche des gleichen Bauteils abgewandten Seite mit einer verformbaren Membran als Deckel verschlossen ist Der durch die Öffnung 34 in der Folie 28 führende Pfad ist auf einer der Bauteiloberfläche 26 des gleichen Bauteils 22 abgewandten Seite mit einer porösen Membran 42 als Deckel verschlossen. Insbesondere kann der durch die Öffnung in der Folie führende Pfad auf einer der Bauteiloberfläche des gleichen Bauteils abgewandten Seite mit einer verformbaren Membran als Deckel verschlossen sein. Die Mikrofluidvorrichtung kann ferner einen Aktuator zum Drücken der verformbaren Membran in die Öffnung aufweisen. Die erste bis dritte Kanalstruktur 24a können Vertiefungen in der Bauteiloberfläche des gleichen Bauteils aufweisen, die von der Folie zumindest teilweise abgedeckt sind. Die Vertiefungen können Gräben 30aund/oder Schächte 32a umfassen, um zusammen mit der Folie Kanäle bzw. Kammern zu bilden. Es ist ferner möglich, dass die Folie verformbar ist, und die Mikrofluidvorrichtung ferner einen Aktuator zum Drücken der Folie in eine Vertiefung des zumindest einen Bauteils an der jeweiligen Bauteiloberfläche aufweist, in der die Vertiefung gebildet ist, wobei die Vertiefung Teil der Kanalstrukturen ist. Die Folie 28 kann eine selbstklebende Folie sein. Die Folie 28 kann auch eine beidseitig selbstklebende Folie sein. Ein Aktuator 48 kann ausgebildet sein, um eine zum Drücken notwendige Kraft durch Elektrolyse von Wasser oder einer zumindest teilweise Wasser enthaltenden Flüssigkeit zu erzeugen.Among other things, the above exemplary embodiments have shown a microfluid device with at least one component 22, in which or in which channel structures 24a are formed, which are at least partially open to a respective component surface 26 of the at least one component 22; and a film 28 having an opening 24; 34 ', via which at least a first and a second of the channel structures 24a, 24c; 24a, 24b are interconnected, and the at least one third of the channel structures at 24b; 24c of the respective component surface 26 at least partially closes, so that it does not over the opening 34; 34 'is connected to the first and second channel structure. In this case, the first to third channel structure can be formed in the same component and at least partially open in the component surface thereof, the film covering the component surface of the same component such that the first and second channel structure extend laterally along the component surface of the same component and inside the opening in the film leading path are connected to each other, while the third channel structure is not adjacent to the opening. The path leading within the opening 24 in the film can be closed on one side of the component 26 facing away from the same component 22 with a lid or with another of the at least one component. The path leading through the opening in the film on a side remote from the component surface of the same component is closed by a deformable membrane as a cover. The path leading through the opening 34 in the film 28 is on a side facing away from the component surface 26 of the same component 22 a porous membrane 42 is closed as a lid. In particular, the path leading through the opening in the film on a side facing away from the component surface of the same component can be closed with a deformable membrane as a lid. The microfluid device may further include an actuator for urging the deformable membrane into the opening. The first to third channel structures 24a may have depressions in the component surface of the same component, which are at least partially covered by the film. The recesses may include trenches 30a and / or wells 32a to form channels or chambers together with the foil. It is also possible that the film is deformable, and the microfluid device further comprises an actuator for pressing the film into a recess of the at least one component on the respective component surface in which the recess is formed, wherein the recess is part of the channel structures. The film 28 may be a self-adhesive film. The film 28 may also be a self-adhesive film on both sides. An actuator 48 may be configured to generate a force necessary for pressing by electrolysis of water or at least partially water-containing liquid.

Claims (12)

  1. Microfluidic device comprising:
    at least one component (22) having channel structures (24a) formed therein which are at least partly open toward a respective component surface (26) of the at least one component (22); and
    a film (28) comprising an elongated opening (24; 34') via which the at least a first and a second one of the channel structures (24a, 24c; 24a, 24b) are connected to one another, the elongated opening being closed by a lid on a side facing away from the component surface (26),
    wherein the first and second channel structures are formed within the same component and each opens at least partly in the component surface thereof, the film covering the component surface of the same component such that the first and second channel structures are connected to each other via a path extending laterally along the component surface of the same component and within the elongated opening in the film,
    wherein the channel structures each comprise a trench portion, and the trench portions of the channel structures extend in parallel, over a length portion (60), along a shared extension direction (62) in the component surface of the same component, a longitudinal direction (64) of the elongated opening (34; 34') extending in a manner that is transverse to the shared extension direction (62), and the channel structures projecting into the length portion (60) to different degrees from one and/or two sides, so that a variation of the elongated opening (34) within the film (28) leads, in its position along the extension direction (62) and along the longitudinal direction (64), and in its length along the longitudinal direction (64), to at least four different combinations of channel structure connections,
    wherein within a combination of channel structure connections, any third channel structures which are formed within the same component as the first and second channel structures and may not be connected to the first and second channel structures via the opening do not adjoin the elongated opening,
    wherein the channel structures (24a) comprise depressions in the component surface of the same component, said depressions being at least partly covered by the film,
    wherein the film (28) is adhered to the component surface (26) of the same component (22);
    characterized in that the path leading through the elongated opening (34) within the film (28) is closed, on a side facing away from the component surface (26) of the same component (22), with a porous membrane (42) as the lid, and
    wherein the path leading through the opening (34) within the film (28) comprises a flow cross-section which is reduced as compared to the channel structures, so that degassing via the porous membrane (42), which is not wetted by a liquid, is promoted due to a local increase in pressure resulting from the reduced cross-section,
    wherein a thickness of the film (28) is small enough, in the area of the opening (34), to prevent that gas bubbles in water may pass the path without touching the porous membrane (42).
  2. Microfluidic device as claimed in claim 1, wherein the at least one component (22) is an injection-molded component.
  3. Microfluidic device as claimed in claims 1 or 2, wherein the thickness of the film (28) is smaller than 1 mm.
  4. Microfluidic device as claimed in any of claims 1 to 3, wherein the porous membrane (42) consists of a material, or comprises a surface, which forms a contact angle of more than 90° with water.
  5. Microfluidic device as claimed in any of claims 1 to 4, wherein the porous membrane consists of or is coated with a fluorine-containing polymer.
  6. Microfluidic device as claimed in any of claims 1 to 5, wherein the component surface of the same component (22) is planar.
  7. Microfluidic device as claimed in any of claims 1 to 6, wherein the film comprises a further opening (34') which is sealed by a deformable membrane (46) on a side facing away from the same component (22), the microfluidic device further comprising an actuator for pressing the deformable membrane into the further opening, wherein a flat part of any of the first to third channel structures extends below the further opening, so that due to the deformation, a rate of flow through the flat part may be reduced.
  8. Microfluidic device as claimed in any of claims 1 to 5, wherein the depressions include trenches (30a) and/or ducts (32a) so as to form channels and/or chambers along with the film.
  9. Microfluidic device as claimed in any of claims 1 to 8, wherein the first to third channel structures (24a) comprise no mutual fluidic connection within to the first component (22).
  10. Microfluidic device as claimed in any of the previous claims, wherein the film (28) is a self-adhesive film.
  11. Method of producing a microfluidic device, comprising;
    providing at least one component having channel structures formed therein which are at least partly open toward a respective component surface of the at least one component;
    providing a film comprising an opening;
    adjoining the at least one component and the film, so that at least a first and a second one of the channel structures are connected to one another via the opening and so that the film at least partly closes at least a third one of the channel structures at the respective component surface, so that same is not connected to the first and second channel structures via the opening; and
    closing the elongated opening on a side facing away from the component surface (26) with a lid,
    wherein said provision of the at least one component is performed such that the first to third channel structures are formed within the same component and each opens at least partly in a component surface thereof, said joining comprising adhering the film onto the component surface of the same component such that the first and second channel structures are connected to each other via a path extending laterally along the component surface of the same component and within the opening in the film,
    wherein the channel structures each comprise a trench portion, and the trench portions of the channel structures extend in parallel, over a length portion (60), along a shared extension direction (62) in the component surface of the same component, a longitudinal direction (64) of the elongated opening (34; 34') extending in a manner that is transverse to the shared extension direction (62), and the channel structures projecting into the length portion (60) to different degrees from one and/or two sides, so that a variation of the elongated opening (34) within the film (28) leads, in its position along the extension direction (62) and along the longitudinal direction (64), and in its length along the longitudinal direction (64), to at least four different combinations of channel structure connections,
    wherein within a combination of channel structure connections, any third channel structures which are formed within the same component as the first and second channel structures and may not be connected to the first and second channel structures via the opening do not adjoin the elongated opening,
    wherein the channel structures (24a) comprise depressions in the component surface of the same component, said depressions being at least partly covered by the film,
    characterized in that the path leading through the elongated opening (34) within the film (28) is closed, on a side facing away from the component surface (26) of the same component (22), with a porous membrane (42) as the lid, and
    wherein the path leading through the opening (34) within the film (28) comprises a flow cross-section which is reduced as compared to the channel structures, so that degassing via the porous membrane (42), which is not wetted by a liquid, is promoted due to a local increase in pressure resulting from the reduced cross-section,
    wherein a thickness of the film (28) is small enough, in the area of the opening (34), to prevent that gas bubbles in water may pass the path without touching the porous membrane (42).
  12. Method as claimed in claim 11, wherein the film is a self-adhesive film and wherein adhesion comprises merely applying the film onto the component surface of the same component.
EP12179918.3A 2010-11-24 2011-11-23 Micro-fluid device and method for manufacturing the same Active EP2522427B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010061910.8A DE102010061910B4 (en) 2010-11-24 2010-11-24 Microfluidic device and method of making same
EP11787682A EP2521619A2 (en) 2010-11-24 2011-11-23 Microfluidic device and method for producing the same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP11787682A Division EP2521619A2 (en) 2010-11-24 2011-11-23 Microfluidic device and method for producing the same
EP11787682.1 Division 2011-11-23

Publications (2)

Publication Number Publication Date
EP2522427A1 EP2522427A1 (en) 2012-11-14
EP2522427B1 true EP2522427B1 (en) 2018-06-20

Family

ID=45023839

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12179918.3A Active EP2522427B1 (en) 2010-11-24 2011-11-23 Micro-fluid device and method for manufacturing the same
EP11787682A Withdrawn EP2521619A2 (en) 2010-11-24 2011-11-23 Microfluidic device and method for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11787682A Withdrawn EP2521619A2 (en) 2010-11-24 2011-11-23 Microfluidic device and method for producing the same

Country Status (3)

Country Link
EP (2) EP2522427B1 (en)
DE (1) DE102010061910B4 (en)
WO (1) WO2012069527A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100075A1 (en) 2013-01-07 2014-07-10 Technische Universität Chemnitz Micro-fluidic system, has system components thermally connected with each other, where membrane is located in recess that is formed in system components, which comprise structure raising from recess and clamping membrane
SG11201700087UA (en) 2014-08-05 2017-02-27 Sanwa Biotech Ltd On-site diagnostic system and the method thereof
DE102020135053B4 (en) 2020-12-29 2022-12-15 Biflow Systems Gmbh Microfluidic device with residue container and analysis system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187074A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Microfluidic analytical devices and methods
US20050266582A1 (en) * 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane
US20080262213A1 (en) * 2004-05-03 2008-10-23 Betty Wu Processing Polynucleotide-Containing Samples

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020112961A1 (en) * 1999-12-02 2002-08-22 Nanostream, Inc. Multi-layer microfluidic device fabrication
US6686184B1 (en) * 2000-05-25 2004-02-03 President And Fellows Of Harvard College Patterning of surfaces utilizing microfluidic stamps including three-dimensionally arrayed channel networks
DE10055374B4 (en) * 2000-11-08 2006-03-02 Bartels Mikrotechnik Gmbh Distributor plate for liquids and gases
WO2002083310A2 (en) * 2001-04-13 2002-10-24 Nanostream, Inc. Microfluidic metering systems and methods
US7318912B2 (en) * 2001-06-07 2008-01-15 Nanostream, Inc. Microfluidic systems and methods for combining discrete fluid volumes
US20020187072A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Multi-layer microfluidic splitter
US6958119B2 (en) * 2002-02-26 2005-10-25 Agilent Technologies, Inc. Mobile phase gradient generation microfluidic device
DE102009001257A1 (en) * 2008-10-06 2010-04-15 Aj Ebiochip Gmbh Apparatus and method for handling liquids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187074A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Microfluidic analytical devices and methods
US20050266582A1 (en) * 2002-12-16 2005-12-01 Modlin Douglas N Microfluidic system with integrated permeable membrane
US20080262213A1 (en) * 2004-05-03 2008-10-23 Betty Wu Processing Polynucleotide-Containing Samples

Also Published As

Publication number Publication date
EP2521619A2 (en) 2012-11-14
DE102010061910B4 (en) 2016-04-28
EP2522427A1 (en) 2012-11-14
DE102010061910A1 (en) 2012-05-24
WO2012069527A3 (en) 2012-08-16
WO2012069527A2 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
EP2576065B1 (en) Flow cell with cavity and diaphragm
DE60103924T2 (en) MICROFLUID FLOW RATE DEVICE
EP1654065B1 (en) Flow cell consisting of layers and connection means
DE102010002915B4 (en) Microfluidic sensor
DE102006059459B4 (en) Device for receiving or manipulating a liquid and method for producing such a device
EP2611594B1 (en) Method of making a microfluidic device and related laminating apparatus
EP2531760A1 (en) Micro-fluidic component for manipulating a fluid, and microfluidic chip
DE102011078770B4 (en) Microfluidic device, microfluidic system and method of transporting fluids
EP2962758A1 (en) Flow cell having a storage space and a transport channel that can be opened at a predetermined breaking point
DE102009023430A1 (en) Apparatus and method for controlling fluid flows in lab-on-a-chip systems and method of manufacturing the apparatus
DE102009024048B3 (en) Mountable and demountable microfluidic system used for producing, cultivating, manipulating, analyzing and preserving single-phase and multiphase fluids, comprises stack of plates
EP2522427B1 (en) Micro-fluid device and method for manufacturing the same
DE102013219502A1 (en) Analysis unit for carrying out a polymerase chain reaction, method for operating such an analysis unit and method for producing such an analysis unit
DE19524795C2 (en) Chemical analyzer
DE10135569B4 (en) Micromechanical component
EP2552586B1 (en) Component of a biosensor and method for producing same
EP2729251B1 (en) Microfluid structure with cavities
DE102010041833B4 (en) Microfluidic chip with multiple cylinder-piston arrangements
DE102009001257A1 (en) Apparatus and method for handling liquids
DE10335492B4 (en) Method for selectively connecting microstructured parts
DE10055374B4 (en) Distributor plate for liquids and gases
EP1700036B1 (en) Micropump and method for the production thereof
EP1404447B1 (en) Analysis device
DE102013100075A1 (en) Micro-fluidic system, has system components thermally connected with each other, where membrane is located in recess that is formed in system components, which comprise structure raising from recess and clamping membrane
AT500433A1 (en) ANALYSIS DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130513

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1177912

Country of ref document: HK

17Q First examination report despatched

Effective date: 20150224

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01L 3/00 20060101AFI20171205BHEP

INTG Intention to grant announced

Effective date: 20180103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2521619

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014362

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010188

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1177912

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014362

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181123

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1010188

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111123

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 13

Ref country code: DE

Payment date: 20231120

Year of fee payment: 13