EP2725432B1 - Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique - Google Patents

Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique Download PDF

Info

Publication number
EP2725432B1
EP2725432B1 EP12190043.5A EP12190043A EP2725432B1 EP 2725432 B1 EP2725432 B1 EP 2725432B1 EP 12190043 A EP12190043 A EP 12190043A EP 2725432 B1 EP2725432 B1 EP 2725432B1
Authority
EP
European Patent Office
Prior art keywords
variations
mixture
hermetic
mechanical energy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12190043.5A
Other languages
German (de)
English (en)
Other versions
EP2725432A1 (fr
Inventor
Dominique Perreux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE
Original Assignee
ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE filed Critical ASSOCIATION SUISSE POUR LA RECHERCHE HORLOGERE
Priority to EP12190043.5A priority Critical patent/EP2725432B1/fr
Priority to PCT/EP2013/072166 priority patent/WO2014064150A1/fr
Publication of EP2725432A1 publication Critical patent/EP2725432A1/fr
Application granted granted Critical
Publication of EP2725432B1 publication Critical patent/EP2725432B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B5/00Automatic winding up
    • G04B5/22Automatic winding up by thermometric, barometric or like effects or alterations

Definitions

  • the present invention relates to a pneumatic mechanism, preferably for a timepiece, intended to produce mechanical energy, preferably for recharging a mechanical energy source of the timepiece, and comprising a first hermetic enclosure of variable volume, whose internal pressure can alternatively increase and decrease depending on the variations of the surrounding temperature.
  • the invention also relates to a timepiece comprising such a pneumatic mechanism for recharging its source of mechanical energy.
  • Timepieces are already known in the state of the art in which a compound is caused to change phase according to the surrounding temperature.
  • requests JP 2003-028049 and JP 2003-120514 disclose devices for producing mechanical energy from changes in ambient temperature. They plan to use pasta phase changes, mainly composed of paraffins, to produce mechanical energy from the thermal energy generated by temperature changes. Additives are listed, which adjust the temperature of the phase change of the dough according to the specific needs of the user, by changing the base composition of a given paraffin.
  • the choice of reagents composing the mixture must take into account the temperature range of use of a timepiece and must generate sufficient work in a pressure range adapted to the introduction of the mechanism in a timepiece, possibly small, such as a pocket watch or a wristwatch.
  • the reagent mixture selected for the implementation of this invention has a coefficient ⁇ P / ⁇ T substantially greater than 0.01 bar.
  • a main object of the present invention is therefore to propose a pneumatic mechanism comprising a counter-spring whose dimensions are sufficiently small for the pneumatic mechanism to be able to be integrated in a timepiece such as a pendulum or a pocket watch. , to ensure the reassembly of a source of mechanical energy of this timepiece.
  • the second hermetic enclosure plays the role of counter-spring, and helps the first chamber to regain its initial state when the temperature varies in the opposite direction, while ensuring a smaller footprint with a conventional metal spring.
  • the pneumatic mechanism is intended to recharge a mechanical energy source of a timepiece, the first reagent mixture having a coefficient ⁇ P 1 / ⁇ T substantially greater than 0.01 bar. ° C -1 in ranges operating temperature, substantially between 0 and 50 ° C and, in pressure, substantially between 1 and 50 bar, the coefficient ⁇ P 2 / ⁇ T having a different value of at least 10% of that of ⁇ P 1 / ⁇ T in these operating ranges.
  • the movable member is advantageously connected to a conversion mechanism of the energy that can be connected to the source of mechanical energy.
  • each of the first and second gases preferably comprises dihydrogen or dideuterium capable of reacting with the corresponding metal alloys to form an alloy of the metal hydride type, by phase change between the gaseous and solid phases.
  • each of the first and second metal alloys preferably corresponds to a general formulation of the type AB 5 , AB 2 or AB, wherein A is a metal or a metal mixture, and B is a metal or a metal mixture.
  • A may advantageously comprise at least one element chosen from the group comprising Ce, La, Mn, Nd, Pr, Ti, while B may advantageously comprise at least one element chosen from the group comprising Co, Ni, Sn, Fe, Mn.
  • At least one of the two metal alloys may comprise a third metal or weakly substituted metal alloy.
  • proportion to A or B we can choose for one of the two hydrides a formulation of the type TiFe 0.9 Mn 0.1
  • each of the first and second metal alloys is selected from the group consisting of (La, Ce) (Ni, Co) 5 , (La, Ce) (Ni, Co) 5+ ⁇ , (La, Ce) (Ni, Sn) 5 + ⁇ , the two alloys being different from each other.
  • the preferred reagents ensure that the pressure variations in the hermetic enclosures make it possible to provide sufficient work to recharge the source of mechanical energy when the surrounding temperature varies.
  • the predicted value difference between the respective ⁇ P / ⁇ T coefficients allows one of the speakers to reduce its volume when that of the other speaker increases significantly.
  • the pneumatic mechanism has thermodynamic properties suitable for use in the watchmaking field.
  • At least one or each of the hermetic enclosures may advantageously have at least one generally deformable bellows wall as a function of the variations in internal pressure due to changes in the surrounding temperature.
  • the invention relates to a timepiece comprising a pneumatic mechanism, according to the above characteristics, arranged to recharge a source of mechanical energy, as well as a system for energy conversion associated at least indirectly with firstly, to the first and second hermetic enclosures and, on the other hand, to the source mechanical energy to recharge the latter from the volume variations of the first and second hermetic enclosures.
  • the figure 1 illustrates the general principle of the invention using a block diagram.
  • the pneumatic winding mechanism comprises a source of energy primary 1 for recharging a secondary energy source 3, through a conversion mechanism 2, the secondary energy source 3 being arranged to supply a watch movement 4 in mechanical energy.
  • the primary energy source 1 comprises a first hermetic enclosure (numerical reference 5, visible on the figures 3 and 4 ) having a volume that can alternately grow and decrease depending on variations, in one direction and the other, of the surrounding temperature.
  • the first hermetic enclosure contains a mixture of reagents, comprising a metal alloy arranged in contact with a gas and, likely to give rise to at least one phase change depending on the variations in the surrounding temperature, this phase change having an impact on the amount of gas present in the first sealed chamber and thus on the internal pressure of the latter.
  • the reagent mixture placed in the first chamber 5 has a coefficient ⁇ P 1 / ⁇ T substantially greater than 0.01 bar. ° C -1 , preferably greater than 0.5 bar. ° C -1 , in operating ranges, in temperature, substantially between 0 and 50 ° C and, at pressure, substantially between 1 and 50 bar, preferably between 1 and 20 bar.
  • the primary energy source 1 also comprises a second hermetic enclosure (reference numeral 6 on the figures 3 and 4 ) playing the role of counter-spring.
  • the second hermetic enclosure (6) comprises a mixture of reagents comprising a metal alloy and a gas, the mixture having the particularity of undergoing at least one phase transition when the surrounding temperature varies. The phase transition causes a change in the amount of gas in the second chamber, and therefore a change in the volume occupied by the latter.
  • the reagent mixture placed in the second chamber (6) has characteristics different from those of the mixture introduced into the first chamber (5).
  • the coefficient ⁇ P 2 / ⁇ T preferably has a value different from at least 10% of that of the mixture of reactants of the first chamber.
  • This property allows the second chamber 6 to be compressed when the first chamber 5 expands due to an increase in the surrounding temperature, if ⁇ P 1 / ⁇ T is greater than ⁇ P 2 / ⁇ T or to be expanded if ⁇ P 2 / ⁇ T is greater than ⁇ P 1 / ⁇ T.
  • the pneumatic mechanism is arranged in the form of a double piston, such as that presented in FIG. figure 3 .
  • first hermetic enclosure 5 having the general shape of a piston chamber of volume V 1 .
  • the first hermetic enclosure 5 is provided with a movable surface 8 of area S 1 and, inside, there is a first hydride under a pressure P 1 .
  • the two walls 8 and 9 are connected by a rigid rod 7.
  • ⁇ P 1 / ⁇ T is greater than ⁇ P 2 / ⁇ T
  • the increase of the pressure P 1 in the first sealed enclosure 5 is faster than the pressure P 2 in the second enclosure and causes an increase in its volume V 1 by displacement of the movable wall 8.
  • the rod 7, secured to the movable wall 8, pushes the movable wall 9 towards the inside of the second chamber and therefore causes a decrease in its volume V 2 .
  • the rod 7 is connected to a mechanism for converting energy 2, comprising a movable member 10 in translation, integral with the rod 7.
  • a pawl 12 intended to lock the secondary energy source 3 in the direction its discharge, is provided to prevent it from discharging into the pneumatic mechanism when the surrounding temperature decreases.
  • the source of mechanical energy is a barrel 11; loaded via a ratchet secured to a bung, itself secured to an inner end of a barrel spring, while the other end of the barrel spring is secured to a barrel drum meshing with a clockwork wheel.
  • the energy conversion mechanism can be associated with a pawl 12, conventional, arranged to lock the ratchet only in the direction of rotation corresponding to the discharge of the mainspring, in a conventional manner.
  • an inverter device can be inserted into the conversion mechanism, so that the increase in the volume of the second hermetic enclosure 6, when the temperature decreases, also allows to recharge the mainspring spring 11.
  • FIG. figure 4 A second preferred embodiment of the invention is shown in FIG. figure 4 .
  • the first hermetic enclosure 5 comprises a fixed wall 13, and at least one deformable wall 14, for example a bellows, carrying a movable wall 8.
  • the second hermetic enclosure 6 comprises also a fixed wall 15 and at least one deformable wall 16 carrying a movable wall 9.
  • the movable walls 8 and 9 are integral with a rod 7 connected to a power conversion mechanism 2, operating in a similar manner to that which has just been exposed.
  • An inverter device can also be provided so that the secondary energy source 3 can be recharged at a time when the temperature increases and when it decreases.
  • the increase in the quantity of gas in the first chamber 5 causes an increase in the volume V 1 , by deformation of the wall 14, and displacement of the movable wall 8.
  • the movement of the latter causes a displacement of the movable wall 9, and a contraction of the wall 16, so that the volume V 2 of the second hermetic enclosure decreases.
  • the pneumatic mechanism also of piston type, is arranged in a cylindrical frame 17. Inside the latter is a first hermetic enclosure 5 having the general shape of a ring, and comprising an annular mobile wall 19 whose section section is U-shaped, and a fixed wall 20 of annular shape and integral with the frame 17.
  • the frame 17 also comprises a second hermetic enclosure 6, of cylindrical shape, and arranged inside the first enclosure 5 being coaxial with the latter.
  • the second chamber 6 is delimited by a movable wall 22 in the form of an open cylinder, inside which is arranged a fixed wall 23, disc-shaped and secured to the frame 17.
  • the two movable walls 19 and 22 are connected by four belts 24 guided by pulleys 25 with which the belts cooperate without slipping.
  • the pneumatic mechanism is in the visible configuration on the figure 5a .
  • the volume V 1 of the hermetic enclosure 5 is minimal, and the volume V 2 of the hermetic enclosure 6 is maximum.
  • the pressure in the first chamber 5 increases more rapidly than that of the second chamber 6.
  • the volume V 1 of the hermetic enclosure 5 increases and generates a torque on the system pulleys-belts, of so that the volume V 2 of the hermetic enclosure 6 decreases.
  • the frame 17 is connected to a mechanism for converting the energy 2 (not shown), in order to transmit a portion of the energy generated by the increase of the volume V 1 of the hermetic enclosure 5 to the secondary energy source 3, for reloading.
  • a mechanism for converting the energy 2 (not shown), in order to transmit a portion of the energy generated by the increase of the volume V 1 of the hermetic enclosure 5 to the secondary energy source 3, for reloading.
  • the internal movements of the pneumatic mechanism can be exploited from the rotation of the pulley axes during changes in the surrounding temperature.
  • an inverter device may also be provided so that the secondary energy source 3 recharges when the volume V 2 of the hermetic enclosure 6 increases, that is to say when the surrounding temperature decreases.
  • the second chamber 6 must succeed in providing sufficient work, to replace the first chamber 5 in its initial configuration when the surrounding temperature decreases.
  • the Applicant's work therefore consisted in establishing a relationship between the area of the deformable wall of the second hermetic enclosure, and the other relevant parameters of the device.
  • Equations (2) and (4) allow to deduce the expression of the area S 2 :
  • S 2 F T P 1 T 0 - P at P 2 T 0 - P at P 1 T - P at - P 2 T - P at P 1 T 0 - P at
  • Equation (9) shows that the area S 2 necessary for the proper functioning of the pneumatic mechanism depends on the surrounding temperature, but also on the work done by the pneumatic mechanism on the source of mechanical energy, as well as the relative displacement of the mobile wall of the first hermetic enclosure.
  • the Applicant has therefore determined the evolution of the area S 2 as a function of the surrounding temperature, by using relevant values of W 1 + 2 ⁇ b and d, and using different mixtures of reagents, so that the device can be inserted into a small timepiece, such as a wristwatch.
  • the energy required is of the order of 0.2 J / day. This corresponds generally to a barrel spring delivering a torque of 8 N.mm making four revolutions per day.
  • the movable wall of the first sealed enclosure may have a maximum displacement of 10 mm, for example, in order to have acceptable conditions from a point of view of the bulk of the mechanism.
  • the area S 2 must be of the order of 700 mm 2 . This area corresponds to a disc of about 15 mm radius, and makes the introduction of the pneumatic mechanism possible in a small timepiece.
  • the Applicant has made the same calculations for the embodiment presented to the figures 5a and 5b , and for the reagent mixtures presented at figure 2b . It follows that for a temperature increase of 10 ° C compared to the initial temperature, the necessary area S 2 , so that the work provided by the second hermetic enclosure 6 to the second hermetic enclosure 5 is sufficient, is to the order of 450 mm 2 , which corresponds to an enclosure of 12 mm radius.
  • the pneumatic mechanism comprising a counter-spring comprising a hermetic enclosure containing a metal hydride alloy according to the present invention has a small footprint, making it particularly suitable for timepieces of small sizes, such as wristwatches for example.
  • reagents can meet the conditions set and be implemented in a pneumatic mechanism for reassembly of the mechanical energy source of a timepiece, without departing from the scope of the present invention. It is conceivable to use other metal alloys as long as a phase change is involved in the operation of the pneumatic mechanism to present sufficient values of the respective ⁇ P / ⁇ T coefficients, with a difference of at least 10% between them.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Springs (AREA)

Description

    Domaine technique
  • La présente invention concerne un mécanisme pneumatique, préférablement pour pièce d'horlogerie, destiné à produire de l'énergie mécanique, préférablement pour recharger une source d'énergie mécanique de la pièce d'horlogerie, et comportant une première enceinte hermétique de volume variable, dont la pression interne peut alternativement croître et décroître en fonction des variations de la température environnante.
  • L'invention concerne également une pièce d'horlogerie comportant un tel mécanisme pneumatique destiné à recharger sa source d'énergie mécanique.
  • Etat de la technique
  • Des pièces d'horlogeries sont déjà connues de l'état de la technique dans lesquelles un composé est amené à changer de phase en fonction de la température environnante. Par exemple, les demandes JP 2003-028049 et JP 2003-120514 divulguent des dispositifs de production d'énergie mécanique à partir des variations de la température ambiante. Elles prévoient notamment d'exploiter des changements de phases de pâtes, composées principalement de paraffines, pour produire de l'énergie mécanique à partir de l'énergie thermique générée par les variations de la température. Des additifs sont listés, qui permettent d'ajuster la température du changement de phase de la pâte en fonction des besoins spécifiques de l'utilisateur, par modification de la composition de base d'une paraffine donnée.
  • Pour permettre une réduction de l'encombrement des mécanismes de remontage pneumatique et permettre éventuellement leur implantation dans des pièces d'horlogerie de petite taille, la Demanderesse a développé un dispositif divulgué dans la demande de brevet publiée sous EP 2469350 A1 . Cette demande décrit un mécanisme apte à recharger une source d'énergie mécanique, telle qu'un barillet, à partir des déformations d'une enceinte hermétique remplie d'un mélange de réactifs, comprenant un alliage métallique et un composé se présentant au moins partiellement sous la forme d'un gaz dans les conditions d'utilisation du mécanisme. Ce composé réagit avec l'alliage métallique, définissant un équilibre, entre les phases gazeuse et métallique, qui est notamment dépendant de la température. Ainsi, lorsque la température environnante change, la proportion de ce composé se présentant sous forme gazeuse est modifiée, donc la pression dans l'enceinte hermétique aussi, ce qui conduit à une variation de son volume et donc à la production d'un travail exploitable.
  • Le choix des réactifs composant le mélange doit prendre en compte la plage d'utilisation en température d'une pièce d'horlogerie et doit générer un travail suffisant dans une plage de pression adaptée à l'introduction du mécanisme dans une pièce d'horlogerie, éventuellement de petite taille telle qu'une montre de poche ou une montre-bracelet.
  • Plus précisément, le mélange de réactifs retenu pour la mise en oeuvre de cette invention présente un coefficient ΔP/ΔT sensiblement supérieur à 0.01 bar.°C-1 dans des plages de fonctionnement en température, comprise sensiblement entre 0 et 50°C et, en pression, comprise sensiblement entre 1 et 50 bars.
  • Grâce à ces caractéristiques, des variations plus importantes du volume de l'enceinte hermétique peuvent être obtenues qu'avec les mécanismes antérieurs.
  • Toutefois, une autre contrainte à prendre en compte dans la réalisation de tels mécanismes concerne leur structure mécanique. En effet, pour faciliter, voire pour permettre, une variation inverse du volume de l'enceinte lorsque la température varie en sens inverse, il est préférable de prévoir un contre-ressort agissant sur la partie mobile de l'enceinte. Or, la pression dans l'enceinte étant en principe d'au moins quelques bars, les dimensions d'un tel contre-ressort peuvent être trop importantes pour permettre l'intégration du mécanisme de remontage pneumatique dans une pièce d'horlogerie de type montre bracelet, suivant le mélange de réactifs choisi.
  • Divulgation de l'invention
  • Un but principal de la présente invention est donc de proposer un mécanisme pneumatique comprenant un contre-ressort dont les dimensions sont suffisamment faibles pour que le mécanisme pneumatique puisse notamment être intégré dans une pièce d'horlogerie telle qu'une pendule ou une montre de poche, pour assurer le remontage d'une source d'énergie mécanique de cette pièce d'horlogerie.
  • A cet effet, la présente invention concerne plus particulièrement un mécanisme pneumatique, destiné à produire de l'énergie mécanique à partir de variations de la température environnante, du type mentionné plus haut et dans lequel
    • la première enceinte hermétique contient un premier mélange de réactifs, de coefficient ΔP1/ΔT, comprenant un premier alliage métallique agencé au contact d'un gaz et, susceptible de donner lieu à au moins un changement de phase en fonction des variations de la température environnante,
    • caractérisé par le fait qu'il comprend une seconde enceinte hermétique de volume variable dont la pression interne peut alternativement croître et décroître en fonction des variations de la température environnante,
    • que la seconde enceinte hermétique contient un second mélange de réactifs, comprenant un second alliage métallique agencé au contact d'un gaz et, susceptible de donner lieu à au moins un changement de phase en fonction des variations de la température environnante,
    • que le second mélange de réactifs présente par ailleurs un coefficient ΔP2/ΔT dont la valeur est différente d'au moins 10% de celle de ΔP1/ΔT,
    • les première et seconde enceintes hermétiques présentant entre elles une connexion mécanique telle que le volume de l'une des enceintes hermétiques augmente lorsque le volume de l'autre diminue,
    • la connexion mécanique étant reliée à un organe mobile pouvant se déplacer relativement aux variations de volume des enceintes.
  • La seconde enceinte hermétique joue ici le rôle de contre-ressort, et aide la première enceinte à retrouver son état initial lorsque la température varie en sens inverse, tout en garantissant un encombrement moindre qu'avec un ressort métallique classique.
  • De manière préférée, le mécanisme pneumatique est destiné à recharger une source d'énergie mécanique d'une pièce d'horlogerie, le premier mélange de réactifs présentant un coefficient ΔP1/ΔT sensiblement supérieur à 0.01 bar.°C-1 dans des plages de fonctionnement en température, comprise sensiblement entre 0 et 50°C et, en pression, comprise sensiblement entre 1 et 50 bars, le coefficient ΔP2/ΔT présentant une valeur différente d'au moins 10% de celle de ΔP1/ΔT dans ces plages de fonctionnement. En outre, l'organe mobile est avantageusement connecté à un mécanisme de conversion de l'énergie susceptible d'être relié à la source d'énergie mécanique.
  • Par ailleurs, chacun des premier et second gaz comprend préférablement du dihydrogène ou du dideutérium susceptible de réagir avec l'alliages métallique correspondant pour former un alliage du type hydrure métallique, par changement de phase entre les phases gazeuse et solide.
  • Plus particulièrement, chacun des premier et second alliages métalliques répond préférablement à une formulation générale du type AB5, AB2 ou encore AB, dans laquelle A est un métal ou un mélange métallique, et B est un métal ou un mélange métallique. A peut avantageusement comporter l'un au moins des éléments choisis dans le groupe comprenant Ce, La, Mn, Nd, Pr, Ti, tandis que B peut avantageusement comporter l'un au moins des éléments choisis dans le groupe comprenant Co, Ni, Sn, Fe, Mn.
  • De manière générale, à ces deux éléments A et B principaux on préférera adjoindre des éléments complémentaires en plus faible proportion. Autrement dit, l'un au moins des deux alliages métalliques peut comprendre un troisième métal ou alliage métallique substitué en faible proportion à A ou à B. Par exemple, on pourra choisir pour l'un des deux hydrures une formulation du type TiFe0.9Mn0.1
  • A titre d'exemple supplémentaire non limitatif, on peut prévoir que chacun des premier et second alliages métalliques est choisi dans le groupe comprenant (La, Ce)(Ni, Co)5, (La, Ce)(Ni, Co)5+ε, (La, Ce)(Ni, Sn)5+ε, les deux alliages étant différents l'un de l'autre.
  • Grâce à ces caractéristiques, les réactifs préférés garantissent que les variations de pression dans les enceintes hermétiques permettent de fournir un travail suffisant pour recharger la source d'énergie mécanique lorsque la température environnante varie.
  • De manière avantageuse, l'écart de valeur prévu entre les coefficients ΔP/ΔT respectifs permet à l'une des enceintes de réduire son volume lorsque celui de l'autre enceinte augmente, de manière significative.
  • Suivant une variante de réalisation préférée, le coefficient ΔP1/ΔT du mélange de réactifs dans la première enceinte hermétique est sensiblement égal ou supérieur à 0.5 bar.°C-1 dans une plage de fonctionnement préférée,
    • en température, comprise sensiblement entre 15 et 40°C, plus préférablement entre 15 et 35°C,
    • en pression, comprise sensiblement entre 1 et 30 bars, plus préférablement entre 1 et 10 bars.
  • De cette manière, le mécanisme pneumatique a des propriétés thermodynamiques adaptées à une utilisation dans le domaine horloger.
  • Par ailleurs, l'une au moins ou chacune des enceintes hermétiques peut avantageusement présenter au moins une paroi en forme générale de soufflet déformable en fonction des variations de pression interne dues aux changements de la température environnante.
  • Enfin, l'invention concerne une pièce d'horlogerie comportant un mécanisme pneumatique, selon les caractéristiques ci-dessus, agencé pour recharger une source d'énergie mécanique, ainsi qu'un système de conversion d'énergie associé au moins indirectement, d'une part, aux première et seconde enceintes hermétiques et, d'autre part, à la source d'énergie mécanique pour recharger cette dernière à partir des variations de volumes des première et seconde enceintes hermétiques.
  • Brève description des dessins
  • D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée de modes de réalisation préférés qui suit, faite en référence aux dessins annexés donnés à titre d'exemples non limitatifs et dans lesquels:
    • - la figure 1 représente un schéma bloc illustrant le principe de la présente invention;
    • - les figures 2a et 2b représentent l'évolution de la pression en fonction de la température pour des couples d'alliages d'hydrures métalliques suivant des variantes de réalisation préférées de la présente invention;
    • - la figure 3 représente une vue de face simplifiée des enceintes hermétiques selon un premier mode de réalisation;
    • - la figure 4 représente une vue de face simplifiée des enceintes hermétiques selon un second mode de réalisation de l'invention;
    • - les figures 5a et 5b représentent des vues en coupe des enceintes hermétiques selon un troisième mode de réalisation de l'invention pour différentes températures;
    • - la figure 6 représente une courbe illustrant la relation entre une caractéristique géométrique particulière du mécanisme pneumatique selon l'invention et la valeur de la variation de température auquel le mécanisme est soumis.
    Mode(s) de réalisation de l'invention
  • Dans la suite de la description, les mêmes références numériques seront utilisées en relation avec différentes variantes de réalisation pour désigner des éléments de même fonction, dans un souci de simplification de la compréhension.
  • La figure 1 illustre le principe général de l'invention à l'aide d'un schéma bloc.
  • Selon un mode de réalisation préféré de la présente invention, le mécanisme de remontage pneumatique comporte une source d'énergie primaire 1 permettant de recharger une source d'énergie secondaire 3, par l'intermédiaire d'un mécanisme de conversion 2, la source d'énergie secondaire 3 étant agencée pour alimenter un mouvement horloger 4 en énergie mécanique.
  • La source d'énergie primaire 1 comprend une première enceinte hermétique (référence numérique 5, visible sur les figures 3 et 4) présentant un volume susceptible d'alternativement croître et décroître en fonction de variations, dans un sens et dans l'autre, de la température environnante. En effet, la première enceinte hermétique contient un mélange de réactifs, comprenant un alliage métallique agencé au contact d'un gaz et, susceptible de donner lieu à au moins un changement de phase en fonction des variations de la température environnante, ce changement de phase ayant un impact sur la quantité de gaz présent dans la première enceinte hermétique et donc sur la pression interne de cette dernière.
  • A titre d'exemple illustratif et non limitatif, le mélange de réactifs placé dans la première enceinte 5 présente un coefficient ΔP1/ΔT sensiblement supérieur à 0.01 bar.°C-1, préférablement supérieur à 0.5 bar.°C-1, dans des plages de fonctionnement, en température, comprise sensiblement entre 0 et 50°C et, en pression, comprise sensiblement entre 1 et 50 bars, préférablement entre 1 et 20 bars.
  • La source d'énergie primaire 1 comporte également une seconde enceinte hermétique (référence numérique 6 sur les figures 3 et 4) jouant le rôle de contre-ressort. Tout comme la première enceinte hermétique (5), la seconde enceinte hermétique (6) comporte un mélange de réactifs comprenant un alliage métallique et un gaz, le mélange ayant la particularité de subir au moins une transition de phase lorsque la température environnante varie. La transition de phase engendre une modification de la quantité de gaz dans la seconde enceinte, et donc une modification du volume occupé par cette dernière.
  • Le mélange de réactifs placé dans la seconde enceinte (6) a des caractéristiques différentes de celles du mélange introduit dans la première enceinte (5). Pour des conditions de température comprise sensiblement entre 0 et 50°C et, et de pression comprise sensiblement entre 1 et 50 bars, le coefficient ΔP2/ΔT présente préférablement une valeur différente d'au moins 10% de celle du mélange de réactifs de la première enceinte.
  • Cette propriété permet à la seconde enceinte 6 d'être comprimée lorsque la première enceinte 5 se dilate en raison d'une augmentation de la température environnante, si ΔP1/ΔT est supérieur à ΔP2/ΔT ou, d'être dilatée si ΔP2/ΔT est supérieur à ΔP1/ΔT.
  • Dans la suite de l'exposé, on va considérer le cas où ΔP1/ΔTT est supérieur à ΔP2/ΔT pour des raisons de simplification de l'exposé et à titre non limitatif. L'homme du métier ne rencontrera pas de difficulté particulière pour réaliser un mécanisme selon l'enseignement qui va suivre adapté au cas de figure inverse, c'est-à-dire lorsque ΔP1/ΔT est supérieur à ΔP1/ΔT
  • Les figures 2a et 2b présentent à cet effet l'évolution de la pression en fonction de la température, pour deux exemples de deux mélanges de réactifs comprenant chacun un hydrure métallique et du dihydrogène. Dans le premier mélange de réactifs, le MnNi5 est utilisé dans la première enceinte, et le LaNi5 dans la seconde, à titre illustratif et non limitatif. Dans le second mélange, le LaNi5 est remplacé par le MnNi4.15Fe0.85.
  • Pour connaître plus en détail les propriétés de ces hydrures, on pourra avantageusement se reporter à la demande de brevet EP 2469350 A1 , dont l'enseignement est incorporé dans la présente demande par référence.
  • Du point de vue structurel, dans un premier mode de réalisation préféré, le mécanisme pneumatique est agencé sous forme d'un piston double, tel que celui présenté à la figure 3.
  • Plus précisément, celui-ci comprend une première enceinte hermétique 5 présentant la forme générale d'une chambre de piston, de volume V1. La première enceinte hermétique 5 est pourvue d'une surface mobile 8 d'aire S1 et, à l'intérieur, se trouve un premier hydrure sous une pression P1.
  • Une seconde enceinte hermétique 6, présentant aussi la forme d'une chambre de piston, de volume V2, possède également une paroi mobile 9 d'aire S2 et, contient un autre hydrure sous une pression P2.
  • Les deux parois 8 et 9 sont liées par une tige 7 rigide. Ainsi, lorsque la température environnante augmente, la quantité de gaz augmente dans les deux enceintes, faisant augmenter leurs pressions internes respectives. Du fait que ΔP1/ΔT est supérieur à ΔP2/ΔT, l'augmentation de la pression P1 dans la première enceinte hermétique 5 est plus rapide que la pression P2 dans la seconde enceinte et, entraîne une augmentation de son volume V1 par déplacement de la paroi mobile 8. La tige 7, solidaire de la paroi mobile 8, repousse la paroi mobile 9 en direction de l'intérieur de la seconde enceinte et engendre par conséquent une diminution de son volume V2.
  • Par ailleurs, la tige 7 est reliée à un mécanisme de conversion de l'énergie 2, comprenant un organe mobile 10 en translation, solidaire de la tige 7. Un cliquet 12, destiné à verrouiller la source d'énergie secondaire 3 dans le sens de sa décharge, est prévu pour éviter qu'elle ne se décharge dans le mécanisme pneumatique lorsque la température environnante diminue.
  • On peut par exemple prévoir que la source d'énergie mécanique est un barillet 11; chargé par l'intermédiaire d'un rochet solidaire d'une bonde, elle-même solidaire d'une extrémité interne d'un ressort de barillet, tandis que l'autre extrémité du ressort de barillet est solidaire d'un tambour de barillet engrenant avec un rouage horloger. Ces éléments, bien connus de l'homme du métier, ne sont pas représentés. Dès lors, le mécanisme de conversion de l'énergie peut être associé à un cliquet 12, conventionnel, agencé pour verrouiller le rochet uniquement dans le sens de rotation correspondant à la décharge du ressort de barillet, de manière conventionnelle.
  • De manière alternative, un dispositif inverseur peut être inséré dans le mécanisme de conversion, de façon à ce que l'augmentation du volume de la seconde enceinte hermétique 6, lorsque la température diminue, permette également de recharger le ressort de barillet 11.
  • Un second mode de réalisation préféré de l'invention est représenté à la figure 4. Ici, la première enceinte hermétique 5 comprend une paroi fixe 13, et au moins une paroi déformable 14, comme par exemple un soufflet, portant une paroi mobile 8. La seconde enceinte hermétique 6 comprend également une paroi fixe 15 et au moins une paroi déformable 16 portant une paroi mobile 9.
  • Les parois mobiles 8 et 9 sont solidaires d'une tige 7 reliée à un mécanisme de conversion d'énergie 2, fonctionnant de manière analogue à celui qui vient d'être exposé. Un dispositif inverseur peut également être prévu de manière à ce que la source d'énergie secondaire 3 puisse être rechargée à la fois lorsque la température augmente et lorsqu'elle diminue.
  • Lorsque la température augmente, l'augmentation de la quantité de gaz dans la première enceinte 5 occasionne une augmentation du volume V1, par déformation de la paroi 14, et déplacement de la paroi mobile 8. Le mouvement de cette dernière entraîne un déplacement de la paroi mobile 9, et une contraction de la paroi 16, de sorte que le volume V2 de la seconde enceinte hermétique diminue.
  • Dans un troisième mode de réalisation présenté aux figures 5a et 5b, le mécanisme pneumatique, également de type piston, est agencé dans un bâti cylindrique 17. A l'intérieur de ce dernier se trouve une première enceinte hermétique 5 présentant la forme générale d'une couronne, et comprenant une paroi 19 mobile annulaire dont la coupe en section est en forme de U, ainsi qu'une paroi 20 fixe, de forme annulaire et solidaire du bâti 17.
  • Le bâti 17 comprend également une seconde enceinte hermétique 6, de forme cylindrique, et agencée à l'intérieur de la première enceinte 5 en étant coaxiale à cette dernière. Tout comme la première enceinte 5, la seconde enceinte 6 est délimitée par une paroi mobile 22 en forme de cylindre ouvert, à l'intérieur duquel est agencée une paroi 23 fixe, en forme de disque et solidaire du bâti 17.
  • Les deux parois mobiles 19 et 22 sont reliées par quatre courroies 24 guidées par des poulies 25 avec lesquelles les courroies coopèrent sans glissement.
  • A une première température prédéfinie, le mécanisme pneumatique se trouve dans la configuration visible sur la figure 5a. Le volume V1 de l'enceinte hermétique 5 est minimal, et le volume V2 de l'enceinte hermétique 6 est maximal.
  • Lorsque la température environnante augmente, la pression dans la première enceinte 5 augmente plus rapidement que celle de la seconde enceinte 6. En conséquence, le volume V1 de l'enceinte hermétique 5 augmente et génère un couple sur le système poulies-courroies, de sorte que le volume V2 de l'enceinte hermétique 6 diminue.
  • Tout comme dans les modes de réalisation précédents, le bâti 17 est relié à un mécanisme de conversion de l'énergie 2 (non représenté), afin de transmettre une partie de l'énergie générée par l'augmentation du volume V1 de l'enceinte hermétique 5 à la source d'énergie secondaire 3, en vue de son rechargement. De manière avantageuse, les mouvements internes du mécanisme pneumatique peuvent être exploités à partir de la rotation des axes de poulies lors des variations de la température environnante.
  • Alternativement, un dispositif inverseur peut également être prévu de manière à ce que la source d'énergie secondaire 3 se recharge lorsque le volume V2 de l'enceinte hermétique 6 augmente, c'est-à-dire lorsque la température environnante diminue.
  • Quel que soit le mode de réalisation retenu pour le contre-ressort, la seconde enceinte 6 doit réussir à fournir un travail suffisant, pour replacer la première enceinte 5 dans sa configuration initiale lorsque la température environnante diminue.
  • Aussi, la Demanderesse a examiné quels sont les paramètres pertinents à prendre en compte pour un bon fonctionnement du mécanisme pneumatique selon l'invention.
  • Du point de vue thermodynamique, le travail fourni par la seconde enceinte à la première enceinte peut s'exprimer comme suit : W 2 1 = x T x 0 P 2 T S 2 dx
    Figure imgb0001
    • où dx est un déplacement élémentaire de la surface d'aire S2 selon un axe orthogonal à la surface;
    • x0 est la position d'équilibre de la paroi mobile de la première enceinte, lorsque la température est égale à une température de référence
    • T0, par exemple T0 = 18°C pour correspondre sensiblement à la température ambiante ;
    • et x(T) est la position de la paroi mobile de la première enceinte hermétique à une température quelconque T.
  • Etant donné que la pression interne P2 varie peu en fonction de la température, et que la paroi déformable ne peut se déplacer que sur une distance limitée, il est important que l'aire S2 soit suffisamment grande pour que la force exercée sur la paroi mobile de la première enceinte soit suffisante.
  • Les travaux de la Demanderesse ont donc notamment consisté à établir une relation entre l'aire de la paroi déformable de la seconde enceinte hermétique, et les autres paramètres pertinents du dispositif.
  • A l'état d'équilibre, le mécanisme pneumatique obéit à la relation : P 1 T 0 P a S 1 = P 2 T 0 P a S 2
    Figure imgb0002
    où Pa est la pression atmosphérique.
  • Il s'agit ici d'un équilibre thermodynamique, qui s'établit entre les deux enceintes hermétiques, où les hydrures qu'elles contiennent ont une pression interne Pi qui peut s'écrire : P i T 0 = P 0 exp Δ H hyd , i / RT 0 Δ S hyd , i / R avec i = 1 , 2
    Figure imgb0003
    • où ΔHhyd,i représente l'enthalpie de formation de l'hydrure présent dans la première enceinte (respectivement dans la seconde enceinte) ;
    • ΔShyd,i représente l'entropie de formation de l'hydrure présent dans la première enceinte (respectivement dans la seconde enceinte) ;
    • P0 est une pression de référence, par exemple P0 = 1 bar ;
    • et R représente la constante des gaz parfaits.
  • Lorsque la température environnante varie, les enceintes hermétiques exercent une force F sur la source d'énergie mécanique grâce à leurs variations de volume. Celle-ci s'exprime sous la forme : F T = S 1 P 1 T S 2 P 2 T P a S 1 S 2
    Figure imgb0004
  • C'est le travail relatif à cette force F qui permet de recharger la source d'énergie mécanique.
  • Les équations (2) et (4) permettent de déduire l'expression de l'aire S2 : S 2 = F T P 1 T 0 P a P 2 T 0 P a P 1 T P a P 2 T P a P 1 T 0 P a
    Figure imgb0005
  • Notons que la valeur absolue vient du fait que la force peut être positive ou négative suivant que la température est inférieure ou supérieure à To.
  • La source d'énergie secondaire 3, qui est par exemple un barillet, exerce une force qui s'oppose à celle du mécanisme pneumatique. Celle-ci peut s'exprimer de la manière suivante : F b T = K b d T
    Figure imgb0006
    • où Kb est la raideur du ressort de barillet ;
    • d(T) = x(T)-xo est le déplacement relatif de la paroi mobile de la première enceinte hermétique.
  • Lorsque le système a atteint un équilibre mécanique, les forces F(T) et Fb(T) s'opposent exactement, de sorte que le travail fourni au barillet par le mécanisme pneumatique peut donc s'écrire : W 1 + 2 b T = F b 2 T 2 K b = K b d 2 T 2
    Figure imgb0007
  • Ces deux dernières équations permettent de déduire l'expression de la force F(T) : F T = 2 W 1 + 2 b T d T
    Figure imgb0008
  • Finalement, la surface S2 s'écrit : S 2 = 2 W 1 + 2 b T P 1 T 0 P a d T P 2 T 0 P a P 1 T P a d T P 2 T P a P 1 T 0 P a
    Figure imgb0009
  • L'équation (9) montre que l'aire S2 nécessaire au bon fonctionnement du mécanisme pneumatique dépend de la température environnante, mais aussi du travail fourni par le mécanisme pneumatique à la source d'énergie mécanique, ainsi que du déplacement relatif de la paroi mobile de la première enceinte hermétique.
  • La Demanderesse a donc déterminé l'évolution de l'aire S2 en fonction de la température environnante, en utilisant des valeurs pertinentes de W1+2→b et d, et en employant différents mélanges de réactifs, de manière à ce que le dispositif puisse être inséré dans une pièce d'horlogerie de petite taille, comme une montre bracelet.
  • A titre d'exemple illustratif non limitatif, pour recharger une pièce d'horlogerie de ce type, on admet que l'énergie nécessaire est de l'ordre de 0.2 J/jour. Cela correspond globalement à un ressort de barillet délivrant un couple de 8 N.mm faisant quatre tours par jour.
  • On considère par ailleurs que la paroi mobile de la première enceinte hermétique peut avoir un déplacement maximum de 10 mm, par exemple, afin d'avoir des conditions acceptables d'un point de vue de l'encombrement du mécanisme.
  • Dans ces conditions, et pour les modes de réalisation exposés aux figures 3 et 4, ainsi que pour les mélanges de réactifs présentés à la figure 2a, l'aire S2 connait une évolution en fonction de la température telle que celle présentée sur la figure 6. On notera que dans cette représentation, ΔT = T-To, où To = 18°C.
  • Pour une augmentation de la température de l'ordre de 10°C, qui correspond donc à une température environnante de 28°C, soit celle d'une montre de poche ou d'une montre portée, on remarque que l'aire S2 doit être de l'ordre de 700 mm2. Cette aire correspond à un disque d'environ 15 mm de rayon, et rend l'introduction du mécanisme pneumatique possible dans une pièce d'horlogerie de petite taille.
  • La Demanderesse a effectué les mêmes calculs pour le mode de réalisation présenté aux figures 5a et 5b, et pour les mélanges de réactifs présentés à la figure 2b. Il en ressort que pour une augmentation de la température de 10°C par rapport à la température initiale, l'aire S2 nécessaire, pour que le travail fourni par la seconde enceinte hermétique 6 à la seconde enceinte hermétique 5 soit suffisant, est de l'ordre de 450 mm2, ce qui correspond à une enceinte de 12 mm de rayon.
  • Il ressort de ce qui précède que le mécanisme pneumatique comportant un contre-ressort comprenant une enceinte hermétique contenant un alliage d'hydrure métallique selon la présente invention présente un encombrement réduit, le rendant particulièrement adapté pour des pièces d'horlogerie de petites tailles, comme des montres bracelet par exemple.
  • La description qui précède s'attache à décrire des modes de réalisation particuliers à titre d'illustrations non limitatives et, l'invention n'est pas limitée à la mise en oeuvre de certaines caractéristiques particulières qui viennent d'être décrites, comme par exemple les composés chimiques mentionnés, ou les modes de réalisation présentés.
  • D'autres réactifs peuvent répondre aux conditions posées et être mis en oeuvre dans un mécanisme pneumatique de remontage de la source d'énergie mécanique d'une pièce d'horlogerie, sans sortir du cadre de la présente invention. Il est envisageable d'utiliser d'autres alliages métalliques tant qu'un changement de phase est impliqué dans le fonctionnement du mécanisme pneumatique pour présenter des valeurs suffisantes des coefficients ΔP/ΔT respectifs, avec un écart d'au moins 10% entre eux.
  • Par ailleurs, l'homme du métier ne rencontrera pas de difficulté particulière pour adapter les différents modes de réalisation présentés en fonction de ses propres besoins, et mettre en oeuvre un mécanisme de remontage pneumatique répondant en partie aux caractéristiques qui viennent d'être exposées, sans sortir du cadre de la présente invention.
  • En particulier, on notera que les plages de valeurs proposées pour les paramètres pertinents sont relativement larges, notamment du fait que les conditions à respecter diffèrent sensiblement selon les dimensions de la pièce d'horlogerie à réaliser.

Claims (11)

  1. Mécanisme pneumatique (1), destiné à produire de l'énergie mécanique à partir de variations de la température environnante, comportant une première enceinte hermétique (5) de volume variable, dont la pression interne peut alternativement croître et décroître en fonction des variations de la température environnante,
    ladite première enceinte hermétique (5) contenant un premier mélange de réactifs, de coefficient ΔP1/ΔT, comprenant un premier alliage métallique agencé au contact d'un premier gaz et, susceptible de donner lieu à au moins un changement de phase en fonction des variations de la température environnante,
    caractérisé en ce que le mécanisme pneumatique (1) comprend une seconde enceinte hermétique (6) de volume variable, dont la pression interne peut alternativement croître et décroître en fonction des variations de la température environnante,
    ladite seconde enceinte hermétique (6) contenant un second mélange de réactifs, comprenant un second alliage métallique agencé au contact d'un second gaz et, susceptible de donner lieu à au moins un changement de phase en fonction des variations de la température environnante,
    ledit second mélange de réactifs présentant un coefficient ΔP2/ΔT dont la valeur est différente d'au moins 10% de celle de ΔP1/ΔT,
    lesdites première et seconde enceintes hermétiques présentant entre elles une connexion mécanique (7) telle que le volume de l'une desdites enceintes hermétiques augmente lorsque le volume de l'autre diminue,
    ladite connexion mécanique (7) étant reliée à un organe mobile pouvant se déplacer relativement aux variations de volume desdites enceintes.
  2. Mécanisme pneumatique (1) selon la revendication 1, caractérisé
    en ce qu'il est destiné à recharger une source d'énergie mécanique (3) d'une pièce d'horlogerie,
    en ce que ledit premier mélange de réactifs présente un coefficient ΔP1/ΔT sensiblement supérieur à 0.01 bar.°C-1 dans des plages de fonctionnement, en température, comprise sensiblement entre 0 et 50°C et, en pression, comprise sensiblement entre 1 et 50 bars, ledit coefficient ΔP2/ΔT présentant une valeur différente d'au moins 10% de celle de ΔP1/ΔT dans lesdites plages de fonctionnement, et
    en ce que ledit organe mobile est connecté à un mécanisme de conversion (2) de l'énergie susceptible d'être relié à ladite source d'énergie mécanique (3).
  3. Mécanisme (1) selon la revendication 1 ou 2, caractérisé en ce que chacun desdits premier et second gaz comprend du dihydrogène ou du dideutérium susceptible de réagir avec ledit alliage métallique correspondant pour former un alliage du type hydrure métallique, par changement de phase entre les phases gazeuse et solide.
  4. Mécanisme (1) selon la revendication 3, caractérisé en ce que chacun desdits premier et second alliages métalliques répond à une formulation générale du type AB5, AB2 ou AB, dans laquelle A est un métal ou un mélange métallique et B est un métal ou un mélange métallique.
  5. Mécanisme (1) selon la revendication 4, caractérisé en ce que A comporte l'un au moins des éléments choisis dans le groupe comprenant Ce, La, Mn, Nd, Pr, Ti.
  6. Mécanisme (1) selon la revendication 4 ou 5, caractérisé en ce que B comporte l'un au moins des éléments choisis dans le groupe comprenant Co, Ni, Sn, Fe, Mn.
  7. Mécanisme (1) selon l'une quelconque des revendications 4 à 6, caractérisé en ce qu'au moins l'un desdits premier et second alliages métalliques comprend un troisième métal ou alliage métallique substitué en faible proportion à A ou à B.
  8. Mécanisme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit coefficient ΔP1/ΔT dudit premier mélange de réactifs dans ladite première enceinte hermétique (5) est sensiblement égal ou supérieur à 0.5 bar.°C-1 dans une plage de fonctionnement préférée, en température, comprise sensiblement entre 15 et 40°C, plus préférablement entre 15 et 35°C.
  9. Mécanisme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit coefficient ΔP1/ΔT dudit premier mélange de réactifs dans ladite première enceinte hermétique (5) est sensiblement égal ou supérieur à 0.5 bar.°C-1 dans une plage de fonctionnement préférée, en pression, comprise sensiblement entre 1 et 30 bars, plus préférablement entre 1 et 10 bars.
  10. Mécanisme (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une paroi (14, 16) de chacune desdites enceintes hermétiques (5, 6) présente la forme générale d'un soufflet déformable en fonction des variations de pression interne dues aux changements de la température environnante.
  11. Pièce d'horlogerie comportant un mécanisme pneumatique (1) selon l'une quelconque des revendications précédentes pour recharger une source d'énergie mécanique (3), caractérisée en ce qu'elle comporte un système de conversion d'énergie (2) associé au moins indirectement, d'une part, auxdites première et seconde enceintes hermétiques (5, 6) et, d'autre part, à ladite source d'énergie mécanique (3) pour recharger cette dernière à partir des variations de volumes desdites première et seconde enceintes hermétiques (5, 6).
EP12190043.5A 2012-10-25 2012-10-25 Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique Active EP2725432B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12190043.5A EP2725432B1 (fr) 2012-10-25 2012-10-25 Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique
PCT/EP2013/072166 WO2014064150A1 (fr) 2012-10-25 2013-10-23 Mecanisme de remontage pneumatique, en particulier pour une piece d'horlogerie comportant une source d'energie mecanique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12190043.5A EP2725432B1 (fr) 2012-10-25 2012-10-25 Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique

Publications (2)

Publication Number Publication Date
EP2725432A1 EP2725432A1 (fr) 2014-04-30
EP2725432B1 true EP2725432B1 (fr) 2016-07-20

Family

ID=47071175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12190043.5A Active EP2725432B1 (fr) 2012-10-25 2012-10-25 Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique

Country Status (2)

Country Link
EP (1) EP2725432B1 (fr)
WO (1) WO2014064150A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3850216A1 (fr) 2018-09-13 2021-07-21 Preciflex SA Collecte d'énergie avec des fluides

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028049A (ja) 2001-07-13 2003-01-29 Seiko Epson Corp エネルギ変換装置およびこれを備えた機器
JP2003120514A (ja) 2001-10-05 2003-04-23 Seiko Epson Corp 熱エネルギ変換装置を有する機器への熱エネルギ供給装置
EP2469350A1 (fr) 2010-12-21 2012-06-27 Association Suisse pour la Recherche Horlogère Mécanisme de remontage pneumatique pour pièce d'horlogerie comportant une source d'énergie mécanique

Also Published As

Publication number Publication date
WO2014064150A1 (fr) 2014-05-01
EP2725432A1 (fr) 2014-04-30

Similar Documents

Publication Publication Date Title
EP3181940B2 (fr) Procede de fabrication d'un spiral d'une raideur predeterminee par retrait localise de matiere
EP2725432B1 (fr) Mécanisme de remontage pneumatique, en particulier pour une pièce d'horlogerie comportant une source d'énergie mécanique
EP2437125A1 (fr) Pièce d'horlogerie
EP3783445B1 (fr) Mécanisme régulateur d'horlogerie à haut facteur de qualité et à lubrification minimale
WO2013084040A1 (fr) Procédé de réglage de la chronométrie d'un mouvement d'horlogerie destiné à fonctionner dans une atmosphère à basse pression
EP2656149B1 (fr) Mecanisme de remontage pneumatique pour piece d'horlogerie comportant une source d'energie mecanique
EP2718769B1 (fr) Source d'energie mecanique pour mouvement horloger a couple de sortie predefini
CH713409A2 (fr) Balancier-spiral du type thermocompensé, mouvement et pièce d'horlogerie.
CH715587A2 (fr) Dispositif universel de remontage et remise à l'heure d'une montre.
CH704686B1 (fr) Ressort horloger pour montre-bracelet.
EP4002016A1 (fr) Montre a mouvement mecanique a mecanisme de controle de force
WO2019092664A1 (fr) Organe moteur d'horlogerie.
CH705304B1 (fr) Mécanisme d'entraînement.
WO2012127036A1 (fr) Mouvement de montre mecanique comprenant un accumulateur d'energie deformable en flexion ou en torsion
EP4019459A1 (fr) Procédé de fabrication d'un ressort spiral thermocompensé
CH718217A2 (fr) Procédé de fabrication d'un ressort spiral thermocompensé.
CH712205A2 (fr) Mécanisme régulateur d'horlogerie à échappement magnétique.
CH712451B1 (fr) Mécanisme de remontage et de mise à l'heure d'un mouvement horloger.
CH712360B1 (fr) Dispositif d'entraînement comprenant des fils en alliage à mémoire de forme pour mouvement d'horlogerie.
EP4386488A1 (fr) Compensation de la variation de marche dans une montre
EP4303664A1 (fr) Mouvement d'horlogerie et pièce d'horlogerie comportant un tel mouvement
EP3112949B1 (fr) Source d'energie mecanique pour mouvement horloger
CH716783A2 (fr) Pièce d'horlogerie comprenant deux organes réglants.
FR2551189A1 (fr) Dispositif de refroidissement a compression et detente de gaz sans changement de phase
CH709755A2 (fr) Mécanisme d'horlogerie muni d'un résonateur diapason.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20141014

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814563

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012020648

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E-PATENT S.A., CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 814563

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012020648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

26N No opposition filed

Effective date: 20170421

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161025

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181025

Year of fee payment: 7

Ref country code: GB

Payment date: 20181029

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221027

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231102

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012020648

Country of ref document: DE